12 United States Patent

MclIntosh et al.

US007444626B2

US 7,444,626 B2
Oct. 28, 2008

(10) Patent No.:
45) Date of Patent:

(54) APPARATUS AND METHOD FOR LINEAR
DEAD STORE ELIMINATION

(75) Inventors: Ronald Ian McIntosh, Scarborough
(CA); Mark Peter Mendell, Toronto
(CA)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 576 days.
(21) Appl. No.: 10/942,423
(22) Filed: Sep. 16, 2004
(65) Prior Publication Data
US 2006/0059476 Al Mar. 16, 2006
(51) Int.CL
GO6l 9/45 (2006.01)
(52) US.CL ...l 717/151;°717/152; °717/154;
717/159;717/155
(58) Field of Classification Search 717/151,
717/152, 154, 159, 135; 707/206
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

Chowetal.,ccove...... 717/154
Simmons et al. 717/154
Guptaetal. 717/158

5,768,596 A * 6/1998
5,956,512 A * 9/1999
5,999,736 A * 12/1999

6,317,876 B1* 11/2001 Kunzetal. 717/154
6,609,249 B2* 8/2003 Kunzetal. 717/161
6,820,101 B2* 11/2004 Wallman 707/2006
2002/0095669 Al 7/2002 Archambault 717/157
2005/0166194 Al* 7/2005 Rubmetal. 717/151

OTHER PUBLICATIONS

Knoop, et al. “Partial Dead Code Elimination™, 1994, ACM, pp.
147-158.*
Bodik, et al. “Partial Dead Code Elimination using Slicing Transfor-

mations”, 1997, ACM, pp. 159-170.%
Lo et al., “Register Promotion by Sparse Partial Redundancy Elimi-

nation of Loads and Stores”, Silicon Graphics Computer Systems,
Mountain View, CA, 1998 ACM, pp. 26-37.

Sastry et al., “A New Algorithm for Scalar Register Promotion Based
on SSA Form”, Performance Delivery Laboratory, Hewlett Packard

Company, Cupertino, CA, 1998 ACM, pp. 15-25.
Kennedy et al., “Partial Redundancy Elimination in SSA Form”,
Silicon Graphics Computer Systems, (1999 ACM), ACM Transac-

tions on Programming Languages and Systems pp. 1-50.

* cited by examiner

Primary Examiner—Wei1 Zhen

Assistant Examiner—Qamrun Nahar

(74) Attorney, Agent, or Firm—Duke W. Yee; Libby Z.
Handelsman: James D. Skarsten

(57) ABSTRACT

An apparatus and method for removing stores to local vari-
ables that are not aliased by other variables or to variables
which have already been removed by previous optimizations
prior to performing dead store elimination optimization are
provided. With the method and apparatus, instructions that
include a memory reference to a local variable that 1s not
modified by other instructions are identified. For these
istructions, an identifier of the variable referenced 1s main-
tained 1n a data structure along with the location of the store
instruction 1n the procedure (for a store 1nstruction) or a load
indicator (for a load instruction). The data structure 1s then
traversed to see 1f there are any store instructions referencing,
a variable that does not have a corresponding load instruction
referencing the same variable. Such store instructions are
climinated prior to performing traditional dead store elimi-
nation.

18 Claims, 5 Drawing Sheets

Criginal Instructions

Translate to
Internal Instructions

220

1 =

Initial
Optimizations
230

IZES
Linear Dead Store
Elimination —

240

L

Compiler
210

Conventional Dead

Store Elimination
250

Additional
Optimizations LDS Data Storage
280 275
Generate Object
Code
270

I 2 _

Compiled and Optimized Object Code

280 _
— /\

US 7,444,626 B2

Sheet 1 of S

Oct. 28, 2008

U.S. Patent

02}
— — i181depy
vel cch 3SNOW PUE
AIOWB WaPON

pleoghoy

6LL 8Li vii
19)depy J8)depy 90BLa| SN
03PIA/OIDNY solydelo uoisuedx3

901 sng

9Ll
J18)depy poL

olpny foway uiepy

00}

[Old

0oL}
18)depy

NV

801}

abpugrayoe)
|DdASOH

c0}
1088901

U.S. Patent Oct. 28, 2008 Sheet 2 of 5 US 7,444,626 B2

FIG. 2

Onginal Instructions

205

|

Compiler
210

Conventional Dead

Store Elimination
250

Translate to
Internal Instructions

220

Initial Additional
Optimizations Optimizations LDS Data Storage
230 260 275

235

Linear Dead Store Generate Object

Elimination Code
240 270

Compiled and Optimized Object Code
280

U.S. Patent Oct. 28, 2008 Sheet 3 of 5 US 7,444,626 B2

FIG. 3A

int I; 310
1 . _/

FI1G. 3B

Int x;

void f() { 210

1= 1;
320—Xx=1;

= 2; —
! " 330

U.S. Patent Oct. 28, 2008 Sheet 4 of 5 US 7,444,626 B2

FIG. 3C

int x;
void () { 310
int I;
1= 1; / [* removed by LDS */
320— X=1; [* can be removed later by DSE */
X =2; [must stay */
} N
330
Int x:
void f() {
Int i; 330

U.S. Patent Oct. 28, 2008 Sheet 5 of 5 US 7,444,626 B2

FIG. 4 (srt

Get Next Instruction

In Procedure
410

Has
Memory Reference to
Local Vanable?

No

Yes

Variable

May be Modified by Other

Instructions?
430

No

Yes

Store Variable [dentifier
and Location of Store
Instruction in Linear
Dead Store Data

Structure
450

Store Variable Indicator
and Load Indicator in
Linear Dead Store Data

Structure
470

IS

Instruction a

Store’?
440

NO

IS
Instruction a

Load?
460

NO

Last
Instruction in
FProcedure?

480

No

Yes
Output Partially
Traverse Data Structure Optimized Code for
Identifying Stores and Loads | Dead Store Elimination
490 510

Eliminate Any Stores that
do not have a

Corresponding Load
500

US 7,444,626 B2

1

APPARATUS AND METHOD FOR LINEAR
DEAD STORE ELIMINATION

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention 1s generally directed to an improved
computer code optimization apparatus and method. More
specifically, the present invention 1s directed to an apparatus
and method for removing stores to local variables that are not
aliased by other varniables.

2. Description of Related Art

Dead store elimination (DSE) 1s a common optimization
tool for compilers when compiling instructions. DSE 1s used
to remove store 1nstructions, or “stores,” to memory that are
no longer necessary. For example, compiler optimizations
such as constant propagation, which propagates constant val-
ues forward in compiled code, often result in opportunities for
store elimination. Such compiler optimizations permit the
removal of code for such store operations i1, after the constant
propagation, the compiler can determine that the variable
subject of the store operation 1s not subsequently used.
Removing the code for such a store operation reduces execu-
tion path length 1n the compiled computer code.

While DSE 1s a useful optimization mechanism, 1t may
greatly increase the compilation time for instructions. For
example, the time 1t takes for DSE to optimize the instructions
for a procedure 1s a function of the number of memory refer-
ences in the procedure squared, 1.e. O(memoryReferences 2).
In addition, the amount of memory space needed to perform
the DSE operation for a procedure 1s also a function of the
number of memory references 1n the procedure squared, 1.¢.
O(memoryReferences 2).

For procedures with many memory references, the
memory requirements can be too large to represent the entire
procedure in the available memory. Therefore, DSE may not
be able to run on some procedures 1n source code. This leads
to longer execution paths and thus, longer execution times. In
addition, the compile time spent performing DSE operations
may amount to a large percentage of the compile time at high
optimization levels.

Therelore, 1t would be beneficial to have an apparatus and
method for improving upon DSE mechanisms so that the
memory requirements and execution times for performing the
DSE operations are reduced.

SUMMARY OF THE INVENTION

The present invention provides an apparatus and method
for removing stores to local variables that are not aliased to
other variables. With the method and apparatus of the present
invention, the mstructions in a procedure are walked through
to determine, for each instruction, whether there 1s a memory
reference to a local variable. If so, a determination 1s made as
to whether or not the local variable 1s aliased with another
variable, has 1ts address taken by another instruction, or has
been designated as a volatile variable.

If the variable does not fall within one of these types of
variables, then 1f the instruction 1s a store instruction, an
identifier of the variable referenced 1s maintained in a data
structure along with the location of the store instruction in the
procedure. I the mstruction 1s a load instruction, an 1dentifier
ol the variable 1s maintained 1n a data structure along with an
indicator that a value for the variable has been loaded.

Once each instruction 1n the procedure 1s processed 1n the
above manner, the data structure 1s traversed to see i1f there are
any store instructions referencing a variable that does not

10

15

20

25

30

35

40

45

50

55

60

65

2

have corresponding load instructions referencing the same
variable. If there are any store instructions which do not have
corresponding load instructions referring to the same vari-
able, these store instructions are removed from the source
code based on the location information maintained 1n the data
structure. In this way, a linear time and linear memory mecha-
nism 1s provided for pre-processing the source code for dead
store elimination. Since many of the dead stores may be
removed 1n this manner, the time and required memory
resources needed for performing the DSE operation 1s
reduced. As a result, the compilation time for compiling and
optimizing the source code may be reduced. Also, 11 there 1s
insuificient memory to run the full DSE, the present invention
obtains some of the benefit for very little effort. Moreover, the
present invention can be used by itself at low optimization
levels where compile speed and memory usage are more
important than maximum program speed.

These and other features and advantages of the present
invention will be described 1n, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth i the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereot, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 1s an exemplary block diagram of a data processing
system 1n which the exemplary aspects of the present inven-
tion may be implemented;

FIG. 21s an exemplary block diagram of the primary opera-
tional components of one exemplary embodiment of the
present invention;

FIG. 3A 1s an exemplary diagram 1llustrating a small por-
tion of structions on which an exemplary embodiment of
the present invention may operate;

FIG. 3B 1s an exemplary diagram 1illustrating an initially
optimized version of the small portion of instructions shown

in FIG. 3A;

FIG. 3C 1s an exemplary diagram illustrating the same
small portion of mstructions from FIG. 3B with comments
showing detailing the atfect of the operation of the exemplary
embodiment of the present invention;

FIG. 3D i1s an exemplary diagram illustrating the same
small portion of instructions from FIG. 3 A after the operation
of the exemplary embodiment of the present invention and
conventional dead store elimination; and

FIG. 4 15 a flowchart outlining an exemplary operation of
one exemplary embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED

EMBODIMENT

The present invention provides a mechanism for pre-pro-
cessing 1nstructions to determine 1f there are stores to local
variables that are not aliased or volatile which may be deter-
mined to be dead stores so that these stores may be removed
from the instructions prior to performing traditional dead
store elimination operations on the mstructions. The present
invention provides a linear dead store pre-processing opera-
tion that traverses the instructions to 1dentity such stores and
climinate them from the instructions to thereby generate par-

US 7,444,626 B2

3

tially optimized instructions. Thereafter, traditional dead
store elimination operations may be performed on the par-
tially optimized instructions.

Thus, the preferred embodiment of the present invention 1s
embodied 1n software that 1s executed by a computing device.
More specifically, the present invention 1s implemented as
part of an instruction compiler/optimizer that operates 1n a
computer to optimize and compile instructions mnto an execut-
able format. Therefore, in order to provide a background with
regard to an exemplary computing device in which the present
invention may be implemented, FIG. 1 1s provided as an
exemplary block diagram of such a computing device.

With reference now to FIG. 1, a block diagram of a data
processing system 1s shown i1n which the present invention
may be implemented. Data processing system 100 1s an
example of a computer in which code or 1nstructions 1imple-
menting the processes of the present mvention may be
located. Data processing system 100 employs a peripheral
component 1nterconnect (PCI) local bus architecture.
Although the depicted example employs a PCI bus, other bus
architectures such as Accelerated Graphics Port (AGP) and
Industry Standard Architecture (ISA) may be used. Processor
102 and main memory 104 are connected to PCI local bus 106
through PCI bridge 108. PCI bridge 108 also may include an
integrated memory controller and cache memory for proces-
sor 102. Additional connections to PCI local bus 106 may be
made through direct component interconnection or through
add-in connectors. In the depicted example, local area net-
work (LAN) adapter 110, small computer system interface
SCSI host bus adapter 112, and expansion bus interface 114
are connected to PCI local bus 106 by direct component
connection. In contrast, audio adapter 116, graphics adapter
118, and audio/video adapter 119 are connected to PCI local
bus 106 by add-in boards inserted into expansion slots.
Expansion bus interface 114 provides a connection for a
keyboard and mouse adapter 120, modem 122, and additional
memory 124. SCSI host bus adapter 112 provides a connec-
tion for hard disk drive 126, tape drive 128, and CD-ROM
drive 130. Typical PCI local bus implementations will sup-
port three or four PCI expansion slots or add-in connectors.

An operating system runs on processor 102 and 1s used to
coordinate and provide control of various components within
data processing system 100 in FIG. 1. The operating system
may be a commercially available operating system such as
Windows® XP, which 1s available from Microsoit Corpora-
tion. An object oriented programming system such as Java
may run in conjunction with the operating system and pro-
vides calls to the operating system from Java programs or
applications executing on data processing system 100. “Java”
1s a trademark of Sun Microsystems, Inc. Instructions for the
operating system, the object-oriented programming system,
and applications or programs are located on storage devices,
such as hard disk drive 126, and may be loaded into main
memory 104 for execution by processor 102.

Those of ordinary skill in the art will appreciate that the
hardware 1n FIG. 1 may vary depending on the implementa-
tion. Other internal hardware or peripheral devices, such as
flash read-only memory (ROM), equivalent nonvolatile
memory, or optical disk drives and the like, may be used in
addition to or 1n place of the hardware depicted 1in FIG. 1.
Also, the processes of the present invention may be applied to
a multiprocessor data processing system.

For example, data processing system 100, 11 optionally
configured as anetwork computer, may not include SCSI host
bus adapter 112, hard disk drive 126, tape drive 128, and
CD-ROM 130. In that case, the computer, to be properly
called a client computer, includes some type of network com-

10

15

20

25

30

35

40

45

50

55

60

65

4

munication interface, such as LAN adapter 110, modem 122,
or the like. As another example, data processing system 100
may be a stand-alone system configured to be bootable with-
out relying on some type of network communication inter-
face, whether or not data processing system 100 comprises
some type ol network communication interface. As a further
example, data processing system 100 may be a personal digi-
tal assistant (PDA), which 1s configured with ROM and/or
flash ROM to provide non-volatile memory for storing oper-
ating system files and/or user-generated data.

The depicted example in FIG. 1 and above-described
examples are not meant to imply architectural limitations. For
example, data processing system 100 also may be a notebook
computer or hand held computer in addition to taking the
form of a PDA. Data processing system 100 also may be a
kiosk or a Web appliance.

The processes of the present invention are performed by
processor 102 using computer implemented instructions,
which may be located in a memory such as, for example, main
memory 104, memory 124, or in one or more peripheral

devices 126-130.

As mentioned above, the present mvention provides an
apparatus and method for removing stores to local variables
that are not aliased by other variables. With the method and
apparatus of the present invention, the instructions 1n a pro-
cedure are walked through to determine, for each instruction,
whether 1t 1s a memory reference to a local variable. If so, a
determination 1s made as to whether or not the local variable
1s aliased with another variable, has i1ts address taken, or has
been designated as a volatile variable.

If the variable does not fall within one of these types of
variables, then 1f the instruction 1s a store instruction, an
identifier of the variable referenced 1s maintained 1n a data
structure along with the location of the store instruction in the
procedure. I the instruction 1s a load 1nstruction, an 1dentifier

of the variable 1s maintained 1n a data structure along with an
indicator that a value for the variable has been loaded.

Once each mstruction 1n the procedure 1s processed in the
above manner, the data structure 1s traversed to see i1f there are
any store mstructions referencing a variable that do not have
corresponding load instructions referencing the same vari-
able. I1 there are any store instructions which do not have
corresponding load instructions referring to the same vari-
able, these store instructions are removed from the instruc-
tions based on the location information maintained 1n the data
structure. In this way, a linear space and time mechanism 1s
provided for pre-processing the mnstructions for dead store
climination. Since many of the dead stores may be removed 1n
this manner, the time and required memory resources needed
for performing the DSE operation 1s reduced. As a result, the
compilation time for compiling and optimizing the instruc-
tions may be reduced. In fact, DSE may be executed several
times as more opportunities are exposed. Linear Dead Store
Elimination 1n accordance with the present invention may
only need to be run before the first DSE operation 1s per-
formed, since, depending on other optimizations performed,
it may be unlikely to find any opportunities after the first
execution.

FIG. 21s an exemplary block diagram of the primary opera-
tional components of one exemplary embodiment of the
present invention. As shown in FIG. 2, original instructions
205 are provided to a compiler/optimizer 210 which both
optimizes and compiles the mstructions mto compiled and
optimized object code 280. The compiled and optimized
object code 280 may be executable object code that 1s opti-
mized to remove dead stores 1n the istructions.

US 7,444,626 B2

S

The compiler/optimizer 210 imtially translates (220) the
original source code instructions into an internal representa-
tion of the mstructions for processing by the compiler/opti-
mizer 210. Some 1nitial optimizations on the translated inter-
nal mstructions may then be performed (230), as 1s generally
known 1n the art. Thereafter, linear dead store elimination 1s
performed 1n accordance with the present mnvention.

The linear dead store elimination mechanism of the com-
piler/optimizer 210 operates on the itially optimized
instructions 235 or alternatively the translated internal
instructions 1f no initial optimizations are performed. The
linear dead store elimination mechanism operates on these
instructions 235 to perform a preliminary pass to remove dead
stores associated with local variables that are not modified by
more than one instruction, e.g., local variables that are not
aliased by other variables, have their addresses taken by other
instructions, or are volatile variables.

As part of the execution of the compiler/optimizer 210 on
the original 1nstructions 2035 to translate the original instruc-
tions 205 into an internal representation of the mnstructions
(220), the compiler/optimizer 210 obtains information about
the various mstructions and variables 1n the original instruc-
tions 205. For example, the compiler/optimizer 210 deter-
mines which variables are declared as local automatic vari-
ables, local static variables, what input parameters are passed
to routines/methods of the original instructions 203, whether
a variable 1s declared as being a volatile variable, etc. More-
over, the compiler maintains information about what
addresses that are accessed by the original instructions 205 so
that a determination may be made as to whether the same
memory addresses are accessed by more than one variable,
1.e. a variable 1s aliased with another variable, or whether the
same address 1s taken by any instruction in the instructions
205.

An address being “taken” refers to the address of a variable
being loaded or calculated by an instruction, so that it can be
loaded or stored indirectly, as opposed to the value of the
variable being directly loaded or stored. For example, [O]
cach reference to memory 1s associated with an identifier that
represents the memory reference. This may be “1”foraload or
store to local variable “1”, or may be an identifier such as
“pointer to nt” representing the expression “*intPtr”. For
cach 1dentifier, the compiler keeps a data structure showing
whether the address has been taken (such as “intptr=&17"), and
also what possible aliases a reference may have (example
*intptr may possibly change the value of “1”.) This can be
determined by noting which variables have had their address
taken, and are of a “compatible” type. For example, a store to
*intptr may alias with 17, but might not alias “double d”,
which has also had i1ts address taken. The language semantics
define this.

The present invention operates on the mitially optimized
istructions 235, or alternatively a translated version of the
original mstructions 205, and this information maintained or
obtained by the compiler/optimizer 210 to determine which
store 1instructions may be eliminated as local dead stores in a
preliminary pass. Specifically, the linear dead store elimina-
tion mechanism walks the 1nstructions and, for each 1nstruc-
tion, determines 1 the instruction includes a memory refer-
enceto alocal vaniable, e.g., a local automatic variable, a local
static variable, an input parameter, or the like.

If the mstruction includes a memory reference to a local
variable, a determination 1s made as to whether the local
variable 1s aliased with any other variable, has its address
taken, or has been designated as a volatile variable. A “vola-
tile” variable 1s one which has the language semantics such
that a load or store may NOT be removed. A variable or

10

15

20

25

30

35

40

45

50

55

60

65

6

memory reference 1s “‘aliased” with another variable or
memory reference 1f an assignment to one might possibly
change the “value” of the other one. If the local variable 1s not
aliased with any other variable, does not have its address
taken, and has not been designated as a volatile vanable, a
determination 1s made as to whether this instruction 1s a store
instruction.

I the 1nstruction 1s a store instruction, an identifier of the
variable referenced by this mstruction 1s stored 1n an entry in
the linear dead store data structure storage 275. In addition, a
location of the store 1nstruction 1s associated with the entry 1n
the linear dead store data structure storage 275.

Ifthe instruction 1s a not a store instruction, a determination
1s made as to whether the instruction 1s a load 1nstruction. I
the 1nstruction 1s a load instruction, an i1dentifier of the vari-
able referenced by the instruction 1s stored 1n an entry in the
linear dead store data structure storage 275 along with an
indicator identifying that the mstruction was a load 1nstruc-
tion.

An mstruction may be simultaneously aload and a store (of
the same variable or of different variables), or a load or a store
and also take the address of a variable. Any instruction whose
result depends on the value 1n a variable 1s considered as a
load of that variable and any instruction which may change
the value 1n a variable 1s considered a store into that variable.

I1 the 1mnstruction does not include a memory reference to a
local variable, references a variable that 1s aliased by another
variable, references a variable that has 1ts address taken by
another instruction, references a volatile variable, or 1s not a
store or load 1nstruction, then information about the instruc-
tion and the vanable referenced are not stored in the linear
dead store data structure storage 275.

This process 1s repeated for each instruction in the mitially
optimized 1nternal version of the original instructions 235, or
the internal representation of the original istructions 205 1t
no initial optimization 1s performed. When the linear dead
store elimination mechanism finishes processing each
instruction, the linear dead store data structure in the linear
dead store data storage 2735 1s traversed to determine 11 there
are any stores to a particular variable without a corresponding
load 1nstruction referencing the variable. If there 1s a store to
the variable with no load of the variable, then the store
instruction 1s determined to be a local dead store since the
variable 1s not later used by another instruction. As a result,
the store 1nstruction may be eliminated from the instructions
2335 1n order to optimize the code by reducing the execution
path of the mstructions 235. These store instructions are
deleted from the instructions 235 to generate partially opti-
mized nstructions 245.

The partially optimized instructions 245 are provided to a
conventional dead store elimination mechanism 250 within
the compiler/optimizer 210. The conventional dead store
climination mechanism 250 operates on the partially opti-
mized 1nstructions 245 to remove other dead stores in the
partially optimized instructions 245. Because many of the
dead stores have been eliminated through the use of the linear
dead store elimination 240 to remove local dead stores 1n
routines/methods of the instructions 235, the execution of the
conventional dead store elimination mechanism 250 requires
less memory space and less time to complete. The result 1s the
optimized instructions 255 1n which dead stores have been
climinated. These optimized instructions 2335 may then
undergo further optimizations 260 prior to being used to
generate object code 270 for the original instructions 205.
Once the object code 1s generated by the compiler/optimizer
210, the compiled and optimized object code 280 1s output.

US 7,444,626 B2

7

FIG. 3A 1s an exemplary diagram 1llustrating a small por-
tion of instructions on which an exemplary embodiment of
the present invention may operate. As shown in FIG. 3A, the
instructions include a declaration of the local variable 1 as an
integer, the setting of 1 to the value 1, the setting of a second
global variable x to the value of I, and the setting of x to the
value “1+1.” In an 1mtial optimization of the instructions
shown 1n FIG. 3A, the value for 1 will be propagated through
cach of the instructions such that the intermediate, or initially
optimized instructions, are as shown 1n FIG. 3B.

As shown 1n FIG. 3B, the initially optimized instructions
include a declaration of the local variable 1 as an integer, the
setting of 1 to the value of 1, the setting of x to the value 1, and
the setting of x to the value of 2. It 1s upon this initially
optimized set of structions that the linear dead store elimi-
nation mechanism of the present invention operates.

The mstruction 310 setting the variable 1 to a value of 1 1s
a dead store since the variable 1 1s not referenced again 1n the
set of 1nstructions. The instruction 320 1s also a dead store
since the value of X 1s immediately reset to a different value by
instruction 330 without the variable x being referenced by
another 1nstruction prior to its value being reset. However,
only instruction 310 will be removed by way of the linear
dead store elimination mechanism of the present invention
since the variable x 1s a global variable. The first linear dead
store 310 1s removed from the instructions by the present
invention because the variable 1 1s a local variable and 1s not
aliased by another varniable, does not have 1ts address taken,
and 1s not declared as being volatile.

As shown 1n FI1G. 3C, the first instruction 310 1s eliminated
by the linear dead store elimination mechanism of the present
invention. As a result, the set of instructions will include only
mstructions 320 and 330. Thereatfter, conventional dead store
climination may be used to remove 1nstruction 320 since the
value of x 1s immediately changed by instruction 330. As a
result, the optimized set of instructions generated by using,
both linear dead store elimination and conventional dead
store elimination will comprise only mstruction 330 as shown
in FIG. 3D.

Thus, with the use of the present invention, the amount of
memory space and execution time of the conventional dead
store elimination 1s reduced because the conventional dead
store elimination does not need to handle the first local dead
store 310 which has already been removed. While this 1s a
simple example, with more complex sets of instructions
where the number of local dead stores removed by the present
invention 1s greater, the amount of improvement in the opera-
tion of the traditional dead store elimination because of the
use of the present invention 1s more evident.

FIG. 4 1s a flowchart outlining an exemplary operation
according to the invention. It will be understood that each
block of the flowchart illustration, and combinations of
blocks 1n the flowchart illustration, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor or other program-
mable data processing apparatus to produce a machine, such
that the 1nstructions which execute on the processor or other
programmable data processing apparatus create means for
implementing the functions specified 1n the flowchart block
or blocks. These computer program instructions may also be
stored 1n a computer-readable memory or storage medium
that can direct a processor or other programmable data pro-
cessing apparatus to function in a particular manner, such that
the mstructions stored in the computer-readable memory or
storage medium produce an article of manufacture including
instruction means which implement the functions specified 1n
the flowchart block or blocks.

10

15

20

25

30

35

40

45

50

55

60

65

8

Accordingly, blocks of the flowchart illustration support
combinations of means for performing the specified func-
tions, combinations of steps for performing the specified
functions and program instruction means for performing the
speciflied functions. It will also be understood that each block
of the flowchart i1llustration, and combinations of blocks 1n
the flowchart illustration, can be implemented by special
purpose hardware-based computer systems which perform
the specified functions or steps, or by combinations of special
purpose hardware and computer instructions.

As shown 1 FIG. 4, the operation starts by obtaining the
next mstruction i a procedure, where the procedure 1s either

an 1mtially optimized internal representation of recerved
instructions or simply an internal representation of recerved
instructions (step 410). A determination 1s made as to whether
the instruction has a memory reference to a local variable
(step 420). This determination may include, for example,
determining whether the memory reference in the instruction
1s to a local automatic variable, local static variable, or to an
input parameter of the procedure.

If the instruction has a memory reference to a local vari-
able, a determination 1s made as to whether the variable may
be modified by other instructions (step 430). This determina-
tion may include, for example, determining whether the vari-
able 1s aliased with another variable, has 1ts address taken by

another 1nstruction, or has been designated as a volatile vari-
able.

If the local variable may not be modified by another
instruction 1n the procedure, a determination 1s made as to
whether the instruction 1s a store instruction (step 440). I so,
a variable identifier, e.g., a variable name, address, or other
type of 1dentifier, 1s stored along with the location of the store
instruction 1n the instructions, in a linear dead store data
structure (step 450).

I the 1nstruction 1s not a store instruction, a determination
1s made as to whether the instruction 1s a load instruction (step
460). If the instruction 1s a load instruction, then a variable
identifier 1s stored 1n the linear dead store data structure along

with an indicator i1dentifying that there was a load of the
variable (step 470).

Thereatter, or if the instruction does not have a memory
reference to a local variable (step 420), the local variable may
be modified by another instruction in the procedure (step
430), 1s not a store 1nstruction (step 440) or a load 1nstruction
(step 460), after storing the variable identifier and the location
of the store instruction (step 450), or after storing the variable
identifier and a load 1dentifier (step 470), a determination 1s
made as to whether this 1s the last instruction 1n the procedure
(step 480). I1 not, the operation returns to step 410 where the
next mstruction 1n the procedure 1s obtained.

I1 this was the last mstruction in the procedure, the linear
dead store data structure 1s traversed to identily stores to
variables that do not have corresponding loads of those vari-
ables (step 490). Any stores that do not have a corresponding
load are then eliminated from the instructions to generate
partially optimized instructions (step 500). These partially
optimized instructions are then output for use by a conven-
tional dead store elimination mechanism to further optimize
the mnstructions (step 310). The operation then terminates.

Thus, the present invention provides a mechanism for per-
forming an initial pass on nstructions to remove local dead
stores. This initial pass on the instructions simplifies the set of
instructions being inputto a traditional dead store elimination
engine so that the amount of memory resources required and
the amount of time required by the dead store elimination

US 7,444,626 B2

9

engine to perform its operations 1s significantly reduced. As a
result, optimization and compilation of 1nstructions 1s made
quicker and more efficient.

It 1s important to note that while the present invention has
been described 1n the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer read-
able medium of nstructions and a variety of forms and that
the present 1invention applies equally regardless of the par-
ticular type of signal bearing media actually used to carry out
the distribution. Examples of computer readable media
include recordable-type media, such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis-
sion-type media, such as digital and analog communications
links, wired or wireless communications links using trans-
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual use
in a particular data processing system.

The description of the present invention has been presented
for purposes of 1llustration and description, and i1s not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described 1n order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method, 1n a data processing system, for optimizing
instructions, comprising:
receiving a set of nstructions;
performing linear dead store elimination on each instruc-
tion 1n the set of instructions to form partially optimized

instructions, wherein the linear dead store elimination
Comprises:

determining, for an instruction including a memory ret-
erence to a local variable, that the instruction 1s a dead
store 1nstruction with regard to the local variable; and

writing a linear dead store elimination data structure
entry into a linear dead store elimination data struc-
ture for the dead store instruction;

traversing the linear dead store elimination data struc-
ture to identily linear dead store elimination data
structure entries corresponding to store mstructions
that do not have matching linear dead store elimina-
tion data structure entries corresponding to load
instructions; and

removing the instructions from the set of instructions
that have linear dead store elimination data structure
entries corresponding to store instructions that do not
have matching linear dead store elimination data
structure entries corresponding to load instructions;
and

providing the partially optimized instructions to a conven-
tional dead store elimination engine for performing tra-
ditional dead store elimination operations on the par-
tially optimized instructions to generate optimized
instructions.

2. The method of claim 1, wherein performing the linear
dead store elimination on the instruction including the
memory reference to the local variable further comprises:

10

15

20

25

30

35

40

45

50

55

60

65

10

responsive to determiming that the local vanable 1s aliased
with another vanable, including the instruction in the set
of instructions to form the partially optimized instruc-
tions.

3. The method of claim 1, wherein performing the linear
dead store elimination on the mstruction including the
memory reference to the local vaniable further comprises:

responsive to determining that an address of the local vari-

able 1s taken by another instruction, including the
instruction in the set of instructions to form the partially
optimized instructions.

4. The method of claim 1, wherein performing the linear
dead store elimination on the mstruction including the
memory reference to the local variable further comprises:

responsive to determining that the local variable 1s desig-

nated as a volatile variable, including the instruction in
the set of mnstructions to form the partially optimized
instructions.

5. The method of claim 1, wherein the determiming step
turther comprises:

responsive to determining that the local variable referenced

by the instruction 1s not aliased or not referenced by
another 1nstruction, writing the linear dead store elimi-
nation data structure entry into the linear dead store
climination data structure for the instruction.

6. The method of claim 5, wherein the linear dead store
climination data structure entry 1dentifies the local variable or
the memory reference in response to the instruction being a
store instruction, and wherein the linear dead store elimina-
tion data structure entry identifies a location of the store
instruction within the set of mstructions.

7. The method of claim 5, wherein the linear dead store
climination data structure entry 1dentifies the local variable or
the memory reference in response to the instruction being a
load instruction, and wherein the linear dead store elimination
data structure entry 1dentifies the mstruction as a load mstruc-
tion.

8. The method of claim 1, further comprising:

generating optimized object code based on an operation of

the conventional dead store elimination engine on the
partially optimized instructions.

9. The method of claim 1, wherein the set of instructions 1s
a compiler iternal representation of source 1nstructions that
have been mitially optimized.

10. A computer program product in a recordable-type
medium for optimizing instructions, comprising:

first instructions for receiving a set of mstructions;

second 1nstructions for performing linear dead store elimi-

nation on each istruction 1n the set of instructions to
form partially optimized instructions, wherein the sec-
ond instructions for performing the linear dead store
climination comprises:

third instructions for determining, for an instruction
including a memory reference to a local variable, that
the 1nstruction 1s a dead store instruction with regard
to the local variable; and

fourth 1nstructions for writing a linear dead store elimi-
nation data structure entry into a linear dead store
climination data structure for the dead store instruc-
tion;

fifth 1nstructions for traversing the linear dead store
climination data structure to identily linear dead store
climination data structure entries corresponding to
store instructions that do not have matching linear
dead store elimination data structure entries corre-
sponding to load instructions; and

US 7,444,626 B2

11

s1xth instructions for removing the instructions from the
set of instructions that have linear dead store elimina-
tion data structure entries corresponding to store
instructions that do not have matching linear dead
store elimination data structure entries corresponding
to load 1nstructions; and

seventh instructions for providing the partially optimized

instructions to a conventional dead store elimination
engine for performing traditional dead store elimination
operations on the partially optimized instructions to gen-
crate optimized instructions.

11. The computer program product of claim 10, wherein
the second instructions for performing the linear dead store
climination on the instruction including the memory refer-
ence to the local variable further comprises:

instructions for including the instruction in the set of

istructions to form the partially optimized instructions
in response to determining that the local variable is
aliased with another variable.

12. The computer program product of claim 10, wherein
the second 1nstructions further comprises:

instructions for including the instruction in the set of

instructions to form the partially optimized instructions
in response to determining that an address of the local
variable 1s taken by another instruction.

13. The computer program product of claim 10, wherein
the second 1nstructions further comprises:

instructions for including the instruction in the set of

instructions to form the partially optimized instructions
in response to determining that the local variable 1s
designated as a volatile variable.

14. The computer program product of claim 10, wherein
the third instructions further comprise:

instructions for writing the linear dead store elimination

data structure entry into the linear dead store elimination
data structure for the imstruction in the set of instructions
that references the local variable that 1s not aliased or
referenced by another instruction and 1s either a store
instruction or a load instruction in response to determin-
ing that the local variable referenced by the instruction 1s
not aliased or not referenced by another instruction.

15. The computer program product of claim 14, wherein
the linear dead store elimination data structure entry identifies
the local variable or the memory reference in response to the
instruction being a store instruction, and wherein the linear

10

15

20

25

30

35

40

12

dead store elimination data structure entry identifies a loca-
tion of the store instruction within the set of 1nstructions.
16. The computer program product of claim 14, wherein
the linear dead store elimination data structure entry identifies
the local variable or the memory reference in response to the
instruction being a load instruction, and wherein the linear
dead store elimination data structure entry identifies the
instruction as a load instruction.
17. The computer program product of claim 10, further
comprising;
cighth 1nstructions for generating optimized object code
based on an operation of the conventional dead store
climination engine on the partially optimized instruc-
tions.
18. An apparatus for optimizing istructions, comprising:
means for recerving a set of instructions into memory;
means for performing linear dead store elimination on each
istruction in the set of instructions to form partially
optimized instructions, wherein the linear dead store
climination comprises:
means for determining, for an instruction including a
memory reference to a local variable, that the mstruc-
tion 1s a dead store 1nstruction with regard to the local
variable; and
means for writing a linear dead store elimination data
structure entry into a linear dead store elimination
data structure for the dead store instruction;
means for traversing the linear dead store elimination
data structure to 1dentity linear dead store elimination
data structure entries corresponding to store instruc-
tions that do not have matching linecar dead store
climination data structure entries corresponding to
load instructions; and
means for removing the instructions from the set of
instructions that have linear dead store elimination
data structure entries corresponding to store instruc-
tions that do not have matching linear dead store
climination data structure entries corresponding to
load 1nstructions; and
means for providing the partially optimized instructions to
a conventional dead store elimination engine for per-
forming traditional dead store elimination operations on
the partially optimized instructions to generate opti-
mized 1nstructions.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

