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(57) ABSTRACT

The present invention provides an electrolytic cell, which can
eiliciently produce charged water having an excellent pertor-
mance of improving surface cleaning or treatment of an
object, e.g., semiconductor, glass, orresin and of cleaning and

sterilizing medical device.

The electrolytic cell of the present invention 1s for producing
charged anode water suitable for surface cleaning or treat-
ment, including the cathode chamber 41 and anode chamber
50, fluorinated cation-exchange membrane 46 provided to
separate these chambers from each other, cathode 44 closely
attach to the cation-exchange membrane 45 on the side facing
the cathode chamber 41, and middle chamber 48 filled with
the cation-exchange resin 46, provided on the other side of the
cation-exchange membrane 46, the cation-exchange resin 46
being arranged 1n such a way to come into contact with the
fluorinated cation-exchange membrane 45, wherein the feed
water 1s passed mto the middle chamber 48 and passed thor-
ough the anode chamber 50 to be recovered as the charged
anode water.

15 Claims, 14 Drawing Sheets
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ELECTROLYTIC CELL FOR PRODUCING
CHARGED ANODE WATER SUITABLE FOR
SURFACE CLEANING OR TREATMENT, AND
METHOD FOR PRODUCING THE SAME AND
USE OF THE SAME

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application 1s a continuation of U.S. patent
application Ser. No. 10/242,7°79, filed Sep. 13, 2002, now
U.S. Pat. No. 7,090,753.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present 1invention 1s related to a method for surface
cleaning or treatment of semiconductors, glass, or resins, and
device for producing electrically charged water as utility
water for the above methods, more particularly a technique
for providing an electrolysis cell, which can produce electri-
cally charged water suitable for surface cleaning or treatment
without using chemical 1n consideration of environmental
protection. The electrically charged water produced by using,
the electrolysis cell also has antimicrobial activates, and 1s
suitable for cleaning and sterilizing medical devices for
which high cleanliness 1s required.

2. Description of the Related Art

Electrolysis cell using 1on exchange membrane, as shown
FIG. 1, facilitates the electrolysis of water with low conduc-
tivity such as RO water treated using a reverse osmosis mem-
brane pure water, and ultra pure water. In this cell, a fluori-
nated cation exchange membrane 5 1s usually used.

And then an anode electrode 4 1n the anode cell 1 and a
cathode electrode 9 1n the cathode cell 6 are closely attached
to the membrane 5. The notation 2 denotes the anode chamber
inlet, 3 denotes anode chamber outlet, 7 denotes the cathode
chamber 1nlet, and 8 denotes the cathode chamber outlet.

The 1on exchange group in fluorinated cation exchange
membrane 5 shown 1n FIG. 1 1s known to enhance the disso-
ciation even 1n the pure water according to the reaction (1).

(1)

The dissociated hydrogen 1ons increase the electro conduc-
tivity of pure water, which contains no impurities, and then
decrease the electrolysis voltage.

Next, the reaction (2) and (3) proceed when pure water 1s
clectrolyzed using the cell shown in FIG. 1.

At anode

— SO,H—— SO, +H*

DH,0—2H"+0,+2e"
At cathode

DH*+2e —H,

(2)

(3)

These reactions increase the oxygen concentration in the
anode solution and the hydrogen concentration in the cathode
solution, while leaving the essential properties of electrolytic
water unchanged.

In other words, the charged water produced using elec-
trolysis cell shown 1n FIG. 1 may not be suitable for the
surface cleaning or treatment of semiconductors, glass, or
resins.

In order to enhance the cleaning or surface treatment eifi-
cacy, anode water 1s required to be more oxidative and/or
acidic and cathode water 1s required to be more reductive
and/or alkaline. However, the electrolysis cell shown 1n FIG.
1 1s difficult to produce the effective solutions.
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For example, the oxidation and reduction potential (here-
inafter abbreviated as ORP) of anode water 1s from 200 to 300
mV (vs., Ag/AgCl) and pH 1s around neutral: the ORP of
normal pure water 1s around 200 mV.

The three-chamber cell shown 1 FIG. 2 1s designed to
solve the problem mentioned above, where the middle cham-
ber 111 1s added between the anode chamber 11 and the
cathode chamber. 16. Using the three-chamber cell easily
clectrolyzes pure water or ultra pure water.

Referring to FIG. 2, the three-chamber cell has the cham-
ber 11 and 111 separated by the 10on exchange membrane 151,
chamber 16 and 111 separated by the 1on exchange membrane
152, the middle chamber 111 filled with 10n exchange resins
as a solid electrolyte, the middle chamber inlet 112 and outlet
113, cathode 19 and anode 14 provided 1n such a way to be
closely attached to the 10n exchange membrane 151 and 152,
respectively, the anode camber 1nlet 12 and outlet 13, and the
cathode chamber inlet 15 and 17.

The three-chamber cell has the following merits. Reduc-
tive species such as dissolved hydrogen gas produced 1n the
cathode chamber 16 are likely to migrate into the anode
chamber 11 though the 10n exchange membrane 5 when the
cell depicted 1n FIG. 1 1s used. However, the middle chamber
111 1n the three-chamber cell control the diffusion of reduc-
tive species from the cathode chamber 16 to the anode cham-
ber 11 and then the more strongly oxidative anode water can
be obtained. In the cell shown in FIG. 2, migration of hydro-
gen 1ons formed on the anode 14 toward the cathode 19 1s

limited, and then the electrolysis reaction (4) takes place 1n
addition to the reaction (3):

H,0+2e —LAH,+OH" (4)

T'his reaction suggests that the pH of cathode water tends to
shift to the alkaline region.

In another viewpoint, these phenomena suggest that hydro-
gen 1ons formed 1n the anode chamber 11 1n the reaction (1)
remain partly in that chamber.

In the three-chamber cell shown 1n FIG. 2 the anode solu-
tion, theretfore, 1s likely to be charged with the hydrogen 10mns,
whiles the cathode water 1s charged with hydroxide 10ns.

Electrochemical analytical methods are suitable for moni-
toring charges or the like to experimentally confirm the phe-
nomena mentioned above. For example, the changes 1n mea-
sured values can be monitored by a pH sensor equipped with
a glass electrode or ORP sensor which measure the oxidation-
reduction potential of platinum electrode surface as a stan-
dard of a silver/silver chloride electrode. These sensors, fol-
lowing potential changes 1n the electrodes as the index, are
suitable for confirming charges of electrolytic water. A tem-
perature of the electrolytic water 1s usually kept at from 18 to
24° C. during measurement (the temperature 1n the following
examples was kept at the almost same levels).

SUMMARY OF THE INVENTION

The charged electrolytic water produced using pure water
functions as cleaning/surface treatment reagents for semicon-
ductors, liquid crystal glass and hard disk glass or cleaning/
sterilizing reagents for medical devices. A decontamination
mechanism using electrolytic solutions i1s simply explained as
follows.

Some contaminants are adhered to the surface of the device
mentioned above by electrostatic or 10ni1c attractive forces as
schematically shown 1n FIG. 3, where (A) indicates the con-
taminated surface and (B) indicates the cleaned surface: the
surface of substrate 1s supposed to be positively charged and
contaminants are supposed to be negatively charged. When
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the contaminated substance 1s 1immersed i the effectively
charged anode water, the negatively charges on the contami-
nants surface reacts with excess hydrogen 1ons in the anode
water. Thus the surface charges are partly neutralized to
reduce the bonding forces and thereby to facilitate cleaning.
Conversely, when the contaminants are positively charged,
the negative charges on the contaminated substance surface
disappear to reduce the bonding forces. On the other hand, 1n
the case of 10onic contaminants, when the contaminated sub-
stance 1s immersed 1n anode water with excessive hydrogen
ions, the anionic contaminants on the surface are likely to
dissolve and then migrate to the anode solution to cancel the

excessive charge. Using electrolytic water increases thus
cleaning efficacy.

Anodic electrolysis of pure water produces the hydrogen
1ions according to the reaction (2), where no anion 1s present as
counter 10n, unlike acidic solutions prepared by adding acid
such as hydrochloric acid or sulfuric acid. The anode water
produced by electrolyzing pure water exhibits that the solu-
tion 1s charged. Moreover, the hydrogen 1on by itself 1s an
clectron acceptor and so exhibits one of oxidizing species. So,
the oxidation-reduction potential of anode water tends to shift
to noble side. In other words, the ORP sensor indicates a plus
value.

When the three-chamber cell depicted in FIG. 2 1s used, the
anode water 1s not necessarily suificient for actual cleaning or
surface treatment, although the theoretical consideration
mentioned above appears to be very promising. So improving,
the cell 1s very important to apply to actual use.

More specifically, the important factors for producing
elfective charged water are an apparent current density (cur-
rent (A)/apparent area of whole electrode (cm?), a fluid veloc-
ity along the electrode surface, and an true current density
(effective current density=current (A)/true area of the elec-
trode (cm?)). As the fluid velocity increases, the hydrogen
ions and other electrolytic species produced on the electrode
surface migrate faster to electrolytic water and then strangely
charged water can be produced.

The mventors of this invention have found that it 1s 1mpor-
tant to pass water not only over the back side of electrode but
also over the front side of electrode, based on the study to
improve charged water production efficacy.

This result has led to the development of new methods for
improving surface cleaning or treatment performance in
semiconductors, glass, resins or the like, and of the apparatus
(electrolytic cell) of the present mvention which can efli-
ciently produce the charged water with an excellent perfor-
mance described above.

The invention has the following characteristic constituents
to achieve the above objects.

(1) An electrolytic cell for producing charged anode water
suitable for surface cleaning or treatment, including cathode,
middle and anode chambers, a fluorinated cation-exchange
membrane provided to separate cathode and middle cham-
bers from each other, A cathode closely attached to the cation-
exchange membrane on the side facing the cathode chamber,
and a middle chamber filled with fluorinated cation-exchange
resins, provided on the other side of the cation-exchange
membrane, the cation-exchange resins being arranged 1n such
a way to come into contact with the fluorinated cation-ex-
change membrane 1n the cathode chamber side and with the
anode 1n the anode chamber side, wherein the feed water 1s
fed 1nto the middle chamber and passed through the tluor-
nated cation-exchange resins to be recovered as the charged
anode water.
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A shape of the fluorinated cation-exchange resin 1n this
invention 1s not limited. It may be granular or fibrous, the
former being more preferable.

The term “‘surface cleaning” used 1n this specification
means an operation to remove contaminants from the surface
and “surface treatment” means an operation to change surface
composition or the like of a substance, e.g., glass, having 1ons,
e.g., Na*, K*, and H", bonded in the bonding network of
S1—O. Phenomena of the migration of Na™ 1ons 1n glass were
observed. When Na™ ions present in the vicinity of the surface
are removed, or more specifically 1on-exchanged on the sur-
face, the surface 1s prevented from roughing caused by the
Na™ 1ons. This process means the surface treatment, which 1s
different form, the removal of foreign particles or impurity
ions form the surface.

The 1on-exchange membrane 1s usually cation-exchange
membrane, preferably fluorinated cation-exchange mem-
brane. It 1s essential for the present invention that the anode to
be used in combination with the 1on-exchange resins (cation-
exchange resins) 1s a porous electrode or electrode having an
ineflective area.

(2) The electrolytic cell for producing charged anode water
suitable to surface cleaming or treatment according to the
invention (1), wherein a porous anode 1s provided, and the
middle chamber has an inlet but no outlet for the feed water to
be treated and the anode chamber has an outlet for treated
water but no inlet for the feed water.

(3) An electrolytic cell for producing charged anode water
for surface cleaning or treatment, including cathode, middle
and anode chambers, a fluorinated cation-exchange mem-
brane provided to separate the cathode and middle chambers
form each other, cathode closely attached to the cation-ex-
change membrane on the side facing the cathode chamber,
cation exchange resins contained in the middle chamber and
arranged to come 1nto contact with the cation-exchange mem-
brane on the opposite side facing the middle chamber another
fluorinated cation-exchange resins contained in the compart-
ment between the fluorinated cation exchange membrane and
the anode, wherein the feed water 1s passed over the anode
surface and electrolytic water discharged from the anode
chamber 1s recovered as the charged anode water.

(4) The electrolytic cell for producing charged anode water
suitable for surface cleaning or treatment according to the
invention (3), wherein a cation-exchange membrane 1s
arranged 1n the middle chamber to divide the chamber into
first middle chamber on the cathode chamber side and a
second middle chamber on the anode chamber side.

(5) The electrolytic cell for producing charged anode water
suitable for surface cleaning or treatment according to one of
the inventions (1) to (4), whereon holes in the porous anode
have a total area of 10% or more of a whole electrode area.

The holes are preferably arranged evenly on the entire
electrode plane. Each hole preferably has an area of 1 mm~ or
more 1 consideration of passing efficiency of the anode
water.

The anode for the present invention preferably has holes
having an area 1 mm~ or more, because a granular cation-
exchange resin, when used, tends to pass through the holes, as
its diameter 1s generally 1 mm or so, frequently 2 to 4 mm.
However, a porous electrode having a large hole area 1s ser-
viceable for a resin, e.g., fluorinated cation-exchange resins,
which swell in pure water to have a higher friction coelficient
between the resin particles. More specifically, DuPont’s
Nafion NR30 1s preferable resin. A fluorinated one 1s prefer-
able 1 consideration of resistance of the cation-exchange
resin to oxidation reaction. More specifically, Du Pont’s

Nafion NR30 1s preferable resin.
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(6) The electrolytic cell for producing charged anode water
suitable for surface cleaning or treatment according to one of
the inventions (1) to (4), wherein the electrode has an 1net-
fective area, which has no contribution to electrolysis, of 10%
or more of the whole electrode area.

(7) The electrolytic cell fro producing charged anode water
suitable for surface cleaning or treatment according to one of
the inventions (1) to (6), wherein a mechamism of controlling
position of the anode in the direction of current flowing
towards to cation-exchange resin 1s provided.

(8) The electrolytic cell for producing charged anode water
suitable for surface cleaning or treatment according to one of
the inventions (1) to (7), wherein the cation exchange resin 1s
fluorinated one.

(9) A method of using charged anode solution produced by
the electrolytic cell according to one of the inventions (1) to
(8) for surface cleaning or treatment of an object.

(10) A method using charged anode water produced by the
clectrolytic cell according to the inventions (1) to (9), wherein
teed water 1s pure water or ultra pure water. Pure water or ultra
pure water means water having the resistivity of 0.1M £/cm
Or more.

(11) The method using charged anode water according to

the imnvention (10), wherein the object to be cleaned or treated
1s a semiconductor, glass, or resin product.

(12) A method using charged anode water according to the
invention (10), wherein the object to be cleaned or treated 1s
a medical device.

(13) ) A method using charged anode solution produced by
the electrolytic cell according to one of the iventions (1) to
(9), wherein the feed water to the anode chamber 1s cooled to
increase the ozone concentration in the anode water.

(14) A method using charged anode water produced by the
clectrolytic cell according to one of the inventions (1) to (4),
(6) and (8) to (12), wherein the anode 1s directly cooled to

increase the ozone concentration in the charged anode water.

The porous anode or cathode 1n each aspect of the present
invention described above means that the planar electrode 1s
structured to have holes (hereinafter referred to as “opening )
through which water can pass on both front and backside.
These openings are preferably arranged in such a way to make
resistance to water flow uniform throughout the plane, and
normally distributed evenly on the plane. Adequate size of the
opening and ratio of the total opening area to the whole planar
clectrode area changes depending on the current density and
resistance to water tlow so that the apparatus 1s required to
secure, and are not determined sweepingly.

These factors greatly depend on the electrode hole struc-
ture and 10on-exchange resin size: increasing opening Size
and/or 1on-exchange resin size decreases the resistance to
water flow and, at the same time, increases the eflective
current density because contact area between the electrode
and resins decreases. However, 1t 1s difficult to hold the 1on-
exchange resins between the membrane and electrode, when
opening size increases excessively. Therefore, there 1s an
optimum shape for each of opening and 1on-exchange resin.

As discussed above, the electrolytic anode water, produced
by passing pure water through the electrolysis cell having a
controlling function, has the characteristics described in the
examples.

BRIEF DESCRIPTION OF THE DRAWING(S)

FIG. 1 shows the schematic cross-sectional view of the
conventional electrolytic cell for electrolysis using 10n-ex-
change separator.
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FIG. 2 shows the schematic cross-sectional view of the
conventional three-chamber type electrolytic cell.

FI1G. 3 describes the decontamination mechanism using the
clectrolytic water, where (A) describe the situation belore
treatment and (B) that after treatment.

FIG. 4 shows the schematic cross-sectional view of the
clectrolytic cell 1n the first embodiment of the present inven-
tion.

FIG. 5 shows the schematic cross-sectional view of the
clectrolytic cell 1n the second embodiment of the present
invention.

FIG. 6 shows the schematic cross-sectional view of the
clectrolytic cell 1n the third embodiment of the present mnven-
tion.

FIG. 7 shows the influence of the area ratio on pH and ORP
values of the electrolytic anode water prepared in the example
1.

FIG. 8 shows the influence of electrolytic current on pH
and ORP values of the electrolytic anode water prepared 1n
the example 2.

FIG. 9 shows the influence of the anode position on charg-
ing characteristics ol the anode water prepared 1n the example
3.

FIG. 10 shows the relationship between removal rate and
cleaning time obtained 1n the example 4.

FIG. 11 shows the Na™ 1on distribution 1n the depth direc-
tion before and after the treatment, observed in Example 6.

FIG. 12 shows the relationship between the number of
bacternia and the contact time with electrolytic anode water
prepared in the example 7.

FIG. 13 shows the relationship between the number of
bacteria and ORP of the electrolytic anode water prepared in
the example 7.

FI1G. 14 shows the electrolytic cell system 1n which a cooler
1s built.

FIG. 15 shows the electrolytic cell system 1n which a cooler
1s built.

FIG. 16 shows the relationship between the ozone concen-
tration and temperature 1n the middle chamber obtained 1n the
example 8.

FIG. 17 shows the schematic cross-sectional view of the
clectrolytic cell in which a cooling chamber 1s built, described
in the example 9.

FIG. 18 shows the schematics of a PI1FE sheet.

FIG. 19 shows the system diagram of the electrolytic cell in
which a cooling chamber 1s buult.

DETAILED DESCRIPTION OF THE REFERRED
EMBODIMENTS

The three-chamber type electrolytic cell to which the
present invention 1s applied 1s described as follows.

Embodiment 1

FIG. 4 illustrates the new three-chamber type electrolytic
cell made by improving the conventional three-chamber cell
in which the perforated electrode plate shown 1n the drawing
1s used.

The anode 53 was closely attached to the cation-exchange
membrane before the improvement. Therefore, the electro-
lytic water flowed along the anode plane, and the electrolysis
reaction proceeded between the electrode and 10n exchange
membrane. As a result, the electrolysis products were formed
first between the electrode and 10n exchange membrane, and
then moved toward the backside of electrode by diffusion or
the like.
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In the present invention, on the other hand, the anode 1s
perforated to provide the passages for electrolytic water pass-
ing over the electrode surface, 1n order to utilize the electroly-
s1s product more eificiently. As a result, the electrolytic water
flows not only on the electrode surface but also thorough the
holes opened 1nthe electrode. The relationship between open-
ing size and 1on-exchange resin size 1s very important. It 1s
necessary to increase the opening size of electrode, in order to
water flow rate. However, 1t 1s difficult to hold the 1on-ex-
change resins between the membrane and electrode, when the
opening size increases excessively as compared with 1on-
exchange resin size. The 1on-exchange resin 1s either spheri-
cal or fibrous, the former being generally more preferable. Its
diameter 1s ranging from around 1 mm when 1t 1s small to 2 to
4 mm when 1t 1s large. Therefore, an excessively large open-
Ing size in comparison with 1on-exchange resins 1s undesir-
able. The 1on-exchange resin preferably has a large diameter
to reduce resistance to water flow. Moreover, the fluorinated
cation-exchange resin 1s preferable, because 1t comes into
contact with the anode.

Moreover, the fluorinated cation exchange resins greatly
decrease the electrolysis voltage and thus facilitate the elec-
trolysis of pure water. The Nafion NR50 made by Du Pont 1s
preferable fluorinated cation-exchange resin, as mentioned
carlier.

It 1s possible to control the current density by changing the
contact area between the fluorinated cation-exchange resin
and anode. The fluorinated cation-exchange resin naturally
swells 1n pure water. So its diameter increases with swelling
and the swelling increases with temperature. As a result, the
contact areca between the fluorinated cation-exchange resin
and electrode varies with ambient conditions. It 1s therefore
necessary to control the contact area, 1n order to control the
current density.

The electrolytic cell shown 1n FIG. 4 has a characteristic
structure suitable for surface cleaning or treatment. The cell
includes the cathode chamber 41, middle chamber 48 and
anode chamber 50, fluorinated cation-exchange membrane
435 provided to separate the cathode chamber 41 and middle
chamber 48 from each other, cathode 44 closely attached to
the cation-exchange membrane 45 on the side facing the
cathode chamber 41, cation exchange resin 46 contained 1n
the middle chamber 48 and arranged to come 1nto contact
with the cation-exchange membrane 45 on the opposite side
facing the middle chamber 48, cation-exchange membrane 54
provided between the middle chamber 48 and anode chamber
50, wherein the feedwater 1s passed through the anode cham-
ber 50 and the produced electrolytic water discharged from
the anode chamber 50 1s recovered as the charged anode
water. The other components of the electrolytic cell shown in
FI1G. 4 are the cathode chamber inlet 42, cathode chamber
outlet 43, middle chamber inlet 47, middle chamber outlet 49,
anode chamber inlet 51 and anode chamber outlet 52.

Embodiment 2

The electrolytic cell shown 1n FIG. 5 has a characteristic
structure 1n that the feed water flows 1nto the middle chamber
46 and the electrolyzed water discharged from the anode
chamber 50 1s recovered as the charged anode water. The cell
structure as those shown in FIG. 4 are given the same number
and their descriptions 1s omitted.

Embodiment 3

The electrolytic cell structure includes a mechanism to
adjust the position of anode 53 1n the current flowing direc-
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tion, as shown in FIG. 6. This structure 1s provided with a
frame, outside of the cell, which holds the mobile anode
position-adjusting mechanism.

The anode position adjusting mechanism typically 1s com-
posed of an anode-supporting rod provided with a screw, by
which the anode position can be adjusted.

The structure 1s described 1n more detail. This structure
makes 1t possible to adjust position of the anode 33, shown 1n
FIG. 4 for embodiment 1, in the current passing direction.
More specifically, the anode-supporting rod 58 1s set at
approximately center of the anode 33 1n the current passing
direction, held by the holding frame 57 provided 1n the anode
chamber 50 1n such a way to be movable 1n the axial direction,
and screwed 1nto the position-adjusting mechanism 36, pro-
vided outside of cell, via the O-ring 55 which seals the anode-
supporting rod 58. The position can be adjusted by cutting the
anode-supporting rod 58 to have male threads and the posi-
tion-adjusting mechanism 56 to have the corresponding
female threads. Position of the anode 53 1s adjusted by rotat-
ing the position-adjusting mechanism 56 to control the effec-
tive electrolysis current. This means the increase 1n the elec-
trolysis voltage. Detaching the anode 33 from the cathode
side improves charging characteristics of the cell.

The same components as those describe 1n embodiment 1
are given the same numbers and their descriptions are omit-
ted.

EXAMPLE 1

The three-chamber type electrolytic cell shown 1n FIG. 4
was used, where ultra pure water was supplied to the inlets of
the anode chamber 50, middle chamber 48 and cathode cham-
ber 41. The ultra pure water had the following properties:

Resistivity: 18.0 MQ/cm

Water temperature: 15° C.

Opening diameter: 4¢

Electrode: Platinum plated titanium electrode was used.

Ion-exchange membrane: The membrane 45 was made of a

fluorinated cation-exchange membrane (Nafion 117 made by
Du Pont).

Ion exchange resin filled 1n the middle chamber: The
middle chamber 48 was filled with a granular fluorinated
cation-exchange resin (Nafion NR30 made by Du Pont).

Ion exchange filled in the anode chamber: the room

between the anode 53 and membrane 45 was also filled with
NR5O.

Water tlow rate: ultra pure water was passed at 0.75 I/mun.
through the cathode chamber 41 and anode chamber 50.

The perforated anode 33 assembled 1n the electrolytic cell
used in the example 1 had an apparent area of 48 cm?.

The apparent arca of the electrode (the openings were

two-dimensionally evenly arranged 1n the Example 1 as fol-
lows.

Electrode thickness: 1 mm
Total opening area: 16.23 cm”

Opening ratio: 34%

The ratio of the opening area to the apparent electrode area
was changed to obtain the relationship between the ratio and
the pH and ORP of charged anode water where the apparent
clectrolytic current was set at 5 A, as shown in FIG. 7. The
clectrolysis voltage was very low and around 14 v under this
condition. As clear from the figure, measured pH and ORP
values, which are characteristic of the anode water, are very
sensitive to the area ratio.
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EXAMPLE 2

The effects of electrolytic current on characteristics of
anode water were 1nvestigated using the same electrolytic cell
and ultra pure water as those used 1n the example 1. FIG. 8
shows the effects of electrolytic current on pH and ORP of the
anode water. The charging characteristics such as pH and

ORP were improved as the current density was increased.

EXAMPLE 3

The electrolytic cell with adjusting function of anode posi-
tion shown 1n FIG. 6 was used to investigate the relationship
between the anode electrode position and the charging char-
acteristics such as pH and ORP of anode water, where appar-
ent electrolytic current was set at 4 A. FIG. 9 indicates the
result.

The minus position of anode 1 FIG. 9 indicates that the
anode approached towards the cathode side. In order set the
clectrolytic current at a given level, the electrolytic voltage
was decreased, as the anode position was moved toward the
cathode side. As the position of anode was moved toward the
counter side, the charging characteristics such as pH and ORP
were improved. These results show that the effective contact
area between the cation exchange resins and anode decreases
as the anode 1s move towards the counter side. The fluorinated
ion exchange resin used in the example 3 had rubber like
clasticity and was capable of reversibly changing the charg-
ing characteristics

EXAMPLE 4

In this example, the anode water was used to confirm the
cleaning efficiency. The object to be cleaned was polyethyl-
ene plate on which a printing paint (base material was an
acrylic resin) containing carbon black was spread. The elec-
trolytic cell was the same one as that used 1n the example 1,
where ultra pure water was supplied to each chamber at the
flow rate o1 0.75 I/min, and electrolytic current was set at 7A.
The anode water thus produced was run at the same tlow rate
on the surface of the polyethylene plate for cleaning. FIG. 10
shows the cleaning eflicacy, which was defined as the differ-
ence between the object weight before and after cleaning
divided by the weight before cleaning. For comparison, the
ultra pure water without electrolysis was used for cleaning the
plate. FIG. 10 indicates that anode solution exhibits a higher
cleaning efficacy.

EXAMPLE 5

Next, the effects of anode water on the removal rate of fine
particles on silicon water were mvestigated. First, the 8-inch
bare waler was placed on rubber to contaminate with fine
particles thereon. The number of fine particles adhered to the
waler surface was ranging from 2,000 to 4,000. Then, The
waler was washed with the electrolytic anode water, which
was produced under the same condition as 1n the example 1,
where the electrolytic current was set at 5 A. The electrolytic
water was kept in a PFA bottle (20 1), from which the water
was run onto the wafer at the flow rate of 3 /min using a
diaphragm pump. The overall schedule 1s described as fol-
lows.

Cleaning with ultra pure water (2 minutes )—cleaning with
clectrolytic water (3 minutes )—drying by using s spin drier (2
minutes).

The silicon waler was also cleaned with ultra pure water in
place of the electrolytic water for comparison. Table 1 shows
the cleaning results.
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TABLE 1
pH ORP Removal rate total (%o)
6.8 430 31.5
6.5 460 46.3
6.2 510 60.8
5.9 680 89.0
5.5 720 99.5

EXAMPLE 6

In this example, glass substrates for hard disks were treated
with electrolytic water.

When a hard disk glass was immersed 1n the anode water,
the surface compositions of hard disk glass were found to
change. This glass contained cation such as Na™, K™, and H™,
bonded in the bonding network of S1—O.

Sodium 10ns 1s known to damage the surface and so desired
to remove from surface region to prevent surface roughing. In
order to confirm the possibility of 1on exchanging effects 1n
anode solution, glass was immersed 1n the anode water and
then the depth profile of cation distribution 1n a surface layer
was measured.

The charged water was produced by using the same elec-
trolytic cell as use inthe example 1, where electrolytic current
was set at 5 A. The glass was immersed 1n the charged anode
solution for 5 minutes, to observe the surface composition by
using an Auger analyzer. F1G. 11 shows the Na™ 1on distribu-
tion in the depth direction before and after immersion. As
shown 1n FIG. 11, immersing the glass in the anode solution
decreases the Na™ 1on concentration 1n the surface layer.

EXAMPLE 7

The antimicrobial activities of anode water were 1nvesti-
gated using the electrolytic cell of present imnvention. The
anode water was produced by using the same cell as used 1n
the example 1, where electrolytic current was set at 8 A. A
bacteria containing solution was prepared, where the number
of Escherichia coli was adjusted to around 107. One part of
the bacteria-containing solution was mixed with 30 parts of
the anode solution. The mixture, stirred for a give time, was
spread on the standard agar culture medium to culture the
bactenia at 30° C. for 24 hours and the number of the bacteria
was countered. FIG. 12 shows the relationship between the
number of bacteria and the contact time with the anode water.
FI1G. 13 sows the sterilization effect of the anode water, where
the number of bacteria 1s plotted against ORP of the water.
FIGS. 12 and 13 indicates that the anode water exhibits the
sterilization effect when the ORP level exceed 800 mV.

EXAMPLE 8

Oxidation capacity of the anode solution produced by an
clectrolytic cell 1s also very sensitive to electrolysis tempera-
ture. As the temperature decreases, the ozone production
cificacy increases and then the oxidation capacity increases.
Cooling 1s a good method for decreasing the temperature 1n
the electrolytic cell. The cooling system depicted 1n FIGS. 14
and 15 can keep temperature of water 1n a middle chamber or
cathode chamber at low level, to improve ozone production
elficiency. FI1G. 16 shows that the ozone production efliciency
changes with temperate 1n electrolytic cell used in the
example 1 with the cooling system shown in FIG. 14. In
FIGS. 14 and 15, same components as those described 1n
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embodiments are given the same numbers and their descrip-
tions are omitted. The other components are the three-cham-
ber type electrolytic cell 60, cooler 61, anode electrolytic
water tank 62, feed water line 63 and pump 64.

EXAMPLE 9

The example 9 describes another cooling method. As
depicted 1n FIG. 17, the anode chamber 1s divided 1nto the
camber through which the anode water flows and the other
chamber through which cooling water flows. In FIG. 17, the
same components as those described in the embodiment 1 are
given the same numbers and their descriptions are omitted.
The other components are the cooling chamber inlet 66, cool-
ing chamber outlet 65, cooling chamber 67 and baitle 68.

In this case, the anode was not provided with openings.
However, a perforated PTFE (fluorocarbon resin) shown 1n
FIG. 18 was placed on a surface of the anode of platinum-
plated titanium, 80 by 60 mm, to increase effective current
density on the anode. In this example, the PTFE sheet, 60 by
80 mm, was provided with opemings of 4 mm in diameter, as
shown 1n FIG. 18.

Temperature 1n the electrolytic cell was controlled by the
system shown 1n FIG. 19, which passed cooling water to
cooling chamber to directly cool the anode. In FIG. 19, the
same components as those described 1n the embodiment are
omitted. The other components include the liquid tank 69 1n
the middle chamber. Keeping temperature 1n the electrolytic
cell at a low level by using the cooler improved ozone pro-
duction efficiency, as described in the example 8.

The electrolytic cell of the present invention can produce
strongly charged anode water. Moreover, It can improve
ozone production efficiency, when its anode 1s cooled. The
charged water produced by the electrolytic cell 1s effective for
cleaning a silicon water by removing fine particles or the like
wherefrom or glass surface treatment for promoting ion
exchanging on the surface to prevent surface roughing. It 1s
also effective for cleaning resins or the like, in particular
resins for medical devices. For Example, 1t 1s effective for
cleaning and sterilizing the inner surfaces of catheters or like.
No special chemical remains after cleaming, which 1s its
advantage.

The mvention claimed 1s:

1. A method of preparing charged anode water, the method
comprising the steps of:

(a) feeding feed water into the middle chamber of a elec-
trolytic cell comprising a cathode chamber, a middle
chamber, and an anode chamber, a fluorinated cation-
exchange membrane separating the cathode chamber
and the middle chamber from each other, a cathode
closely attached to a cation-exchange membrane on the
side facing the cathode chamber, wherein the middle
chamber 1s filled with cation-exchange resins, wherein
the cation-exchange resins are arranged in such a way to
come into contact with the fluorinated cation-exchange
membrane in the cathode chamber side and with an
anode 1n the anode chamber side,

(b) passing the feed water through the cation-exchange
resins, and
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(c) recovering the charged anode water from the anode
chamber.

2. The method of claim 1, wherein the anode 1s porous.

3. The method of claim 2, wherein the anode comprises an
clectrode with holes having a total area of 10% or more of the
whole electrode area.

4. The method of claim 1, wherein the anode comprises an
clectrode with an 1nefiective area having no contribution to
clectrolysis of 10% or more of the whole electrode area.

5. The method of claim 1, further comprising a mechanism
of controlling the position of the anode 1n the direction of
current passing towards the cation-exchange resins.

6. The method of claim 1, wherein the cation-exchange
resins are fluorinated.

7. The method of claim 1, further comprising cooling the
anode.

8. A method of preparing charged anode water, the method
comprising the steps of:

(a) feeding feed water 1nto the middle chamber of a elec-
trolytic cell comprising a cathode chamber, a middle
chamber, and an anode chamber, a first fluorinated cat-
ion-exchange membrane provided to separate the cath-
ode chamber and the middle chamber from each other, a
cathode closely attached to the fluorinated cation-ex-
change membrane on the side facing the cathode cham-
ber, cation exchange resins contained in the middle
chamber and arranged to come into contact with the
cation-exchange membrane on the opposite side facing
the middle chamber, a second fluorinated cation-ex-
change membrane provided between the middle cham-
ber and the anode chamber, wherein fluorinated cation-
exchange resins are contained 1n the space between the
second fluorinated cation-exchange membrane and an
anode,

(b) passing the feed water through the cation-exchange
resins, and

(¢) recovering the charged anode water from the anode
chamber.

9. The method of claim 8, wherein a third fluorinated
cation-exchange membrane 1s arranged 1n the middle cham-
ber to divide the chamber into a first middle chamber on the
cathode chamber side and a second middle chamber on the
anode chamber side.

10. The method of claim 8, wherein the anode 1s porous.

11. The method of claim 10, wherein the anode comprises
an electrode with holes having a total area of 10% or more of
the whole electrode area.

12. The method of claim 8, wherein the anode comprises an
clectrode with an 1netiective area having no contribution to
clectrolysis of 10% or more of the whole electrode area.

13. The method of claim 8, further comprising a mecha-
nism of controlling the position of the anode 1n the direction
of current passing towards the cation-exchange resins.

14. The method of claim 8, wherein the cation-exchange
resins are fluorinated.

15. The method of claim 8, further comprising cooling the
anode.
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