US007437460B2

12 United States Patent

Chidambaran et al.

US 7,437,460 B2
Oct. 14, 2008

(10) Patent No.:
45) Date of Patent:

(54) SERVICE PLACEMENT FOR ENFORCING 5,774,668 A 6/1998 Choquier et al.
PERFORMANCE AND AVAILABILITY 5,890,167 A 3/1999 Bridge, Jr. et al.
LEVELSIN A MULTI-NODE SYSTEM 5,918,059 A 6/1999 Tavallael et al.
5,951,694 A 9/1999 Choquier et al.
(75) Inventors: Lakshminarayanan Chidambaran, 0,041,557 A 3/2000 Kunzelman et al.
y
_ . 6,088,728 A 7/2000 Bellemore et al.
sunnyvale, CA (US); Christopher A. 6,178,529 Bl 1/2001 Short et al.
Kantarjiev, Palo Alto, CA (US) 6243751 Bl 6/2001 Chatterjee et al.
_ _ _ 6,272,503 Bl 8/2001 Bnidge et al.
(73) Assignee: Ol‘gcle I<si‘natw(l:li (%OSI‘)POI‘MIOH: 6,327,622 Bl 12/2001 Jindal et al.
Redwoo Ores, 6,556,659 Bl* 4/2003 Bowman-Amuah 379/9.04
6,587,866 Bl 7/2003 Modi et al.
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 843 days.
(b) by 843 days FOREIGN PATENT DOCUMENTS
(22) Filed: Aug. 12, 2004 (Continued)
(65) Prior Publication Data OTHER PUBLICATIONS
US 2005/0038829 Al Feb. 17, 2005 Patent Cooperation Treaty, “Notification of Transmuttal of the Inter-
national Preliminary Report on Patentability,” PCT/US2004/026405,
Related U.S. Application Data dated Oct. 10, 2000, 7 pages.
(60) Provisional application No. 60/495,368, filed on Aug. (Continued)
14, 2003, provisional application No. 60/500,096, . . .
.. . Primary Examiner—/Zarn1 Maung
filed on Sep. 3, 2003, provisional application No. (74) Attorney, Agent, or Firm—Hickman Palermo Truong &
60/500,050, filed on Sep. 3, 2003, Becker € ASER =
(51) Int.CL
GOGF 15/173 (2006.01) (57) ABSTRACT
GO6E 12/00 (2006.01) A b efficient] 14 SRTI. _
(52) U.S. CL oo, 709/226; 718/105 with?ﬁirizlti Z;;f?t ;{;ﬂ“whgﬁfzz diyn P;‘fiinstf;zgs
(58) Field of Classification Search 709/227, ool incrgasing " decfeasinggthe e ot
709/226, 223-2235, 250, 219; 718/105 . - ’ . . -
q lication file lof h hist instances that host a service. Service placement decisions are
cC dppHCALON LIC J0T COMPILEE SCAlLl ISTOLY. made 1n a way that accounts for performance and availability
(56) References Cited requirements of both the service being placed and other ser-

5,758,345 A

U.S. PATENT DOCUMENTS
5/1998 Wang

vices.

20 Claims, 6 Drawing Sheets

| Find expansion destination to which 1o expand service ’

NO

s force-mode in
effect

YES

Locate destination instance that
does not host service with T,

less than X,

430

Would expansion Retum
cause cardinality > destination node
violation? if any found.
—

415

?D

does not host service,

Locate destination instance that |

US 7,437,460 B2
Page 2

U.S. PATENT DOCUMENTS

6,601,101 Bl 7/2003 Lee et al.
0,728,748 Bl 4/2004 Mangipudi et al.
6,816,907 Bl 11/2004 Maei et al.
7,058,957 Bl 6/2006 Nguyen
7,174,379 B2* 2/2007 Agarwal et al. 709/226
7,178,050 B2 2/2007 Fung et al.
7,263,590 Bl 8/2007 Todd et al.
7,269,157 B2 9/2007 Klinker et al.
2001/0056493 Al 12/2001 Mineo
2002/0073139 Al 6/2002 Hawkins et al.
2002/0129157 Al* 9/2002 Varsanoccce..n.... 709/232
2002/0161896 Al 10/2002 Wen et al.
2002/0194015 Al 12/2002 Gordon et al.
2003/0005028 Al 1/2003 Dritschler et al.
2003/0007497 Al 1/2003 March et al.
2003/0088671 Al 5/2003 Klinker et al.
2003/0108052 Al 6/2003 Inoue et al.
2003/0135642 Al 7/2003 Benedetto et al.
2003/0208523 Al* 11/2003 Gopalan etal. 709/201
2004/0111506 Al 6/2004 Kundu et al.
2004/0117794 Al 6/2004 Kundu
2004/0176996 Al* 9/2004 Powers et al. 705/11
2004/0268357 Al 12/2004 Joy et al.
2005/0021771 Al 1/2005 Kaehn et al.
2005/0165925 Al* 7/2005 Danetal. 709/224
2005/0239476 Al 10/2005 Betrabet et al.
2005/0267965 Al 12/2005 Heller
2006/0036617 Al 2/2006 Bastawala et al.
2007/0226323 Al 9/2007 Halpern

FOREIGN PATENT DOCUMENTS

EP 0942363 A2 9/1999

EP 0992 909 A2 4/2000

EP 1170 662 A2 1/2002

WO WO 02/05116 A2 1/2002

WO WO 02/07037 A 1/2002

WO WO 02/07037 Al 1/2002

WO WO 02/097676 A2 12/2002

WO WO 03/014928 Al 2/2003

WO WO 03/014928 A2 2/2003

WO WO 03/062983 A2 7/2003

OTHER PUBLICATIONS

Amended Claims, PCT/US2004/026405, dated Apr. 6, 2006, 4 pages
(attached).

International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration,” PCT/US2004/
026405, dated Jan. 6, 2006, 13 pages.

Current Claims, PCT/US2004/026405, 7 pages, (Mar. 23, 20006).
International Searching Authority, “Notification of Transmittal of the
International Preliminary Report on Patentability,” PCT/US2004/
026445, dated Dec. 12, 2005, 6 pages.

Claims as Amended, PCT/US2004/026445, Aug. 11, 2005, 4 pages
(attached).

International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration,” Aug. 4, 2005, 13

pages.

Current Claims for International Application No. PCT/US2004/
026389, pp. 1-7.

Jefirey S. Chase et al., “Dynamic Virtual Clusters in a Grid Site
Manager,” Proceedings of the 12™ IEEE International Symposium on
High Performance Distributed Computing (HPDC’03), 2003, IEEE,
pp. 90-100.

European Patent Office, “International Preliminary Report on Pat-
entability,” Aug. 26, 2005, International Application No. PCT/
US2004/026570, 9 pages.

International Searching Authority, “Notification of Transmittal of the

International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration,” Aug. 25, 2005, 12

pages.

Current Claims for International Application No. PCT/US2004/
026445, pp. 1-5, (2004).

Henry Song, et al., “Browser State Repository Service,” Lecture

Notes 1n Computer Science, vol. 2414, 2002, pp. 1-14,
XP002904339.

Eric Skow, et al., “A Security Architecture for Application Session
Handoff,” 2002, IEEE International Conference Proceedings, Apr.
28-May 2, 2002, vol. 1 of 5, pp. 2058-2063, XP010589848.

Chase, Jeffrey S., “Dynamic Virtual Clusters in a Grid Site Manager,”
Proceedings of the IEEE International Symposium on HPDC-2003,
XP010463715, pp. 90-100, (2003).

International Searching Authority, “Notification of the Transmuttal of

the International Search Report and the Written Opinion of the Inter-
national Searching Authority, or the Declaration”, PCT/US2004/

026405, dated Aug. 19, 2005, 5 pages.
Claims, PCT/US2004/026405, 7 pages, (2004).

International Preliminary Examining Authority, “Written Opinion of
the International Preliminary Examining Authority,” Jun. 7, 2005, 4
pages.

Current Claims of International Application No. PCT/US04/26570, 4
pages, (2004).

Ravi Kokku et al., “Half-pipe Anchoring: An Efficient Technique for

Multiple Connection Handoff,” Proceedings 10™ International Con-
ference on Network Protocols, Nov. 12, 2002, XP010632563, 10

pages.
Ying-Dar Lin et al., “Direct Web Switch Routing with State Migra-
tion, TCP Masquerade, and Cookie Name Rewriting,” Globecom
2003, IEEE Global Telecommunications Conference, Dec. 12003,
IEEE, CP010677300, pp. 3663-3667.

International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration,” Nov. 12, 2004, 13
pages.

Current Claims of International Application No. PCT/US2004/
026570, 4 pages, (2004).

Current Claims of International Application No. PCT/US2004/
025805, 8 pages, (2004).

International Searching Authority, “Notification of Transmittal of the
International Search Report and the Written Opinion of the Interna-
tional Searching Authority, or the Declaration,” dated Dec. 3, 2004,
12 pages.

“Office Action” received 1n related case U.S. Appl. No. 10/917,661,
filed Aug. 12, 2004, 9 pages.

“Office Action” receirved 1n related case U.S. Appl. No. 10/917,687,
filed Aug. 12, 2004, 9 pages.

* cited by examiner

U.S. Patent Oct. 14, 2008 Sheet 1 of 6 US 7,437,460 B2

— emm Em m=m oy W= W = o o o o vk o G A G A G R e e o e e TR R nE e T R OSE R TR A W W TS I BN I G AR AE W B W T T W AT T ST B S B S BN T B BN g B BN BN B B B G B o A e B O o B o B o wm s o we W o mm i mr W W e B B O ok W ik e B B O aE G BN BN N O G G AN B B A O

= ak dy wr W O B W O W O E O S W A EE g W W Ay EF T OE O W O B S s W B e G i e G B B B BN B B O g . A A AE AR W S A A MR W N BN EE ER A Bk A e e e e e e T W W B W M W W W W W W W == mr e W W EE EE e EE aE EE O A e e o

DATABASE 150 $ DATABASE 160

'InopE 122 |[NoDE 124 | [NoDE 126 | i [NoODE 132 | [NODE 134 |[NODE 136

[INsTANCE ||{[INSTANCE INSTANCE] i [INsTANCE || [[INSTANCE || {[INSTANCE
Bt 11133 135 137
v

C |

_________________________________ Farm
NODE NODE NODE . INODE| | noDE | [NODE] Director 102
NODE NODE NODE . |NODE| |NODE| | NODE
NODE NODE NODE i NODE NODE NODE ’
NODE 'NODE NODE 5 NODE 'NODE NODE

- Cluster 170 . ! Cluster 180

‘-*--------_-----‘--‘.‘---‘--“‘-‘--

_-E__EEEEESTESE-S-E-EEEETEEEESE TR R AE T S OB DS 8BS OAEEE m m W W oA S W B B ok W W W B BB B W W W omk B W W ale B B o B AN B BN B i g oh R BN G AR BN B AN g A B S B B B B BN Bk o am mm Em N g A A W A B R A W B B B B B o W A

FIG. 1

uoisuedxa adIAIas LIoUa Buioue|eq uoISSas wioled

US 7,437,460 B2

NG

~ ;uoisuedxs ;. buoueleq ;.S)181s1ad
= Sainsesw pPoje|eoass

3 U0 WSy 30INIOS UOISSaS Jale

7 ON wJopad ON Wwiopisd 92.n0SaY
S GOZ 0€Z

= Ge? abe

< S3IA

S

U9y 82iN0SaY 0} puodsay

U.S. Patent

¢ 9Ol

ON

U.S. Patent Oct. 14, 2008 Sheet 3 of 6 US 7,437,460 B2

SESSION LOAD EXPANSION IN RESPONSE TO RESOURCE
ALERT

Select candidate service
Find destination instance to which to expand
selected candidate service

Destination instance found

305

No destination instance
found

310

315
ISsue service expansion job to

expand candidate service to
destination instance.

320

Wait time expired Wait for

Abort expansion
Jjob

expansion result

330

FIG. 3

U.S. Patent Oct. 14, 2008 Sheet 4 of 6 US 7,437,460 B2

Find expansion destination to which to expand service

430

Would expansion
cause cardinality
violation?

YES Return
destination node
if any found.

NO

415

Locate destination instance that
does not host service with T,

NO less than X,

s force-mode In
effect
420

Locate destination instance that
YES does not host service.

FIG. 4

U.S. Patent Oct. 14, 2008 Sheet 5 of 6 US 7,437,460 B2

Find destination instance for contracting service

530

Would contracting
service cause
cardinality
violation”?

YES Return target

Instance If any
found.

I

NO
Locate target instance with

lesser quiesce cost (e.g. with

least node CPU utilization)

FIG. 5

US 7,437,460 B2

Sheet 6 of 6

Oct. 14, 2008

U.S. Patent

929

¥¢9
1SOH

[442)

NHOMLAN

VOO

029

ANIT
NHOMLAN

3¢9

0E9
g3AY3S

009

019

JOVHOLS

JOVa1d41NI

NOILVYOINRWWNOD

¢09

30IA3d

SNd

NOY

¥09

d0553004d

909
A4JON3IN
NIVIA

J Ol

919
1041NOD
JOSdNO

vi9
40IA30 LNdNI

¢l9
AV 1dSIG

US 7,437,460 B2

1

SERVICE PLACEMENT FOR ENFORCING
PERFORMANCE AND AVAILABILITY
LEVELS IN A MULTI-NODE SYSTEM

RELATED APPLICATIONS

The present application claims priority to U.S. Provisional
Application No. 60/495,368, Computer Resource Provision-
ing, filed on Aug. 14, 2003, which 1s incorporated herein by
reference; the present application claims priority to U.S. Pro-
visional Application No. 60/500,096, Service Based Work-
load Management and Measurement 1n a Distributed System,
filed on Sep. 3, 2003, which 1s incorporated herein by refer-
ence; the present application claims priority to U.S. Provi-
sional Application No. 60/500,050, Automatic And Dynamic
Provisioning Of Databases, filed on Sep. 3, 2003, which 1s
incorporated herein by reference.

The present application 1s related to the following U.S.
applications:

U.S. application Ser. No. 10/718,747, Automatic and
Dynamic Provisioning of Databases, filed on Nov. 21, 2003,
which 1s incorporated herein by reference;

U.S. application Ser. No. 10/917,873, Hierarchical Man-
agement of the Dynamic Allocation of Resources 1n a Multi-
Node System, filed by Benny Souder, et al. on the equal day
herewith, and incorporated herein by reference;

U.S. application Ser. No. 10/917,953, Transparent Session
Migration Across Servers, filed by Sanjay Kaluskar, et al. on
the equal day herewith and incorporated herein by reference;

U.S. application Ser. No. 10/917,661, Calculation of Ser-
vice Performance Grades in a Multi-Node Environment That
Hosts the Services, filed by Lakshminarayanan Chidamba-
ran, et al. on the equal day herewith and incorporated herein
by reference;

U.S. application Ser. No. 10/918,055, Incremental Run-
Time Session Balancing in a Multi-Node System, filed by
Lakshminarayanan Chidambaran, et al. on the equal day
herewith and incorporated herein by reference;

U.S. application Ser. No. 10/917,687, On Demand Node
and Server Instance Allocation and De-Allocation, filed by
Lakshminarayanan Chidambaran, et al. on the equal day
herewith and incorporated herein by reference;

U.S. application Ser. No. 10/918,054, Recoverable Asyn-
chronous Message Driven Processing 1 a Multi-Node Sys-
tem, filed by Lakshminarayanan Chidambaran, et al. on the
equal day herewith and incorporated herein by reference; and

U.S. application Ser. No. 10/917,715, Managing Workload
by Service, filed by Carol Colrain, et al. on the equal day
herewith and incorporated herein by reference.

FIELD OF THE INVENTION

The present mvention relates to work load management,
and 1n particular, work load management within a multi-node
computer system.

BACKGROUND OF THE INVENTION

Enterprises are looking at ways of reducing costs and
increasing efliciencies of their data processing system. A
typical enterprise data processing system allocates individual
resources for each of the enterprise’s applications. Enough
resources are acquired for each application to handle the
estimated peak load of the application. Each application has
different load characteristics; some applications are busy dur-
ing the day; some others during the night; some reports are
run once a week and some others once a month. As a result,

10

15

20

25

30

35

40

45

50

55

60

65

2

there 1s a lot of resource capacity that 1s left unutilized. Gnid
computing enables the utilization or elimination of this unuti-
lized capacity. In fact, grid computing 1s poised to drastically
change the economics of computing.

A grid 1s a collection of computing elements that provide
processing and some degree of shared storage; the resources
of a grid are allocated dynamically to meet the computational
needs and priorities of its clients. Grid computing can dra-
matically lower the cost of computing, extend the availability
of computing resources, and deliver higher productivity and
higher quality. The basic 1dea of grid computing 1s the notion
of computing as a utility, analogous to the electric power grid
or the telephone network. A client of the grid does not care
where its data 1s or where the computation 1s performed. All
a client wants 1s to have computation done and have the
information delivered to the client when 1t wants.

This 1s analogous to the way electric utilities work; a cus-
tomer does not know where the generator 1s, or how the
clectric grid 1s wired. The customer just asks for electricity
and gets it. The goal 1s to make computing a utility—a ubig-
uitous commodity. Hence it has the name, the grid.

This view of grid computing as a utility 1s, of course, a
client side view. From the server side, or behind the scenes,
the grid 1s about resource allocation, information sharing, and
high availability. Resource allocation ensures that all those
that need or request resources are getting what they need.
Resources are not standing 1dle while requests are left unser-
viced. Information sharing makes sure that the information
clients and applications need 1s available where and when 1t 1s
needed. High availability ensures that all the data and com-
putation must always be there—just as a utility company must
always provide electric power.

Grid Computing for Databases

One area of computer technology that can benefit from grid
computing 1s database technology. A grid can support mul-
tiple databases and dynamically allocate and reallocate
resources as needed to support the current demand for each
database. As the demand for a database increases, more
resources are allocated for that database, while other
resources are deallocated from another database. For
example, on an enterprise grid, a database 1s being serviced by
one database server running on one server blade on the grid.
The number of users requesting data from the database
increases. In response to this increase 1n the demand for the
database, a database server for another database 1s removed
from one server blade and a database server for the database
experiencing increased user requests 1s provisioned to the
server blade.

Grid computing for databases can require allocation and
management of resources at ditlerent levels. At a level corre-
sponding to a single database, the performance provided to
the users of the database must be monitored and resources of
the database allocated between the users to ensure perfor-
mance and resource availability goals for each of the users are
met. Between databases, the allocation of a grid’s resources
must be managed to ensure that performance and resource
availability goals for users of all the databases are met. The
work to manage allocation of resources at these different
levels and the information needed to perform such manage-
ment 1s very complex. Theretfore, there 1s a need for a mecha-
nism that simplifies and efliciently handles the management
of resources 1 a grid computing system for database systems
as well as other types of systems that allocate resources at
different levels within a grid.

One such mechanism is the system described 1n Hierarchi-
cal Management Of The Dynamic Allocation Of Resources

US 7,437,460 B2

3

In A Multi-Node System (50277-2382), which uses a hierar-
chy of directors to manage resources at different levels. One
type of director, a database director, manages resources allo-
cated to a database among users of the database. For example,
a grid may host a group of database servers for a database.
Each database server 1n the group 1s referred to as a database
instance. Each database instance hosts a number of database
sessions for users and one or more services. The database
director manages the allocation of database instances among
the users and services.

A service 1s work of a particular type or category that 1s
hosted for the benefit of one or more clients. A service
includes any use or expenditure ol computer resources,
including, for example, CPU processing time, storing and
accessing data 1n volatile memory, read and writes from and
to persistent storage (1.e. disk space), and use of network or
bus bandwidth. A service may be, for example, work that 1s
performed for a particular application on a client of a database
Server.

For a database, a subset of the group of database instances
1s allocated to provide a particular service. A database
instance allocated to provide the service 1s referred to herein
as hosting the service. A database instance may host more
than one service.

The performance or resource availability realized by a
service may at times not meet goals for the service. When this
occurs, an additional database instance may be assigned to
host the service or an already assigned database instance
hosting the service may be unassigned. The process of assign-
ing and unassigning database instances 1n this way 1s referred
to herein as service placement.

Based on the foregoing, it 1s desirable to have an approach
for service placement that accounts for and accommodates
goals for performance and availability of resources of all the
services of a database, and that may involve expanding some
services and contracting other services.

Approaches described in this section are approaches that
could be pursued, but not necessarily approaches that have
been previously concerved or pursued. Therefore, unless oth-
erwise 1ndicated, 1t should not be assumed that any of the
approaches described m this section qualify as prior art
merely by virtue of their inclusion 1n this section.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example, and
not by way of limitation, in the figures of the accompanying,
drawings and 1n which like reference numerals refer to similar
elements and 1n which:

FIG. 1 1s a block diagram showing a multi-node computer
system on which an embodiment of the present invention may
be implemented.

FIG. 2 1s a flow chart showing a procedure for managing
the escalation of remedies employed to resolve violations of
service-level agreements.

FIG. 3 1s a flow chart showing a procedure for expanding a
service to another database instance according to an embodi-
ment of the present invention.

FIG. 4 15 a flow chart showing a procedure for finding a
destination instance to which to expand a service according to
an embodiment of the present invention.

FIG. 5 1s a flow chart depicting a procedure for finding a
target instance from which to remove a service according an
embodiment of the present invention.

FIG. 6 1s a block diagram of computer system that may be
used 1 an embodiment of the present ivention.

10

15

20

25

30

35

40

45

50

55

60

65

4
DETAILED DESCRIPTION OF THE INVENTION

A method and apparatus for managing the allocation of
resources 1n a multi-node environment 1s described. In the
following description, for the purposes of explanation,
numerous speciiic details are set forth 1n order to provide a
thorough understanding of the present mnvention. It will be
apparent, however, that the present ivention may be prac-
ticed without these specific details. In other instances, well-
known structures and devices are shown in block diagram
form 1n order to avoid unnecessarily obscuring the present
ivention.

Described herein 1s an approach for efficiently and dynami-
cally placing services when expanding or contracting ser-
vices, that 1s, increasing and decreasing the number of
instances that host a service. Service placement decisions are
made 1n a way that accounts for performance and availability
requirements of both the service being placed and other ser-
VICES.

Service placement and service placement decisions are
made under a variety of scenarios. The load of a service may
increase and another mnstance needs to be selected to which
expand the service. The load of a service may go down,
requiring that the service be contracted and a database
instance be selected from which to remove the service. A high
availability event, such as the loss of a node or database
instance that hosts a service, requires compensating for the
loss by selecting a replacement node or database instance. An
administrator may increase the minimum number of
instances that should host a service, requiring that a service be
expanded, or may decrease the maximum number of
instances that should host the service, requiring that a service
be contracted.

[llustrative Multi-Node System

FIG. 1 shows a multi-node computer system that may be
used to implement an embodiment of the present invention.
Referring to FI1G. 1, 1t shows cluster farm 101. A cluster farm
1s a set of nodes that 1s organized into groups ol nodes,
referred to as clusters. Clusters provide some degree of shared
storage (e.g. shared access to a set of disk drives) between the
nodes 1n the cluster. Cluster farm 101 includes clusters 110,
170, and 180. Each of the clusters hosts one or more multi-
node database servers that provide and manage access to
databases. The nodes 1n a cluster farm may be in the form of
computers (e.g. work stations, personal computers) intercon-
nected via a network, and may be part of a grid.

Clusters and Multi-Node Database Servers

Clusters 110, 170, and 180 host one or more multi-node
database servers. Cluster 110 hosts a multi-node database
server for database 150, the multi-node database server com-
prising database instances 123, 125, and 127, which are
hosted on nodes 122, 124, and 126, respectively. Cluster 110
also hosts a multi-node database server for database 160, the
multi-node database server comprising database instances
133,135, and 137 hosted on nodes 132, 134, and 136, respec-
tively.

A server, such as a database server, 1s a combination of
integrated software components and an allocation of compu-
tational resources, such as memory, a node, and processes on
the node for executing the mntegrated software components on
a processor, the combination of the software and computa-
tional resources being dedicated to performing a particular
function on behalf of one or more clients. Among other func-
tions of database management, a database server governs and
facilitates access to a particular database, processing requests
by clients to access the database.

US 7,437,460 B2

S

Resources from multiple nodes 1n a multi-node computer
system can be allocated to running a particular server’s soft-
ware. Each combination of the software and allocation of the
resources from a node 1s a server that 1s referred to herein as
a “server 1stance” or “instance”. Thus, a multi-node server
comprises multiple server instances that can run on multiple
nodes. Several instances of a multi-node server can even run
on the same node. A multi-node database server comprises
multiple “database instances™, each database instance run-
ning on a node, and governing and facilitating access to a
particular database. Database instances 123,125, and 127 are
instances of the same multi-node database server.

Services

As mentioned before, a service 1s work of a particular type
or category that1s hosted for the benefit of one or more clients.
One type of service 1s a database service. Cluster 110 provides
a database service for accessing database 150 and a database
service for accessing database 160. In general, a database
service 1s work that 1s performed by a database server for a
client, work that typically includes processing queries that
require access to a particular database.

Like any service, a database service may be further catego-
rized. Database services for database 150 are turther catego-
rized into the FIN service and PAY service. The FIN service
1s the database service performed by database 1instances 123
and 125 for the FIN application. Typically, this service
involves accessing database objects on database 150 that
store database data for the FIN application. The PAY services
are database services performed by database instances 123
and 127 for the PAY application. Typically, this service
involves accessing database objects on database 150 that
store database data for the PAY application.

Sessions

In order for a client to interact with a database server on
cluster 110, a session 1s established for the client. A session,
such as a database session, 1s a particular connection estab-
lished for a client to a server, such as a database 1nstance,
through which the client 1ssues a series of requests (requests
for execution of database statements). For each database ses-
sion established on a database instance, session state data 1s
maintained that reflects the current state of a database session.
Such information contains, for example, the 1dentity of the
client for which the session 1s established, and temporary
variable values generated by processes executing software
within the database session.

A client establishes a database session by transmitting a
database connection request to cluster 110. A listener, such as
listener 190, recerves the database connection request. Lis-
tener 190 1s a process running on cluster 110 that recerves
client database connection requests and directs them to a
database instance withun cluster 110. The client connection
requests received are associated with a service (e.g. service
FIN and PAY). The client request 1s directed to a database
instance hosting the service, where a database session 1s
established for the client. Listener 190 directs the request to
the particular database instance and/or node 1n a way that 1s
transparent to the application. Listener 190 may be runming
on any node within cluster 110. Once the database session 1s
established for the client, the client may issue additional
requests, which may be 1n the form of function or remote
procedure ivocations, and which include requests to begin
execution ol a transaction, to execute queries, to perform
updates and other types of transaction operations, to commit
or otherwise terminate a transaction, and to terminate a data-
base session.

10

15

20

25

30

35

40

45

50

55

60

65

6

Monitoring Workload

Resources are allocated and re-allocated to meet levels of
performance and cardinality constraints on the resources.
Levels of performance and resource availability established
for a particular service are referred to herein as service-level
agreements. Levels of performance and cardinality con-
straints on resources that apply to a multi-node system 1n
general and not necessarily to a particular service are referred
to herein as policies. For example, a service-level agreement
for service FIN maybe require as a level of performance that
the average transaction time for service FIN be no more than
a given threshold, and as an availability requirement that at

least two 1nstances host service FIN. A policy may require
that the CPU utilization of any node should not exceed 80%.

Policies may also be referred to herein as backend policies
because they are used by backend administrators to manage
overall system performance and to allocate resources
between a set of services when 1t 1s deemed there are insul-
ficient resources to meet service-level agreements of all the
set of services. For example, a policy assigns a higher priority
to a database relative to another database. When there are
isuificient resources to meet service-level agreements of
services of both databases, the database with the higher pri-
ority, and the services that use the database, will be favored
when allocating resources.

To meet service-level agreements, a mechanism 1s needed
to momnitor and measure workload placed on various
resources. These measures of workload are used to determine
whether service-level agreements are being met and to adjust
the allocation of resources as needed to meet the service-level
agreements.

According to an embodiment of the present invention, a
workload monitor 1s hosted on each database instance and
generates “performance metrics”. Performance metrics 1s
data that indicates the level of performance for one or more
resources or services based on performance measures.
Approaches for performing these functions are described in
Managing Workload by Service (50277-2337). The informa-
tion generated 1s accessible by various components within
multi-node database server 222 that are responsible for man-
aging the allocation of resources to meet service-level agree-
ments, as shall be described 1n greater detail later.

A performance metric of a particular type that can be used
to gauge a characteristic or condition that indicates a level of
performance or workload 1s referred to herein as a perfor-
mance measure. A performance measure 1includes for
example, transaction execution time or percent of CPU utili-
zation. In general, service-level agreements that involve lev-
els of performance can be defined by thresholds and criteria
that are based on performance measures.

For example, execution time of a transaction 1s a perfor-
mance measure. A service-level agreement based on this
measure 1s that a transaction for service FIN should execute
within 300 milliseconds. Yet another performance measure 1s
percentage CPU utilization of anode. A backend policy based
on this measure 1s that a node experience no more than 80%
utilization.

Performance metrics can indicate the performance of a
cluster, the performance of a service running on a cluster, a
node 1n the cluster, or a particular database 1nstance. A per-
formance metric or measure particular to a service 1s referred
to herein as a service performance metric or measure. For
example, a service performance measure for service FIN 1s
the transaction time for transactions executed for service FIN.

According to an embodiment, service-level agreement 1s
based on the following.

US 7,437,460 B2

7
Cardinality

This can be used by the backend administrator to restrict
the maximum resources that can be consumed by a particular
service and also to enforce that some minimum level of
resources are available to be consumed by the service. For
example, a service cardinality constraint requires that there be
a minimum and/or maximum number of database instances
that host a service; an instance cardinality constraint requires
that there be a minimum and/or maximum number of data-
base instances for a database. Cardinality constraints can also
limit the number of nodes 1n a cluster.

Service or Database Priority

Some services or databases may be designated as having a
higher priority than others. Preference 1s given to higher
priority services or databases when allocating resources, par-
ticularly when there are insuificient resources to meet ser-
vice-level agreements of all of a set of services or databases.
Priority information may be supplied by database adminis-
trators.

I, Percent CPU utilization of the destination node for

SCI'v1Ce expansion.

X A backend policy i the form of a threshold CPU

cpu
utilization for a node. X_,, may be difterent for different

nodes.

Availability 1s the minimum number of resources that
should be available at a particular moment. Availability 1s
monitored by daemon processes referred to as availability
monitors. In general, there 1s an availability monitor on every
node that monitors the health of the 1nstance and services on
that node. Availability monitors, such as availability monitor
192, are daemons that detect when a node or database
instance becomes unavailable due to, for example, a system
crash. When detecting that a node or database instance has
become unavailable, an availability monitor informs a data-
base director and/or cluster director of the affected services
and nodes. The directors initiate actions to achieve compli-
ance to availability requirements. For example, an availability
requirement requires that PAY be hosted on at least two data-
base instances. Availability monitor 192 detects that instance
125 has gone down and informs database director 152. In
response, database director 152 1nitiates service expansion to
expand service PAY to a second running database instance,
database instance 123.

Hierarchy of Directors

A hierarchy of directors, such as that described 1n Hierar-
chical Management Of The Dynamic Allocation Of
Resources In A Multi-Node System (50277-2382), 1s used to
dynamically adjust the allocation of resources within cluster
farm 101 to meet service-level agreements. Cluster farm 101
includes a database director for each database managed by a
database server on cluster farm 101, a cluster director for each
cluster within cluster farm 101, and a farm director for cluster

farm 101.

A database director, such as database director 152 and 162,
dynamically manages and adjusts the allocation of resources
of a database between services hosted by the database
instances of the database. One measure a database director
uses to perform this responsibility 1s to perform incremental
runtime session balancing between the database 1instances of
a database as described 1n Incremental Run-Time Session
Balancing in a Multi-Node System (50277-2411). Incremen-
tal runtime session balancing migrates the database sessions
ol a service between databases 1instances hosting the service.
Another measure that can be undertaken by a database direc-
tor 1S service expansion.

10

15

20

25

30

35

40

45

50

55

60

65

8

A cluster director, such as cluster director 112, manages
and adjusts allocation of resources between databases. One
measure a cluster director undertakes to perform this respon-
sibility 1s to add or remove a database 1nstance for a database
to or from an existing node within a cluster.

A farm director, such as farm director 102, manages and
adjusts allocation of resources between clusters. One mea-
sure a farm director undertakes to perform this responsibility
1s to add or remove a node to or from a cluster.

The directors detect violations of service-level agreements,
herein referred to as service-level violations. For example,
database director 152 periodically analyzes performance
metrics and determines that the average transaction time for
FIN on instance 125 violates the service-level agreement
based on this measure.

[lustrating Service Placement Decisions Using a Database
Director

As mentioned before, service placement and decision mak-
ing can occur under various scenarios. A procedure followed
by a database director to detect and remedy service-level
violations 1s used herein to illustrate an example of a service
placement and decision making.

According to an embodiment, a database director remedies
a service-level violation i1t detects by mitially making adjust-
ments to resource allocations that are less disruptive and
costly before resorting to more disruptive and costly resource
allocations. Migrating database sessions of a service between
the database instances of a database that are hosting the ser-

vice1s 1n general less disruptive and costly than expanding the
service to another database instance.

FIG. 2 shows a procedure that may be used to manage the
escalation of remedies employed to resolve service-level vio-
lations. The procedure 1s performed by a database director 1n
response to detecting a resource alert for a database 1nstance.
A resource alert 1s the detection of a condition or event which
triggers attention to resource allocation within a multi-node
computer system. Resource alerts include, in particular,
detection of service-level violations. A resource alert for a
database instance can be the detection of a service-level vio-
lation for a database instance as a whole or for a particular
service hosted by the database instance. For example, a
resource alert can be detecting that the average transaction
time for service FIN on database instance 125 exceeds the
service-level agreement for this measure.

Referring to FIG. 2, at step 203, the database director first
determines whether to attempt run-time session balancing.
This determination 1s made by determiming whether there are
any candidate services on a source database instance for
which session balancing can be performed. Typically, the
source database instance is the database instance on which the
service-level violation underlying the resource alert occurred.
Incremental Run-Time Session Balancing In A Multi-Node
System (50277-2411) describes an approach for determining
whether there are any candidate services on a source database
instance for which session balancing can be performed. If 1t 1s
determined that session balancing should be performed, then
at step 210 session balancing 1s performed.

At step 230, a determination 1s made of whether the
resource alert persists. If a remedy mvoked in an 1teration of
the procedure, such as session balancing, resolves the root
cause of the resource alert, then the resource alert may no
longer persist. Execution of the procedure ends.

If however, the resource alert persists, another iteration of
the procedure 1s performed to undertake another remedy. Step
230 1s performed after each iteration to assess whether a

US 7,437,460 B2

9

remedy taken 1n the 1iteration has resolved the resource alert or
whether another iteration of the procedure should be per-
formed.

If, at step 205, the determination 1s that run-time session
balancing cannot be attempted, then the procedure deter-
mines at step 215 whether service expansion should be
attempted. This determination 1s made by ascertaining
whether there are any candidate services on the source data-
base instance which can be expanded, as explained in greater
detail below. If the determination 1s that service expansion
should be performed, then at step 220 service expansion 1s
performed, and the procedure returns to step 230.

If the determination 1s that service expansion should not be
performed, then at step 225, resolution of the resource alert 1s
escalated to more costly remedies. Such remedies include, for
example, adding another node to the cluster hosting the
source database instance and provisioning another database
instance to the node, which are actions that may require
participation of other directors.

Service Expansion

FI1G. 3 depicts a procedure for service expansion and place-
ment decision making. According to an embodiment of the
present invention, service expansion 1s performed to expand
one or more target services hosted on a “source database
instance”. A service to expand 1s referred to herein as a target
service, and the database mstance to which it 1s expanded 1s
referred to herein as the destination database instance or
destination instance. A procedure for finding a destination
instance to which to expand a service 1s depicted in FIG. 4.

Referring to FIG. 3, at step 305, a candidate service 1s
selected from among the services hosted on the source
instance. The selection order may be based on the CPU uti-
lization of services, where services with greater CPU utiliza-
tion are selected before services with less CPU utilization.
Alternatively, the selection order may be based on a priority
established for the services. The services that may be selected
include the service experiencing the service-level violation
that underlies the resource alert.

At step 310, an attempt 1s made to find a destination
instance to which to expand the candidate service. The step 1s
performed by invoking the find expansion destination proce-
dure depicted in FIG. 4. If the find expansion destination
procedure 1s unable to find a destination 1nstance, step 305 1s
repeated again to select another candidate service.

Referring to the find expansion destination procedure
depicted 1n FIG. 4, at step 405, it 15 determined whether
expanding the candidate service violates a cardinality con-
straint for the service. It so, then the find expansion destina-
tion procedure returns no instance as a destination instance,
and the procedure ends. If 1t 1s determined that expanding the
candidate service does not violate a cardinality service-level
agreement for the service, the procedure proceeds to step 410.

At step 410, 1t 1s determined whether force-mode 1s 1n
elfect. If force-mode 1s 1 etlect, then at step 420, a destina-
tion instance not already hosting the candidate service 1s
found, 11 any. However, 1f force-mode 1s not in effect, then at
step 415, a destination mstance having T_,, less than X_ . 1s
found, if any. The selected destination imnstance must also not
be hosting the service. Force-mode may be set (1.e. made to be
in-effect) when expanding a service to meet an availability
requirement. Setting force-mode gives precedence to avail-
ability over CPU utilization. In force-mode, a poorly per-
torming destination instance with T, >X __ may be selected
as a destination instance to satisly an availability require-

ment.

10

15

20

25

30

35

40

45

50

55

60

65

10

Various criteria may be used to select a destination instance
in steps 415 and 420. For example, a destination instance with
a lower T_,, may be selected before one with a higher T_,..
Some services perform well together or not so well when
hosted on the same database instance. For example, some
services may access the same set of data in a database,
increasing the likelihood that data accessed for either service
1s stored in the cache of a database instance. A service that
performs well on a database instance because another service
1s hosted on the database instance has an affinity for the other
service. Thus, when selecting a destination instance to expand
a service, the destination instance can be selected to co-locate
services with atfinities for each other. Sitmilarly, a destination
instance may be selected 1n a way that accounts for services
that perform worse when co-located on the same database
instance.

Information about service affinity may be supplied by
human database administrators of a database server.

At step 430, a database instance located in either of steps
415 or 420, 11 any, 1s returned by the procedure. The database
instance located becomes the destination instance. The can-
didate service for which the find expansion destination pro-
cedure was invoked becomes the target service.

If a destination instance was found by the find expansion
destination procedure, than at step 315, an expansion job 1s
1ssued. The expansion job sends a service expand message to
listener 190 signaling that the destination instance i1s now
hosting the target service. In response to a subsequent client
database connection request for the service, listener 190 has
the option of creating a database session to be established for
the client on the destination instance. In this way, the database
instance 1s allocated to the service.

Issuing an expansion job creates a job that executes on the
node hosting the destination instance and communicates with
listener 190 and that executes asynchronously with the data-
base director. This frees the database director from the task of
communicating with listener 190. Such communication may
involve inter-process communication and attendant delays 1n
execution. Thus, delegating this task to the asynchronous job
insulates the database director from such delays and allows
the database director to continue performing 1ts responsibili-
ties, such as processing other resource alerts.

At step 320, the database director waits for the expansion
result from the job process. The database director waits for a
time-out period. If the database director does not receive a
result within the time-out period, the procedure proceeds to
step 330, where the expansion job 1s aborted.

Execution of the session expansion procedure ends.

While the database director waits for the expansion result,
it 1s not 1dle. Rather, the database director may perform the
procedure 1n FIG. 2 for another resource alert, such as a
service-level violation for another service.

Post Service Expansion

At this stage, no database sessions are migrated to the
destination instance. If the expansion procedure 1s performed
within an iteration of the procedure depicted 1n FI1G. 2, then a
next 1teration may invoke session balancing, migrating data-
base sessions for the target service to the destination instance.

For example, a database director detects a service-level
violation for service FIN on database instance 125, causing a
resource allocation alert. In response, the database director
begins execution of the procedure depicted 1n FI1G. 2, causing
service FIN to be expanded to database nstance 127. At this
stage, no database sessions for service FIN have been
migrated to database mstance 127 to transier workload from
database instance 125. As a result the service violation for

US 7,437,460 B2

11

service FIN persists, as determined at step 230. At step 205, 1t
1s determined that session balancing can be performed. Spe-
cifically, the database director determines that service FIN 1s
a candidate for session balancing with database instance 127
as the destination for migrated sessions. Database sessions
are then migrated from database instance 125 to database
instance 127, thereby reducing workload on database
instance 125 and remedying the cause of the resource alert.

In the current example, the service violation may abate or
disappear without the database director ever having to
migrate database sessions to database mstance 127. It 1s pos-
sible that the load placed by database sessions on database
instance 125 has abated because work performed within the
database sessions has decreased or the database sessions have
been terminated by clients. Furthermore, database connection
requests for service FIN received after session expansion
have been directed by listener 190 to database nstance 127
rather than database instance 125.

The approach depicted 1n FIGS. 3 and 4 for selecting a
target service and destination instance 1s illustrative but not
limiting. For example, a function can be invoked to return a
target service and/or destination instance. Such a function
could return one or more target services and destination
instances. The input to such a function could include data
about the candidate services on the database 1instance experi-
encing the service-level violation, the CPU utilization of each
ol the services, other database instances hosting the candidate
services, and CPU utilization of services on other database
instances. The functions could implement a variety of
approaches and policies for determining the target service
and destination instance. Further, such a function could be
user-supplied, that 1s, could be functions that are not part of
the native soltware of a database server and but are registered
with the database server to be invoked for the purpose of
determining target services and destination instances.

Selecting a Target Instance for Service Contraction

Sometimes the cardinality of a service within a database
needs to be reduced, that 1s, the number of instances of a
database allocated to host the service needs to be decreased.
For example, a service 1s hosted on a number of database
instances equal to the maximum cardinality for the service.
Meanwhile, a database administrator reduces the maximum
cardinality by 1, triggering a cardinality wviolation. In
response, a database director must select a database instance
on which to quiesce a service.

The term quiesce refers to disabling a use of a server by a
set of clients of the server. Quiescing a service refers to
disabling the use of a database instance for that service.
Quiescing a service on a database 1instance can entail prevent-
ing new connections to the database istance for that service
and transierring work being performed for the service to
another database instance via, for example, session migra-
tion.

FIG. 5 shows a procedure that may be performed by a
database director to select a target database 1nstance on which
to quiesce a “target service”. At step 310, 1t 1s determined
whether reducing the cardinality of the service violates a
mimmum cardinality constraint. If so, then the procedure
returns no target database instance. Otherwise, execution
flows to step 515.

At step 315, the database director selects a database
instance with the least quiescing cost. One factor that affects
this cost 1s CPU utilization. Database instances on nodes with
relatively less CPU utilization have less quiesce cost. Another
factor that affects quiesce cost 1s the number of database

10

15

20

25

30

35

40

45

50

55

60

65

12

sessions hosted by a database 1nstance for a service. Part of
quiescing a service on a database instance may entail migrat-
ing database sessions from a database instance. The cost of
quiescing 1s less 11 there are less database sessions to migrate.
Yet another factor to consider 1s whether the CPU utilization
ol a database instance violates service-level agreements. If
the database instance has comparatively less database ses-
s1ons than other database instances for the service, selecting
the database mnstance not only reduces quiescing cost but
reduces workload on a node where such relief 1s needed.

Hardware Overview

FIG. 6 1s a block diagram that illustrates a computer system
600 upon which an embodiment of the invention may be
implemented. Computer system 600 includes a bus 602 or
other communication mechanism for communicating infor-
mation, and a processor 604 coupled with bus 602 for pro-
cessing information. Computer system 600 also includes a
main memory 606, such as a random access memory (RAM)
or other dynamic storage device, coupled to bus 602 for
storing 1information and instructions to be executed by pro-
cessor 604. Main memory 606 also may be used for storing
temporary variables or other intermediate information during,
execution of instructions to be executed by processor 604.
Computer system 600 further includes a read only memory
(ROM) 608 or other static storage device coupled to bus 602
for storing static information and instructions for processor
604. A storage device 610, such as a magnetic disk or optical
disk, 1s provided and coupled to bus 602 for storing informa-
tion and instructions.

Computer system 600 may be coupled via bus 602 to a
display 612, such as a cathode ray tube (CRT), for displaying
information to a computer user. An mput device 614, includ-
ing alphanumeric and other keys, 1s coupled to bus 602 for
communicating information and command selections to pro-
cessor 604. Another type of user input device 1s cursor control
616, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 604 and for controlling cursor movement
on display 612. This input device typically has two degrees of
freedom 1n two axes, a first axis (e.g., X) and a second axis
(e.g.,y), that allows the device to specily positions 1n a plane.

The invention 1s related to the use of computer system 600
for implementing the techniques described herein. According
to one embodiment of the mmvention, those techniques are
performed by computer system 600 in response to processor
604 executing one or more sequences of one or more instruc-
tions contained 1n main memory 606. Such instructions may
be read 1into main memory 606 from another computer-read-
able medium, such as storage device 610. Execution of the
sequences of instructions contained 1n main memory 606
causes processor 604 to perform the process steps described
herein. In alternative embodiments, hard-wired circuitry may
be used 1n place of or 1n combination with soitware nstruc-
tions to implement the mvention. Thus, embodiments of the
invention are not limited to any specific combination of hard-
ware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 604 for execution. Such amedium may take
many forms, including but not limited to, non-volatile media,
volatile media, and transmission media. Non-volatile media
includes, for example, optical or magnetic disks, such as
storage device 610. Volatile media includes dynamic
memory, such as main memory 606. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-

US 7,437,460 B2

13

ing the wires that comprise bus 602. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio-wave and infra-red data communica-
tions.

Common forms of computer-readable media include, for
example, a tloppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other

optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and

EPROM, a FLASH-EPROM, any other memory chip or car-
tridge, a carrier wave as described heremafter, or any other
medium from which a computer can read.

Various forms of computer readable media may be
involved 1n carrying one or more sequences of one or more
instructions to processor 604 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the mnstruc-
tions 1nto 1ts dynamic memory and send the mstructions over
a telephone line using a modem. A modem local to computer
system 600 can recerve the data on the telephone line and use
an infra-red transmitter to convert the data to an inira-red
signal. Aninfra-red detector canreceive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 602. Bus 602 carries the data to main memory 606,
from which processor 604 retrieves and executes the mstruc-
tions. The nstructions recerved by main memory 606 may
optionally be stored on storage device 610 either before or
alter execution by processor 604.

Computer system 600 also includes a communication
interface 618 coupled to bus 602. Communication interface
618 provides a two-way data communication coupling to a
network link 620 that 1s connected to a local network 622. For
example, communication interface 618 may be an integrated
services digital network (ISDN) card or a modem to provide
a data communication connection to a corresponding type of
telephone line. As another example, communication interface
618 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN. Wireless
links may also be implemented. In any such implementation,
communication interface 618 sends and receives electrical,
clectromagnetic or optical signals that carry digital data
streams representing various types ol information.

Network link 620 typically provides data communication
through one or more networks to other data devices. For
example, network link 620 may provide a connection through
local network 622 to a host computer 624 or to data equip-
ment operated by an Internet Service Provider (ISP) 626. ISP
626 1n turn provides data communication services through the
world wide packet data communication network now com-
monly referred to as the “Internet” 628. Local network 622
and Internet 628 both use electrical, electromagnetic or opti-
cal signals that carry digital data streams. The signals through
the various networks and the signals on network link 620 and
through communication interface 618, which carry the digital
data to and from computer system 600, are exemplary forms
ol carrier waves transporting the information.

Computer system 600 can send messages and recerve data,
including program code, through the network(s), network
link 620 and communication interface 618. In the Internet
example, a server 630 might transmit a requested code for an
application program through Internet 628, ISP 626, local
network 622 and communication interface 618.

The received code may be executed by processor 604 as 1t
1s recetved, and/or stored in storage device 610, or other
non-volatile storage for later execution. In this manner, com-
puter system 600 may obtain application code 1n the form of
a carrier wave.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

In the foregoing specification, embodiments of the inven-
tion have been described with reference to numerous specific
details that may vary from implementation to implementa-
tion. Thus, the sole and exclusive indicator of what 1s the
invention, and 1s mtended by the applicants to be the mnven-
tion, 1s the set of claims that 1ssue from this application, 1n the
specific form in which such claims 1ssue, including any sub-
sequent correction. Any defimitions expressly set forth herein
for terms contained 1n such claims shall govern the meaning
of such terms as used in the claims. Hence, no limitation,
clement, property, feature, advantage or attribute that 1s not
expressly recited 1n a claim should limit the scope of such
claim 1n any way. The specification and drawings are, accord-
ingly, to be regarded 1n an illustrative rather than a restrictive
Sense.

What 1s claimed 1s:
1. A method for managing resources in a multiple node
system, the method comprising the steps of:

a plurality of servers hosting a service of a plurality of
services,

wherein each server of said plurality of servers 1s hosted on
a particular node of said multiple node system and com-
prises integrated software components executed by at
least one process running on said particular node,
wherein each node of said multiple node system 1s a
computing element interconnected to at least another
node of said multiple node system;

wherein each service of said plurality of services 1s perfor-
mance of work of a particular type;

detecting a violation of a service-level agreement of a
plurality of service-level agreements;

in response to detecting the violation, determiming whether

a first service of said plurality of services may be hosted
by a first server of said plurality of servers that 1s not
already hosting said first service; and

11 said first service may be hosted by said first server, then
causing said first server to host said first service.

2. The method of claim 1, the steps further including:

selecting said first service based on a performance measure
associated with each service of said plurality of services;
and

wherein selecting at least one service causes said determin-

ing whether a first service of said plurality of services
may be hosted by a first server of said plurality of ser-
vices not already hosting said first service.
3. The method of claim 2, wherein said performance mea-
sure 1s based on CPU utilization by said each service.
4. The method of claim 2, wherein said performance mea-
sure 1s based on a number of servers hosting said service.
5. The method of claim 2, wherein selecting said first

includes invoking a user-supplied routine that returns a cer-
tain server to host said first service.

6. The method of claim 1, wherein selecting at least one
server of said plurality of servers includes selecting at least
one server of said plurality of servers based on a performance

measure associated with each server of said plurality of serv-
ers.

7. The method of claim 6, the steps further including caus-
ing a service-level agreement to be 1ignored when selecting at
least one server of said plurality of servers based on a pertor-
mance measure.

8. The method of claim 6, wherein selecting at least one
server of said plurality of servers based on a performance
measure includes selecting another server based on data that

US 7,437,460 B2

15

indicates that the first service performs better when co-lo-
cated with a particular service on said other server relative to
other services.

9. The method of claim 6, wherein said performance mea-
sure 1s based on CPU utilization of said each server.

10. The method of claim 1, wherein:

the steps further include, 1n response to detecting the vio-

lation, determining not to perform session balancing
between at least one of said plurality of services and
another of said plurality of servers; and

the step of determining whether a first service of said

plurality of services may be hosted 1s performed in
response to determining not to perform session balanc-
ng.

11. The method of claim 10, wherein the steps further
include after performing the step of causing said first server to
host said first service:

determining that said violation persists; and

determining whether to perform session balancing

between at least one of said plurality of services and
another of said plurality of servers.

12. The method of claim 1, wherein the steps further
include:

after performing the step causing said first server to host

said first service, determining that said violation per-
sists; and

wherein determining that said violation persists causes

sessions to be migrated from another server of said plu-
rality of servers to said first server.

13. The method of claim 1, wherein each server of said
plurality of servers manages access to a database.

14. The method of claim 1, wherein:

the plurality of servers execute on a set ol nodes with each

node having shared access to a non-volatile storage; and
cach node of said set of nodes accesses a data item stored

on said non-volatile storage without requiring another

node access said data 1item on said each node’s behalf.

15. A method for managing resources in a multiple node
system, the method comprising the steps of:

10

15

20

25

30

35

16

a plurality of servers hosting a service of a plurality of
services,

wherein each server of said plurality of servers 1s hosted on
a particular node of said multiple node system and com-
prises integrated software components executed by at
least one process running on said particular node,
wherein each node of said multiple node system 1s a
computing element interconnected to at least another
node of said multiple node system;

wherein each service of said plurality of services 1s pertor-
mance ol work of a particular type;

detecting a violation of a service-level agreement of a
plurality of service-level agreements;

in response to detecting the violation, selecting a server of
said plurality of servers to cease hosting a first service of
said plurality of services;

wherein said selecting the server 1s based on one or more
factors that indicate the cost of causing said server to
cease hosting said first service; and

in response to selecting the server, causing said server to
cease to host said service.

16. The method of claim 15, wherein the one or more
factors are based on one or more performance measures.

17. The method of claim 16, wherein the one or more
performance measures include CPU utilization for the ser-
vice.

18. The method of claim 16, wherein the one or more
performance measures 1s based on a minimum cardinality
established for said first service.

19. The method of claim 16, wherein the one or more
factors include a number of sessions on said server that 1s
associated with said first service.

20. The method of claim 16, wherein the step of selecting
a server ol said plurality of servers to cease hosting a {first
service includes ivoking a user-supplied routine that returns
a certain server to cease hosting said first service.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,437,460 B2 Page 1 of 1
APPLICATION NO. : 10/918056

DATED . October 14, 2008

INVENTOR(S) . Chudambaran et al.

It Is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On page 2, in column 2, under “Other Publications™, line 41, delete “Dec. 12003” and insert -- Dec. 1,
2003 --, theretor.

In column 14, line 52, 1in claim 3, after “first” insert -- service --.

Signed and Sealed this

Thirteenth Day of April, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

