US007434003B2
a2 United States Patent (10) Patent No.: US 7.434,003 B2
Oney et al. 45) Date of Patent: Oct. 7, 2008
(54) EFFICIENT OPERATING SYSTEM (38) Field of Classification Search 711/6,

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

OPERATION ON A HYPERVISOR

Inventors: Adrian J. Oney, Woodinville, WA (US);
Bryan Mark Willman, Kirkland, WA
(US); Eric P. Traut, Bellevue, WA (US);
Forrest Curtis Foltz, Woodinville, WA
(US); John Te-Jui Sheu, Redmond, WA
(US); Matthew D. Hendel, Scattle, WA
(US); Rene Antonio Vega, Kirkland, WA
(US)

Assignee: Microsoft Corporation, Redmond, WA
(US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 267 days.

Appl. No.: 11/274,907

Filed: Nov. 15, 2005

Prior Publication Data

US 2007/0113227 Al May 17, 2007

Int. CL.

GO6F 12/10 (2006.01)

US.CL ..., 711/135;711/6; 711/207

711/205; 718/1
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,496,847 B1 12/2002 Bugnionetal. 718/1
7,200,994 B1* 4/2007 Klaiberetal. 710/264
2003/0037089 Al 2/2003 Cota-Robles et al. 718/1
2003/0172305 Al 9/2003 Miwacocoeiiiiiiiiinnn.. 713/201
2006/0005190 Al1* 1/2006 Vegaetal. 718/1
2007/0011444 Al1* 1/2007 Grobman etal. 713/2

FOREIGN PATENT DOCUMENTS

GB 2376761 A 12/2002
WO WO 03/090070 A2 10/2003

* cited by examiner

Primary Examiner—Gary] Portka
(74) Attorney, Agent, or Firm—Woodcock Washburn LLP

(57) ABSTRACT

An operating system 1s described that 1s capable of ascertain-
ing whether it 1s executing 1n a virtual machine environment
and 1s further capable of moditying 1ts behavior to operate
more efliciently and provide optimal behavior in a virtual
machine environment. An operating system 1s enlightened so
that 1t 1s aware of VMMs or hypervisors, taking on behavior
that 1s optimal to that environment. The VMM or hypervisor
informs the operating system of the optimal behavior, and
VICE Versa.

18 Claims, 8 Drawing Sheets

142

Starting VM-Aware | /

operating system

1 Q
No
146
Operating in
dedicated hardware
envircnment
148
Yes

Operatingina V
environment ?

144
M Yes

150

Modifying behavior
to operate more

efficiently in VM

152

Yes

© (e h

149

No Re-detect

environment?

Yes

153

No

Re-detect
environment?

Yes

US 7,434,003 B2

Sheet 1 of 8

Oct. 7, 2008

U.S. Patent

6] [oo6000] [&

G681 SINVHOONd
NOILVOI1ddV
310N

191
08T 291A9Q g Ot-saon |G7L YT
NI LNAdINO)D 291 P4e0qha) Bunuiogd Viva Nodomud | SWVHO0Md | WaLSAS

310N 3 - |

LLL

WVYO0¥d NOILVOI'lddY | ONILVY3dO

¥3HL1O

NN—\ LIl I ICI U

€Ll

NIOM]ION 31y IPIAA E

_

_

_ i

_ ¢l ejeg
_

_

_

— — wesboid
09/ 051 adsepaju) bl 92ea)u|
NIOMION 3JepIaju| aoejlaju) Aowap AIowa el
sajnpo
BOIY (€30 || YIOMJON Induj Jasn 9|1JE|OA-UON 3Ie|OA-UON e1Boig 1000
“ dqeAoway 3|EAOWAY-UON
“ GEl sweiboiy
L6lgiayeadg “ |21 Sng WaysAS uonedddy
. [ee 061 z8l 0
- " 561 aoepayu aoeMA| 1“%" aoepayuy wayskg
%6t Ja3ung jesayduag 03pIA soiydeio T bunesadQ
| Indino Buissadoig
|
161 10JIUON 0Ll ﬂ 981l Z
— _ Alowa NdS
| O9PIA 191

Alowd|\ WISAS

U.S. Patent Oct. 7, 2008 Sheet 2 of 8 US 7,434,003 B2

202 294 o
\ { Software Application
——
206
Guest Operating System
T
208 \/

Guest Hardware Architecture
(Partition / Virtual Machine)

U ——

| Virtualtzation Program
 (Hypervisor / Virtual Machine Monitor)

ZN

212

NS

Physical Hardware Architecture

U.S. Patent Oct. 7, 2008 Sheet 3 of 8 US 7,434,003 B2

308 310

Partition A Partition B
316 318 i 320 i
[App A1 AppA2 | . | App B i
312 | i 314 | :
. |Guest OS A 5 . |GuestOS B |
304

Host Operating System with VMM Service

302
PHYSICAL COMPUTER HARDWARE

US 7,434,003 B2

Sheet 4 of 8

Oct. 7, 2008

U.S. Patent

g¢ "bi4

WIB)SAS
bunesad)soH

:.wom

JdVMAAVH d31.NdWNOO TVIISAHd
20€

g SO ¥seng m
plg !

g ddy
02¢

d uolijed

_
_
IIIIIIIIIIIIIIIIIIIIIIIII J

— — | T—S . —— e e T EEET IR R "I I IR T I TR e e R R e EEER O TR WEEN

441>

_
_
|
_
_
_
_
_
{
_
_
_
|
_
_
_
_
_
_
_
_
_
_
_
_

ed

43>
| zv ddy LV ddy
8Lt 9lL¢

v uoniued |

80¢

U.S. Patent Oct. 7, 2008 Sheet 5 of 8 US 7,434,003 B2

116 118 120

App A1 App A2 App B1

132 134

VM-Aware Guest OS A VM-Aware Guest OS B |

108 110

Virtual Machine A Virtual Machine B

104
Host Operating System with VMM Service

102
Computer Hardware

U.S. Patent Oct. 7, 2008 Sheet 6 of 8 US 7,434,003 B2

®

| 142
Starting VM-Aware
operating system
144
No Operating in a VM Yes
environment ?
146 150

Operating in Modifying behavior

dedicated hardware
environment

to operate more
efficiently in VM

148 152

Yes Yes

N No
0 End

149 153

No No

Re-detect
environment?

Re-detect
environment?

Yes Yes

U.S. Patent Oct. 7, 2008 Sheet 7 of 8 US 7,434,003 B2

| 600
Hypervisor informs OS of ideal / | "

desired behavior

/\

Hypervisor-mediated I Hypervisor-mediated Hypervisor-mediated
address-space local flushing of TLB remote flushing of
switching entries TLB entries
) yd . yd
610 620

Hypervisor presents a TLB P 700

model for flushing multiple TLB

entries
;
Flush a single range Flush a list of
of virtual aadress individual virtual Flush a list of ranges
space addresses
/ 720 730

710

U.S. Patent Oct. 7, 2008 Sheet 8 of 8 US 7,434,003 B2

Hypervisor presents TLB model / 300
allowing the OS to specify how
TLB entries should be flushed

/\

Local to a specified Global to all address
address spaces

g / /

810 820 830

Slowly inferred |

US 7,434,003 B2

1

EFFICIENT OPERATING SYSTEM
OPERATION ON A HYPERVISOR

BACKGROUND

Computers include general purpose central processing
units (CPUs) that are designed to execute a specific set of
system 1nstructions. A group ol processors that have similar
architecture or design specifications may be considered to be
members of the same processor family. Although a group of
processors may be in the same family because of their similar
architecture and design considerations, processors may vary
widely within a family according to their clock speed and
other performance parameters.

To facilitate a better understanding of the present inven-
tion, this document defines applications as programs that
interact with users while relying on services and the kernel.
Services are defined as programs that interact with each other
and the kernel. Drivers are defined as a type of service that
also interacts with hardware. Kernels are defined as programs
that provide features for use by services and applications,
such as arbitrated access to CPUs 1n the system. An operating
system (OS) 1s furthermore defined as a product that encap-
sulates a kernel, some set of services, and some set of appli-
cations. Depending on the operating system, third parties may
be able to create additional applications and services that
interact with the operating system product.

Computer manufacturers want to maximize their market
share by having more rather than fewer applications run on
the microprocessor family associated with the computer
manufacturers’ product line. To expand the number of OSs
and application programs that can run on a computer system,
a field of technology has developed in which a given com-
puter having one type of CPU, called a host, will include an
emulator program that allows the host computer to emulate
another computer system, called a guest. Thus, the host com-
puter will execute an application that will cause one or more
host instructions to be called in response to a given guest
instruction. Thus the host computer can both run software
design for its own hardware architecture and software written
for computers having an unrelated hardware architecture. It
may also be possible to use an emulator program to operate
concurrently on a single CPU multiple incompatible operat-
ing systems. In this arrangement, although each operating
system 1s incompatible with the other, an emulator program
can host one of the two operating systems, allowing the oth-
erwise incompatible operating systems to run concurrently on
the same computer system.

When a guest computer system 1s emulated on a host com-
puter system, the guest computer system 1s said to be a “vir-
tual machine” as the guest computer system only exists in the
host computer system as a pure software representation of the
operation of one specific hardware architecture. The terms
emulator, virtual machine, and processor emulation are some-
times used 1nterchangeably to denote the ability to mimic or
emulate the hardware architecture of an entire computer sys-
tem.

The emulator program acts as the interchange between the
hardware architecture of the host machine and the instruc-
tions transmitted by the software running within the emulated
environment. As an emulator program can also be said to
monitor the virtual machine, emulator programs are also
called Virtual Machine Monitors (VMMs).

An emulator program may be a service under control of a
host operating system, which 1s an operating system runmng,
directly on the physical computer hardware, in which case 1t
1s termed a Type 11 VMM. Alternately, the emulator program

10

15

20

25

30

35

40

45

50

55

60

65

2

might be a software layer that runs directly above the hard-
ware and which virtualizes all the resources of the machine by
exposing interfaces that are the same as the hardware (which
enables the hypervisor to go unnoticed by operating system
layers running above it). In this configuration, the emulator
program 1s termed a Type I VMM, and 1s called a hypervisor.
Lastly, a host operating system and a Type II VMM service
may share control over some set of the physical hardware, a
hybrid configuration in which they can be said to run side-
by-side.

In conventional OSs, certain OS activities are performed
with an assumption that the operating system 1s running on
dedicated physical hardware. For example, operating systems
are accustomed to running on real hardware with a bank of
physical memory beginning at zero. They are also accus-
tomed to owning the page tables used to translate virtual
addresses to physical addresses, along with the responsibili-
ties of keeping each processor’s virtual address to physical
address translation caches (1.¢., translation look-aside buifers
or TLBs) up-to-date. To run such operating systems, a VMM
virtualizes the page tables and TLBs. A VMM manages the
real hardware page tables, but populates them using the con-
tents from page tables built by the operating system only after
some sanitization, effectively implementing a virtual TLB 1n
software. The VMM further intercepts operating system
usages of TLB-manipulating instructions to ensure the real
page tables under 1ts control are kept up-to-sync.

Current virtual machine software allow for virtualization,
including the example described above. However, there 1s
significant performance overhead associated with virtualiza-
tion. The performance overhead can reach levels as high as
70%, particularly 1n software applications with memory- or
I/O-1ntensive workloads (with heavy disk access or network
communications). This level of overhead 1s unacceptable 1n
applications that require maximum processor speed. What 1s
needed 1s a way to reduce processor overhead 1n a virtual
machine environment.

An unenlightened operating system 1s an operating system
that 1s unaware of or indifferent to whether it 1s running on a
VMM or not. Conventionally, the behavior of an operating
system when running on virtualized hardware provided by a
VMM 1s 1dentical to that when running on the real hardware.
What i1s needed 1s a way that an operating system and a virtual
machine monitor, an example of which 1s a hypervisor, work
together and communicate with each other for efficient opera-
tion.

SUMMARY

Systems and methods are provided for implementing an
operating system that 1s capable of ascertaining whether 1t 1s
operating 1n a virtual machine environment and 1s further
capable of modifying 1ts behavior to operate more efficiently
in a virtual machine environment. According to an embodi-
ment, an operating system 1s enlightened so that 1t 1s aware of
VMDMs or hypervisors, taking on behavior that is optimal to
that environment. Thus, an operating system runs etliciently
in the presence of VMMSs or hypervisors.

Several example techniques are presented to lower the cost
of this virtualization through operating system enlighten-
ments. According to an embodiment, the operating system
submits requests to the hypervisor via a mechanism called a
virtualization device.

This Summary 1s provided to introduce a selection of con-
cepts 1n a simplified form that are further described below 1n
the Detailed Description. This Summary 1s not intended to

US 7,434,003 B2

3

identily key features or essential features of the claimed sub-
ject matter, nor 1s 1t intended to be used to limit the scope of
the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of preferred embodiments, 1s better understood
when read 1n conjunction with the appended drawings. For
the purpose of illustrating the invention, there 1s shown 1n the
drawings exemplary constructions of the mnvention; however,
the invention 1s not limited to the specific methods and 1nstru-
mentalities disclosed. In the drawings:

FIG. 1 provides a brief general description of a suitable
computing device 1n connection with which the invention
may be implemented;

FIG. 2 1s a block diagram representing the logical layering,
of the hardware and software architecture for an emulated
operating environment 1n a computer system;

FIG. 3A 1s a block diagram representing a virtualized com-
puting system wherein the emulation 1s performed by the host
operating system (either directly or via a hypervisor);

FIG. 3B 1s a block diagram representing an alternative
virtualized computing system wherein the emulation 1s per-
formed by a virtual machine monitor running side-by-side
with a host operating system;

FIG. 4 illustrates a virtualized computing system from
FIG. 3A further comprising a host operating system with
VM-aware guest operating systems;

FIG. 5 1s a flowchart that illustrates a method of 1mple-
menting a VM-aware guest operating system with the capa-
bility to detect a virtual machine environment and modity its
behavior 1n order to improve etficiency in a virtual machine
environment;

FIG. 6 1s a diagram showing example desired behavior
indicated to the operating system by the virtual machine
monitor;

FI1G. 7 1s a diagram showing example TLB flushing opera-
tions; and

FI1G. 8 1s a diagram showing further example hints that may
be provided by the operating system to the virtual machine
monitor during flushing operations.

DETAILED DESCRIPTION

The inventive subject matter 1s described with specificity to
meet statutory requirements. However, the description itself
1s not intended to limit the scope of this patent. Rather, the
inventor has contemplated that the claimed subject matter
might also be embodied 1n other ways, to include different
steps or combinations of steps similar to the ones described 1n
this document, 1n conjunction with other present or future
technologies. Moreover, although the term “step” may be
used herein to connote different elements of methods
employed, the term should not be interpreted as implying any
particular order among or between various steps herein dis-
closed unless and except when the order of individual steps 1s
explicitly described.

Exemplary Computing Environment

FI1G. 1 and the following discussion are intended to provide
a brief general description of a suitable computing device 1n
connection with which the invention may be implemented.
For example, any of the client and server computers or
devices may take this form. It should be understood, however,
that handheld, portable and other computing devices and
computing objects of all kinds are contemplated for use 1n
connection with the present ivention, 1.e., anywhere from

10

15

20

25

30

35

40

45

50

55

60

65

4

which data may be generated, processed, recerved and/or
transmitted in a computing environment. While a general
purpose computer 1s described below, this 1s but one example,
and the mvention may be implemented with a thin client
having network/bus interoperability and interaction. Thus,
the invention may be implemented 1n an environment of net-
worked hosted services 1n which very little or minimal client
resources are implicated, e.g., a networked environment in
which the client device serves merely as an interface to the
network/bus, such as an object placed 1n an appliance. In
essence, anywhere that data may be stored or from which data
may be retrieved or transmitted to another computer 1s a
desirable, or suitable, environment for operation of the object
persistence methods of the invention.

Although not required, the invention can be implemented
via an operating system, for use by a developer of services for
a device or object, and/or icluded within application or
server software that operates in accordance with the inven-
tion. Soitware may be described in the general context of
computer executable 1nstructions, such as program modules,
being executed by one or more computers, such as client
workstations, servers, or other devices. Generally, program
modules include routines, programs, objects, components,
data structures and the like that perform particular tasks or
implement particular abstract data types. Typically, the func-
tionality of the program modules may be combined or dis-
tributed as desired in various embodiments. Moreover, the
invention may be practiced with other computer system con-
figurations and protocols. Other well known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with the invention include, but are not limited to,
personal computers (PCs), automated teller machines, server
computers, hand held or laptop devices, multi processor sys-
tems, microprocessor based systems, programmable con-
sumer electronics, network PCs, appliances, lights, environ-
mental control elements, minicomputers, mainirame
computers and the like.

FIG. 1 thus illustrates an example of a suitable computing
system environment 100 in which the mvention may be
implemented, although as made clear above, the computing
system environment 100 1s only one example of a suitable
computing environment and 1s not intended to suggest any
limitation as to the scope of use or functionality of the mven-
tion. Neither should the computing environment 100 be inter-
preted as having any dependency or requirement relating to
any one or combination of components illustrated 1n the
exemplary operating environment 100.

With reference to FIG. 1, an exemplary system for imple-
menting the mvention includes a general purpose computing
device 1n the form of a computer 110. Components of com-
puter 110 may include, but are not limited to, a processing
unmt 120, a system memory 130, and a system bus 121 that
couples various system components including the system
memory to the processing unit 120. The system bus 121 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any ol a variety of bus architectures. By way of

example, and not limitation, such architectures include Indus-
try Standard Architecture (ISA) bus, Micro Channel Archi-

tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus (also known as
Mezzanine bus).

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able mediathat can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-re-

US 7,434,003 B2

S

movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media include
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
of information such as computer readable 1nstructions, data
structures, program modules or other data. Computer storage
media include, but are not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CDROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
computer 110. Communication media typically embody
computer readable instructions, data structures, program
modules or other data 1n a modulated data signal such as a
carrier wave or other transport mechanism and include any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed 1n such a manner as to encode information 1n
the signal. By way of example, and not limitation, communi-
cation media include wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
RF, infrared and other wireless media. Combinations of any
of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during start-
up, 1s typically stored in ROM 131. RAM 132 typically con-
tains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing umt 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov-
able, nonvolatile optical disk 156, such as a CD-RW, DVD-
RW or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards, digi-
tal versatile disks, digital video tape, solid state RAM, solid
state ROM and the like. The hard disk drive 141 1s typically
connected to the system bus 121 through a non-removable
memory interface such as interface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and 1illustrated in FIG. 1 provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 1s 1llustrated as storing operating
system 144, application programs 145, other program mod-
ules 146 and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136
and program data 137. Operating system 144, application

10

15

20

25

30

35

40

45

50

55

60

65

6

programs 145, other program modules 146 and program data
147 are given different numbers here to illustrate that, at a
minimum, they are different copies. A user may enter com-
mands and information 1nto the computer 110 through input
devices such as a keyboard 162 and pointing device 161, such
as a mouse, trackball or touch pad. Other input devices (not
shown) may include a microphone, joystick, game pad, sat-
cllite dish, scanner, or the like. These and other input devices
are often connected to the processing unit 120 through a user
input interface 160 that 1s coupled to the system bus 121, but
may be connected by other interface and bus structures, such
as a parallel port, game port or a universal serial bus (USB). A
graphics interface 182 may also be connected to the system
bus 121. One or more graphics processing units (GPUs) 184
may communicate with graphics interface 182. A monitor
191 or other type of display device 1s also connected to the
system bus 121 via an interface, such as a video interface 190,
which may 1n turn communicate with video memory 186. In
addition to monitor 191, computers may also include other
peripheral output devices such as speakers 197 and printer
196, which may be connected through an output peripheral
interface 195.

The computer 110 may operate in a networked or distrib-
uted environment using logical connections to one or more
remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server, a
router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements
described above relative to the computer 110, although only a
memory storage device 181 has been 1llustrated in FIG. 1. The
logical connections depicted 1n FIG. 1 mclude a local area
network (LAN) 171 and a wide area network (WAN) 173, but
may also include other networks/buses. Such networking
environments are commonplace 1n homes, oflices, enterprise-
wide computer networks, intranets and the Internet.

When used 1n a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be 1nternal or external, may be connected to the system bus
121 via the user mput interface 160, or other approprate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

Virtual Machines

FIG. 2 1s a diagram representing the logical layering of the
hardware and software architecture for a virtualized environ-
ment 1n a computer system. In the figure, a virtualization
program 210 runs directly or indirectly on the physical hard-
ware architecture 212. The virtualization program 210 may
be (a) a virtual machine monitor (VMM) that runs alongside
a host operating system or a host operating system with a
hypervisor component wherein the hypervisor component
performs the virtualization. The virtualization program 210
virtualizes a guest hardware architecture 208 (shown as
dashed lines to illustrate the fact that this component 1s a
partition or a “virtual machine”), that 1s, hardware that does
not actually exist but is instead virtualized by the virtualizing,
program 210. A guest operating system 206 executes on the
guest hardware architecture 208, and a soiftware application

US 7,434,003 B2

7

204 runs on the guest operating system 206. In the virtualized
operating environment of FIG. 2, the software application
204 can run 1 a computer system 202 even if the software
application 204 1s designed to run on an operating system that
1s generally incompatible with a host operating system and
the hardware architecture 212.

FIG. 3A illustrates a virtualized computing system com-
prising a host operating system (host OS) software layer 304
running directly above physical computer hardware 302,
where the host OS 304 provides access to the resources of the
physical computer hardware 302 by exposing interfaces to
partitions A 308 and B 310 for the use by operating systems
312 and 314, respectively. This enables the host OS 304 to go
unnoticed by operating system layers 312 and 314 running
above 1t. Again, to perform the virtualization, the host OS 304
may be a specially designed operating system with native
virtualization capabilities or, alternately, 1t may be a standard
operating system with an incorporated hypervisor component
for performing the virtualization (not shown).

Referring again to FI1G. 3A, above the host OS 304 are two
partitions, partition A 308, which may be, for example, a
virtualized INTEL® 386 processor, and partition B 310,
which may be for example, a virtualized version of one of the
MOTOROLA® 680X0 family of processors. Within each
partition 308 and 310 are guest operating systems (guest OSs)
A 312 and B 314, respectively. Running on top of guest OS A
312 are two applications, application A1 316 and application
A2 318, and running on top of guest OS B 314 1s application
B1 320.

Inregard to FIG. 3A, 1it1s noted that that partition A 308 and
partition B 314 (which are shown 1n dashed lines) are virtu-
alized computer hardware representations that exist only as
soltware constructions. They are made possible due to the
execution of specialized virtualization software(s) that not
only presents partition A 308 and partition B 310 to guest OS
A 312 and guest OS B 314, respectively, but which also
performs all of the soitware steps necessary for guest OS A
312 and guest OS B 314 to indirectly interact with the real
physical computer hardware 302.

FIG. 3B illustrates an alternative virtualized computing
system wherein the virtualization 1s performed by a VMM
304' runming alongside the host operating system 304". In
certain cases, the VMM 304' may be an application running
above the host operating system 304" and interacting with the
computer hardware 302 only through the host operating sys-
tem 304". In other cases, as shown 1n FIG. 3B, the VMM 304
may instead comprise a partially independent software sys-
tem that on some levels interacts indirectly with the computer
hardware 302 via the host operating system 304" but on other
levels the VMM 304" interacts directly with the computer
hardware 302 (similar to the way the host operating system
interacts directly with the computer hardware). And yet 1n
other cases, the VMM 304' may comprise a fully independent
soltware system that on all levels interacts directly with the
computer hardware 302 (similar to the way the host operating
system 1nteracts directly with the computer hardware) with-
out utilizing the host operating system 304" (although still
interacting with the host operating system 304" 1n order to
coordinate use of the computer hardware 302 and avoid con-
flicts and the like).

All of these vanations for implementing the above men-
tioned partitions are just exemplary implementations, and
nothing herein should be interpreted as limiting the invention
to any particular virtualization aspect.

Operating 1n a VM Environment

FI1G. 4 1llustrates a virtualized computing system similar to

that shown in FIG. 3A, butin FIG. 4, a VM-aware guest OS A

10

15

20

25

30

35

40

45

50

55

60

65

8

132 and a VM-aware guest OS B 134 have replaced guest OS
A 112 and guest OS B 114, respectively. VM-aware guest OS
A 132 and VM-aware guest OS B 134 are operating systems
that are able to ascertain whether they are operating in a
virtual machine environment and, 1f so, are able to modify
their behavior to operate more efficiently.

An example operation of VM-aware guest OS A 132 and
VM-aware guest OS B 134 o1 FIG. 4 1s described in reference
to FIG. 5, which 1s a flowchart that 1llustrates a method 140 of
implementing a VM-aware operating system with the capa-
bility to detect a virtual machine environment and modily its
behavior in order to improve etficiency in a virtual machine
environment. At step 142, the method first comprises starting
the VM-aware operating system (e.g., VM-aware guest OS A
132 or VM-aware guest OS B 134).

At step 144, the VM-aware OS determines whether 1t 1s
operating 1n a VM environment. The OS may make this
determination upon startup, or one or more times at any point
during its operation. This determination 1s done by any of a
variety of methods, mcluding the use of synthetic mnstruc-
tions, as described 1n U.S. patent application Ser. No. 10/685,
051 filed on Oct. 14, 2003 and entitled, “SYSTEMS AND
METHODS FOR USING SYNTHETIC INSTRUCTIONS
IN A VIRTUAL MACHINE” (heremafter the 051 patent
application), incorporated herein by reference 1n its entirety.
The ’051 patent application describes a method for an oper-
ating system to determine whether it 1s running on a virtual-
1zed processor or running directly on an x86 processor, by
executing a synthetic instruction (e.g., VMCPUID) f{for
returning a value representing an 1dentity for the central pro-
cessing unit. If a value 1s returned, the guest OS concludes
that the operating system 1s running on a virtualized proces-
sor; 1f an exception occurs inresponse to the synthetic instruc-
tion, the guest OS concludes that the operating system 1s
running directly on an x86 processor. Another method for
determining whether the guest OS 1s runming 1n a VM envi-
ronment include running a series of tests threads and compar-
ing performance of the current environment to historical
results. In any event, 11 the VM-aware OS determines that 1t 1s
not operating 1n a VM environment, method 140 proceeds to
step 146. Alternatively, 1f the VM-aware OS determines that it
1s operating 1n a VM environment, method 140 proceeds to
step 1350.

At step 146, the VM-aware OS operates 1n its “traditional”
manner, because 1t 1s operating on dedicated hardware and 1s
not 1n a VM environment. At step 148, the VM-aware oper-
ating system determines whether a “shut down” command
has been recerved. If a “shut down” command 1s recerved, the
VM-aware OS shuts down and method 140 ends. If no “shut
down” command has been recerved, the VM-aware OS may
determine whether to re-detect the environment at step 149. If
not, the method continues to operate 1n the “traditional” man-
ner, as described in step 146. 11 so, the method returns to step
144 to re-detect whether 1t 1s running 1n a VM environment. It
1s contemplated that step 149 may be optional and/or per-
formed, on a regular basis, upon notification that the run-time
environment may have changed, or based on some other
heuristic that decides when it 1s appropriate to make this
determination again. If step 149 1s bypassed or omitted, then
the method will return to step 146.

At step 150, the VM-aware OS modifies 1ts behavior 1n
order to operate more efliciently in a VM environment,
described further herein. At step 152, the VM-aware OS
determines whether a “shut down” command has been
recetved. If a “shut down” command 1s received, the VM-
aware OS shuts down and method 140 ends. Ifno “shut down”
command has been recerved, the VM-aware OS may deter-

US 7,434,003 B2

9

mine whether to re-detect the environment at step 153. If not,
the method continues to operate 1n i1ts modified, high-etfi-
ciency mode, as described in step 150. If so, the method
returns to step 144 to re-detect whether it 1s running in a VM
environment. Like step 149, 1t 1s contemplated that step 153
may be optional and/or performed, on a regular basis, upon
notification that the run-time environment may have changed,
or based on some other heuristic that decides when 1t 1s
appropriate to make this determination again. If step 153 1s
bypassed or omitted, then the method will return to step 150.

Some example methods and techniques described herein
have the operating system submitting requests to the VMM or
hypervisor by a mechanism of submitting a request termed a
hypercall to a software construct termed a virtualization

device, as described 1n U.S. patent application Ser. No.
10/985,360 filed on Nov. 4, 2004 and entitled, “SYSTEM

AND METHOD FOR INTERRUPT HANDLING™, incorpo-
rated herein by reference 1n its entirety. Although the
examples herein may refer to hypervisors, the examples are
also applicable to VMMSs and should not be limited thereto.

As noted above, after the OS determines at step 144 that it
1s operating 1n a VM environment, its behavior 1s modified at
step 150. According to an embodiment, behavior modifica-
tion 1includes a VMM or hypervisor informing an operating,
system of 1deal or desired behavior for running on a VMM or
hypervisor at step 600 as shown in FIG. 6, and the operating
system then makes the recommended adjustments to its
behavior. A VMM or hypervisor may provide via a hypercall
(e.g., HvGetSystemFeature) information such as which TLB-
related operations should be performed via a hypercall.
Example operations that can be performed via virtualization
device include:

(1) Hypervisor-mediated address-space switching (step
610). If the hypervisor indicates this feature should be used,
operating systems desirably change address spaces on virtual
processors by 1ssuing a hypercall (e.g., an HvSwitchVirtual-
AddressSpace hypercall) rather than using an architectural
technique (e.g., architectural “mov cr3, reg” technique).
Unlike the architectural method, the hypercall does not have
the side effect of tlushing TLB entries.

(2) Hypervisor-mediated local flushing of TLB entries
(step 620). If the hypervisor indicates this feature should be
used, operating systems should flush TLBs on the current
processor by 1ssuing a hypercall (e.g., an HvFlushVirtual Ad-
dressSpace hypercall) rather than using architectural flushing
techniques such as multiple 1invlpg instructions, reloading
cr3, or toggling the global bit in crd. Unlike the architectural
method, a single hypercall can specily the specific address
space(s) of interest and flush multiple entries, all 1n one
instruction. This minimizes the number of address spaces a
translation 1s removed from, and 1t minimizes the number of
transitions to the hypervisor.

(3) Hypervisor-mediated remote tlushing of TLBs entries
(step 630). If the hypervisor indicates this feature should be
used, operating systems should flush TLBs on other virtual
processors by 1ssuing a hypercall (e.g., an HvFlushVirtual-
AddressSpace hypercall) rather than performing the tradi-
tional TLB-shootdown algorithm of sending an inter-proces-
sor interrupt (IPI) to each processor and having each IPI flush
its own processor’s TLB. The hypercall can take a mask 1n
which a set bit indicates the corresponding processor should
be flushed. Alternately, groups of processors can be described
by group number as well. The operating system need not wait
tor each virtual processor to be scheduled. The hypervisor can
queue the work until the virtual processor 1s next scheduled
while simultaneously allowing the mitiating virtual processor
to continue, safe 1n the knowledge that all subsequent execu-

10

15

20

25

30

35

40

45

50

55

60

65

10

tion will retlect the flush request. This avoids the potentially
large cost from the OS 1ssuing an IPI to a virtual processor that
may not be scheduled and waiting for that IPI to complete.

Depending on the level of virtualization assistance from
the underlying hardware, a hypervisor may indicate all fea-
tures should be used (little virtualization support from the
underlying hardware), a few, or perhaps even none to achieve
the optimal or desired behavior, performance, or scalability.

Another embodiment includes a method 1n which the
hypervisor presents a TLB model that supports operations for
flushing of multiple TLB entries (step 700) specified by
range, by list, or by list of ranges, as shown with respect to
FIG. 7. A method 1n which an operating system uses these
features 1s also presented.

The hypervisor can provide a hypercall (e.g., an HvFlush-
Virtual AddressSpaceRange hypercall) to flush a single range
of virtual address space, specified by a base and limait, or a
base and length (step 710). An operating system may use this
when performing operations that affect virtually contiguous
blocks of address space, such as unloading a DLL or driver.

The hypervisor can also provide a hypercall (e.g., an
HvFlushVirtual AddressSpacelist hypercall) to flush a list of
individual virtual addresses (step 720). An operating system
may use this when performing operations that affect many
unrelated and noncontiguous virtual addresses. This might
happen for instance after trimming the set of least recently
used pages 1n a system, e.g., backing up those pages to disk
and monitoring any future writes.

Also, the hypervisor can provide a hypercall (e.g., an
HvFlushVirtual AddressSpaceRangelist hypercall) taking a
list of ranges, where the bits normally describing the offset
into a page are repurposed to make a page count (step 730).
An operating system may use this when performing opera-
tions that affect several disjoint blocks of address space.

Another embodiment includes a method 1n which the
hypervisor presents a TLB model allowing the operating sys-
tem to specily whether TLB entries to be flushed are global to
all address spaces, or local to one or more specified address
spaces, as shown with respect to FIG. 8. A method in which an
operating system uses these features 1s similarly presented.

Some processor architectures, such as the x86 architecture,
store the scope (current address space/all address spaces) of a
virtual address translation in the TLB entry. On those archi-
tectures, a flush mstruction might not contain any hint as to
whether the flush request specifies a local or global entry—
the hardware 1nstead infers this based on the preexisting TLB
entry.

This inference 1s expensive for a hypervisor. Consequently,
a family of virtualization devices (e.g., the HvFlushVirtual-
AddressSpace a family of virtualization devices) can take a
field (step 800) indicating whether the entry 1s local to the
specified address space (step 810), global to all (step 820), or
should be (slowly) inferred (step 830). Because the operating
system almost always knows this information, 1t can fill out
the field with the optimum value. In addition, this ficld may be
supported 1n flushing an address space or the entire TLB to
enable the operating system to limit the flush to only local or
global entries.

Moreover, an operating system may change the maximum
number of TLB entries i1t will flush individually before flush-
ing an entire address space or TLB. When an operating sys-
tem starts building up a list of virtual addresses whose TLB
entries should be flushed, 1t may stop collecting entries after
a certain maximum value has been reached. At this point, 1t 1s
typically more efficient for the operating system to issue on
flush-entire-TLB call (or flush all non-global entries call)
rather than flush multiple virtual addresses.

US 7,434,003 B2

11

This transition point changes when a hypervisor 1s present,
possibly becoming a much larger number. For example, an
operating system may change the transition point upon detec-
tion of a hypervisor. It may build a larger list or build several
smaller lists and specily each 1 a series of calls (e.g.,
HvFlushVirtual AddressSpace). An operating system may
even act as 1f the transition point 1s effectively infinity 11 the
real number 1s so high as to be larger than almost all lists 1t will
ever build.

Additionally, an operating system may efliciently build up
batches of TLB entries to flush before invoking the hypervi-
sor. An operating system might normally build its list of
virtual addresses to be flushed on the stack of the current
thread. In a hypervisor environment, however, this list may be
larger than 1s safe or desirable to place on a stack, as an
incoming interrupt service routine may not be left with sui-
ficient space on the stack to execute properly.

One solution 1s to use a list of ranges on the stack. Such
range lists can act as a compressed intermediary form 1f the
hypervisor does not support range lists itself. Alternately, 1T
the lists are very large as a result of many discontiguous
ranges, or the list 1s not allowed to cross a page, or the
hypervisor does not support range lists, the operating system
can construct the list on one or more per-processor pages. The
operating system desirably ensures the thread stays the exclu-
stve owner of the processor throughout the activity. The tech-
nique to do so 1s operating system specific, and may include
disabling all interrupts or masking off just those interrupts
used to cause rescheduling.

Furthermore, a hypervisor may dynamically modify its
behavior to be optimal for the operating system or for the
current state ol the underlying hardware that may be managed
by the operating system. An operating system can nform a
hypervisor, and a hypervisor can correspondingly learn about
behavior optimal for an operating system, using the follow-
ing, for example: (1) an explicit notification identitying indi-
vidual behavior preferences 1s made by the operating system;
(2) an explicit notification indicating the version of the hyper-
visor interface to use 1s made by the operating system; (3) an
explicit notification indicating the version of the underlying
operating system, from which the hypervisor inters behavior,
1s made by the operating system; (4) detecting the desired
behavior at runtime by watching the pattern of hypercalls. For
instance, 1f a hypervisor detected the use of a particular hyper-
call (e.g., HvFlushVirtualAddressSpace), 1t could still sup-
port existing architectural operations, but may nonetheless
optimize for use ol hypercalls instead, letting legacy calls take
more time than would otherwise be the case. The notifications
may be performed via virtualization device or by writing to an
MSR virtualized by the hypervisor, for example.

Another embodiment includes a method 1 which the
hypervisor presents a run-time execution profile to a manage-
ment partition allowing the operating system within 1t to
determine whether the physical hardware, or portions thereof,
are 1dle, and another method in which the operating system
within a management partition communicates to the hyper-
visor 1ts intent to change the power state of a logical proces-
sor. A method 1n which an operating system uses these fea-
tures 1s similarly presented.

Some aspects of the processor or system, such as power
management, are desirably delegated to a management par-
tition which runs an operating system that 1s knowledgeable
of the specific means to control the hardware elements. The
operating system desirably obtains activity information of the
underlying logical processors to determine whether i1t needs
to apply a power policy, and the operating system needs to
communicate 1ts intent to the hypervisor to allow the hyper-

10

15

20

25

30

35

40

45

50

55

60

65

12

visor to avoid scheduling virtual processors on a logical pro-
cessor that 1s 1n a low power state 1t other logical processors
are available.

According to other aspects, an operating system and a
redistributable hypervisor-interface driver may coordinate on
settings. A hypervisor-interface driver 1s a driver that inter-
taces with the hypervisor even on operating systems that are
not hypervisor aware. In an example method, the hypervisor-
interface driver first checks with the operating system to see 1f
it 1s hypervisor-aware. If so, 1t routes 1ts own requests through
the operating system, instead of directly accessing the hyper-
visor itself. Both the detection and the request routing can be
accomplished by checking for a routing interface exposed by
the operating system kernel. In this way, a hypervisor-aware
operating system can centralize the code for interfacing with
a hypervisor, and allow a hypervisor-interface driver to run on
both enlightened and unenlightened operating systems.

CONCLUSION

The various systems, methods, and techniques described
herein may be implemented with hardware or software or,
where appropriate, with a combination of both. Thus, the
methods and apparatus of the present invention, or certain
aspects or portions thereof, may take the form of program
code (1.e., mstructions) embodied in tangible media, such as
floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium, wherein, when the pro-
gram code 1s loaded into and executed by a machine, such as
a computer, the machine becomes an apparatus for practicing
the invention. In the case of program code execution on pro-
grammable computers, the computer will generally include a
processor, a storage medium readable by the processor (in-
cluding volatile and non-volatile memory and/or storage ele-
ments), at least one mput device, and at least one output
device. One or more programs are preferably implemented 1n
a high level procedural or object oriented programming lan-
guage to communicate with a computer system. However, the
program(s) can be implemented 1n assembly or machine lan-
guage, 1f desired. In any case, the language may be a compiled
or interpreted language, and combined with hardware 1mple-
mentations.

The methods and apparatus of the present invention may
also be embodied 1n the form of program code that 1s trans-
mitted over some transmission medium, such as over electri-
cal wiring or cabling, through fiber optics, or via any other
form of transmission, wherein, when the program code 1s
received and loaded into and executed by a machine, such as
an EPROM, a gate array, a programmable logic device (PLD),
a client computer, a video recorder or the like, the machine
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code combines with the processor to provide a unique appa-
ratus that operates to perform the indexing functionality of the
present invention.

While the present invention has been described in connec-
tion with the preferred embodiments of the various figures, 1t
1s to be understood that other similar embodiments may be
used or modifications and additions may be made to the
described embodiment for performing the same function of
the present invention without deviating there from. For
example, while exemplary embodiments of the invention are
described in the context of digital devices emulating the func-
tionality of personal computers, one skilled 1n the art waill
recognize that the present invention 1s not limited to such
digital devices, as described in the present application may
apply to any number of existing or emerging computing

US 7,434,003 B2

13

devices or environments, such as a gaming console, handheld
computer, portable computer, etc. whether wired or wireless,
and may be applied to any number of such computing devices
connected via a communications network, and interacting
across the network. Furthermore, 1t should be emphasized
that a variety of computer platforms, including handheld
device operating systems and other application specific hard-
ware/soltware interface systems, are herein contemplated,
especially as the number of wireless networked devices con-
tinues to proliferate. Theretfore, the present invention should
not be limited to any single embodiment, but rather construed
in breadth and scope 1n accordance with the appended claims.

Finally, the disclosed embodiments described herein may
be adapted for use 1n other processor architectures, computer-
based systems, or system virtualizations, and such embodi-
ments are expressly anticipated by the disclosures made
herein and, thus, the present invention should not be limited to
specific embodiments described herein but instead construed
most broadly. Likewise, the use of synthetic instructions for
purposes other than processor virtualization are also antici-
pated by the disclosures made herein, and any such utilization
ol synthetic instructions in contexts other than processor vir-
tualization should be most broadly read 1nto the disclosures
made herein.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, 1t 1s to be understood that the subject matter defined 1n
the appended claims 1s not necessarily limited to the specific
teatures or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

The invention claimed 1s:

1. A method for an operating system to improve efliciency
and provide optimal behavior when executing on a virtual
machine, the method comprising:

determining 1f said operating system 1s executing on a

virtual machine;
if so, informing the operating system of desired behavior
for running on a virtual machine monitor (VMM) using
a hypercall; and

changing a maximum number of translation look-aside
butler (TLB) entries that the operating system will flush
individually before flushing an entire address space or
TLB.

2. The method of claim 1, wherein informing the operating,
system of desired behavior comprises the VMM informing
the operating system of desired behavior using the hypercall
to indicate a desired translation look-aside buifer (TLB)
related operation selected from the group consisting of hyper-
visor-mediated address-space switching, hypervisor-medi-
ated local flushing of TLB entries, and hypervisor-mediated
remote flushing of TLB entries.

3. The method of claim 1, wherein the VMM comprises a
hypervisor.

4. The method of claim 1, wherein informing the operating,
system of desired behavior comprises the VMM 1ndicating
which translation look-aside bufler (TLB) related operations
should be performed.

5. The method of claim 1, wherein informing the operating,
system of desired behavior comprises the VMM presenting a
translation look-aside butler (1LB) model for flushing mul-
tiple TLB entries specified by a list of ranges and for flushing,
one or more address spaces.

6. The method of claim 1, wherein informing the operating
system of desired behavior comprises the VMM presenting a
translation look-aside butier (TLB) model allowing the oper-

5

10

15

20

25

30

35

40

45

50

55

60

65

14

ating system to specily whether TLB entries to be flushed are
global to all address spaces, or local to a specified address
space.

7. The method of claim 1, further comprising the VMM
providing a call to enable the operating system to switch
address spaces without flushing a translation look-aside
butfer (TLB).

8. The method of claim 1, further comprising the operating,
system building up batches of translation look-aside butfer
(TLB) entries to tlush betfore invoking the VMM.

9. The method of claim 1, further comprising dynamically
switching the operating system from behavior optimal from
running on real hardware to behavior optimal for running on
the VMM and vice versa.

10. The method of claim 1, further comprising coordinat-
Ing processor power management between the VMM and the
operating system.

11. A system for an operating system to improve eificiency
and provide optimal behavior when executing on a virtual
machine, said system comprising:

a pProcessor;

a memory; and

at least one subsystem for determining 1f said operating
system 1s executing on a virtual machine; and 1f so,
informing the operating system of desired behavior for
running on a virtual machine monitor (VMM) using a
hypercall;

wherein the operating system changes a maximum number

of translation look-aside builer (TLB) entries that the
operating system will flush individually before flushing
an entire address space or TLB.

12. The system of claim 11, wherein the VMM comprises
a hypervisor.

13. The system of claim 11, wherein the at least one sub-
system 1s configured to inform the operating system of
desired behavior by the VMM indicating which translation
look-aside buffer (TLB) related operations should be per-
formed.

14. The system of claim 11, wherein the at least one sub-
system 1s configured to inform the operating system of
desired behavior by the VMM presenting a translation look-
aside buifer (TLB) model for flushing multiple TLB entries
specified by a list of ranges and for flushing one or more
address spaces.

15. The system of claim 11, wherein the at least one sub-
system 1s configured to inform the operating system of
desired behavior by the VMM presenting a translation look-
aside butler (TLB) model allowing the operating system to
specily whether TLB entries to be flushed are global to all
address spaces, or local to a specified address space.

16. A computer-readable storage medium comprising
computer-readable instructions for an operating system to
improve elficiency and provide optimal behavior when
executing on a virtual machine, said computer-readable
instructions comprising instructions for:

determining 1f said operating system 1s executing on a

virtual machine;

11 so, informing the operating system of desired behavior

for running on a virtual machine monitor (VMM) using
a hypercall; and

changing a maximum number of translation look-aside
buffer (TLB) entries the operating system will flush

individually before flushing an entire address space or
TLB.

17. The computer-readable storage medium of claim 16,
further comprising instructions for informing the operating

US 7,434,003 B2

15

system of desired behavior by indicating which translation
look-aside butler (TLB) related operations should be per-
formed.

18. The computer-readable storage medium of claim 16,
turther comprising instructions for informing the operating
system of desired behavior by presenting a translation look-

16

aside butler (TLB) model allowing the operating system to
specily whether TLB entries to be flushed are global to all
address spaces, or local to a specified address space.

	Front Page
	Drawings
	Specification
	Claims

