US007428536B2
a2 United States Patent (10) Patent No.: US 7,428,536 B2
McGuire et al. 45) Date of Patent: Sep. 23, 2008
(54) APPARATUS AND METHOD FOR 6,610,106 Bl 82003 Jenksocoeeervirinnnnn.. 715/538
fﬁTO];I?F);Tj(EA CONDITION BUILDER 6,633,878 B1* 10/2003 Underwood 707/100
(75) Inventors: Kevin T. McGuire, Ottawa (CA);
Eduardo Jose Pereira, Ottawa (CA), OTHER PUBLICATIONS
Nashib Qadri, Ottawa (CA); David
Douglas Springgay, Ottawa (CA) Banning, et al. “Improved Query Understanding Through the Use of
(73) Assi . R Mach a New Column Window”, IBM Technical Disclosure Bulletin, N3B,
ssignee: International Business Machines p. 437-438, Aug. 1990.
Corporation, Armonk, NY (US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner—lony Mahmoudi
U.S.C. 154(b) by 402 days. (74) Attorney, Agent, or Firm—Duke W. Yee; Martin .
1) | McKinley; Gerald H. Glanzman
21) Appl. No.: 11/098,820
57 ABSTRACT
(22) Filed: Apr. 5, 2005 G7)
635 Prior Publication Dat
(65) Hon PHDTCAton e An apparatus and method for providing a user interface
US 2006/0224959 Al Oct. 5, 2006 through which a user may generate a conditional expression
51) Tat. Cl are provided. The user interface provides guidance to auser as
(51 Int. C1. to the proper parts of the conditional expression to include in
GO6F 17/30 (2006.01) h Fitional . h h g
GOGF 15/16 (2006.01) t. € con 1t10na. expression as the user constructs the condi-
(52) US.CL oo 707/5; 707/3; 707/4 tional expression. Thus, as the user completes parts of the
(58) Field of Classification Search 70773, conditionalexpression, the gmdance that1s oftered 1s updated
707/4. 5 based on the current context of the conditional expression.
See application file for complete search history. This guidance may include listings of variables, attributes
_ and/or functions that are most appropriate to be entered next
(56) References Cited in the conditional expression, help text, and the like.

5,813,019 A

U.S. PATENT DOCUMENTS

9/1998 Van De Vanter 707/512

Entry
Suggestion

Database
830

Controller
810

4 Claims, 9 Drawing Sheets

Error

Hint Message Detection

Database
850

Engine
870

Control/Data Signal Bus 890

|
|

Interface
820

Graphical User
Interface

Engine
840

Entry Suggestion
List Generation
Engine
860

Hint Message
Generation
Engine
880

U.S. Patent Sep. 23, 2008 Sheet 1 of 9 US 7,428,536 B2

FIG. 1A

120 130
~/
Conditional Formatting —z

ondition 1

equal to
not equal to

greater than

less than

greater than or equal to
less than or equal to

FIG. 1B

120 130
Conditional Formatting [[= [REKX
110 ondition 1 A —
CellValuels |v||greaterthan [v||45 B

No Format Set Format...
when condition is true: —
Delete... Cancel

U.S. Patent Sep. 23, 2008 Sheet 2 of 9 US 7,428,536 B2

FIG. 1C

160

Conditional Formattinc

150 Condition 1

[Formulals _Jw| [45
Preview of format to use
when condition is true: m

220 FIG. 2

Me![lastNameCriteria] A
210
= T o i)) e] [

-

B MEMBER

B Tables lastNameSearch AfterUpdate
Queries MemNo Label AllowAutoCorrect

Forms MemNo AutoTab
Loaded Forms Title Label BackColor

Title BackStyie

All Forms First Label BeforeUpdate
B Reports First BorderColor
Last Label BorderLineStyle

Last BorderStyle
BorderWidth

230 240 250

)
aa
\&
aSJ oty
o NQOY OLE 90¢
> ()
4_-...,,
™~ —
o ocy —
- gcy
— S je)depy
vey rA'A 4 3SNOJ pUE ade|
AOWBN WSPON

PIBOGASY]

N
I~
=
H — Jo)depy
Y 617 8Ly sng
= jedepy 1a)depy a0e)Ia)u| SN lsjdepy 1SOH
oapIp/oIpNY solydels) uoisuedx3 NV ISNS
o0 00€
2 € DI
e
g
=3
02 9Iv 308
- 80y =
Jajdepy aocﬂcﬂ_m (Y sbpug/yoe) oNov
0IpNY I\ VI 19d1S0H JOSSad0.d

oov

v OIA

U.S. Patent

US 7,428,536 B2

Sheet 4 of 9

Sep. 23, 2008

U.S. Patent

« 1 I»
Al I BWENIBWOISND A-f
abeblopels "yg dde () &

nba 10 uey} ss9)| SI |LJeA m

ZIeA uey) Sso| S| LIeA B -

9 10 uey} Jayealb si LieaF -
JeA uey) Jsjealb s| LIeAR -

BA 0} sjenba Jou Si LIeAR -+

ZieA 0} sjenba s| LIeA -

02s

0¢s

"Jybu 8y) 0} 11| uoNsabbins sy} Wioly s|qeLeA Jo aje|dws) e 10999

DIy Uau | R

“*UONIPUOD

4

’

S

}

VIS

U.S. Patent Sep. 23, 2008 Sheet 5 of 9 US 7,428,536 B2

FIG. 6A

600
612 610 620

Label: Rule? ——_
.-gvarl is equals to var2
®| If

:--@vam s not equals to var2
®| Then Action...

§-Evar1 s greater than var2
- Bvar1 is greater than or equz

«-Elvar1 is less than var2

614 - Blvar1 is less than or equal tc
E"-*OmyHand BR_BlackjackHan
F:EI-OpIay BR_BlackjackPlay

Select a template or variable from the suggestion list to the E'EString
right -~ $aCharacter
630
600
612 610 620

Label: Ruled —__

B OmyHand: BR_BlackjackHan¢ &

®| If |Select Variable..|== Select Variable... & Oplay: BR _BlackjackPlay
| - fJString
@| Then - $aCharacter
- ENumber

614 - Birue

Select a variable or attribute from the suggestion list.

630

+- ffalse

U.S. Patent Sep. 23, 2008 Sheet 6 of 9 US 7,428,536 B2

FIG. 6C

600
610 620

abel: Rule4 ——_

If myHand.total F= Select Variable...

: - LB caunt |nt

“-¥[total int____

%Qplay BR_BIackjackPI
g &8-% play : String
: ©-F UNDEFINED: ST

Then Action...

614

. E-¥ HIT: String
5 : BY CASE INSE
: &-F bytes
. &-¥ STAND : String

FIG. 6D

600
612 610 620

Label: Rule4 __—
@ If myHand.total...

@1 Then Action...

614

US 7,428,536 B2

Sheet 7 0of 9

Sep. 23, 2008

U.S. Patent

S, ONILVYY dT09 &- m_
buwss : bueyypan A R

buwyg : ssaippe ..g

i Aees ...

ONILVY H3ATISw m

anl] = panoidde uayj

ONILLYY 109 dde == Buneyupaio dde ho.. oue
¢ = < pakojdwgsieak dde H_

00l / Ov . Aejes-dde > anjepsbebuow-dde J|

o
>

L DIA

®

®

U.S. Patent Sep. 23, 2008 Sheet 8 of 9 US 7,428,536 B2

F1G. 3

Entry Hint Message =ror

Controller Suggestion Database Detection
810 Database Engine
830 850 870

Graphical User Entry Suggestion Hint Message
Interface Interface List Generation Generation
820 Engine Engine Engine
840 860 880

Control/Data Signal Bus 890

U.S. Patent Sep. 23, 2008

Receive Request to
Generate a Conditional
Expression

910

Generate and Output Initial
Conditional Expression Tree
Interface

920

Receive User Input to
Conditional Expression Tree

Interface
930

Analyze Input to Identify
Token Being Modified or
Selected by User

940

Identify Token Type and
Perform Lookup in

Databases based on Token Type

950

Generate Entry Suggestion List

and Hint Message Based on

Matches to Token Type in

Databases
960

Sheet 9 of 9 US 7,428,536 B2

FIG. 9

Receive User Input to Entry
Suggestion List and Update

Condition Expression Tree
970

Conditional
Expression Complete?

980

NO

Yes

US 7,428,536 B2

1

APPARATUS AND METHOD FOR
PROVIDING A CONDITION BUILDER
INTERFACE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention 1s generally directed to an improved
data processing system. More specifically, the present mnven-
tion 1s directed to an apparatus and method for providing a
condition builder interface.

2. Description of Related Art

In many computer applications, there are scenarios where
a user has to define a condition expression. For example, 1n a
mortgage approval application, mortgage approval may be
granted for a customer 1f the monthly mortgage payment 1s
less than 33% of their monthly income. These conditional
expressions are typically expressed using a computer lan-
guage which novice users may find difficult to understand and
use. To simply the creation of these conditional expressions,
a number of different techniques have been developed and
adopted by computer application providers.

For example, in Microsoit Excel™, a spreadsheet applica-
tion available from Microsoft Corporation, a condition 1s
defined using a graphical user interface having a series of
combination boxes as illustrated in FIG. 1A. As shown 1n
FIG. 1A, the conditional expression user interface for
Microsoit Excel™ includes a first field 110 for entering a
parameter upon which the condition operations, a second
field 120 for entering the condition type, and at least one third
field 130 for entering parameter values for the condition.

Different condition types selected via the second field 120
may result 1n a different number of parameter value fields
130, as 1llustrated in FIG. 1B. As shown, rather than two
parameter value fields 130 as 1n the “between” condition type
selected in FIG. 1A, the “greater than” condition type
selected 1n field 120 of FIG. 1B results 1mn only a single
parameter value field 130 being provided.

If a condition 1s not within the bounds of a simple expres-
sion list, 1.e. the condition 1s not one of those that may be
selected from the drop-down menu associated with field 120,
then a graphical user intertace (GUI) may be provided for
entry of a formula 1dentifying the condition, as illustrated 1n
FIG. 1C. As shown 1n FIG. 1C, the conditional formatting
GUI includes a first field 150 for entry of the type of condition
and a second field 160 for entry of the formula.

While the Microsoit Excel™ approach to defining condi-
tional expressions makes the creation of very simple condi-
tions easy, 1t makes the creation ol more complex expressions
very difficult. This difficulty stems from a number of draw-
backs associated with the Microsoft Excel approach. First,
the condition language that 1s to be used 1n defining condi-
tional expressions 1s not described in the graphical user inter-
faces. The user must learn this conditional language by trial
and error or going to the documentation accompanying the
soltware application. In addition, the graphical user inter-
faces do not provide any examples that would provide a user
with guidance on how to create the conditional expression
they are attempting to create. Moreover, there 1s no guidance
provided by the graphical user interfaces as the user enters
their conditional expression guiding the user as to how to
complete the conditional expression. Furthermore, no guid-
ance 1s provided to the user when the user enters a conditional
expression that has an error as to how to remedy the error.
Furthermore, there 1s no ability in the Microsoft Excel™
graphical user interfaces for permitting the user to browse the

10

15

20

25

30

35

40

45

50

55

60

65

2

variables or functions which can be referenced 1n the condi-
tional expression based on the current context of the condi-
tional expression.

In Microsoft Access™, a database application available
from Microsoit Corporation, a different graphical user inter-
face style 1s used to define conditions. As shown 1n FIG. 2, the
graphical user interface 1s composed of twenty or more virtual
buttons. There 1s a button 210 for every type of operator which
can be contained in the conditional expression (shown 1n field
220), and three list boxes 230-2350 which can be used to select
from a range of variables, fields and functions.

The Microsoft Access™ approach to defimng conditional
expressions makes both simple and complex conditions dii-
ficult to create. As with the Microsoit Excel™ approach, the
Microsoit Access™ approach also does not provide any
information regarding the conditional language, which 1s
used to describe a conditional expression, in the graphical
user interface. As a result, the user must learn this conditional
language by trial and error or consult the documentation
accompanying the software application. Again, there are not
examples 1n the graphical user interface to provide assistance
to the user 1n generating their conditional expression. Further-
more, although there 1s a list of variables and functions that
may be selected, there 1s no guidance with regard to which
variables and functions from the lists should be selected. In
other words, 1t 1s rather easy for a user to generate a condi-
tional expression with errors by selecting the wrong variables
and functions from the lists since no guidance 1s given as to
which variables and functions are most appropriate for the
current context of the conditional expression.

Thus, 1t would be beneficial to have an 1improved apparatus
and method for providing an interface through which a user
may generate a conditional expression and through which
guidance may be provided to the user to aid the user in
generating the conditional expression based on the current
context of the conditional expression.

SUMMARY OF THE INVENTION

The present invention provides an apparatus, method and
computer program product for providing a user interface
through which a user may generate a conditional expression.
This user interface may be implemented 1n any type of appli-
cation that uses conditional expressions including database
applications, spreadsheet applications, and the like.

The user 1interface of the present invention provides guid-
ance to a user as to the proper components of the conditional
expression to include in the conditional expression as the user
constructs the conditional expression. Thus, as the user com-
pletes parts of the conditional expression, the guidance that 1s
offered 1s updated based on the current context of the condi-
tional expression. This guidance may include listings of vari-
ables, attributes and/or functions that are most appropnate to
be entered next 1n the conditional expression, help text, and
the like.

The interface, in accordance with one embodiment,
includes a conditional expression tree component, an entry
suggestion list component, and a hint message component.
The hint message component provides the user with gmidance
messages mstructing the user as to what actions need to be
performed or mput needs to be provided with regard to a
currently selected or modified part of a condition expression
in the conditional expression tree component. The entry sug-
gestion list component provides the user with gudance
regarding the particular entries that would be appropnate for
inclusion 1n the conditional expression at a position currently
being selected or modified by the user in the conditional

US 7,428,536 B2

3

expression tree component of the interface. The conditional
expression tree component of the interface provides a current
context of the conditional expression depicted 1n a hierarchi-
cal tree format.

The hierarchical tree format of the conditional expression
tree component 1s such that conditional expressions that must
be satisfied together are connected using a solid line while
conditional expressions that may be alternatively satisfied are
connected using dotted lines. In addition, the Boolean opera-
tors “and,” “or,” “not”, etc. may be depicted 1n accordance
with these connections. The conditional expressions are hier-
archically depicted as a primary or parent condition with 1ts
sub-conditions being indented beneath 1t. A user may shift
sub-conditions left or right in the conditional expression tree
component to either create a sub-condition or collapse sub-
conditions.

Thus, the present invention provides a graphical user inter-
face through which a user 1s provided guidance at every stage
ol a process for generating a conditional expression. Guid-
ance 1s offered in the form of an entry suggestion list that 1s
dynamically updated based on the selections and input made
by the user and one or more hint messages output to the user
via a hint message component of the graphical user interface.
In this way, the user 1s given guidance as to what action they
must perform with regard to the selected or currently being,
modified part of the conditional expression using the dynami-
cally updated hint message. In addition, the user i1s given
guidance as to what entries would be appropriate for the
selected or currently being modified part of the conditional
expression using the dynamically updated entry suggestion
list. The result 1s a user interface for generation of conditional
expressions that 1s more user ifriendly, provides greater guid-
ance to users so that less sophisticated users may use 1t with
ease, and eliminates the need for the user to learn on a trial-
and-error basis the way 1n which a conditional expression 1s to

be built.

These and other features and advantages of the present
invention will be described 1n, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth i the appended claims. The invention 1itsellf,
however, as well as a preferred mode of use, further objectives
and advantages thereotf, will best be understood by reference
to the following detailed description of an illustrative
embodiment when read 1n conjunction with the accompany-
ing drawings, wherein:

FIG. 1A 1s an exemplary diagram of a Microsoit Excel™
graphical user interface for entry of a conditional expression
in which two parameter value fields are provided;

FIG. 1B 1s an exemplary diagram of a Microsoft Excel™
graphical user interface for entry of a conditional expression
in which one parameter value field 1s provided;

FIG. 1C 15 an exemplary diagram of a Microsoit Excel™
graphical user interface for entry of a conditional expression
in which a formula may be entered;

FIG. 2 1s an exemplary diagram of a Microsoit Access™
graphical user imterface for entry of a conditional expression;

FIG. 3 1s an exemplary diagram of a computing device in
which aspects of the present invention may be implemented;

FI1G. 4 1s an exemplary block diagram of the primary opera-
tional components of a computing device 1n which aspects of

the present invention may be implemented;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. § 1s an exemplary diagram of an 1nitial graphical user
interface for generating a conditional expression 1 accor-
dance with one exemplary embodiment of the present inven-
tion;

FIGS. 6 A-6D are exemplary diagrams 1illustrating a pro-
cess for generating a conditional expression in accordance
with one exemplary embodiment of the present invention;

FIG. 7 1s an exemplary diagram of a graphical user inter-
face for generating a conditional expression 1n which a com-
plete conditional expression has been generated;

FIG. 8 1s an exemplary block diagram illustrating the pri-
mary operational components of a conditional expression
engine 1n accordance with the present invention; and

FIG. 9 1s a flowchart outlining an exemplary operation of
the present invention when generating a conditional expres-
S1011.

DESCRIPTION OF THE PR
EMBODIMENT

(L]
Y

ERRED

The present invention provides an apparatus, method and
computer program product for providing a condition builder
interface through which a user may generate conditional
expressions. The present invention 1s preferably implemented
in a data processing environment. This data processing envi-
ronment may be a single computing device or may be a
distributed data processing environment incorporating a plu-
rality of computing devices. FIGS. 3 and 4 are provided as an
exemplary data processing environment 1n which aspects of
the present mvention may be implemented. It should be
appreciated that FIGS. 3 and 4 are only exemplary and are not
intended to state or imply any limitation as to the type of data
processing environments 1n which the present invention may
be implemented.

With reference now to the figures and 1n particular with
reference to FIG. 3, a pictonial representation of a data pro-
cessing system 1n which the present invention may be imple-
mented 1s depicted 1in accordance with a preferred embodi-
ment of the present invention. A computer 300 1s depicted
which includes system unit 302, video display terminal 304,
keyboard 306, storage devices 308, which may include floppy
drives and other types of permanent and removable storage
media, and mouse 310. Additional mput devices may be
included with personal computer 300, such as, for example, a
joystick, touchpad, touch screen, trackball, microphone, and
the like. Computer 300 can be implemented using any suit-
able computer, such as an IBM eServer computer or IntelliS-
tation computer, which are products of International Business
Machines Corporation, located in Armonk, N.Y. Although the
depicted representation shows a computer, other embodi-
ments of the present invention may be implemented in other
types of data processing systems, such as a network computer.
Computer 300 also preferably includes a graphical user inter-
face (GUI) that may be implemented by means of systems
soltware residing 1n computer readable media 1n operation
within computer 300.

With reference now to FIG. 4, a block diagram of a data
processing system 1s shown in which the present invention
may be implemented. Data processing system 400 1s an
example of a computer, such as computer 300 1n FIG. 3, 1n
which code or instructions implementing the processes of the
present invention may be located. Data processing system
400 employs a peripheral component interconnect (PCI) local
bus architecture. Although the depicted example employs a
PCI bus, other bus architectures such as Accelerated Graphics
Port (AGP) and Industry Standard Architecture (ISA) may be

used. Processor 402 and main memory 404 are connected to

US 7,428,536 B2

S

PCI local bus 406 through PCI bridge 408. PCI bridge 408
also may 1nclude an integrated memory controller and cache
memory for processor 402. Additional connections to PCI
local bus 406 may be made through direct component inter-
connection or through add-in connectors. In the depicted
example, local area network (LAN) adapter 410, small com-
puter system interface SCSI host bus adapter 412, and expan-
s1on bus interface 414 are connected to PCI local bus 406 by
direct component connection. In contrast, audio adapter 416,
graphics adapter 418, and audio/video adapter 419 are con-
nected to PCI local bus 406 by add-in boards inserted into
expansion slots. Expansion bus interface 414 provides a con-
nection for a keyboard and mouse adapter 420, modem 422,
and additional memory 424. SCSI host bus adapter 212 pro-
vides a connection for hard disk drive 426, tape drive 428, and
CD-ROM drive 430. Typical PCI local bus implementations
will support three or four PCI expansion slots or add-1n con-
nectors.

An operating system runs on processor 402 and 1s used to
coordinate and provide control of various components within
data processing system 400 in FIG. 4. The operating system
may be a commercially available operating system such as
Windows XP, which 1s available from Microsoit Corporation.
An object ortented programming system such as Javamay run
in conjunction with the operating system and provides calls to
the operating system from Java programs or applications
executing on data processing system 400. “Java™ 1s a trade-
mark of Sun Microsystems, Inc. Instructions for the operating,
system, the object-oriented programming system, and appli-
cations or programs are located on storage devices, such as
hard disk drive 426, and may be loaded into main memory
404 for execution by processor 402.

Those of ordinary skill 1n the art will appreciate that the
hardware 1n FIG. 4 may vary depending on the implementa-
tion. Other 1nternal hardware or peripheral devices, such as
flash read-only memory (ROM), equivalent nonvolatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted 1n FIG. 4.
Also, the processes of the present invention may be applied to
a multiprocessor data processing system.

For example, data processing system 400, 11 optionally
configured as a network computer, may not include SCSI host
bus adapter 412, hard disk drive 426, tape drive 428, and
CD-ROM 430. In that case, the computer, to be properly
called a client computer, includes some type of network com-
munication interface, such as LAN adapter 410, modem 422,
or the like. As another example, data processing system 400
may be a stand-alone system configured to be bootable with-
out relying on some type of network communication inter-
face, whether or not data processing system 400 comprises
some type ol network communication interface. As a further
example, data processing system 400 may be a personal digi-
tal assistant (PDA), which 1s configured with ROM and/or
flash ROM to provide non-volatile memory for storing oper-
ating system files and/or user-generated data.

The depicted example 1 FIG. 4 and above-described
examples are not meant to imply architectural limitations. For
example, data processing system 400 also may be a notebook
computer or hand held computer in addition to taking the
form of a PDA. Data processing system 400 also may be a
kiosk or a Web appliance.

The processes of the present invention are performed by
processor 402 using computer implemented instructions,
which may be located in a memory such as, for example, main
memory 404, memory 424, or in one or more peripheral

devices 426-430.

10

15

20

25

30

35

40

45

50

55

60

65

6

As mentioned above, the present mnvention 1s directed to an
improved apparatus, method and computer program product
for providing a condition expression building interface. The
condition expression building intertace of the present mven-
tion leads the user through the creation of the conditional
expression. The interface of the present invention provides a
first component that 1s the condition expression tree building
component, a second component that 1s an entry suggestion
list from which the user may select an entry suggestion to
incorporate ito the condition expression tree in the first
component, and a third component that 1s a hint area compo-
nent which provides comments to assist the user based on the
current state of the condition expression tree 1n the first com-
ponent. Initially, the user 1s requested, via the interface, to
select a simple expression type, 1.€. a condition. These various
components of the interface are illustrated 1n FIG. 5.

FIG. 5 1s an exemplary diagram of an 1n1tial graphical user
interface for generating a conditional expression in accor-
dance with one exemplary embodiment of the present inven-
tion. As shown in FIG. 5, the condition expression tree com-
ponent 510 of the interface 500 includes a conditional part
512, 1.e. the “If” part, and an action part 314, 1.e. the “Then”
part. A user may enter conditions in the conditional part 514
that, when satisfied, result in a user defined action in the
action part 514 being performed.

Conditions generated by the user in the condition part 512
ol the condition expression tree component 510 are depicted
in the condition expression tree component 510 as a condition
tree, or tree of conditions. For example, an 1nitial condition
may be presented at a first level, or root level, of the condition
tree with subsequent conditions appearing as branches off of
the 1mitial condition based on their correspondence with the
initial condition. More information about the manner in
which condition trees are depicted 1n the conditional expres-
sion tree component 510 will be provided hereafter with
reference to FIGS. 6 A-6D and 7.

To the right of the condition expression tree component
510 1s the entry suggestion list component 520 of the interface
500. The entry suggestion list component 520 1s a context
sensitive list of the possible entries for a selected part of the
condition tree currently existing in the condition expression
tree component 510. The entry suggestion list component 520
1s updated dynamically as different parts of the condition tree
present in the condition expression tree component 510 are
selected. A user may select an entry suggestion from the entry
suggestion list component 520 in order to incorporate that
entry suggestion into the selected part of the condition tree 1n
the condition expression tree component 510.

Below the condition expression tree component 510 1s the
hint component 530 of the interface 500. The hint component
530 provides comments to assist the user in what the user
needs to do next to complete a conditional expression using
the interface 500. These comments are dynamically updated
based on the current state of the conditional tree 1n the con-
dition expression tree component 510 and are geared toward
leading the user through the process of generating a condi-
tional expression using the interface 500.

For example, as shown 1n FIG. 5, the part of the condition
tree, “Condition . . . 7, has been selected by the user (denoted
by the highlighting of the text). In accordance with this selec-
tion, both of the entry suggestion list component 520 and the
hint component 530 are dynamically updated to provide the
necessary assistance to aid the user 1n generating a condi-
tional expression. For example, entry suggestion list compo-
nent 520 1s updated to include a list of the possible imputs for
the highlighted, or selected, part of the condition tree 1n the
condition expression tree component 512.

US 7,428,536 B2

7

FIGS. 6 A-6D are exemplary diagrams 1illustrating a pro-
cess for generating a conditional expression in accordance
with one exemplary embodiment of the present invention. As
shown 1 FIG. 6A, imitially, the interface 600 includes a
condition expression tree component 610 in which both the
condition component 612 and the action component 614 are
set to generic text tokens “condition™ and “action” so that the
user may select these text tokens and be provided with cor-
responding lists of possible entries for that token 1n the entry
suggestion list component 620. The “condition” and “action”
tokens may be represented 1n the form of a hyperlink, for
example. The hyperlink indicates that the “condition™ token
and ““‘action” token are merely place holders and that the user
should select these tokens to define these portions of the
conditional expression. If the user selects one of these hyper-
link tokens, a corresponding suggestion list 1s generated to
show possible replacements for the place holder, 1.e. the sug-
gestion list component 620 1s updated with entries for
replacement of the selected hyperlink token.

The replacement entries for the selected hyperlink token
may themselves include hyperlink tokens that are to be
selected by the user for defining the conditional expression.
For example, if the suggestion list entry “varl i1s equal to
var2,’ 1s selected to replace the “condition” hyperlink token,
the form “Select Variable . . . ==Select Variable’ 1s used
to replace the “condition” hyperlink token with the “Select
Varniable . .. ” parts being hyperlink tokens themselves. Once
again, the hyperlink tokens are place holders that the user
should select 1n order to complete the conditional expression.

As will be discussed 1n greater detail hereafter, each time a
user selects a token 1n the condition expression tree compo-
nent 610, the present invention searches a reference set of data
to 1dentily those entries 1n the reference set of data that have
a same type as the selected token. This reference set of data
may be dynamically generated by analyzing the data within
an application with which the present invention 1s associated
or may be statically present as an established database of
entries prior to the use of the present invention to generate a
conditional expression.

The matching entries i the reference set of data are then
provided 1n the entry suggestion list component 620 and may
be selected by the user in order to modily the currently
selected token in the condition expression tree component
610. For example, 11 the user selects the token “condition™ 1n
the condition expression tree component 610, a token type
associated with the “condition” token 1s 1dentified and used to
search a condition tree entry reference set of data, having
possible condition tree entries stored therein, to identity those
entries corresponding to the token type. In the depicted
example, the “condition” token has a type that 1s a “condition
expression’” type, 1.€. a token that 1dentifies the type of con-
ditional expression that 1s being created. As a result, entries 1n
the condition tree entry reference set of data that represent
condition expression types are retrieved. As depicted, these
may include, for example, “varl 1s equals to var2,” “varl 1s
not equals to var2,” “varl 1s greater than var2,” and the like.

In addition, the selection of a token, such as the “condition”
token, 1n the condition expression tree component 610 of the
interface 600 also causes a lookup of hint messages from a
hint message reference set of data based on the token type of
the selected token. The lookup 1n the hint message reference
set ol data attempts to provide hint messages corresponding to
the selected token type. Thus, for example, 11 the user selects
the “condition” token 1n the condition expression tree com-
ponent 610 of the interface 600, a hint message, such as
“Select a template or variable from the suggestion list to the
right,” corresponding to the token type “condition expression

10

15

20

25

30

35

40

45

50

55

60

65

8

type” 1s retrieved from the hint message reference set of data
and displayed via the hint component 630 of the interface
600. It should be noted that the hint messages may be audibly
output in addition to, or 1n replacement of, the visual display
of the hint message 1n the hint component 630. For example,
a prerecorded message or voice synthesis mechanism may be
used to audibly output the retrieved hint message so that the
user may hear the hint message via his/her speakers or other
audio output device.

The “condition” token 1llustrated 1n FI1G. 6 A 1s a token that
1s used to request that the user select a simple conditional
expression type that 1s to be the basis for generating the
conditional expression. Once the user selects a simple condi-
tional expression type that most resembles the type of condi-
tional expression the user wishes to generate, the selected
token, 1.¢. the “condition” token, 1s replaced with one or more
tokens associated with the selected conditional expression.
For example, as 1llustrated 1n FI1G. 6B, the user may select the
“varl 1s equals to var2” conditional expression type from the
entry suggestion list component 620 resulting 1n the “condi-
tion” token being replaced with the series of tokens “Select
Variable,” “==" and “Select Variable.” The order of the
tokens and the particular tokens themselves are established as
being representative of the selected entry from the entry sug-
gestion list component 620. For example, the series “Select
Variable ==Select Variable™ 1s equivalent to the selected entry
“varl 1s equals to var2” from the entry suggestion list com-
ponent 620.

Thus, as shown in FIG. 6B, the result of selecting the “varl
1s equals to var2” entry from the entry suggestion list com-
ponent 620 1s the replacement of the “condition” token with

¥ e __

the series of tokens “Select Variable,” “==," and “Select Vari-
able.”” The “Select Variable™ token 1s used to request that the
user define the values or variables within the condition
expression. When a user selects the “Select Variable™ token,
there 1s again a lookup in the condition tree entry reference set
of data so that entries having a token type corresponding to the
token type of the token “Select Variable™ are used to populate

an updated version of the entry suggestion list component
620.

In addition to updating the entry suggestion list component
620 1n response to the selection of the token “Select Variable,”
the present invention also updates the hint component 630 by
performing a lookup of the token type of the token “Select
Variable™ in a hint message reference set of data to 1dentity a
hint message that has a token type of the same type of the
“Select Variable™ token. Thus, for example, in response to the
user selecting the token “Select Vanable” the entry sugges-
tion list component 620 and the hint component 630 are
updated. In this way, the user 1s provided with guidance as to
what they need to do with regard to the selected token, e.g.,
the hint message “Select a variable or attribute from the
suggestion list” may be presented. The user 1s further guided
as to the entries that may be used with the selected token in the
condition component 612.

As shown 1n FIG. 6C, the entry suggestion list component
620 provides a list of possible entries 1nto the part of the
condition selected by the user 1in the condition component 612
of the condition expression tree component 610. The entry
suggestion list may take the form of a lierarchical tree 1n
which some variables may be part of variable groups or vari-
ables may have selectable attributes that are represented as
child nodes of the variable node 1n the hierarchical tree. For
example, as shown i FIG. 6C, the attribute “total:int” 1s a
child node representing an attribute of a variable node

“myHand:BR_Blackjack.”

US 7,428,536 B2

9

Also shown 1n FIG. 6C, the token “Select Variable” has
been replaced by the variable/attribute “myHand.total” in
response to the user selecting the attribute child node “total:
int” 1n the entry suggestion list component 620 of the inter-
face 600. Having selected this variable/attribute, the user may
then select the operator token 1n the condition component 612
as 1llustrated in FIG. 6D. In response to selecting the operator
token 1n the condition component 612, the entry suggestion
list component 620 1s updated to include the possible opera-
tors that may be used to replace the operator token 1n the
condition component 612.

The particular operators that are used to populate the entry
suggestion list component 620 may be determined not only
upon the operator token type but also upon the entire context
of the condition expression 1n the condition expression coms-
ponent 612 1n 1ts current state. Thus, for example, the opera-
tors that are listed 1n the entry suggestion list component 620
may be specific to the type of operators that may be used with
the vanable “myHand.total.” This may include all of the
possible operators matching the operator token type or may
be a subset of all of the operators that are specifically deter-
mined to be appropriate for the token type of the variable
“myHand.total.”

In a preferred embodiment, 1n situations where the selec-
tion in the condition tree 1s not a placeholder, the subset of the
condition to the left of the cursor 1n the condition tree 1s used
to determine the content of the suggestion list. In particular,
the content 1s analyzed according to the grammar of the
condition language and every possible completion for that
subset to the left of the cursor 1s enumerated. This yields a set
of token types. The set of token types 1s then used to build a
list of variables, functions, methods or operators which have
the same type. These will appear 1n the suggestion list com-
ponent of the interface.

Thus, as the condition expression 1s created, the token
types of each of the parts of the condition expression that have
already been selected prior to the current token are used to
identify the entries that should be used to populate the entry
suggestion list component 620. In this way, the entry sugges-
tion list component 620 1s made to be context sensitive and
may have different sets of entries depending on the particular
context of the condition expression currently being edited 1n
the condition expression component 612 of the condition
expression tree component 610 of the interface 600.

In addition to selecting entries from the entry suggestion
list component 620, the present mvention permits the user to
also manually enter condition entries using a keyboard or
other input device. Thus, the entry suggestion list component
620 and the hint component 630 are both provided as aids to
the user but do not limit the user as to the manner by which the
user may define a condition or the resulting action. This of
course permits the user to make mistakes as to the creation of
a conditional expression. These mistakes may be identified to
the user via the hint component 630 and/or highlighting or
otherwise 1dentifying the mistaken part of the condition
eXpression.

Mistakes may be 1identified by analyzing the input provided
by the user 1n the condition component 612 and verifying that
it conforms to the allowable grammar for a conditional
expression. This grammar 1s a reflection of the condition
language, which may be Java, C++, or other programming
languages. Syntactic and semantic validation 1s performed to
ensure that the condition 1s well formed. For example, 1n a
condition expression such as “x+5==y,” 1t 1s verified that the
left hand side and the right hand side of the Boolean operation
are type compatible.

10

15

20

25

30

35

40

45

50

55

60

65

10

The process shown i FIGS. 6A-6D may be repeated for
cach token 1n the condition component 612 and the action
component 614 of the condition expression tree component
610 of the intertace 600. In this way, guidance 1s given at each
step of the process of creating a condition expression using
the interface 600.

FIG. 7 1s an exemplary diagram of a graphical user inter-
face for generating a conditional expression in which a com-
plete conditional expression has been generated. As shown in
FIG. 7, by repeating the process described above with regard
to each token 1n the condition component 612 of the condition
expression tree component 610 of the interface 600, a simple
or complex conditional expression may be generated. In addi-
tion, the process described above may be used to define a
simply or complex action by selecting tokens and entries for
the action component 614.

As shown 1n FIG. 7, the conditional expression may be
complex and may 1nclude a plurality of Boolean expressions
in addition to variables, attributes, values and operators. The
Boolean expressions, e.g., “and,” “or,” “not,” etc., are 1llus-
trated 1n a tree like fashion. The tree-like notation used in the
interface 600 emphasizes the verbal nature of the condition
and augments 1t with graphical lines to clarify the relationship
between conditions and sub-conditions.

For example, “and” Boolean expressions are illustrated as
being sub-conditions of their parent condition using a dark
graphical line connecting the parent condition to the child
condition. The Boolean “or” expressions are illustrated as
dotted lines linking the two or more alternative conditions and
the parent condition. The Boolean expressions “and’ and “or”
are included 1n the depicted conditional expression tree and
are highlighted, such as through bolding, different color font,
background highlighting, etc., to bring the user’s attention to
these child conditions of the parent condition.

In the depicted example, the parent condition
“app.mortgagevalue<app.salary*40/100” 1s denoted condi-
tion “A,” the child condition “app.yearsEmployed >+3" 1s
denoted condition “B,” and the condition
“app.creditRating==app.GOLD_RATING” 1s denoted con-
dition “C.” As shown 1n FIG. 7, mortgage approval 1s granted,
1.¢. the action appearing after the “Then” tag 1s performed, 1f
condition A and either of condition B or condition C are
satisfied. There 1s a grouping between conditions B and C and
another grouping between conditions A, B and C. The AND
grouping 1s displayed using a solid line to emphasize that both
conditions must be true. The OR grouping 1s displayed using
a dotted line to emphasize that one or the other must be true.

Although the condition expression tree 1 the condition
expression tree component 610 of the interface 600 looks like
a tree, the user can interact with the tree as 11 1t were simple
text. The user may simply click on a part of the tree and start
typing. Alternatively, the user can treat the tree as a bulleted
l1st such that the user may select a single line and shift it to the
right to thereby create a new branch of the condition expres-
sion tree automatically. For example, 1t the token
“Condition. .. 1n FIG. 6 A were shifted to the right, the result
would as follows:

Betore: After:

If — [@8ndition ...

If

'Condition ... — and Condition ...

US 7,428,536 B2

11

In addition, more than one line of the tree may be selected
and shifted to the lett, resulting in the collapse of a branch of
the condition expression tree. Thus, for example, 1f the “or”
conditions 1n FIG. 7 were selected and shifted left, the result
would be as follows:

After:
It —mA

Before:

If

A new sub-condition may be added to an existing condition
expression tree by either going to the end of a line 1n the
existing condition expression tree and pressing “Enter” or by
entering/selecting a Boolean operator such as “and,” “or,”
ctc., manually or from the entry suggestion list component

620. In each case, a new sub-condition 1s generated below the
current line of the condition expression tree.

FIG. 8 1s an exemplary block diagram illustrating the pri-
mary operational components of a conditional expression
engine in accordance with the present invention. It should be
appreciated that the elements shown 1n FIG. 8 may be imple-
mented 1n hardware, software or any combination of hard-
ware and software. In a preferred embodiment, the elements
in FIG. 8 are implemented as software istructions executed
by one or more processing devices on one or more computing,
devices.

As shown 1n FIG. 8, the conditional expression engine 800
includes a controller 810, an 1nterface 820, an entry sugges-
tion database 830, a graphical user interface engine 840, a hint
message database 850, an entry suggestion list generation
engine 860, an error detection engine 870, and a hint message
generation engine 880. The elements 810-880 are in commu-
nication with one another via the control/data signal bus 890.
Although a bus architecture 1s shown 1n FIG. 8, the present
invention 1s not limited to such and any architecture that
tacilitates the communication of control/data signals between
the elements 810-880 may be used without departing from the
spirit and scope of the present invention.

While the depicted example embodiment of the present
invention will be described 1n terms of databases 1t should be
appreciated that the present invention 1s not limited to such.
Rather, the present invention operates on reference sets of
data that are indicative of the possible condition entries and
hint messages that may be used to generate a conditional
expression. These reference sets of data may be generated, for
example, dynamically by analyzing the data within an appli-
cation with which the conditional expression engine 800 1s
associated, using analyzing code and computer memory, to
thereby build reference sets of data in computer memory
when needed. Thus, the databases 1n FIG. 8 are only meant to
be 1llustrative of the reference sets of data that may be used to
perform dynamic modification of the entry suggestion list and
hint message components of the interface of the present
invention. These reference sets may be generated dynami-
cally or may be established as a database prior to use of the
interface of the present mvention to generate a conditional
eXpression.

The controller 810 controls the overall operation of the

conditional expression engine 800 and orchestrates the opera-
tion of the other elements 820-880. The interface 820 pro-
vides a communication interface through which the condi-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

tional expression engine 800 may output generated graphical
user 1nterfaces to be presented to the user and recetve input
from the user.

In response to receiving a user mput via the iterface 820
indicating that the user wishes to generate a conditional
expression, the controller 810 instructs the graphical user
interface engine 840 to generate an 1mitial conditional expres-
s10on tree terface for use by the user. The generation of the
initial conditional expression tree interface may include using
the entry suggestion list generation engine 860 and the hint
message generation engine 880 to generate an entry sugges-
tion list and hint message corresponding to the mnitial condi-
tional expression tree interface. This 1nitial conditional
expression tree interface may take the form of FIG. 6A, for
example.

The controller 810 then monitors for further user input
indicating selections or input to the mitial conditional expres-
s1on tree interface. In response to receiving a user input or
selection, the controller 810 determines the token 1n the 1nitial
conditional expression tree interface that 1s being modified or
selected. An 1dentifier of the token and the token type are
provided to the entry suggestion list generation engine 860
and the hint message generation engine 880. The entry sug-
gestion list generation engine 860 looks up the token type 1n
the entry suggestion database 830 and identifies those entries,
and any child entries of these entries, in the database 830 that
have the same token type. These entries are compiled into a
l1ist. The list of entries, and their child entries, that match the
token type of the token being modified or selected 1s then
provided to the graphical user interface engine 840 for updat-
ing an entry suggestion list in the 1mitial conditional expres-
sion tree interface. Similarly, the hint message generation
engine 880 performs a lookup 1n the hint message database
850 based on the token type to 1dentily a hint message corre-
sponding to the token type.

The hint message generation engine 880 and the entry
suggestion list generation engine 860 may maintain a listing
of the token types of entries already selected for inclusion 1n
the conditional expression so that a cumulative list 1s devel-
oped. This cumulative list may be used to modity, based on
established rules, the displayed entry suggestion list and the
hint message used 1n the conditional expression tree so that
they are particular to the cumulative context of the conditional
expression. Thus, i1f the user has selected or input a vanable X,
and a valueY, then when the user selects an operator token and
wishes to obtain an entry suggestion list and hint message for
the selected operator token, the entry suggestion list and hint
message may be a particular entry suggestion list and hint
message for an operator token type between a variable having
the attributes of variable X and a value having the attributes of
the value Y.

The error detection engine 870 constantly monitors the
creation process of the conditional expression to determine 1f
the mputs and selections made by the user result 1n a problem
with the conditional grammar of the conditional expression
being generated. As mentioned previously, one way 1n which
such grammatical errors may be determined 1s to match a
format of a selected part of the conditional expression or an
inputted part of the conditional expression against the entry
suggestion list for the token that was modified in that part of
the conditional expression to determine if the format matches

any of the suggested entries. If not, an error may be deter-
mined to exist.

If there 1s a detected problem the error detection engine 870
identifies the error and instructs the graphical user interface
engine 840 to update the graphical user interface to accentu-
ate the position of the error. This may involve highlighting the

US 7,428,536 B2

13

part of the conditional expression where the error has been
found, outputting a message, such as via the hint message
component of the interface, indicating the error, audibly pre-
senting an error message or sound, or the like.

The above operations by the various elements 810-880 are
performed repeatedly until the conditional expressionis com-
pleted. The above operations may further be performed each
time a new conditional expression 1s to be generated by the
user. The conditional expression tree 1nterface engine may
turther be integrated into an application, may be used to aid 1n
generating program code, or the like.

FIG. 9 1s a flowchart outlining an exemplary operation of
the present invention when generating a conditional expres-
sion. It will be understood that each block of the tlowchart
illustration, and combinations of blocks 1n the flowchart 1llus-
tration, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor or other programmable data processing appa-
ratus to produce a machine, such that the instructions which
execute on the processor or other programmable data process-
ing apparatus create means for implementing the functions
specified in the flowchart block or blocks. These computer
program instructions may also be stored 1n a computer-read-
able memory or storage medium that can direct a processor or
other programmable data processing apparatus to function 1n
a particular manner, such that the mstructions stored 1in the
computer-readable memory or storage medium produce an
article of manufacture including instruction means which
implement the functions specified 1n the flowchart block or

blocks.

Accordingly, blocks of the flowchart 1llustration support
combinations of means for performing the specified func-
tions, combinations of steps for performing the specified
functions and program instruction means for performing the
specified functions. It will also be understood that each block
of the flowchart illustration, and combinations of blocks i1n
the flowchart illustration, can be implemented by special
purpose hardware-based computer systems which perform
the specified functions or steps, or by combinations of special
purpose hardware and computer 1nstructions.

It should be noted that there are other functions performed
using the conditional expression tree interface of the present
invention including insertion of Boolean operators, modity-
ing the tree notation of the conditional component of the
condition expression tree interface based on shifting of the
lines left or right, and the like, that are not included 1n the
flowchart shown 1n FIG. 9. FIG. 9 1s intended to 1llustrate a
process of updating the entry suggestion list and hint message
components of the interface. The other functions that may be
performed by the conditional expression tree interface have
been described above and may be performed in parallel with
the operations depicted 1n FIG. 9.

As shown 1 FIG. 9, the operation starts by recetving a
request to generate a conditional expression (step 910). In
response, an initial conditional expression tree interface 1s
generated and output (step 920). User input to the conditional
expression tree interface 1s received (step 930) and the 1input
1s analyzed to 1dentity the token being modified or selected by
the user input (step 940). A token type of the 1dentified token
1s then used to perform a lookup of entries 1n an entry sug-
gestion list database and a hint message database (step 950).
The results of the lookup 1n the entry suggestion list database
1s a list of suggested entries for the selected or modified token
and the result of the lookup 1n the hint message database 1s a
hint message for guiding the user in moditying the selected
token or token that 1s being modified (step 960).

10

15

20

25

30

35

40

45

50

55

60

65

14

User input to the entry suggestion list 1s then recerved, e.g.,
a selection of an element from the entry suggestion list 1s
received, and the condition expression tree 1s updated (step
970). Thereafter, a determination 1s made as to whether the
conditional expression has been completed (step 980). IT not,
the operation returns to step 930 and the operations are
repeated. I the conditional expression has been completed,
the operation terminates.

Thus, the present invention provides a graphical user inter-
face through which a user 1s provided guidance at every stage
ol a process for generating a conditional expression. Guid-
ance 1s offered in the form of an entry suggestion list that 1s
dynamically updated based on the selections and input made
by the user and one or more hint messages output to the user
via a hint component of the graphical user interface. In this
way, the user 1s given guidance as to what action they must
perform with regard to the selected or currently being modi-
fied part of the conditional expression using the dynamically
updated hint message. In addition, the user 1s given guidance
as to what entries would be appropriate for the selected or
currently being modified part of the conditional expression
using the dynamically updated entry suggestion list. The
result 1s a user interface for generation of conditional expres-
s1ons that 1s more user friendly, provides greater guidance to
users so that less sophisticated users may use 1t with ease, and
climinates the need for the user to learn on a trial-and-error
basis the way 1n which a conditional expression 1s to be built.

It 1s important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art waill
appreciate that the processes of the present imnvention are
capable of being distributed 1n the form of a computer read-
able medium of 1nstructions and a variety of forms and that
the present invention applies equally regardless of the par-
ticular type of signal bearing media actually used to carry out
the distribution. Examples of computer readable media
include recordable-type media, such as a tloppy disk, a hard
disk drive, a RAM, CD-ROMS, DVD-ROMSs, and transmis-
sion-type media, such as digital and analog communications
links, wired or wireless communications links using trans-
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual use
in a particular data processing system.

The description of the present invention has been presented
for purposes of 1illustration and description, and i1s not
intended to be exhaustive or limited to the invention 1n the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to best explain the prin-
ciples of the invention, the practical application, and to enable
others of ordinary skill 1n the art to understand the invention
for various embodiments with various modifications as are
suited to the particular use contemplated.

What 1s claimed 1s:

1. A method, 1n a data processing system, for providing an
interface for generating a conditional expression for use with
a computer application, comprising:

generating an initial user interface having a conditional

expression component, an entry suggestion list compo-
nent, and a hint message component, wherein the con-
ditional expression component provides a current con-
text of the conditional expression and includes one or
more tokens for the conditional expression, wherein the
one or more tokens for the conditional expression
includes at least one hyperlink token that 1s selectable by
a user, wherein the entry suggestion list component

US 7,428,536 B2

15

includes a listing of templates for conditional expres-
sions, wherein at least one template 1n the listing of
templates includes one or more hyperlink tokens that 1s
selectable by a user, and wherein the hint message com-
ponent 1includes a hint message 1dentifying an action to
be performed, or an 1mput to be provided, by a user in
association with the position 1n the conditional expres-
S101;

receiving user input from a user to the conditional expres-

sion component that builds the conditional expression, 10

wherein the user input 1s one of a selection of a token 1n
the one or more tokens and a modification of a token in
the one or more tokens to update the current content of
the conditional expression, wherein if the at least one
hyperlink token for the conditional expression 1is
selected by the user and 1t a hyperlink token of the at
least one template 1n the listing of templates 1s selected
by the user to form a selected hyperlink token, the entry
suggestion list 1s updated to include entries for replace-
ment of the selected hyperlink token;

responsive to recerving the user input, dynamically updat-
ing the entry suggestion list component based on the
user input to the conditional expression component,
wherein the updated entry suggestion list component
identifies one or more selectable entries for inclusion 1n
the conditional expression at a position 1n the condi-
tional expression corresponding to the user input,
wherein user input 1s recerved for each of the one or more
tokens to generate the conditional expression, and
dynamically updating the hint message by the hint mes-
sage component to include a message 1dentifying an

15

20

25

30

16

action to be performed, or an mput to be provided, by a
user 1n association with the position in the conditional
expression corresponding to the user input;

wherein dynamically updating the entry suggestion list

component based on the user input to the conditional
expression component mcludes:

generating a reference set of data identifying possible

entries for a conditional expression;

determining a token type for a selected token 1n the one or

more tokens for the conditional expression; and
matching the token type to data types for entries 1n the
reference set of data; and

generating a listing of entries from the reference set of data

which have data types that match the token type; and
responsive to selecting at least one selectable entry of the
one or more selectable entries from the updated entry
suggestion list component, replacing the one or more
tokens for the conditional expression with the at least
one selectable entry of the one or more selectable entries
from the updated entry suggestion list component.

2. The method of claim 1, wherein the conditional expres-
sion component includes a representation of the conditional
expression 1n a hierarchical tree format.

3. The method of claim 2, wherein the hierarchical tree
format includes conditional expressions that must both be
satisfied being depicted as connected by solid lines.

4. The method of claim 2, wherein the hierarchical tree
format includes conditional expressions that may alterna-
tively be satisfied being depicted as connected by dotted lines.

	Front Page
	Drawings
	Specification
	Claims

