12 United States Patent

Orton et al.

US007424704B2

US 7,424,704 B2
*Sep. 9, 2008

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)
(22)

(65)

(63)

(1)

(52)
(58)

OBJECT-ORIENTED OPERATING SYSTEM

Inventors: Debra Lyn Orton, San Jose, CA (US);
Eugenie Lee Bolton, Sunnyvale, CA
(US); Daniel F. Chernikoff, Palo Alto,
CA (US); David Brook Goldsmith, Los
Gatos, CA (US); Christopher P.
Moeller, Los Altos, CA (US)

Assignee: Object Technology Licensing
Corporation, Cupertino, CA (US)
Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 430 days.

This patent 1s subject to a terminal dis-
claimer.

Appl. No.: 10/648,471

Filed: Aug. 27,2003
Prior Publication Data
US 2004/0103416 Al May 27, 2004

Related U.S. Application Data

Continuation of application No. 08/521,085, filed on
Aug. 29, 1993, now Pat. No. 6,684,261, which 1s a
continuation of application No. 08/315,212, filed on
Sep. 28, 1994, now Pat. No. 5,475,845, which 1s a
continuation of application No. 08/094,675, filed on
Jul. 19, 1993, now Pat. No. 5,379,432.

Int. Cl.

GO6l 9/45 (2006.01)

US.Cl o, 717/136
Field of Classification Search 717/136,

717/116; 719/328
See application file for complete search history.

202

References Cited

U.S. PATENT DOCUMENTS
6/1984 Bullions, III et al. 711/207

(56)

4,456,954 A
(Continued)

FOREIGN PATENT DOCUMENTS
WO WO 94/04988 3/1994

OTHER PUBLICATIONS

Julin, D.P. et al., “Generalized Emulation Services for Mach
3,0—Overview, Experiences and Current Status,” Usenix
Association—Mach Symposium Proceedings, Nov. 1991, pp. 13-26.

(Continued)

Primary Examiner—John Chavis
(74) Attorney, Agent, or Firm—Park, Vaughan & Fleming
LLP

(57) ABSTRACT

An apparatus for enabling an object-oriented application to
access 1n an object-oriented manner a procedural operating
system having a native procedural interface 1s disclosed. The
apparatus includes a computer and a memory component 1n
the computer. A code library 1s stored 1n the memory compo-
nent. The code library includes computer program logic
implementing an object-oriented class library. The object-
oriented class library comprises related object-oriented
classes for enabling the application to access 1n an object-
oriented manner services provided by the operating system.
The object-oriented classes include methods for accessing the
operating system services using procedural function calls
compatible with the native procedural interface of the oper-
ating system. The computer processes object-oriented state-
ments contained in the application and defined by the class
library by executing methods from the class library corre-
sponding to the object-oriented statements.

114 Claims, 16 Drawing Sheets

N

C smm)\,_zm

|

LOCATE IN PROGRAM
OBJECT -~ ORIENTED
STATEMENT ACCESSING
OPERATING SYSTEM

———— 206

{

TRANSLATE OBJECT ORIENTED
STATEMENT TO PROCEDURAL
FUNCTION CALL COMPATIBLE WITH
PROCEDURAL INTERFACE
OF OPERATING SYSTEM

208

:

EXECUTE PROCEDURAL
FUNCTION CALL

210

Y
(DONE}/-ZQ

US 7,424,704 B2
Page 2

U.S. PATENT DOCUMENTS

4,493,080 A 1/1985 Campbell 714/755
4,530,052 A 7/1985 Kingetal. 713/100
4,704,694 A 11/1987 Czernigjewski 382/288
4,722,048 A 1/1988 Hirsch etal. 718/102
4,821,220 A 4/1989 Duisbergcoeevininene.n, 703/2
4,885,717 A 12/1989 Becketal. 717/125
4,891,630 A 1/1990 Friedman etal. 345/156
4,926,322 A 5/1990 Stimac etal. 703/23
4,953,080 A 8/1990 Dysartetal. 707/103 R
4,974,159 A 11/1990 Hargrove et al. 703/27
5,041,992 A 8/1991 Cunningham et al. 345/641
5,050,090 A 9/1991 Golubetal. 700/217
5,060,276 A 10/1991 Morrisetal. 382/151
5,063,375 A 11/1991 Lienetal.cccoce........ 345/616
5,075,848 A 12/1991 Lairetal. 711/152
5,093,914 A 3/1992 Coplien etal. 717/129
5,119475 A 6/1992 Smuth etal. 715/866
5,125,091 A 6/1992 Staas, Jr.etal. 718/101
5,133,075 A 7/1992 Risch .covvvvviiviinninninnnnn, 707/201
5,136,705 A 8/1992 Stubbsetal. 714/27
5,136,711 A 8/1992 Huggard et al. 713/2
5,151,987 A 9/1992 Abrahametal. 714/20
5,155,558 A 10/1992 Tannenbaum et al. 356/446
5,179,703 A 1/1993 Evanscccovveevevnninnenn. 717/122
5,181,162 A 1/1993 Smithetal. 715/530
5,237,669 A 8/1993 Spearetal. 711/2
5,274,821 A 12/1993 Rouquieccuene..... 717/139
5,280,583 A 1/1994 Nakayama et al. 709/205
5,280,610 A 1/1994 Travisetal. 707/103 R
5,287,507 A 2/1994 Hamulton et al. 719/315
5,293,385 A 3/1994 HAarycooevevvvivineninnnnns 714/38
5,297,284 A 3/1994 Jones et al. 717/137
5,313,636 A 5/1994 Nobleetal. 707/1
5,315,703 A 5/1994 Matheny et al. 715/700
5,315,709 A 5/1994 Alston, Jr.etal. 707/6
5,317,741 A 5/1994 Schwanke 717/120
5,321,841 A 6/1994 Eastetal. 718/107
5,325,481 A 6/1994 Huntooovvvvvvinninnenn. 715/809
5,325,522 A 6/1994 Vaughnc..o.....l. 707/1
5,325,524 A 6/1994 Black ...cooovvvvvivnininnnnn. 707/10
5,325,533 A 6/1994 Mclnerney et al. 717/107
5,327,562 A 7/1994 Adcock ...ooeviinninninninn. 717/141
5,339,422 A 8/1994 Brender etal. 714/4
5,339,430 A 8/1994 Lundinetal. 719/332
5,339,438 A 8/1994 Conneretal. 717/153
5,341,478 A 8/1994 Travis, Jr. etal. 709/203
5,355,498 A * 10/1994 Provinoetal. 713/2
5,361,350 A 11/1994 Conner et al. 707/103 R
5,361,358 A 11/1994 Coxetal. ...ccoevvvvnnen.nn 717/174
5,369,766 A 11/1994 Nakano etal. 719/332
5,379,432 A 1/1995 Ortonetal. 719/315
5,404,529 A 4/1995 Chernikoff et al. 719/315
5,455,951 A 10/1995 Bolton etal. 718/103
5.471,568 A 11/1995 Webbetal. 382/199
5.473,777 A 12/1995 Moeller et al. 719/328
5,475,845 A * 12/1995 Ortonetal. 719/328
6,606,742 Bl 8/2003 Ortonetal. 717/140
OTHER PUBLICATIONS

Malan, G. et al., “DDS as a Mach 3.0 Application,” Usenix
Assoc.—Mach Symposium Proceedings, Nov. 1991, pp. 27-40.

Rashid, R., “A Catalyst for Open Systems,” Datamation, May 15,
1988, p. 32-33.

Guedes, Paulo, “O-0O Interfaces in the Mach 3.0 Multi-Server Sys-
tem,” IEEE 1991.

Rashid, R. “Mach: A Foundation for Open Systems,” Carnegie Mel-
lon University, IEEE 1989.

Foley, M.J., “Taligent, IBM draw closer,” PC Week, Feb. 21, 1994,
vol. 11, No. 7, p. 8.

Franz, M., “Emulating an Operating System on Top of Another,”
1993 by John Wiley & Sons, Lid.

IBM C/C++Tools: ‘User Interface Class Library Reference’ May
1993, IBM Part No. 61G1179, Denmark. See p. 464, lines 1-11.
Petzold, Charles, “Intro to OS/2 Function Calls,” PC Magazine, vol.
6, No. 18, Oct. 27, 1987, NY, US, pp. 375-380.

Breisacher, Lee, “Smalltalk/V Presentation Mgr.,” OS/2 Notebook:
The Best of IBM Personal Systems Developer, (Dick Conklin, Gen-
eral Editor), 1990, Microsoft Press, Redmond, US, pp. 226-232.
IBM C/C++Tools, “Programming Guide,” Mar. 1993, IBM Part No.
61G1181, Denmark. See p. 35, line 1; see p. 438, lines 1-6.
Bernabeau-Auban et al., “Clouds—A Distributed Object-Based
Operating System Architecture and Kernel Implementation,” New
Directions for Unix. Proc. Autumn 1988 EUUG Conf. Oct. 3, 1988,
Cascais, Portugal, pp. 25-37.

Daponte et al., “Object-Oriented Design of Measurement Systems,”
Conference Record of IEEE Instrumentation and Measurement Iech-
nology Conference, May 12, 1992, New York, pp. 243-248.
Dohlberg, S, “Galaxy from Visix”, Open Information Systems, vol. 7,
No. 10, Oct. 1992, pp. 1-16.

Hruschka, “Towards an Object Oriented Method for System Archi-
tecture Design,” Proceeding of the 1990 IEEFE International Confer-
ence on Computer Systems and Software Engineering, Compeuro
90, May 8, 1990, Tel Aviv, pp. 12-17.

McCormack et al., “Using the Toolkit or How to Write a Widget,”
Proc. Of the Summer 1988 Usenix Conf., Jun. 20, 1988, San Fran-
cisco, pp. 1-13.

Musser, John, “Extending streambufs: class logstrubf” C++ Report,
4(3), Mar. 1992, pp. 51-55.

Schmidt, Doug, “Systems Programming with C++ Wrappers: Encap-
sulating IPC Services,” C++ Report, 4(8), Oct. 1992, pp. 50-54.
Schmidt, Doug, “An Object-Oriented Interface to IPC Services,” C++
Report, 4(9), Nov. 1992, pp. 48-54.

Schmidt, Doug, “Encapsulating Operating Systems IPCs: An Object-
Oriented Interface for Event-Driven UNIX I/O Multiplexing,” C++
Report, 5(2), Feb. 1993, pp. 43-50.

Adler, R.M., “A Hierarchical Distributed Control Model for Coordi-
nating Intelligent Systems,” Telmatics and Informatics, vol. 8(4),
1991, U.S., pp. 385-402.

Guerraoui et al., “Distributed Programming in GARFE,” Object-Based
Distributed Programming FCOOP 93 Workshop, Jul. 26, 1993,
Kaiserslautern, DE pp. 225-239.

Motro et al., “The Design of Kiview: An Object-Oriented Browser,”
Proc. 2* Intl. Conf on Expert Database Systems, Apr. 25, 1988, pp.
107-131.

IBM Technical Disclosure Bulletin, “Process Element Wrapper and
the Context Verb Object Method Registry,” vol. 34(10A), Mar. 1992,
New York, pp. 433-435.

Goodman, “Knowledge-Based Computer Vision,” Computer,
V.22(12), Dec. 1989, Long Beach CA, pp. 43-54.

Drake, “Objects and Images,” Computer Systems, V.10(1), Jan. 1990,
Bromley, GB, pp. 31-32.

Frume, “Active Objects 1n the Construction of Graphical User Inter-
faces,” Computers and Graphics, V.13(3), Oxtord, GB, pp. 321-327.

* cited by examiner

U.S. Patent Sep. 9, 2008 Sheet 1 of 16 US 7.424.704 B2

102

130a 130b 132 134 /

APPLICATION APPLICATION
APPLICATION APPLICATION
114 116
128 WRAPPER WRAPPER | | —\r
OPERATING SYSTEM DEVICE DRIVERS l

MICROINSTRUCTION CODE

CPU

108
110
106

S T
104 1035

DATA
INPUT STORAGE | |DISPLAY| |PRINTER
118 120 12/4 126
DATA STORAGE
MED [UM 122
CODE
LIBRARY 10

FIG. 1

U.S. Patent Sep. 9, 2008 Sheet 2 of 16 US 7.424.704 B2

202

~

START 204

LOCATE IN PROGRAM 206
OBJECT -ORIENTED

STATEMENT ACCESSING
OPERATING SYSTEM

TRANSLATE OBJECT ORIENTED | 208

STATEMENT TO PROCEDURAL
FUNCTION CALL COMPATIBLE WITH
PROCEDURAL INTERFACE

OF OPERATING SYSTEM

—

EXECUTE PROCEDURAL 210
FUNCTION CALL

DONL 212

FIG. 2

U.S. Patent

14

YES

Sep. 9, 2008 Sheet 3 0of 16

START 104

METHOD
CODE IN
TASK ADDRESS

SPACE
?

‘ 308

NO

LIBRARY SERVER
KNOWN ?

310

YES

ACCESS LIBRARY SERVER
AND COPY METHOD CODEt

FROM CODE LIBRARY TO
TASK ADDRESS SPACE

EXECUTE METHOD CODL

318 DONE

FIG. 3

NO

e

FIN

US 7,424,704 B2

502

312

D LIBRARY
SERVER

316

U.S. Patent Sep. 9, 2008 Sheet 4 of 16 US 7.424.704 B2

CODL
LIBRARY

] 110
i THREAD CLASSES \"‘404
i TASK CLASSES }-,406 CLASS
——— LIBRARY
- 402
VIRTUAL MEMORY CLASSES 408
l [PC CLASSES }410
SYNCHRONI ZATION CLASSES 412
! SCHEDULING CLASSES.?’ 414 :
FAULT CLASSES 416
‘ MACHINE CLASSES l~»418
l SECURITY CLASSES]__,420

US 7,424,704 B2

Sheet Sof 16

Sep. 9, 2008

U.S. Patent

8CS

S9|PUOH

SO JBU}0

015

806G

905

v16

g 'Old
13y24088A104QiT | A
ces
|PUCHXSO [£SOL
QCS S|PUDHYSO |30 Wwo.b044p0asy| |
Oes m_:nmcumuomft .
@E . ~

m_ucozxmoﬁ S|PUOHPOaIUL |

1 [{ sipucHiybiypusgyiod]

9)puoHIybIyII04ai0way| || | }S943)U] |

¢0S

3 (PUOH}YB1}04 L

3}000.1unCA 0B |

o

106

315

¢S

9 VI

b2 9 y08(qph1owan | H 6 9|PUDHYSO) | 229

US 7,424,704 B2

A1ousswAyunyndoaH | 819

029 K10WaWANUNUDINA L

=
=
= K10WaNAYuUNY) | 919
@
m ojuiuoIbayh sowa | 719
(L
719 woaJyghiowapsnondbiiuos WoaJgAnuNYyD | 1bus,
m S594pPO }4D)S
“ 019 uoI}isodsip
N
. 209 LID31)SSS3I0Y WOPUDY | AiowaauioInQL ¥09
9

O
yybus)

SS3.PPO }.D)S

909 _Eoobmh abuo M I0WaN | 20Q
// 109

U.S. Patent

U.S. Patent Sep. 9, 2008 Sheet 7 of 16 US 7.424.704 B2

702
704 706 708){/f’
[ChunkyStream MIPCMessoge

L
TIPCMessageStream
o (_

714 /_C TPortRight...

FIG. 7

/12

710 TIPCPrimitiveMessage

802\
804 TMemorySurrogate

start gddress
length

— e
806 TOutOfLineMemory

disposition
TMemorySurrogote

FIG. 8

US 7,424,704 B2

Sheet 8 0f 16

Sep. 9, 2008

U.S. Patent

8

4

6

6 9l4
() 2IpuDH
21pUDHIYD13BA1809%)10423)Q0)IOM |
(Y1om
bC6 dnoJ9}IOM | Ol N 21QD}IDMMIN

cC6
8| PUDHIYbIyOA1929Y140d]

0C6

816 2{PUDH}a53}404]

216 3|PUDHISA1808H)104 |

AosayaipuoHiybryiiogr O 3|puUDHIYbIYYI04)

806 906

() 31puoH

WD34}SI9A1909y1sanbay|

0=() 9|pPuoH

3|pUDHIUbIYaoUQPUaSYiod]

3|PUDHIYbIYpUaSHIod|

3|PUDHI8PUISYIO] Ol6

2|puoHIybIyI0dajoway |

1481¢

96

916

bl6

/ 206

US 7,424,704 B2

Sheet 9 0of 16

Sep. 9, 2008

U.S. Patent

8001

UOI}1PUOD IO} IUCIN]

101

9|PUDHD.10ydOWaSa{qDIaA023Y |

0L "9l

K1)UJ40)1UON |

L0l

gJo0ydowag |

140100

¥O0JOJIUON |

010\

3,0ydowag|o207|

/Noo_

9001

1l "Old

US 7,424,704 B2

3|npayoglioddng|

A%’

- 1427 2|NPaYISI0y19UTI95N]

=

=

7 9ilL 3|NpayaspoaIy|alpP] |

@O

=

o 8Ll 31NPaYISPDaIY13|P] L 5NPayaSPOaIY] |
~

02

POLL 3|PUDHPOBIY] |

U.S. Patent

9|NPaYISPOaIY|I9AIaS |

3[NpaydSu01}021|ddy |

901 L

/wo:

OLLl

8011

U.S. Patent Sep. 9, 2008 Sheet 11 of 16 US 7.424.704 B2

1202~E\\\
TFoultDesignation 1204
1206 — TToskHondle /
1 208 TThreodHondle

1210 FouItAssocmtlon

1212 TPortSendeghtHondle
1214 TFauitTypeSet)

1216{— TFoultType

1220 -
\ (TFaultType F~— 1222 1230

|

1224 TMC680X0F aultType

etc. for all
possible
68K faults

1226 —{ TMC680X0Addressfauit) TMC080X0BodAccesst oult 1228

FIG. 12

U.S. Patent Sep. 9, 2008 Sheet 12 of 16 US 7.424.704 B2

13072 \ TIPCKerneiPrimitiveMessage 1304
TIPCFaultMessage 1306
1526
1308 \
TFaultType

TIPCldentityf aultMessoge

131 —
310 I TFoulitDota)
TTaskHandle)

1324

1312 TThreaodHondle

1314 TIPCStotel aultMessage

1316 TThreadStcte i

1318 TIPCStoteAndIdentityfoultMessage)

1320 TToskHandle

US 7,424,704 B2

Sheet 13 0f 16

Sep. 9, 2008

U.S. Patent

9)0}S POIIY} dY) O}
UOI}IPPD Ul D}DP
SUJ4N}SJ4 }DU) }INDS D208 10

80V 1

vl Ol

010(}IN04L

0}0(]SS920ypPOg |

12904

/Noi

90V L

US 7,424,704 B2

Sheet 14 of 16

Sep. 9, 2008

U.S. Patent

Gl "Old

Haw0J §¥20150X 089N 8lG1

BZGI SIPIOYOBIINL

9261 ASNELBBA9ONL
1£4%% ASNgOY089DNWL

02G1

¢2W0J H301SOX0892N1 9161

03W0DJ 4%001SOX0E890NWL 4% 2

9101SHND 4NdI0X089ONL 453

8101SNdJ0X0890N
3101SNdO0X089ONL 0161

0S| $13181bayNd 4

| $49151633Nd? 206G

9061

AN 910)5P091Y Q8¢ 1 93015PLay 1 0XOBIINL

™~
.

P0G 1L 3101SpPDaIY] |

/Nom_

US 7,424,704 B2

Sheet 15 0f 16

Sep. 9, 2008

U.S. Patent

9191

Cl9l

@
d
U
u

3|PUOHYSO] | _

U
8191 9|PUOHPOay] |

r09l

91 DI

P19l

3|NPaYISPDALY) |

3|PUDH}SOH)

!

3|PUDHJ0SS320.d]

9091

/Now_.

8091

U.S. Patent Sep. 9, 2008 Sheet 16 of 16 US 7.424.704 B2

1702 label
S~— Q:: uses (for interface)

1704 label

T (uses (for implementation)
1710 | |

T——— abe inherits (compatible type)

FIG. 17

US 7,424,704 B2

1
OBJECT-ORIENTED OPERATING SYSTEM

RELATED APPLICATIONS

This application 1s a continuation of application Ser. No.
08/521,085, filed Aug. 29, 1995 now U.S. Pat. No. 6,684,261,
which 1s a continuation of U.S. patent application Ser. No.
08/315,212, filed Sep. 28, 1994, now U.S. Pat. No. 5,475,845,
which 1s a continuation of U.S. patent application Ser. No.
08/094,675, filed Jul. 19, 1993, now U.S. Pat. No. 5,379,432.

This application 1s related to application Ser. No. 09/377,
752, filed Aug. 20, 1999, now U.S. Pat. No. 6,606,742,

A portion of the disclosure of this patent application con-
tains material which 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent disclosure, as 1t appears 1n the
Patent and Trademark Office patent files or records, but oth-
erwise reserves all copyright rights whatsoever.

FIELD OF THE INVENTION

The present invention relates generally to object-oriented
computing environments, and more particularly to a system
and method for providing an object-oriented interface for a
procedural operating system.

BACKGROUND OF THE INVENTION

Object-oriented technology (OOT), which generally
includes object-oriented analysis (OOA), object-oriented
design (OOD), and object-oriented programming (OOP), 1s
carning 1ts place as one of the most important new technolo-
gies 1n soltware development. OOT has already begun to
prove 1its ability to create significant increases 1n programmer
productivity and in program maintainability. By engendering
an environment in which data and the procedures that operate
on the data are combined 1nto packages called objects, and by
adopting a rule that demands that objects communicate with
one another only through well-defined messaging paths, OOT
removes much of the complexity of traditional, procedure-
oriented programming.

The following paragraphs present a brief overview of some
of the more important aspects of OOT. More detailed discus-
sions of OOT are available in many publicly available docu-
ments, including Object Oriented Design With Applications
by Grady Booch (Benjamin/Cummings Publishing Com-
pany, 1991) and Object-Oriented Requivements Analysis and
Logical Design by Donald G. Firesmith (John Wiley & Sons,
Inc., 1993). The basic component of OOT 1s the object. An
object includes, and 1s characterized by, a set of data (also
called attributes) and a set of operations (called methods) that
can operate on the data. Generally, an object’s data may
change only through the operation of the object’s methods.

A method 1n an object 1s invoked by passing a message to
the object (this process 1s called message passing). The mes-
sage specifies a method name and an argument list. When the
object recerves the message, code associated with the named
method 1s executed with the formal parameters of the method
bound to the corresponding values in the argument list. Meth-
ods and message passing 1n OOT are analogous to procedures
and procedure calls 1n procedure-oriented soltware environ-
ments. However, while procedures operate to modify and
return passed parameters, methods operate to modily the
internal state of the associated objects (by modifying the data
contained therein). The combination of data and methods 1n
objects 1s called encapsulation. Perhaps the greatest single

benelit of encapsulation 1s the fact that the state of any object

5

10

15

20

25

30

35

40

45

50

55

60

65

2

can only be changed by well-defined methods associated with
that object. When the behavior of an object s confined to such
well-defined locations and interfaces, changes (that 1s, code
modifications) in the object will have minimal impact on the
other objects and elements 1n the system. A second “Iringe
benelit” of good encapsulation 1n object-oriented design and
programming 1s that the resulting code 1s more modular and
maintainable than code written using more traditional tech-
niques.

The fact that objects are encapsulated produces another
important fringe benefit that 1s sometimes referred to as data
abstraction. Abstraction 1s the process by which complex
ideas and structures are made more understandable by the
removal of detail and the generalization of their behavior.
From a software perspective, abstraction 1s in many ways the
antithesis of hard-coding. Consider a software windowing
example: 1f every detail of every window that appears on a
user’s screen 1n a graphical user interface (GUI)-based pro-
gram had to have all of its state and behavior hard-coded into
a program, then both the program and the windows 1t contains
would lose almost all of their flexibility. By abstracting the
concept of a window into a window object, object-oriented
systems permit the programmer to think only about the spe-
cific aspects that make a particular window umique. Behavior
shared by all windows, such as the ability to be dragged and
moved, can be shared by all window objects.

This leads to another basic component of OOT, which 1s the
class. A class includes a set of data attributes plus a set of
allowable operations (that 1s, methods) on the data attributes.
Each object 1s an instance of some class. As a natural out-
growth of encapsulation and abstraction, OOT supports
inheritance. A class (called a subclass) may be derived from
another class (called a base class, a parent class, etc.) wherein
the subclass inherits the data attributes and methods of the
base class. The subclass may specialize the base class by
adding code which overrides the data and/or methods of the
base class, or which adds new data attributes and methods.
Thus, inheritance represents a mechanism by which abstrac-
tions are made increasingly concrete as subclasses are created
for greater levels of specialization. Inheritance 1s a primary
contributor to the increased programmer eificiency provided
by OOP. Inheritance makes 1t possible for developers to mini-
mize the amount of new code they have to write to create
applications. By providing a significant portion of the func-
tionality needed for a particular task, classes in the inherit-
ance hierarchy give the programmer a head start to program
design and creation. One potential drawback to an object-
oriented environment lies in the proliferation of objects that
must exhibit behavior which 1s similar and which one would
like to use as a single message name to describe. Consider, for
example, an object-oriented graphical environment: 1f a Draw
message 1s sent to a Rectangle object, the Rectangle object
responds by drawing a shape with four sides. A Triangle
object, on the other hand, responds by drawing a shape with
three sides. Ideally, the object that sends the Draw message
remains unaware of either the type of object to which the
message 1s addressed or of how that object that receives the
message will draw itself 1n response. If this i1deal can be
achieved, then 1t will be relatively simple to add a new kind of
shape later (1or example, a hexagon) and leave the code send-
ing the Draw message completely unchanged.

In conventional, procedure-oriented languages, such a lin-
guistic approach would wreak havoc. In OOT environments,
the concept of polymorphism enables this to be done with
impunity. As one consequence, methods can be written that
generically tell other objects to do something without requir-
ing the sending object to have any knowledge at all about the

US 7,424,704 B2

3

way the recerving object will understand the message. Soft-
ware programs, be they object-oriented, procedure-oriented,
rule based, etc., almost always interact with the operating
system to access the services provided by the operating sys-
tem. For example, a software program may interact with the 5
operating system in order to access data in memory, to receive
information relating to processor faults, to communicate with
other processes, or to schedule the execution of a process.

Most conventional operating systems are procedure-ori-
ented and include native procedural interfaces. Consequently, 10
the services provided by these operating systems can only be
accessed by using the procedures defined by their respective
procedural interfaces. If a program needs to access a service
provided by one of these procedural operating systems, then
the program must include a statement to make the appropriate 15
operating system procedure call. This 1s the case, whether the
soltware program 1s object-oriented, procedure-oriented, rule
based, etc. Thus, conventional operating systems provide pro-
cedure-oriented environments in which to develop and
execute software. Some of the advantages of OOT are lost 20
when an object-oriented program 1s developed and executed
in a procedure-oriented environment. This 1s true, since all
accesses 1o the procedural operating system must be 1mple-
mented using procedure calls defined by the operating sys-
tem’s native procedural interface. Consequently, some of the 25
modularity, maintainability, and reusability advantages asso-
ciated with object-oriented programs are lost since 1t 1s not
possible to utilize classes, objects, and other OOT features to
their fullest extent possible.

One solution to this problem 1s to develop object-oriented 30
operating systems having native object-oriented interfaces.
While this ultimately may be the best solution, 1t currently 1s
not a practical solution since the resources required to modify
all of the major, procedural operating systems would be enor-
mous. Also, such a modification of these procedural operating 35
systems would render useless thousands of procedure-ori-
ented soltware programs. Therefore, what 1s needed 1s a
mechanism for enabling an object-oriented application to
interact in an object-oriented manner with a procedural oper-
ating system having a native procedural interface. 40

SUMMARY OF THE INVENTION

The present invention is directed to a system and method of
enabling an object-oriented application to access 1n an object-
ortented manner a procedural operating system having a
native procedural interface. The system includes a computer
and a memory component in the computer. A code library 1s
stored 1n the memory component. The code library includes
computer program logic implementing an object-oriented
class library. The object-oriented class library comprises
related object-oriented classes for enabling the application to
access 1n an object-oriented manner services provided by the
operating system. The object-oriented classes include meth-
ods for accessing the operating system services using proce-
dural function calls compatible with the native procedural
interface of the operating system. The system also includes
means for processing object-oriented statements contained in
the application and defined by the class library by executing,
methods from the class library corresponding to the object-
oriented statements.

45

50

55

60

Preferably, the class library includes:

(1) thread classes for enabling an application to access in an
object-oriented manner operating system services to spawn,
control, and obtain information relating to threads; 65

(2) task classes for enabling an application to access in an
object-oriented manner operating system services to refer-

4

ence and control tasks, wherein the tasks each represents an
execution environment for threads respectively associated
with the tasks:

(3) virtual memory classes for enabling an application to
access 1n an object-oriented manner operating system ser-
vices to access and manipulate virtual memory 1n a computer;

(4) interprocess communication (IPC) classes for enabling
an application to access 1n an object-oriented manner operat-
ing system services to communicate with other threads during
run-time execution of the application in a computer;

(5) synchronization classes for enabling an application to
access 1n an object-oriented manner operating system ser-
vices to synchronize execution of threads;

(6) scheduling classes for enabling an application to access
in an object-oriented manner operating system services to
schedule execution of threads:

(7) fault classes for enabling an application to access 1n an
object-oriented manner operating system services to process
system and user-defined processor faults; and

(8) machine classes for enabling an application to access in
an object-oriented manner operating system services to
define and modify a host and processor sets.

Further features and advantages of the present invention, as
well as the structure and operation of various embodiments of
the present invention, are described 1n detail below with retf-
erence to the accompanying drawings, and in the claims. In
the drawings, 1dentical reference numbers indicate 1dentical
or fTunctionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described with reference to
the accompanying drawings, wherein:

FIG. 11llustrates a block diagram of a computer platiorm in
which a wrapper of the present invention operates;

FI1G. 2 1s a high-level flow chart illustrating the operation of
the present invention;

FIG. 3 1s a more detailed flowchart illustrating the opera-
tion of the present invention;

FIG. 4 1s a block diagram of a code library containing an
object-oriented class library of the present invention;

FIG. 5 1s a class diagram of thread and task classes of the
present invention;

FIG. 6 1s a class diagram of virtual memory classes of the
present invention;

FIGS. 7-9 are class diagrams of interprocess communica-
tion classes of the present invention;

FIG. 10 1s a class diagram of synchronization classes of the
present invention;

FIG. 11 1s a class diagram of scheduling classes of the
present invention;

FIGS. 12-15 are class diagrams of fault classes of the
present invention;

FIG. 16 1s a class diagram of host and processor set (ma-
chine) classes of the present invention; and

FIG. 17 illustrates well-known 1cons for representing class
relationships and cardinality 1n class diagrams.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Computing Environment

The present invention 1s directed to a system and method
for providing an object-oriented interface to a procedural
operating system having a native procedural interface. The
present mnvention emulates an object-oriented software envi-

US 7,424,704 B2

S

ronment on a computer platform having a procedural operat-
ing system. More particularly, the present invention 1is
directed to a system and method of enabling an object-ori-
ented application to access 1 an object-oriented manner a
procedural operating system having a native procedural inter-
face during run-time execution of the application 1n a com-
puter. The present invention 1s preferably a part of the run-
time environment of the computer in which the application
executes. In this patent application, the present invention 1s
sometimes called an object-oriented wrapper since 1t operates
to wrap a procedural operating system with an object-ori-
ented software layer such that an object-oriented application
can access the operating system 1n an object-oriented manner.

FIG. 1 illustrates a block diagram of a computer platform
102 in which a wrapper 128, 129 of the present invention
operates. It should be noted that the present invention alter-
natively encompasses the wrapper 128, 129 in combination
with the computer platform 102. The computer platform 102
includes hardware components 103, such as a random access
memory (RAM) 108 and a central processing unit (CPU) 106.
It should be noted that the CPU 106 may represent a single
processor, but preferably represents multiple processors oper-
ating 1n parallel. The computer platform 102 also includes
peripheral devices which are connected to the hardware com-
ponents 103. These peripheral devices include an input device
or devices (such as a keyboard, a mouse, a light pen, etc.), a
data storage device 120 (such as a hard disk or floppy disk), a
display 124, and a printer 126. The data storage device 120
may interact with a removable data storage medium 122 (such
as a removable hard disk, a magnetic tape cartridge, or a
floppy disk), depending on the type of data storage device
used. The computer platform 102 also includes a procedural
operating system 114 having a native procedural interface
(not shown). The procedural interface includes procedural
tfunctions which are called to access services provided by the
operating system 102.

The computer platform 102 further includes device drivers
116, and may include microinstruction code 210 (also called
firmware). As indicated i FIG. 1, 1n performing their
required functions the device drivers 116 may interact with
the operating system 114. Application programs 130, 132,
134 (described turther below) preferably interact with the
device drivers 116 via the operating system 114, but may
alternatively interact directly with the device drivers 116. It
should be noted that the operating system 114 may represent
a substantially full-function operating system, such as the
Disk Operating System (DOS) and the UNIX operating sys-
tem. However, the operating system 114 may represent other
types of operating systems. For purposes of the present inven-
tion, the only requirement 1s that the operating system 114 be
a procedural operating system having a native procedural
interface. Preferably, the operating system 114 represents a
limited functionality procedural operating system, such as the
Mach micro-kemel developed by CMU, which 1s well-known
to those skilled 1n the relevant art. For illustrative purposes
only, the present invention shall be described herein with
reference to the Mach micro-kemel. In a preferred embodi-
ment of the present invention, the computer platform 102 1s an
International Business Machines (IBM) computer or an IBM-
compatible computer. In an alternate embodiment of the
present invention, the computer platform 102 i1s an Apple
computer.

Overview of a Wrapper

Various application programs 130, 132, 134 preferably
operate 1n parallel on the computer platform 102. Preferably,

10

15

20

25

30

35

40

45

50

55

60

65

6

the application programs 130, 132, 134 are adapted to execute
in different operating environments. For example, the appli-
cation programs 130A and 130B may be adapted to operate in
an object-oriented environment. The application program
132 may be adapted to operate 1n a Microsoft Windows envi-
ronment, an IBM PS/2 environment, or a Unix environment.
As will be appreciated by those skilled 1n the relevant art, the
application programs 130A, 130B, and 132 cannot interact
directly with the operating system 114 unless the operating
system 114 implements an environment 1n which the appli-
cation programs 130A, 130B, and 132 are adapted to operate.
For example, i the application 132 1s adapted to operate in the
IBM PS/2 environment, then the application 132 cannot
directly interact with the operating system 114 unless the
operating system 114 1s the IBM PS/2 operating system (or
compatible). If the application programs 130A and 130B are
adapted to operate 1n an object-oriented environment, then
the applications 130A, 130B cannot directly interact with the
operating system 114 since the operating system 114 has a
procedural imterface. In the example shown i FIG. 1, the
application 134 1s adapted to operate 1n the computing envi-
ronment created by the operating system 114, and therefore
the application 134 1s shown as being connected directly to
the operating system 114.

The wrapper 128 1s directed to a mechanism for providing
the operating system 114 with an object-oriented interface.
The wrapper 128 enables the object-oriented applications
130A, 130B to directly access 1n an object-oriented manner
the procedural operating system 114 during run-time execu-
tion of the applications 130A, 130B on the computer platform
102. The wrapper 129 is conceptually similar to the wrapper
128. The wrapper 129 provides an IBM PS/2 interface for the
operating system 114, such that the application 132 can
directly access 1 a PS/2 manner the procedural operating
system 114 (assuming that the application 132 1s adapted to
operate 1n the IBM PS/2 environment). The discussion of the
present invention shall be limited herein to the wrapper 128,
which provides an object-oriented interface to a procedural
operating system having a native procedural interface.

The wrapper 128 1s preferably implemented as a code
library 110 which 1s stored in the RAM 108. The code library
110 may also be stored 1n the data storage device 120 and/or
the data storage medium 122. The code library 110 imple-
ments an object-oriented class library 402 (see FIG. 4). In
accordance with the present imnvention, the object-oriented
class library 402 includes related object-oriented classes for
enabling an object-oriented application (such as the applica-
tions 130A and 130B) to access 1n an object-oriented manner
services provided by the operating system 114. The object-
oriented classes comprise methods which include procedural
function calls compatible with the native procedural interface
of the operating system 114. Object-oriented statements
defined by the object-oriented class library 402 (such as
object-oriented statements which invoke one or more of the
methods of the class library 402) are insertable into the appli-
cation 130 to enable the application 130 to access 1 an
object-oriented manner the operating system services during
run-time execution of the application 130 on the computer
platform 102. The object-oriented class library 402 1s further
described 1n sections below.

The code library 110 preferably includes compiled, execut-
able computer program logic which implements the object-
oriented class library 402. The computer program logic of the
code library 110 1s not linked to application programs.
Instead, relevant portions of the code library 110 are copied
into the executable address spaces of processes during run-
time. This 1s explained 1n greater detail below. Since the

US 7,424,704 B2

7

computer program logic of the code library 110 1s not linked
to application programs, the computer program logic can be
modified at any time without having to modily, recompile
and/or relink the application programs (as long as the inter-
face to the code library 110 does not change). As noted above,
the present invention shall be described herein with reference
to the Mach micro-kernel, although the use of the present
invention to wrap other operating systems falls within the
scope of the present invention.

The Mach micro-kernel provides users with a number of
services with are grouped into the following categories:
threads, tasks, virtual memory, mterprocess communication
(IPC), scheduling, synchronization, fault processing, and
host/processor set processing. The class library 402 of the
present invention includes a set of related classes for each of
the Mach service categories. Referring to FIG. 4, the class
library 402 includes:

(1) thread classes 404 for enabling an application to access
in an object-oriented manner operating system services to
spawn, control, and obtain information relating to threads;

(2) task classes 406 for enabling an application to access 1n
an object-oriented manner operating system services to ref-
erence and control tasks, wherein the tasks each represents an
execution environment for threads respectively associated
with the tasks:

(3) virtual memory classes 408 for enabling an application
to access 1n an object-oriented manner operating system ser-
vices to access and manipulate virtual memory 1n a computer;

(4) IPC classes 410 for enabling an application to access 1n
an object-oriented manner operating system services to coms-
municate with other processes during run-time execution of
the application 1n a computer;

(5) synchronization classes 412 for enabling an application
to access 1n an object-oriented manner operating system ser-
vices to synchronize execution of threads;

(6) scheduling classes 414 for enabling an application to
access 1n an object-oriented manner operating system ser-
vices to schedule execution of threads:

(7) fault classes 416 for enabling an applicationto access 1n
an object-oriented manner operating system services to pro-
cess system and user-defined processor faults; and

(8) machine classes 418 for enabling an application to
access 1n an object-oriented manner operating system ser-
vices to define and modify a host and processor sets.

The class library 402 may include additional classes for
other service categories that are offered by Mach 1n the future.
For example, security services are currently being developed
tor Mach. Accordingly, the class library 402 may also include
security classes 420 for enabling an application to access inan
object-oriented manner operating system security services.
As will be appreciated, the exact number and type of classes
included 1n the class library 402 depends on the implementa-
tion of the underlying operating system.

Operational Overview of a Preferred Embodiment

The operation of the present invention shall now be gener-
ally described with reference to FIG. 2, which illustrates a
high-level operational flow chart 202 of the present invention.
The present invention 1s described 1n the context of executing
the object-oriented application 130A on the computer plat-
form 102. In step 206, which is the first substantive step of the
flow chart 202, an object-oriented statement which accesses a
service provided by the operating system 114 1s located in the
application 130A during the execution of the application
130A on the computer platform 102. The object-oriented
statement 1s defined by the object-oriented class library 402.

10

15

20

25

30

35

40

45

50

55

60

65

8

For example, the object-oriented statement may reference a
method defined by one of the classes of the class library 402.
The following steps describe the manner in which the state-
ment 1s executed by the computer platiorm 102.

In step 208, the object-oriented statement is translated to a
procedural function call compatible with the native proce-
dural interface of the operating system 114 and correspond-
ing to the object-oniented statement. In performing step 208,
the statement 1s translated to the computer program logic
from the code library 110 which implements the method
referenced 1n the statement. As noted above, the method
includes at least one procedural function call which 1s com-
patible with the native procedural interface of the operating,
system 114. In step 210, the procedural function call from
step 208 15 executed 1n the computer platform 102 to thereby
cause the operating system 114 to provide the service on
behalf of the application 130A. Step 210 1s performed by
executing the method discussed 1n step 208, thereby causing
the procedural function call to be mvoked.

The operation of a preferred embodiment shall now be
described 1n more detail with reference to FIG. 3, which
1llustrates a detailed operational flow chart 302 of the present
invention. Again, the present ivention 1s described in the
context of executing the object-oriented application 130A on
the computer plattorm 102. More particularly, the present
invention 1s described in the context of executing a single
object-oriented statement of the object-oriented application
130A on the computer platform 102. The application 130A
includes statements which access services provided by the
operating system 114, and it 1s assumed that such statements
are defined by the class library 402 (1in other words, the
programmer created the application 130A with reference to
the class library 402). As will be discussed 1n greater detail
below, the executable entity 1n the Mach micro-kernel 1s
called a thread. The processing organization entity in the
Mach micro-kernel 1s called a task. A task includes one or
more threads (which may execute 1n parallel), and an address
space which represents a block of virtual memory 1n which
the task’s threads can execute. At any time, there may be
multiple tasks active on the computer platform 102. When
executing on the computer platform 102, the application
130A could represent an entire task (having one or more
threads), or could represent a few threads which are part of a
task (1n this case, the task would have other threads which
may or may not be related to the operation of the application
130A). The scope of the present invention encompasses the

case when the application 130A 1s an entire task, or just a few
threads of a task.

Referring now to FIG. 3, 1n step 308, it 1s determined
whether the computer program logic (also called computer
code) from the code library 110 which implements the
method referenced in the statement 1s present in the task
address space associated with the application 130A. If the
computer program logic 1s present in the task address space,
then step 316 1s processed (described below). It the computer
program logic 1s not present in the task address space, then the
computer program logic 1s transferred to the task address
space 1n steps 310, 312, and 314. In step 310, 1t 15 determined
whether the library server (not shown) associated with the
code library 110 1s known. The code library 110 may repre-
sent multiple code libraries (not shown) related to the wrapper
128, wherein each of the code libraries include the computer
program logic for one of the object-oriented classes of the
class library 402. As those skilled in the relevant art will
appreciate, there may also be other code libraries (not shown)
completely unrelated to the wrapper 128.

US 7,424,704 B2

9

Associated with the code libraries are library servers, each
of which manages the resources of a designated code library.
A processing entity which desires access to the computer
program logic of a code library makes a request to the code
library’s library server. The request may include, for example,
a description of the desired computer program logic and a
destination address to which the computer program logic
should be sent. The library server processes the request by
accessing the desired computer program logic from the code
library and sending the desired computer program logic to the
area of memory designated by the destination address. The
structure and operation of library servers are well known to
those skilled 1n the relevant art. Thus, 1n step 310 it 1s deter-
mined whether the library server associated with the code
library 110 which contains the relevant computer program
logic 1s known. Step 310 1s performed, for example, by ret-
erencing a library server table which identifies the known
library servers and the code libraries which they service. If the
library server 1s known, then step 314 1s processed (discussed
below). Otherwise, step 312 i1s processed. In step 312, the
library server associated with the code library 110 1s identi-
fied. The 1dentity of the library server may be apparent, for
example, from the content of the object-oriented statement
which 1s being processed.

After the library server associated with the code library 110
1s 1dentified, or 1t the library server was already known, then
step 314 1s processed. In step 314, a request 1s sent to the
library server asking the library server to copy the computer
program logic associated with the method reference in the
statement to the task address space. Upon completion of step
314, the library server has copied the requested computer
program logic to the task address space. Preferably, the code
library 110 1s a shared library. That 1s, the code library 110
may be simultaneously accessed by multiple threads. How-
ever, preferably the computer program logic of the code
library 110 1s physically stored 1n only one physical memory
area. The library server virtually copies computer program
logic from the code library 110 to task address spaces. That 1s,
instead of physically copying computer program logic from

10

15

20

25

30

35

one part of physical memory to another, the library server 40

places 1n the task address space a pointer to the physical
memory area containing the relevant computer program
logic. In step 316, the computer program logic associated
with the object-oriented statement 1s executed on the com-
puter platform 102. As noted above, 1n the case where the
object-oriented statement accesses the operating system 114,
the computer program logic associated with the method con-
tains at least one procedural function call which 1s compatible
with the native procedural interface of the operating system
114. Thus, by executing the method’s computer program
logic, the procedural function call 1s 1nvoked and executed,
thereby causing the operating system 114 to provide the ser-
vice on behalf of the application 130A.

The above-described performance in the computer plat-
form 102 of steps 306, 308, 310, 312, and 314 1s due, 1n large
part, to the run-time environment established 1n the computer
platiorm 102. As will be appreciated by those skilled in the
relevant art, the run-time environment of the computer plat-
form 102 1s defined by the run-time conventions of the par-
ticular compiler which compiles the application program
130A. For example, the run-time conventions may specily
that when an 1nstruction accessing an operating system ser-
vice 1s encountered, corresponding code from the code library
110 should be transferred to the task address space (via the
associated library server) and executed. Compiler run-time
conventions are generally well known. As will be appreciated,
run-time conventions are specific to the particular compilers

45

50

55

60

65

10

used. The run-time conventions for use with the present
invention and with a particular compiler would be apparent to
one skilled 1n the art based on the disclosure of the present
invention contained herein, particularly to the disclosure
associated with the flow chart 302 i FIG. 3. As described
above, the wrapper 128 of the present invention 1s 1mple-
mented as a code library 110 which includes computer pro-
gram logic implementing the object-oriented class library
402. Alternatively, the wrapper 128 may be implemented as a
hardware mechanism which essentially operates in accor-
dance with the flow chart 302 of FIG. 3 to translate object-
oriented statements (defined by the class library 402) 1n appli-
cation programs to procedural function calls compatible with
the procedural interface of the operating system 114. Or, the
wrapper 128 may be implemented as a background software
process operating on the computer platform 102 which cap-
tures all accesses to the operating system 114 (made by
object-oriented statements defined by the class library 402)
and which translates the accesses to procedural function calls
compatible with the procedural interface of the operating
system 114. Other implementations of the wrapper 128 will
be apparent to those skilled in the relevant art based on the
disclosure of the present invention contained herein.

Mach Services

This section provides an overview of the abstractions and
services provided by the Mach micro-kemel. The services are
described for each of the major areas of the Mach micro-
kernel. As noted above, these include: threads, tasks, virtual
memory, IPC, scheduling, synchronization services, hard-
ware faults, and host/privilege services (also called machine
services). The Mach micro-kernel 1s further discussed 1in
many publicly available documents, including: K. Loepere,
editor, “Mach 3 Kermnel Principles”, Open Software Founda-
tion and Carnegie Mellon University, Draft Industrial Speci-
fication, September 1992 and November 1992; K. Loepere,
editor, “Mach 3 Kernel Interfaces™, Open Software Founda-
tion and Carnegie Mellon University, Draft Industrial Speci-
fication, September 1992 and November 1992; K. Loepere,
editor, “Mach 3 Server Writer’'s Guide”, Open Software
Foundation and Carnegie Mellon University, Draft Industrial
Specification, September 1992 and November 1992; K. Loe-
pere, editor, “Mach 3 Server Writer’s Interfaces™, Open Soft-
ware Foundation and Carnegie Mellon University, Draft
Industrial Specification, September 1992 and November
1992; A. Silberschatz, J. Peterson, P. Galvin, Operating Sys-
tem Concepts, Addison-Wesley, July 1992; and A. Tanen-
baum, Modern Operating Systems, Prentice Hall, 1992.

Threads

The executable entity 1n Mach 1s known as a thread.
Threads have several aspects that enable them to execute 1n
the system. A thread 1s always contained in a task, which
represents most of the majorresources (e.g., address space) of
which the thread can make use. A thread has an execution
state, which 1s basically the set of machine registers and other
data that make up 1ts context. A thread 1s always 1n one of
several scheduling states: executing, ready to execute, or
blocked for some reason. Threads are intended to be light-
welght execution entities. This 1s to encourage the program-
mer to make use of multiple threads in applications, thus
introducing more concurrency into the system than has been
found 1n traditional operating systems. Although threads are
not without some cost, they really are fairly minimal and the
typical application or server 1n a Mach environment can take
advantage of this capability.

US 7,424,704 B2

11

Threads do have some elements associated with them,
however. The containing task and address space, as well as the
execution state, have already been discussed. Each thread has
a scheduling policy, which determines when and how often
the thread will be given a processor on which to run. The
scheduling services are discussed 1n more detail 1n a later
section. Closely tied to the scheduling policy of a thread 1s the
optional processor set designation, which can be used 1n
systems with multiple processors to more closely control the
assignment of threads to processors for potentially greater
application performance. As indicated before, an address
space (task) can contain zero or more threads, which execute
concurrently. The kernel makes no assumptions about the
relationship of the threads in an address space or, indeed, 1n
the entire system. Rather, it schedules and executes the
threads according to the scheduling parameters associated
with them and the available processor resources 1n the system.
In particular, there 1s no arrangement (e.g., hierarchical) of
threads 1 an address space and no assumptions about how
they are to interact with each other. In order to control the
order of execution and the coordination of threads to some
useiul end, Mach provides several synchronization mecha-
nisms. The simplest (and coarsest) mechanism 1s thread-level
suspend and resume operations. Each thread has a suspend
count, which 1s incremented and decremented by these opera-
tions. A thread whose suspend count 1s positive remains
blocked until the count goes to zero.

Finer synchronization can be obtained through the use of
synchronization objects (semaphores or monitors and condi-
tions), which allow a variety of different synchromzation
styles to be used. Threads can also 1nteract via inter-process
communication (IPC). Each of these services 1s described 1n
more detail 1 later sections. Basic operations exist to support
creation, termination, and getting and setting attributes for
threads. Several other control operations exist on threads that
can be performed by any thread that has a send right to the
intended thread’s control port. Threads can be terminated
explicitly. They can also be interrupted from the various pos-
sible wait situations and caused to resume execution with an
indication that they were interrupted. Threads can also be
“wired”, which means that they are marked as privileged with
respect to kernel resources, 1.e., they can consume physical
memory when free memory 1s scarce. This 1s used for threads
in the default page-out path. Finally, threads also have several
important IPC ports (more precisely, the send or recerve rights
to these ports), which are used for certain functions. In par-
ticular, each thread has a thread seliport, which can be used to
perform certain operations on the thread by 1itself. A thread
also has a set of fault ports which 1s used when the thread
encounters a processor fault during 1its execution. There 1s
also a distinguished port that can be used for gathering
samples of the thread’s execution state for monitoring by
other threads such as debuggers or program profilers.

Tasks

The basic organizational entity in Mach for which
resources are managed 1s known as a task. Tasks have many
objects and attributes associated with them. A task fundamen-
tally comprises three things. A task contains multiple threads,
which are the executable entities in the system. A task also has
an address space, which represents virtual memory 1n which
its threads can execute. And a task has a port name space,
which represents the valid IPC ports through which threads
can communicate with other threads 1n the system. Each of
these fundamental objects 1in a task i1s discussed in greater
detail 1 the following sections. Note that a task 1s not, of

10

15

20

25

30

35

40

45

50

55

60

65

12

itself, an executable entity in Mach. However, tasks can con-
tain threads, which are the execution entities. A task has a
number of other entities associated with 1t besides the funda-
mental ones noted above. Several of these entities have to do
with scheduling decisions the kernel needs to make for the
threads contained by the task. The scheduling parameters,
processor set designation, and host information all contribute
to the scheduling of the task’s threads. A task also has a
number of distinguished iterprocess communication ports
that serve certain pre-defined functions. Ports and other
aspects of 1nterprocess communication are discussed at
length 1n a later section. For now, it 1s suificient to know that
port resources are accumulated over time 1n a task. Most of
these are managed explicitly by the programmer. The distin-
guished ports mentioned above generally have to do with
establishing connections to several important functions in the
system. Mach supplies three “special” ports with each task.
The first 1s the task self port, which can be used to ask the
kernel to perform certain operations on the task. The second
special port 1s the bootstrap port, which can be used for
anything (1t’s OS environment-specific) but generally serves
to locate other services. The third special port that each task
has 1s the host name port, which allows the task to obtain
certain mnformation about the machine on which 1t 1s running.
Additionally, Mach supplies several “registered” ports with
cach task that allow the threads contained in the task to
communicate with certain higher-level servers in the system
(e.g., the Network Name Server, the “Service” Server, and the
Environment Server).

Two other useful sets of ports exist for each task that allow
fault processing and program state sampling to be performed.
The fault ports of a task provide a common place for proces-
sor faults encountered by threads in the task to be processed.
Fault processing 1s described more fully 1n a later section. The
PC sample port allows profiling tools to repeatedly monitor
the execution state of the threads 1n the task. Many operations
are possible for tasks. Tasks can be created and terminated.
Creation of a new task involves specilying some existing task
as a prototype for the initial contents of the address space of
the new task. A task can also be terminated, which causes all
ol the contained threads to be terminated as well. The threads
contained 1n a task can be enumerated and information about
the threads can be extracted. Coarse-grain execution of a task
(more precisely, the threads 1n the task) can be controlled
through suspend and resume operations. Each task has a
suspend count that 1s mncremented and decremented by the
suspend and resume operations. The threads in the task can
execute as long as the suspend count for the containing task 1s
zero. When the suspend count 1s positive, all threads 1n the
task will be blocked until the task 1s subsequently resumed.
Finally, the various parameters and attributes associated with
a task (e.g., scheduling priority) can be queried and set as
desired.

Virtual Memory

Mach supports several features 1n its virtual memory (VM)
subsystem. Both the external client interfaces as well as the
internal implementation offer features that are not found 1n
many other operating systems. In broadest terms, the Mach
virtual memory system supports a large sparsely populated
virtual address space for each of the tasks runming 1n the
system. Clients are provided with general services for man-
aging the composition of the address space. Some aspects of
the VM system are actually implemented by components that
are outside of the micro-kernel, which allows great tlexibility
in tailoring certain policy functions to different system envi-

US 7,424,704 B2

13

ronments. The internal architecture of the Mach VM system
has been divided into machine-independent and machine-
dependent modules for maximum portability. Porting to a
new processor/MMU architecture 1s generally a small matter
of implementing a number of functions that manipulate the
basic hardware MMU structures. Mach has been ported to a
number of different processor architectures attesting to the
portability of the overall kernel and the virtual memory sys-
tem 1n particular. The address space of a Mach task contains
a number of virtual memory regions. These regions are pieces
of virtual address space that have been allocated 1n various
ways for use by the task. They are the only locations where
memory can be legitimately accessed. All references to
addresses outside of the defined regions 1n the address space
will result 1n an improper memory reference fault. A virtual
memory region has several interesting attributes. It has a
page-aligned starting address and a size, which must be a
multiple of the system page size. The pages 1n the region all
have the same access protections; these access protections
can be read-only, read-write, or execute. The pages in aregion
also have the same 1nheritance characteristic, which may be
used when a new task 1s created from the current task. The
inheritance characteristic for pages in a region can be set to
indicate that a new task should inherit a read-write copy of the
region, that it should inherit a virtual copy of the region, or
that 1t should imnherit no copy of the region. A read-write copy
ol a region 1n a new address space provides a fully shared
mapping of the region between the tasks, while a virtual copy
provides a copy-on-write mapping that essentially gives each
task 1ts own copy of the region but with efficient copy-on-
write sharing of the pages constituting the region.

Every virtual memory region 1s really a mapping of an
abstract entity known as a memory object. A memory object
1s simply a collection of data that can be addressed in some
byte-wise fashion and about which the kernel makes no
assumptions. It 1s best thought of as some pure piece of data
that can either be explicitly stored some place or can be
produced 1n some fashion as needed. Many different things
can serve as memory objects. Some familiar examples
include files, ROMs, disk partitions, or fonts. Memory objects
have no pre-defined operations or protocol that they are
expected to follow. The data contained 1n a memory object
can only be accessed when 1t has been tied to a VM region
through mapping. After a memory object has been mapped to
a region, the data can be accessed via normal memory read
and write (load and store) operations. A memory object 1s
generally managed by a special task known as an external
memory manager or pager. A pager 1s a task that executes
outside of the micro-kernel much like any other task 1n the
system. It 1s a user-mode entity whose job 1s to handle certain
requests for the data of the memory objects 1t supports. As
threads 1n a client task reference the pages 1n a given region,
the kernel logically fills the pages with the data from the
corresponding byte addresses in the associated memory
object. To accomplish this the kernel actually engages 1n a
well-defined (and onerous) protocol with the pager whenever
it needs to get data for page faults or when 1t needs to page-out
data due to page replacements. This protocol, which 1s known
as the External Memory Management Interface (or EMMI),
also handles the 1nitialization sequences for memory objects
when they are mapped by client tasks and the termination
sequences when any associated memory regions are deallo-
cated by client tasks.

There can be any number of pagers runming in the system
depending on which memory objects are 1n use by the various
client tasks. Pagers will typically be associated with the vari-
ous file systems that are mounted at a given time, for example.

10

15

20

25

30

35

40

45

50

55

60

65

14

Pagers could also exist to support certain database applica-
tions, which might have needs for operations beyond what 1s
supported by the file system. Pagers could also exist for
certain servers that wish to supply data to their clients 1n
non-standard ways (e.g., generating the data computationally
rather than retrieving 1t from a storage subsystem). The
micro-kernel always expects to have a certain distinguished
pager known as the default pager running in the system. The
default pager 1s responsible for managing the memory objects
associated with anonymous virtual memory such stacks,
heaps, etc. Such memory 1s temporary and only of use while
a client task 1s running. As described above, the main entities
in the Mach VM system are regions, memory objects, and
pagers. Most clients, however, will deal with virtual memory
through operations on ranges of memory. A range can be a
portion of a region or 1t could span multiple contiguous
regions in the address space. Operations are provided by
Mach that allow users to allocate new ranges of virtual
memory 1n the address space and deallocate ranges as desired.
Another important operation allows a memory object to be
mapped nto a range of virtual memory as described above.
Operations are also available to change the protections on
ranges of memory, change the inheritance characteristics, and
wire (or lock) the pages of a range 1nto physical memory. It 1s
also possible to read ranges of memory from another task or
write 1nto ranges 1n another task provided that the control port
for the task 1s available. Additional services are available that
allow the user to specily the expected reference pattern for a
range of memory. This can be used by the kernel as advice on
ways to adapt the page replacement policy to different situa-
tions. Yet another service 1s available to synchronize (or flush)
the contents of a range of memory with the memory object(s)
backing 1t. Finally services are available to obtain informa-
tion about regions and to enumerate the contents of a task’s
address space described 1n terms of the regions 1t contains.

Interprocess Communication

Mach has four concepts that are central to its interprocess
communications facilities: Ports, Port Sets, Port Rights, and
Messages. One of these concepts, Port Rights, 1s also used by
Mach as a means to 1dentily certain common resources in the
system (such as threads, tasks, memory objects, etc.).

Ports

Threads use ports to communicate with each other. A port
1s basically amessage queue 1inside the kernel that threads can
add messages to or remove message irom, 1f they have the
proper permissions to do so. These “permissions” are called
port rights. Other attributes associated with a port, besides
portrights, include a limit on the number of messages that can
be enqueued on the port, a limit on the maximum size of a
message that can be sent to a port, and a count of how many
rights to the port are 1n existence. Ports exist solely in the
kernel and can only be manipulated via port rights.

Port Rights

A thread can add a message to a port’s message queue 11 1t
has a send right to that port. Likewise, 1t can remove a mes-
sage from a port’s message queue 1f 1t has a recerve right to
that port. Port rights are considered to be resources of a task,
not an 1ndividual thread. There can be many send rights to a
port (held by many different tasks); however, there can only
be one receive right to a port. In fact, a port 1s created by
allocating a recerve right and a port 1s destroyed only when the

US 7,424,704 B2

15

receive right 1s deallocated (either explicitly or implicitly
when the task dies). In addition, the attributes of a port are
manipulated through the receive right. Multiple threads (on
the same or different tasks) can send to a port at the same time,
and multiple threads (on the same task) can receive from a
port at the same time. Port rights act as a permission or
capability to send messages to or receive messages from a
port, and thus they implement a low-level form of security for
the system. The “owner” of a port 1s the task that holds the
receive right. The only way for another task to get a send right
for a port 1s 1f 1t 1s explicitly given the night—either by the
owner or by any task that holds a valid send right for the port.
This 1s primarily done by including the right in a message and
sending the message to another task. Giving a task a send right
grants 1t permission to send as many messages to the port as
it wants. There 1s another kind of port right called a send-once
right that only allows the holder to send one message to the
port, at which time the send-once right become invalid and
can’t be used again. Note that ownership of a port can be
transierred by sending the port’s recerve right 1n a message to
another task.

Tasks acquire port rights either by creating them or receiv-
ing them 1n a message. Receive rights can only be created
explicitly (by doing a port allocate, as described above); send
rights can be created either explicitly from an existing send or
receive right or implicitly while being transmitted 1n a mes-
sage. A send-once right can be created explicitly or implicitly
from a receive right only. When a right 1s sent in a message the
sender can specily that the right 1s either copied, moved, or a
new right created by the send operation. (Receive rights can
only be moved, of course.) When a right 1s moved, the sender
looses the right and the recerver gains 1t. When copied, the
sender retains the right but a copy of the right 1s created and
given to the recerver. When created, the sender provides a
receive right and a new send or send-once right 1s created and
given to the receiver. When a task acquires a port right, by
whatever means, Mach assigns 1t a name. Note that ports
themselves are not named, but their port rights are. (Despite
this fact, the creators of Mach decided to refer to the name of
a port right with the term port name, 1nstead of the obvious
port right name). This name 1s a scalar value (32-bits on Intel
machines) that 1s guaranteed unique only within a task (which
means that several tasks could each have a port name with the
same numeric value but that represent port rights to totally
different ports) and 1s chosen at random. Each distinct right
held by a task does not necessarily have a distinct port name
assigned to 1t. Send-once rights always have a separate name
for each right. Recetve and send rights that refer to the same
port, however, will have the same name.

Port rights have several attributes associated with them: the
type of the right (send, send-once, receive, port set, or dead
name), and a reference count for each of the above types of
rights. When a task acquires a right for a port to which it
already has send or receive rights, the corresponding refer-
ence count for the associated port name 1s incremented. A port
name becomes a dead name when 1ts associated port 1s
destroyed. That 1s, all port names representing send or send-
once rights for a port whose receive right 1s deallocated
become dead names. A task can request notification when one
of its rights becomes dead. The kernel keeps a system-wide
count of the number of send and send-once rights for each
port. Any task that holds a recerve right (such as a server) can
request a notification message be sent when this number goes
to zero, indicating that there are no more senders (clients) for
the port. This 1s called a no more senders notification. The
request must include a send right for a port to which the
notification should be sent.

10

15

20

25

30

35

40

45

50

55

60

65

16

Port Sets

Port sets provide the ability to receive from a collection of
ports simultaneously. That 1s, receive rights can be added to a
port set such that when a recerve 1s done on the port set, a
message will be received from one of the ports in the set. The
name of the recerve right whose port provided the message 1s
reported by the receive operation.

Messages

A Mach IPC message comprises a header and an 1n-line
data portion, and optionally some out-oi-line memory regions
and port rights. If the message contains neither port rights nor
out-of-line memory, then 1t 1s said to be a simple message;
otherwise 1t 1s a complex message. A simple message con-
tains the message header directly followed by the in-line data
portion. The message header contains a destination port send
right, an optional send right to which a reply may be sent
(usually a send-once right), and the length of the data portion
of the message. The 1n-line data 1s of variable length (subject
to a maximum specified on a per-port basis) and 1s copied
without interpretation. A complex message consists of a mes-
sage header (with the same format as for a simple message),
followed by: a count of the number of out-oi-line memory
regions and ports, disposition arrays describing the kernel’s
processing of these regions and ports, and arrays containming
the out-oi-line descriptors and the port rights.

The port right disposition array contains the desired pro-
cessing of the rnght, 1.¢., whether 1t should be copied, made, or
moved to the target task. The out-of-line memory disposition
array specifies for each memory range whether or not 1t
should be de-allocated when the message 1s queued, and
whether the memory should be copied into the recerving
task’s address space or mapped into the recerving address
space via a virtual memory copy-on-right mechanism. The
out-of-line descriptors specily the size, address, and align-
ment of the out-of-line memory region. When a task receives
a message, the header, in-line data, and descriptor arrays are
copied into the addresses designated 1n the parameters to the
receive call. If the message contains out-oi-line data, then
virtual memory 1n the receiving task’s address space 1s auto-
matically allocated by the kernel to hold the out-of-line data.
It 1s the responsibility of the receiving task to deallocate these
memory regions when they are done with the data.

Message Transmission Semantics

Mach IPC 1s basically asynchronous in nature. A thread
sends a message to a port, and once the message 1s queued on
the port the sending thread continues execution. A receive on
a port will block 1f there are no messages queued on the port.
For efficiency there 1s a combined send/receive call that will
send a message and immediately block waiting for a message
on a specified reply port (providing a synchronous model). A
time-out can be set on all message operations which will abort
the operation if the message 1s unable to be sent (or 1 no
message 1s available to be recerved) within the specified time
period. A send call will block 1t 1t uses a send-right whose
corresponding port has reached 1ts maximum number of mes-
sages. I a send uses a send-once right, the message 1s guar-
anteed to be queued even if the port 1s Tull. Message delivery
1s reliable, and messages are guaranteed to be received 1n the
order they are sent. Note that there 1s special-case code 1n
Mach which optimizes for the synchronous model over the
asynchronous model; the fastest IPC round-trip time 1s
achieved by a server doing a receive followed by repeated

US 7,424,704 B2

17

send/receive’s 1n a loop and the client doing corresponding
send/receive’s 1 a loop on 1ts side.

Port Rights as Identifiers

Because the kernel guarantees both that port rights cannot
be counterfeited and that messages cannot be misdirected or
talsified, port rights provide a very reliable and secure 1den-
tifier. Mach takes advantage of this by using port rights to
represent almost everything in the system, including tasks, 10
threads, memory objects, external memory managers, per-
missions to do system-privileged operations, processor allo-
cations, and so on. In addition, since the kernel can send and
receive messages itsell (it represents itsell as a “special”
task), the majority of the kernel services are accessed via IPC 15
messages 1nstead of system-call traps. This has allowed ser-
vices to be migrated out of the kernel fairly easily where
appropriate.

Synchronization 20

Currently, Mach provides no direct support for synchroni-
zation capabilities. However, conventional operating systems
routinely provide synchronization services. Such synchroni-
zation services employ many well-known mechamisms, such
as semaphores and monitors and conditions, which are
described below. Semaphores are a synchronization mecha-
nism which allows both exclusive and shared access to a
resource. Semaphores can be acquired and released (in either
an exclusive or shared mode), and they can optionally specity
time-out periods on the acquire operations. Semaphores are
optionally recoverable 1n the sense that when a thread that 1s
holding a semaphore terminates prematurely, the counters
associated with the semaphore are adjusted and waiting
threads are unblocked as appropriate.

25

30

35

Monitors and conditions are a synchronization mechanism
which implements a relatively more disciplined (and safer)
style of synchronization than simple semaphores. A monitor
lock (also called a mutex) 1s essentially a binary semaphore 40
that enables mutually exclusive access to some data. Condi-
tion variables can be used to wait for and signify the truth of
certain programmer-defined Boolean expressions within the
context of the monitor. When a thread that holds a monitor
lock needs to wait for a condition, the monitor lock 1s relin- 45
quished and the thread is blocked. Later, when a another
thread that holds the lock notifies that the condition 1s true, a
waiting thread 1s unblocked and then re-acquires the lock
before continuing execution. A thread can also perform a
broadcast operation on a condition, which unblocks all of the 50
threads waiting for that condition. Optional time-outs can
also be set on the condition wait operations to limit the time a
thread will wait for the condition.

Scheduling 55

Since Mach 1s multiprocessor capable, it provides for the
scheduling of threads 1n a multiprocessor environment. Mach
defines processor sets to group processors and 1t defines
scheduling policies that can be associated with them. Mach 60
provides two scheduling policies: timeshare and fixed prior-
ity. The timeshare policy 1s based on the exponential average
of the threads’ usage of the CPU. This policy also attempts to
optimize the time quantum based on the number of threads
and processors. The fixed priority policy does not alter the 65
priority but does round-robin scheduling on the threads that
are at the same priority. A thread can use the default sched-

18

uling policy of 1ts processor set or explicitly use any one of the
scheduling policies enabled for 1ts processor set. A maximum
priority can be set for a processor set and thread. In Mach the
lower the priority value, the greater the urgency.

Faults

The Mach fault handling services are intended to provide a
flexible mechanism for handling both standard and user-de-
fined processor faults. The standard kernel facilities of
threads, messages, and ports are used to provide the fault
handling mechanism. (This document uses the word “fault™
where the Mach documentation uses the word “exception”.
Such terminology has been changed herein to distinguish
hardware faults from the exception mechanism of the C++
language). Threads and task have fault port(s). They differ in
their inheritance rules and are expected to be used 1n slightly
different ways. Error handling 1s expected to be done on a
per-thread basis and debugging 1s expected to be handled on
a per-task basis. Task fault ports are inherited from parent to
chuld tasks, while thread fault ports are not inherited and
default to no handler. Thread fault handlers take precedence
over task fault handlers. When a thread causes a fault the
kernel blocks the thread and sends a fault message to the
thread’s fault handler via the fault port. A handler 1s a task that
receives a message from the fault port. The message contains
information about the fault, the thread, and the task causing
the fault. The handler performs 1ts function according to the
type ol the fault. If appropriate, the handler can get and
modily the execution state of the thread that caused the fault.
Possible actions are to clear the fault, to terminate the thread,
or to pass the fault on to the task-level handler. Faults are
identified by types and data. Mach defines some machine-
independent fault types that are supported for all Mach imple-
mentations (e.g., bad access, bad instruction, breakpoint,
etc.). Other fault types can be implementation dependent
(e.g., I-line, co-processor violation, etc.).

Host and Processor Sets

Mach exports the notion of the host, which 1s essentially an
abstraction for the computer on which 1t 1s executing. Various
operations can be performed on the host depending on the
specific port rights that a task has for the host. Information
that 1s not sensitive can be obtained by any task that holds a
send right to the host name port. Examples of such informa-
tion 1nclude the version of the kernel or the right to gain access
to the value of the system clock. Almost all other information
1s considered sensitive, and a higher degree of privilege 1s
required to get or manipulate the information. This added
level of privilege 1s implied when a task holds a send right to
the host control port (also known as the host privilege port).
This right must be given out very carefully and selectively to
tasks, because having this right enables a task to do virtually
everything possible to the kernel, thus by-passing the security
aspects of the system supported by the IPC services. Various
operations can be performed with this added privilege,
including altering the system’s clock setting, obtaining over-
all performance and resource usage statistics for the system,
and causing the machine to re-boot.

Mach also exports the notions of processors and processor
sets, which allow tasks to more carefully specily when and on
what processors 1ts threads should execute. Processors and
processor sets can be enumerated and controlled with the host
privilege port. A processor represents a particular processor
in the system, and a processor set represents a collection of
processors. Services exist to create new processor sets and to

US 7,424,704 B2

19

add processors to a set or remove them as desired. Services
also exist to assign entire tasks or particular threads to a set.
Through these services a programmer can control (on a
coarse grain) when the threads and tasks that constitute an
application actually get to execute. This allows a programmer
to specily when certain threads should be executed 1n parallel
in a processor set. The default assignment for tasks and
threads that do not explicitly use these capabilities 1s to the
system default processor set, which generally contains any
processors 1n the system that aren’t being used in other sets.

Security

Mach may include other categories of services 1n addition
to those described above. For example, Mach may include
services relating to security. In accordance with the Mach
security services, every task carries a security token, which 1s
a scalar value that 1s uninterpreted by Mach. There 1s a port
called the host security port that 1s given to the bootstrap task
and passed on to the trusted security sever. A task’s security
token can be set or changed by any task that holds a send right
to the host security port, while no special permissions are
needed to determine the value of a tasks security token (other
than holding the task’s control port, of course). At the time a
Mach IPC message 1s recerved, the security token of the
sender of the message 1s returned as one of the output param-
cters to the recerve function. Tasks that hold the host security
port can send a message and assign a different security token
to that message, so that 1t appears to have come from another
task. These services can be used by upper layers of the system
to implement various degrees of security.

Wrapper Class Library

This section provides an area-by-area description of the
object-oriented interface for the services provided by the
Mach micro-kernel. This object-oriented interface to the
Mach services represents the wrapper class library 402 as
implemented by the code library 110. The wrapper class
library 402 includes thread classes 404, task classes 406,
virtual memory classes 408, IPC classes 410, synchromization
classes 412, scheduling classes 414, fault classes 416, and
machine classes 418 are discussed. The wrapper class library
402 may include additional classes, such as security classes
420, depending on the services provided by the underlying
operating system 114. Each area 1s described with a class
diagram and text detailing the purpose and function of each
class. Selected methods are presented and defined (where
appropriate, the parameter list of a method 1s also provided).
Thus, this section provides a complete operational definition
and description of the wrapper class library 402. The imple-
mentation of the methods of the wrapper class library 402 1s
discussed 1n a later section.

The class diagrams are presented using the well-known
Booch 1cons for representing class relationships and cardi-
nality. These Booch 1cons are presented in FIG. 17 for con-
venience purposes. The Booch 1cons are discussed 1n Object
Oriented Design With Applications by Grady Booch, refer-
enced above. The wrapper class library 402 1s preferably
implemented using the well-known C++ computer program-
ming language. However, other programming languages
could alternatively be used. Preferably, the class descriptions
are grouped 1nto SPI (System Programming Interface), API
(Application Programming Interface), Internal, and “Noose”
methods—indicated by #iindef statements bracketing the
code 1n question (or by comments for Noose methods). SPI
interfaces are specific to the particular computer platform

10

15

20

25

30

35

40

45

50

55

60

65

20

being used. For illustrative purposes, the wrapper class
library 402 1s presented and described herein with respect to
a computer platform operating 1n accordance with the IBM
MicroKernel (which 1s based on Mach Version 3.0) or com-
patible. Persons skilled 1n the relevant art will find 1t apparent
to modily the SPI classes to accommodate other computer
platforms based on the teachings contained herein.

API interfaces are included in the wrapper class library 402
regardless of the platform the system 1s running on. The
Internal interfaces are intended for use only by low-level
implementors. The Noose methods are provided solely to
cnable an application 130 operating with the wrapper 128 to
communicate with an application 134 (or server) that was
written to run on Mach 114 directly. They provide access to
the raw Mach facilities in such a way that they fall outside of
the intended object-oriented programming model established
by the wrapper 128. Use of Noose methods 1s highly discour-
aged. The SPI and API (and perhaps the Internal) classes and
methods are suificient to implement any application, compo-
nent, or subsystem.

Thread Classes

FIG. 5 1s a class diagram 3501 of the thread classes 404 and
the task classes 406. The thread classes 404 provide an object-
oriented interface to the tasking and threading functionality
of Mach 114. A number of the thread classes 404 are handle
classes (so noted by their name), which means that they
represent a reference to the corresponding kernel entity. The
null constructors on the handle classes create an empty handle
object. An empty handle object does not 1nitially correspond
to any kernel entity—it must be 1nitialized via streaming, an
assignment, or a copy operation. Calling methods on an
empty handle will cause an exception to be thrown. Multiple
copies of a handle object can be made, each of which point to
the same kernel entity. The handle objects are internally retf-
erence-counted so that the kernel entity can be deleted when
the last object representing 1t 1s destroyed.

TThreadHandle 1s a concrete class that represents a thread
entity 1n the system. It provides the methods for controlling
and determining information about the thread. It also pro-
vides the mechanism for spawning new threads 1n the system.
Control operations include killing, suspending/resuming, and
doing a death watch on 1t. Constructing a T ThreadHandle and
passing in a T ThreadProgram object causes a new thread to be
constructed on the current task. The first code run 1n the new
thread are the Prepare() and Run() methods of the T Thread-
Program object. Destroying a TThreadHandle does not
destroy the thread it represents. There may also be a cancel
operation on the TThreadHandle object. Note that each
TThreadHandle object contains a send right to the control
port for the thread. This imnformation 1s not exported by the
interface, i general, but because 1t does contain a port right
the only stream object a TThreadProgram can be streamed
into 1s a TIPCMessageStream. Attempting to stream into
other TStream objects will cause an exception to be thrown.

TThreadHandle provides a number of methods for use by
debuggers and the run-time environment, and for supporting
interactions with Mach tasks running outside of the environ-
ment established by the wrapper 128. These methods include
getting and setting the state of a thread, spawning an “empty”™
thread in another task, getting the thread’s fault ports, return-
ing a right to the thread’s control port, and creating a
TThreadHandle handle from a thread control port send right.

As noted above, the wrapper 128 establishes a computing
environment in which the applications 130 operate. For brev-
ity, this computing environment established by the wrapper

US 7,424,704 B2

21

128 shall be called CE. With regard to the wrapper 128,
TThreadHandle spawns a CE runtime thread on the current
task. A thread can also be spawned on another task, instead of
on the current task, by using the CreateThread methods 1n the
TTaskHandle class and 1n subclasses of TTaskHandle. (Cre-
ating a thread on another task 1s not recommended as a gen-
eral programming model, however.) To spawn a CE thread on
another CE task, the TCETaskHandle::CreateThread method
1s used by passing 1t a TThreadProgram describing the thread
to be run. To spawn a non-CE thread (that 1s, a thread which
does not operate 1n the computing environment established by
the wrapper 128), the CreateThread method 1s used on the
appropriate subclass of TTaskHandle (that 1s, the subclass of
TTaskHandle that has been created to operate with the other,
non-CE computing environment). For example, to spawn an
IBM OS2 thread on an OS2 task, you might use a
TOS2TaskHandle::CreateThread method. It 1s not possible to
run a CE thread on a non-CE task, nor 1s it possible to run a
non-CE thread on a CE task.

T'TreadHandle includes the following methods:

TThreadHandle (const TThreadProgramé& copyThread-
Code): creates a new thread in the calling task—makes an
internal COPY of the TThreadProgram, which 1s deleted
upon termination of the thread.

TThreadHandle (fﬂThreadProgram* adoptThreadCode):
creates a new thread in the calling task—ADOPTs adopt-
ThreadCode which 1s deleted upon termination of the thread.

The resources owned by the thread are also discarded. A copy
of the TThreadProgram 1s NOT made.

TThreadHandle (EExecution yoursell) creates a thread
handle for the calling thread.

TStream streams 1n a TThreadHandle object to a TIPC-
MessageStream.

CopyThreadSchedule () returns a pointer to the Schedul-
ing object (e.g., TServerSchedule, TUISchedule etc) that 1s
used to schedule the object. Allocates memory for the
TThreadSchedule object which has to be disposed of by the

caller.

SetThreadSchedule (const TThreadSchedule& newSched-
ule) sets the scheduling object in the thread to the newSched-

ule object. This allows one to control the way a thread 1s
scheduled

GetScheduleState (T'ThreadHandle& theBlocke-

dOnThread) allows one to query the current state of the thread
(theBlockedOnThread) on which this thread 1s blocked.

CancelWaitAndPostException () const causes a blocking

kernel call to be unblocked and a TKernelException to be
thrown 1n the thread (*this).

WaitForDeathOf () const performs death watch on the
thread—blocks calling thread until the thread (*this) termi-
nates. CreateDeathInterest () creates a notification interest

tor the death of the thread (*this). When the thread terminates

the specified TInterest gets a notification.

TThreadProgram 1s an abstract base class that encapsulates
all the information required to create a new thread. This
includes the code to be executed, scheduling information, and
the thread’s stack. To use, 1t must be subclassed and the Begin
and Run methods overridden, and then an instantiation of the
object passed into the constructor for TThreadHandle to
spawn a thread. The Begin routine 1s provided to aid startup
synchronization; Begin 1s executed 1n the new thread before
the TThreadHandle constructor completes, and the Run rou-
tine 1s executed after the TThreadHandle constructor com-
pletes. The methods CopyThreadSchedule and GetStackSize
return the default thread schedule and stack size. To provide
values different from the default, these methods should be

10

15

20

25

30

35

40

45

50

55

60

65

22

overridden to return the desired thread schedule and/or stack
size. TThreadProgram includes the following methods:

TThreadProgram (const T'lext& taskDescription): Task-
Description provides a text description of a task that can be
access via the TTaskHandle::GetTaskDescription method.

Only 1n effect 1f the object 1s passed a T'TaskHandle construc-
tor. If default constructor i1s used instead, the interface will

synthesize a unique name for TTaskHandle::GetTaskDe-
scription to return.

GetStackSize () returns the size of the stack to be set up for
the thread. Overrnide this method 1f you don’t want the
“default” stack size.

GetStack (): Used to set up the thread’s stack. Override this
method 11 you want to provide your own stack.

Run () represents the entry point for the code to be run 1n
the thread. OVERRIDE THIS METHOD to provide the code
the thread 1s to execute.

Task Classes

See FIG. 5 for a class diagram of the task classes 406.

TTaskHandle 1s a concrete base class that encapsulates all
the attributes and operations of a basic Mach task. It can be
used to refer to and control any task on the system.
TTaskHandle cannot be used directly to create a task, how-
ever, because 1t doesn’t have any knowledge about any runt-
ime environment. It does provide sullicient protocol, via pro-
tected methods, for subclasses with specific run-time
knowledge to be created that can spawn tasks (TC-
ETaskHandle, below, 1s an example of such a class).
TTaskHandle objects can only be streamed into and out of
TIPCMessageStreams and sent via IPC to other tasks, and
they are returned in a collection associated with
TCETaskHandle. The task control operations associated with
a TTaskHandle include killing the task, suspending and
resuming the task, and doing a deathwatch on the task. The
informational methods include getting 1ts host, getting and
setting 1ts registered ports, enumerating 1ts ports or virtual
memory regions, getting i1ts fault ports, enumerating its
threads, etc. TTaskHandle includes the following methods:

TTaskHandle (EExecutionThread) creates a task handle
for the specified thread.

Suspend () suspends the task (1.¢., all threads contained by
the task). Resume () resumes the task (i.e., all threads con-
tained by the task).

Kill () terminates the task—all threads contained by the
task are terminated.

WaitForDeathOf () performs death watch on the task—
The calling thread blocks until the task (*this) terminates.

CreateDeathinterest () creates a notification interest for the
death of the task. The thread specified in the TInterest object
gets a notification when the task (*this) terminates.

AllocateMemory (size_t howManyBytes, TMemorySur-
rogate& newRange) allocates a range of (anonymous) virtual
memory anywhere in the task’s address space. The desired
s1ize 1n bytes 1s specified in howManyBytes. The starting
address (after page alignment) and actual size of the newly
allocated memory are returned in newRange.

AllocateReserved AddressMemory (const TMemorySur-
rogate& range, TMemorySurrogate& newRange) allocates a
range of (anonymous) virtual memory at a specified reserved
address 1n the task’s address space. The range argument
specifies the address and size of the request. The newRange
returns the page aligned address and size of the allocated
memory.

US 7,424,704 B2

23

GetRemotePorts
(TCollection<TRemotePortRightHandle>& thePortSet) gets
list of ports on *this task. The caller 1s responsible for de-
allocating the memory in the returned Collection.

virtual void CreateFaultAssociationCollection
(TCollection<FaultAssociation>& where) return Fault Ports
registered for this Task.

TCETaskHandle 1s a subclass of TTaskHandle that repre-
sents a Mach task executing with the CE runtime system
(recall that that CE represents the computing environment
established by the wrapper 128), and embodies all the knowl-
edge required to set up the CE object environment. It can be
used to spawn a new task by passing a TThreadProgram into
its constructor. The new task 1s created with a single thread,
which 1s described by the T ThreadProgram object passed into
the TCETaskHandle constructor. There 1s also a constructor
that will allow a TCETaskHandle to be constructed from a
TTaskHandle. To insure that a non-CE-runtime task 1s not
wrapped with a TCETaskHandle, the constructor consults the
CE loader/library server (that 1s, the loader/library server
operating 1n the CE environment) to make sure the task being
wrapped has been registered with it. This 1s done automati-
cally (without any user intervention). TCETaskHandle
includes the following methods:

TCETaskHandle (const TThreadProgramé& whatToRun)
creates a new task and a thread to execute specified code. The
new thread executes the code in ‘whatToRun’.

TCETaskHandle (EExecutionTask) wraps task of cur-
rently executing thread.

TCETaskHandle (const TThreadProgram& whatToRun,
const TOrderedCollection<TLibrarySearcher>& library-
searchers) creates a new task and a thread to execute specified
code with specified library search. The librarysearchers
specifies the list of libraries to be used for resolving names.

TCETaskHandle (const TTaskHandle& aTask) creates a
CE task object from a generic task object.

AddLibrarySearcher (const TLibrarySearcher& newlLib-
Searcher) adds a library searcher for the task—Iloader uses
newLibrarySearcher first to resolve lib references 1.e. the
newLibrarySearcher 1s put on the top of the collection used to
resolve references.

GetTaskDescription (T Text& description) const returns a
string description of the task—gets the string from the asso-
ciated TThreadProgram of the root thread (passed to con-
structor). The string 1s guaranteed to be unique, and a string
will be synthesized by the interface i1 no description 1s passed
to the TThreadProgram constructor.

NotifyUponCreation (TlInterest* notityMe) synchro-
nously notifies the caller of every new task creation in the
system. There 1s no (*this) task object involved. The task from
which this call originates 1s the receiver of the notification.

Virtual Memory Classes

FIG. 6 1s a class diagram 601 for the virtual memory classes
408. Note that TTaskHandle 1s a class that represents a task.
TTaskHandle has already been discussed under the Task
classes 406 section. For virtual memory operations, objects of
type T'TaskHandle serve to specity the address space 1n which
the operation 1s to occur. Most of the virtual memory opera-
tions that can be performed in Mach are represented as meth-
ods of TTaskHandle. The various methods of TTaskHandle
that operate on virtual memory take TMemorySurrogate
objects as parameters. See the various methods under the
TTaskHandle description for further details. A number of the
memory classes have copy constructors and/or assignment
operators. It should be noted that the memory classes contain

5

10

15

20

25

30

35

40

45

50

55

60

65

24

references to the memory and not the actual memory itself.
Therefore when memory class objects are copied or streamed,
only the references within them are copied and not the actual
memory. The TMemorySurrogate class contains explicit
methods for doing copies of the memory 1t references.

TMemorySurrogate 1s a class that represents a contiguous
range ol memory 1n the virtual address space. It has a starting
address and a size (in bytes). TMemorySurrogates can be
used to specity ranges of memory on which certain operations
are to be performed. They are typically supplied as arguments
to methods of TTaskHandle that manipulate the wvirtual
memory 1n the address space associated with the task. This
class 1s used to specily/supply a region of memory with a
specific size. The class 1tself does not allocate any memory. It
just encapsulates existing memory. It 1s the responsibility of
the caller to provide the actual memory specified 1n this class
(the argument to the constructor). This class 1s NOT subclass-
able.

TChunkyMemory 1s an abstract base class that manages
memory in chunks of a specified size. Memory 1s allocated in
chunks (of the specified chunksize), but the user still views
the memory as a series of bytes. TChunkyMemory includes
the following methods:

LocateChunk (size t where, TMemorySurrogate&
theContainingRange) looks up 1n the collection of chunks and
returns 1n theContainingRange the address of the memory
and the chunksize.

CutBackTo (si1ze_t where) cuts back to the chunk contain-
ing “where’ 1.e. the chunk at the offset where will become the
last chunk 1n the list.

AllocateMemoryChunk (TMemorySurrogate& theAllo-
catedRange) 1s called by clients to allocate new chunks of
memory as needed. Returns the allocated range.

THeapChunkyMemory 1s a concrete class that manages
chunky memory on a heap.

TVMChunkymemory 1s a concrete class that manages
chunky memory using virtual memory.

TMemoryRegionlnfo 1s a class used with virtual memory
regions in a task’s address space. It provides memory attribute
information (like Inheritance, Protection etc.). It also pro-
vides access to the memory object associated with the region
of memory and to the actual memory range encapsulated 1n
the memory region. Nested mside TMemoryRegionlnfo 1s
the TMemoryAttributeBundle class that defines all the
memory attributes of any memory region. This 1s useiul when
one wants to get/set all the memory attributes (or to re-use
memory attributes with minimal changes). TMemoryAt-
tributeBundle 1s also used 1n the class TTaskHandle to deal
with mapping memory objects mto a task’s address space.
TMemoryRegionlnfo includes the following methods:

EMemoryProtection {kReadOnly, kReadWrite, kexecute}
specifies the protection for the memory.

EMemorylInheritance {kDontlnherit, kRead WriteInherit,
kCopylnherit} specifies the inheritance attribute for the
memory.

EMemoryBehavior {kReferenceSequential, kRefer-
enceReverseSequential, kReferenceRandom} specifies how
memory might be referenced.

EMemoryAttribute {kCacheable, kMigrateable} specifies
how machine specific properties of memory might be man-
aged.

EMemoryAdvice {kWillUse, kWontUse!} specifies how
memory will be used.

TMemoryObjectHandle 1s a base class that represents the
notion of a Mach memory object. It embodies the piece of

US 7,424,704 B2

25

data that can be mapped into virtual memory. System servers
that provide TMemoryObjectHandles to clients will subclass
from TMemoryObjectHandle in order to define specific types

ol memory objects such as files, device partitions, etc. For the
client of general virtual memory services, the main use of 5
TMemoryObjectHandle and the various subclasses 1s to pro-
vide a common type and protocol for data that can be mapped
into a task’s address space.

TChunkyStream 1s a concrete class (derived from TRan-
domAccessStream) that embodies a random access stream 10
backed by chunks of memory. The chunk size can be specified
or a default used. The chunks can be enumerated. This class
provides a common function of theTMemory class without
incurring the overhead of maintaining the memory as con-
tiguous. If the remaining functionality of TMemory 1s 15
required other classes could be defined.

TContiguousMemoryStream 1s a concrete class that uses
contiguous memory (supplied by the client). Since 1t 1s
derived from TRandomAccessStream, all random access
operations (like Seek()) are applicable to TContiguous- 29
MemoryStream objects.

InterProcess Communication (IPC) Classes

The IPC classes 410 represent the Mach IPC message *°
abstraction. Note that all messaging behavior 1s on the mes-
sage classes; the portright classes are basically for addressing
the message. The usage model 1s preferably as follows: A
TIPCMessageStream 1s instantiated, objects are streamed
into it, and the TIPCMessageStream::Send method is called "
with an object representing a destination send-right passed as
an argument. To receive a message, a TIPCMessageStream 1s
instantiated and 1ts Receive method called, passing i a
receive-right object as an argument. When the Receive
returns, objects can be streamed out of the TIPCMessage
Stream object. Note that the TIPCMessageStream objects are
reusable. A more detailed description of the IPC classes 410
follow with reference to FIG. 7, which illustrates a class
diagram 702 of IPC message classes, FIG. 8 which illustrates
a class diagram 802 of IPC out-of-line memory region
classes, and FIG. 9 which 1llustrates a class diagram 902 of
IPC port right classes.

35

40

Message Classes 4

MIPCMessage 1s an abstract base class that represents a
Mach IPC message. It provides all the methods for setting up
the fields of the header, the disposition array, and the port and
out-of-line memory arrays. It also contains all the protocol for
message sending and recerving. It provides rudimentary pro-
tocol (exported as a protected interface) to child classes for
setting up the in-line message data. The classes TIPCMes-
sageStream and TIPCPrimitiveMessage derive from this
class, and provide the public methods for adding data to the
message. MIPCMessage includes the following methods:

GetReplyPort (TPortSendSideHandle& replyPort) 1s valid
for recerve side only. Returns a reply port object, if one was
sent with the message. Only returns 1t the first time this 1s
called after message 1s recerved. Otherwise returns false. 60

TSecurityToken GetSendersSecurityToken() 1s valid for
receive side only. Returns the security token of the task that
sent this message.

50

55

SetSendersSecurity Token(const TSecurity Token& impos-
torSecurity Token,const TPortSendRight& hostSecurityPort) 65
1s valid for send side only. The next time the message 1s sent,
it will carry the specified security token instead of the one for

26

the task that actually does the send. Takes effect ONLY FOR
THE NEXT SEND, and then reverts back to the actual send-
er’s security token value.

Methods for sending/recerving IPC messages (Note that all
these methods have an optional TTime timeout value. If you
don’t want a timeout, specily kPositivelnfinity. All these
methods replace any existing value for reply port in msg
header. For those methods that allow specification of a reply
port, the disposition of the reply port right, as well as the port
right itself, 1s passed via a MIPCMessage:: TReplyPortDis-
position object. This 1s the only way to set the reply port, since
the disposition state 1s only valid for the duration of the send.
Objects for port rights whose dispositions are MOVE become
invalid once the send takes place.):

Send (const TPortSendSideHandle& destinationPort,
const T'Time& timeout=kpositivelnfinity) 1s a one-way, asyn-
chronous send.

Send (const TPortSendSideHandle& destinationPort,
const TReplyPortDisposition& replyPort, const TTime&
timeout=kpositivelnfinity) 1s an asynchronous send, with
send (-once) reply port specified.

Receive (const TPortReceiveSideHandle& sourcePort,
const TTime& timeout=kPositivelnfimity) 1s a “blocking”
receive.

SendAndReceive (const TPortSendSideHandle& send-
Port, const TPortReceiveSideHandle& receivePort, const
TTime& timeout=kpositivelnfinity) sends a message, blocks
and receives a reply (reply port 1s a send-once right con-
structed from recervePort).

SendAndReceive (const TPortSendSideHandle& send-
Port, const TPortReceirveSideHandle& receirvePort, MIPC-
Message& receiveMsg, const TTime&
timeout=kpositivelnfinity) send message, block and receive
reply (reply port 1s a send-once right constructed from
receivePort). Message 1s recerved 1nto a new message object
to avoid overwrite.

ReplyAndReceive (const TPortSendSideHandle& reply-
ToPort, const TPortRecerveSideHandle& receirvePort, const
TTime& timeout=kpositivelnfinity): sends back a reply,
blocks and recetves a new message.

ReplyAndReceive (const TPortSendSideHandle& reply-
ToPort, const TPortReceiveSideHandle& receirvePort,
MIPCMessage& receiveMsg, const TTime&
timeout=kPositivelnfinity) sends back a reply, blocks and
receives a new message.

Subclasses’ methods for getting/setting port right fields 1n
header (Remote and Local Ports: On SEND side, REMOTE

PORT specifies the destination port, and LOCAL PORT
specifies the reply port. On RECEIVE side, REMOTE PORT
specifies the reply port (port to be replied to) and LOCAL
PORT specifies the port received from. The way the port was
(or 1s to be) transmitted 1s returned 1n theDisposition. It can

have wvalues: MACH_MSG_TYPE_(MOVE_RECEIVE,
MOVE_SEND, MOVE_SEND_ONCE, COPY_SEND,
MAKE_SEND, MAKE_SEND_ONCE}.):

GetRemotePort: pass 1n the remote port right, and specily
the disposition. PORT RIGHT methods:

MovePortRightDescriptor: sender 1s giving away the port
right to the destination. Works on Send, SendOnce, and
Receive rights.

CopyPortSendRightDescriptor: sender 1s creating a copy
of the send right at the destination.

MakePortSendRightDescriptor: a new send right will be
created at the destination.

MakePortSendOnceRightDescriptor: a new send once
right will be created at the destination.

US 7,424,704 B2

27

TIPCMessageStream 1s a concrete class that provides a
stream-based IPC messaging abstraction. This 1s the recom-
mended class to be used for IPC operations. It dertves from
MIPCMessageDescriptor and from TStream. To send a mes-
sage, a user of TIPCMessageStream streams 1n the data to be
sent, icluding port-rights (TPortRightHandle derivatives),
out-of-line memory regions (TOutOILineMemorySurro-
gate), port-right arrays (TPortRightHandleArray), objects
contaiming any or all of these, and any other object or data
type desired. TIPCMessageStream will automatically set up
the appropriate data structures for the port rights, port right
arrays, and out-oi-line memory in the message header, and
put a place holder 1n the stream so that these elements will be
streamed out of the message 1n the appropriate place in the
stream. Once the data has been streamed 1n, the message 1s
sent using the Send method, supplying the appropriate desti-
nation port right (TPortSenderHandle) and optionally a reply
port. To recerve a message, the Receive method 1s called,
supplying a receive right (TPortReceiverHandle) for the port
to be recerved from. The data just recerved can then streamed
out of the TIPC MessageStream.

TIPCMessageStream also provides two methods for doing
a combined send and recerve operation, designed to provide
commonly-used message transmission semantics (and to take
advantage of fast-paths in the Mach micro-kernel). Send An-
dRece1ve does a client-side synchronous-style send and then
blocks 1n a receive to pick up the reply message. ReplyAn-
dRecerve does a server-side send of (presumably) a reply
message and then immediately blocks 1n a recetve awaiting
the next request. Both calls require that a destination port and
a receive port be specified. Additionally, the SendAndRe-
ceive method automatically creates the appropriate send-
once right from the supplied receive right and passes i1t along
as the reply port.

TIPCPrimitiveMessage 1s a concrete class that derives
from MIPCMessage and provides a more rudimentary, low
level interface to the Mach message system. Data 1s provided
to and from the message header and body via get and set calls.
There 1s no streaming capabaility. This 1s a concrete class that
represents a Mach IPC message. Inline data 1s added to the
message by passing 1n a TMemorySurrogate. Port rights,
arrays, and OOLdata must be added and extracted explicitly
using the appropriate methods.

TOutO1LineMemorySurrogate represents an out-of-line
memory range that 1s to be included 1n an IPC message. It uses
TMemorySurrogate 1n 1ts implementation, and only adds dis-
position information to the startAddress and length informa-
tion already contained in TMemorySurrogate. This class 1s
the same as a TMemorySurrogate, except it includes dispo-
sition information used when sending the message, and may
represent the storage associated with the range. This class
includes streaming operators, methods to set/get the range,
and methods to set/get disposition information.

Port Rights

The following classes represent all the valid types of Mach
port rights. These classes all share the following general
behaviors: In general, when a port right object 1s imnstantiated
it increments the kernel’s reference count for that right, and
when a port right object 1s destroyed it decrements the ker-
nel’s port right reference count. However, note that port right
objects are handles for the “real” kernel port right entities.
They can be copied, 1n which case there may be two objects
that refer to the same kernel port right entity. These copies are
reference counted mternally so that when all the objects that
refer to a port right are deleted, the kernel’s port right refer-

10

15

20

25

30

35

40

45

50

55

60

65

28

ence count 1s decremented. When a port right becomes a dead
name (1.e., when the port it belonged to 1s destroyed), attempts
to use methods on the representative object will throw an
exception (excluding those operations, like setting the refer-
ence counts, that are valid on dead names).

TPortRightHandle 1s an abstract base class that represents
the notion of a port right. It contains all the protocol common
to each type of port right, such as getting the port name,
requesting dead name notification, testing to see if the port
right 1s a dead name, etc. (The port name 1s returned as a
mach_port_name_t type, and 1s provided as a way to interact
with Mach servers not written using the object wrappers.) It
also serves as a common super class to allow a generic type
representing all types of ports to be passed polymorphically.
TPortSenderHandle and TPortReceiverHandle derive from
these classes. This class includes methods for streaming sup-
port (This class and any classes that contain 1t can only be
streamed 1to or out of the TIPCMessageStream class.
Attempting to stream into any other TStream will throw an
exception at runtime.), Getters/Setters, and methods for
requesting notifications (Must provide a send-once right that
the notification 1s to be sent to. MAKE a send-once right by
passing (by reference) a recerve right. MOVE a send-once
right by ADOPTING a send-once right.)

TPortSenderHandle 1s an abstract class that represents any
port right that an IPC message can be sent to. E.g., this 1s the
type that MIPCMessage::Send takes as the destination and
reply ports. The classes TPortSendRightHandle and TPortS-
endOnceRightHandle derive from this class. This class
includes methods for streaming support, and Getters and
setters.

TPortSendRightHandle represents a port send right. It sup-
ports all the typical operations that can be performed on a
send right. It 1s created by passing a valid TPortRecerveRight
Handle or TPortSendRightHandle 1nto the constructor, or by
streaming 1t out of a TIPCMessageStream. This class
includes methods that create an empty TPortSendRight-
Handle object without affecting the kernel reference counts,
constructors that create a new Send Right 1n the current task,
methods for Streaming Support, and Getters and setters.

TPortSendOnceRightHandle represents a port send-once
right. It supports all the typical operations that can be per-
formed on a send-once right. It 1s created by passing a valid
TPortRecieveRightHandle into the constructor, or by stream-
ing it out of a TIPCMessageStream. When a message 1s sent
to an object of this class, making the send-once right invalid,
all subsequent attempts to send to this object will cause an
exception to be thrown. In addition, the object will be marked
as invalid and attempts to use methods of the object will also
cause exceptions to be thrown (except for methods for 1mitial-
1zing the object, obviously). This class includes Constructors
that create a TPortSendOnceRightHandle object without,
Constructors that create a new Send Once right on the current
task, methods for Streaming Support, and Getters and setters

TPortReceiverHandle 1s an abstract class that represents
any port right that an IPC message can be received from. E.g.,
this 1s the type that MIPCMessage::Recerve takes as the port
to receive from. The classes TPortRightReceiveHandle and
TPortSetHandle derive from this class. This class icludes
methods for Streaming Support, and Getters and setters

TPortRecerveRightHandle represents a port receive right.
It supports all the typical operations that can be performed on
a recerve right, such as requesting no-more-senders notifica-
tion, setting and getting the port’s maximum message size
and queue length, getting and setting 1ts make-send count, etc.
It a TPortReceiveRightHandle 1s instantiated (other than with
the null or copy constructors) it causes a port and recerve right

US 7,424,704 B2

29

to be created. The copy constructor creates another object (an
alias) that references the same recetve right. These objects are
internally reference counted, such that when the last object
referencing a particular recerve right 1s destroyed, 1t destroys
the recerve right (and the port) 1t represents, causing all extant
rights to that port to become dead names. This class 1s a
concrete class that represents a port receive right. By defini-
tion, the actual kernel port entity 1s created when a receive
right 1s created, and destroyed when a receive right i1s
destroyed. Since this class 1s a handle, creation and destruc-
tion of the receive right 1s not necessarily tied to creation and
deletion of a TPortReceiveRightHandle. For example, the
default constructor does not actually create a recerve right, but
just an empty object. This class includes Constructors that
create a TPortRecerveRightHandle object without creating a
port or affecting the kernel reference counts, Constructors
that create new Recerve Rights and Ports, methods to make an
uninitialized object valid, creating a receive right (and there-
fore a port) 1n the process, Streaming Support, Recerve Right/
Port manipulation methods, Getters and setters, and Methods
for requesting notifications.

TPortSetHandle represents a port set. It has methods for
adding, removing, and enumerating the TPortReceiveRight-
Handle objects representing the recerve rights contained 1n
the port set, methods for getting and setting 1ts make send
count, etc. If a TPortSetHandle 1s instantiated with a default
constructor, 1t causes a port set to be created. If it 1s 1nstanti-
ated using the copy constructor, an alias 1s created for the
same port set. When the last object representing a particular
port set 1s deleted, 1t destroys the port set. This class cannot be
streamed.

TPortRightHandle Array 1s a concrete class that represents
an array ol port rights that can be sent as an out-of-line
descriptor 1n an IPC message. It can contain any kind of port
right, and the disposition of the port right (i.e., how it 1s to be
transierred to the target task) i1s specified for each port right in
the array. This class implements an array of port rights that
can be sent as an out-of-line descriptor 1n an IPC message
(along with port rights and out-of-line memory). This class
includes methods for Streaming Support, Methods to add
clements to the array (SEND SIDE), and Methods to remove
clements from the array (RECEIVE SIDE).

TRemotePortRightHandle 1s a concrete class that 1s used to

refer to a port right 1n another task. It does not contain most of

the usual port right methods, since it 1s not intended to be used
to perform those types of functions but merely to act as aname
or handle for the remote port right. Constructing this class
DOES NOT create a port right—it only represents a port right
that already exists 1n another task.

Wait Groups

MWaitable and TWaitGroup are classes that provide for
message dispatching and the ability to wait for more than one
type of message source at the same time. TWaitGroup 1s a
class that provides the ability to set up a collection of objects
derived from MWaitable such that a thread can use the Wait
method to receive a message from any of the MWaitable
objects. It also provides for automatic dispatching of the
received message. Multi-Wait Operations are called repeat-
edly by a task to receive messages. They are multi thread safe
so there can be more than one thread servicing messages. This
class includes methods for manipulating the members of the
TWaitGroup. For example, GetListOfWaitables returns a list
of MWaitables 1n this group. MWaitable 1s an abstract base
class that associates a port with an internal handler method
(HandleIPCMessage). It also provides a common base class

10

15

20

25

30

35

40

45

50

55

60

65

30

for collecting together via the TWaitGroup class Recerve
Rights and other classes based on Receive Rights

TWaitablePortRecerveRightHandle 1s a convenience class
that derives from both TPortRecerveRightHandle and
MWaitable. It 1s an abstract base class whose subclasses can
be added to a TWaitGroup to provide for multi-wait/dispatch-
ing of Mach message IPC with other MWaitable subclasses.

Synchronization Classes

FIG. 10 1s a class diagram 1002 of the synchronization
classes 412, which are used to mvoke the synchronization
services of Mach. As discussed above, the synchronization
classes 412 employ semaphores and monitors and conditions.
TSemaphore 1s a class that provides the general services of a
counting semaphore. When acquiring a semaphore, 1f some
other task already has acquired the semaphore, the calling
thread blocks (no exception thrown). But i1 the semaphore 1s
invalid for some reason, an exception 1s thrown. This class
includes the following methods:

Acquire: acquire the semaphore 1n exclusive mode.

Acquire (const TTime& maximumWait): acquire the
semaphore 1n exclusive mode, with time-out.
AcquireShared (): acquire the semaphore in shared mode.

AcquireShared (const TTime& maximumWait): acquire
the semaphore in shared mode, with time-out.
Release (): release the previously acquired semaphore.

AnyThreadsWaiting (): returns true 1f the semaphore cur-
rently has threads waiting to acquire 1t.

TLocalSemaphore 1s a class that represents a counting
semaphore that can be acquired 1 an exclusive or shared
mode. The major operations are acquire and release. An
optional time-out value can be specified on the acquire opera-
tion to limit the time spent waiting 1f desired. This class
mplements ‘local” semaphores, which may only be used
within a task (address space) and have no recovery semantics.

TRecoverableSemaphoreHandle 1s a class that represents a
semaphore that behaves like a TLocalSemaphore with the
additional property that the semaphore 1s “recoverable”.
Recoverability means that when a thread holding the sema-
phore terminates abnormally, the counts are adjusted, and any
waiting threads are appropriately unblocked. An exception 1s
raised in each such thread indicating that the semaphore was
recovered and the integrity of any associated user data may be
suspect. Note that for abnormal termination of a thread that
had acquired the semaphore 1n a shared fashion, no excep-
tions need be raised 1n other threads since the associated data
should only have been accessed 1n a read-only fashion and
should still be 1n a consistent state. This class includes the
following methods:

GetCurrentHolders: returns a collection of the current
threads holding the semaphore.

SetRecovered: sets state of the semaphore to ‘recovered’,
removing a previous ‘damaged’ state.

Destroy: removes the recoverable semaphore from the sys-
tem

TMonitorEntry 1s a class that represents the lock (some-
times called a mutex) associated with a momtor. The con-
structor for this class actually causes the monitor lock to be
acquired, and the act of exiting the local scope (which causes
the destructor to be called) causes the monitor lock to be
relinquished. If another task 1s already in the monitor, the
thread attempting to enter the monitor will be blocked 1n the
TMonitorEntry constructor until the preceding thread(s)
leave the monitor. This class includes operators new and
delete which are private so that TMonitorEntry’s can only be

US 7,424,704 B2

31

allocated on the stack, thus providing automatic entry and exit
(and the associated monitor lock acquire and release) with
scope entry and exit.

TMonitorCondition 1s a class that represents a condition
variable that 1s associated with some monitor. The major
operations are wait, notify, and broadcast. The wait operation
causes the current thread to wait for the condition to be
notified, and while the thread 1s blocked the monitor lock 1s
relinquished. Notily and broadcast are called by a thread
executing 1nside the monitor to indicate that either one or all
of the threads waiting on the condition should be unblocked
when the notifying (or broadcasting) thread exits the monitor.
When a waiting thread 1s unblocked, it attempts to reaquire
the monitor lock (one thread at a time 1n the case of a broad-
cast), at which point it resumes executing in the monitor. An
optional time-out value can be specified to limit the time spent
waiting for a condition. Other than construction and destruc-
tion, all methods of TMomtorCondition must be called only
from within the monitor.

TMonitorLock 1s a class that represents a lock on a moni-
tor. It 1s passed 1nto the constructors for TMonitorEntry and
TMonitorCondition to indicate which momitor 1s being
aquired or to which monitor a condition 1s to be associated.

Scheduling Classes

FIG. 11 1s a class diagram 1102 of the scheduling classes

414, which are used to mvoke the scheduling services of
Mach.

TThreadSchedule 1s a concrete base class that embodies
the scheduling behavior of a thread. It defines the thread’s
actual, default, and maximum priorities. The lower the prior-
ity value, the greater the urgency. Each processor set has a
collection of enabled TThreadSchedules and a default one. A
thread may be assigned any T'ThreadSchedule that 1s enabled
on the processor set on which the thread 1s running. The
priority may be set up to the maximum value defined by
TThreadSchedule, but use of this feature 1s strongly discour-
aged. Specific scheduling classes (TIdleSchedule, TServer-
Schdule etc.) are made available using this class as the base.
However (since there are no pure virtual functions in this
class) derived classes are free to create objects of this class if
necessary (but it may not be required to do so). TThread-
Schedule objects (using polymorphism) are used to specily
scheduling policy for threads. The subclasses presented
below should be used to determine the appropriate priority
and proper range.

TIdleThreadSchedule i1s a concrete subclass of TThread-
Schedule for those threads that are to run when the system 1s
idle. They only run when nothing else in the system can run.
This category, in general, would be used for idle timing,

maintenance, or diagnostic threads.

TServerSchedule 1s a concrete subclass of TThreadSched-
ule for server threads. Server threads must be very responsive.
They are expected to execute for a short time and then block.

For services that take an appreciable amount of time, helper
tasks with a different kind of TThreadSchedule (TSupportS-
chedule) should be used.

TUserInterfaceSchedule 1s a concrete subclass of
TThreadSchedule for those application tasks that should be
responsive and handle the application’s human interface.
They typically run for a short time and then block until the
next interaction.

TApplicationSchedule 1s a class used with those threads
that support an application’s longer running parts. Such
threads run for appreciable amounts of time. When an appli-

10

15

20

25

30

35

40

45

50

55

60

65

32

cation or window 1s activated, the threads in the associated
task become more urgent so that the threads become more
responsive.

TPseudoRealTimeThreadSchedule 1s a class that allows
tasks to specily their relative urgency 1n the fixed priority
class by setting their level within 1ts range. The task schedule
exports the number of levels that are allowable and the default
base level. If alevel 1s requested that would cause the value to
be outside the class range an exception will be thrown. This
class includes the following methods:

Setlevel (PriorityLevels thelevel): Set the level of the
task. A lower number 1s more urgent.

ReturnNumberOiLevels (): Return the number of levels of
urgency for this scheduling object.

ReturnDefaultLevel (): Return the default level of urgency
for this scheduling object. The default level 1s relative to the
scheduling class’s most urgent priority.

Fault Classes

FIGS. 12, 13, 14, and 15 present class diagrams 1202,
1220,1302,1402, and 1502 of the fault classes 416, which are
used to invoke the fault services of Mach. For the classes that
represent fault messages (for example, TIPCldentityFault-
Message, TIPCldentityFaultMessage, etc.), 1t 1s necessary to
dedicate a single port for each message type. That 1s, the user
should ensure that only one type of message will be received
on any given port that 1s used for fault handling. Preferbly, the
tault classes 416 include a processor-specific set of classes for
cach processor 106 that the operating system 114 runs on.
Alternatively, the fault classes 414 may include generally
generic classes which apply to multiple processors. The
Motorola-68000-specific classes are presented herein for
illustrative purposes, and 1s not limiting. Persons skilled in the
relevant art will find 1t apparent to generate processor-specific
classes for other processors based on the teachings contained
herein.

TFaultType 1s an abstract base class that represents a fault.
It 1s subclassed to provide the processor-unique fault values.
It identifies the fault by processor and fault 1d. The following
three classes are subclasses of TFaultType:

TMC680X0FaultType represents a fault type on a
Motorola 68K processor. It identifies the possible 68K type
values and CPU descriptor.

TMC680X0BadAccessFaultlype represents a bad access
type on a Motorola 68K processor.

TMC680X0AddressFaultType represents an address error
type on a Motorola 68K processor.

TFaultDesignation 1s a class that encapsulates the destina-
tion, the format for a fault message, and the types of faults for
which the message should be sent for a task or thread. This
class allows you to specily on a task or thread basis that the
fault message of the requested type for the specified fault
types should be sent to the port indicated by the send right.
TFaultTypeSet encapsulates a set of fault types.

TFaultData 1s a class that encapsulates fault data provided
by the kernel in addition to the processor state. Not all faults
have fault data. The fault data 1s provided in the fault message
and 1s available from the thread state.

TIPCFaultMessage 1s a class that encapsulates the fault
message sent by the kernel on behalf of the thread that got the
Fault. It 1s used to receirve and reply to the Fault. Three
subclasses (below) are provided for the three possible kinds
of data that might be sent with the fault message. The message
may include the identification of the faulting task and thread,
or the state of the faulting thread, or both sets of information.
TIPCldentityFaultMessage encapsulates the Fault message

US 7,424,704 B2

33

containing the identity of the thread that got the Fault. It 1s
used to receive and reply to the Fault. TIPCStateFaultMes-
sage encapsulates the Fault message containing the thread
state of the thread that got the Fault. It 1s used to receive and
reply to the Fault. TIPCStateAndldentityFaultMessage
encapsulates the Fault message contaiming the thread state
and i1dentity of the thread that got the Fault. It 1s used to
receive and reply to the Fault.

TThreadState 1s an abstract class that represents the CPU
state ol a thread. Subclasses actually define the processor
specific forms. There 1s no information in the class. All work
1s done 1n the denived classes. All queries for CPU state will
return a TMC680X0State pointer which has to be cast at
runtime to the correct derived class object. Derived sub-
classes are specific to particular processors, such as many of
the subclasses shown 1n FIGS. 12, 13, 14, and 15 which are
dependent on the Motorola 68xxx line of processors. Such
subclasses include TMC680X0State, which 1s a concrete
class that represents the 680x0 CPU state of a thread. Other
examples include TMC680X0CPUState, which encapsulates
the CPU state available for all 68K states, and
TMC680X0CPUFaultState, which encapsulates the 68K
fault state available for all 68K states.

Host and Processor Set Classes

FIG. 16 1s a class diagram 1602 for the machine classes
418, which are also called herein the host and processor set
classes. The machine classes 418 are used to mvoke the ser-
vices related to Mach’s machine and multiprocessor support.

TPrivilegedHostHandle 1s a concrete class that embodies
the privileged port to the kernel’s host object. The privileged
host port 1s the root of Mach’s processor management. The
holder of the privileged host port can get access to any port on
the system. The basic privilege mechanism provided by the
kernel 1s restriction of privileged operations to tasks holding
control ports. Therefore, the integrity of the system depends
on the close holding of this privileged host port. Objects of
this class can: get boot information and host statistics, reboot
the system, enumerate the privileged processor sets, commu-
nicate with non-CE entities, and enumerate the processors.

THostHandle 1s a non-privileged concrete class that
embodies the name port to the kernel’s host object. Objects of
this class can return some host information, and return the

5

10

15

20

25

30

35

40

34

default processor set. Objects of this class are useful to get
information from the host (such as kernel version, maximum
number ol CPUs, memory size, CPU type, etc.) but cannot
cause any damage to the host. Users should be provided
access to objects of this class rather than the highly privileged
TPrivilegedHostHandle objects.

TProcessorHandle 1s a concrete class representing a pro-
cessor. A processor can be started, exited, added to a TPrivi-
legedProcessorSetHandle, return information, and be sent
implementation-dependent controls.

TPrivilegedProcessorSetHandle 1s a concrete class provid-
ing the protocol for a processor set control port. Objects of
this class can: enable and disable scheduling policies, set the
maximum priority for the processor set, return statistics and
information, enumerate the tasks and threads, and assign
threads and tasks to the processor set. Client access to objects
of this class should be highly restricted to protect the 1ndi-
vidual processors and the processor set.

TProcessorSetHandle 1s a concrete class providing the pro-
tocol for a processor set name port. Objects of this class can
return basic information about the processor set (the number
of processors 1n the processor set, etc.) but they cannot cause
any damage to the processor set.

Implementation of Wrapper Methods

As noted above, the Mach and the Mach procedural inter-
tace are well-known. The wrapper class library 402, and the
operation of the methods of the wrapper class library 402,
have been defined and described 1n detail above. Implemen-
tation of the methods defined by the wrapper class library 402
1s described below by considering selected methods from the
wrapper class library 402. Persons skilled 1n the relevant art
will find 1t apparent to implement the other methods of the
wrapper class library 402 based on the well-known specifi-
cation of the Mach, the discussion above regarding the wrap-
per class library 402, and the discussion below regarding the
implementation of the wrapper methods. The implementation
of the kill() method from the TThreadHandle class of the
thread classes 404 1s shown in Code Example 2, below. A
routine called “examplel” 1s shown 1 Code Example 1,
below. The “examplel” routine includes a decomposition
statement which causes the kill() method to be executed.

© Copyright, Taligent Inc., 1993
void examplel(TThreadHandle& aThread)

{
TRY
1
aThread.Kill(); //terminates aThread immediatly
h
CATCH(TKemelException)
(
printi{*“Couldn’t kill thread'n”); // error occured trying to kill
h
ENDTRY;
/..
h

CODE EXAMPLE 1
void TThreadHandle::Kill()

i
kerm return terror;
if((error = thread_ terminate(fThreadControlPort)) != KERN__SUCCESS)
THROW(TKernelException()); // Error indicator
h
CODE EXAMPLE 2

Where:

US 7,424,704 B2

35

-continued

fThreadControlPort 1s an instance variable of the TThreadHandle class that
contains the Mach thread control port for the thread the class represents.

TKernelException 1s the C++ exception class that is thrown when a kernel
routine gets an error.

THROW, TRY, CATCH, and ENDTRY are part of the C++ language that allow
you to throw and catch C++ exceptions.
The implementation of the suspend () method from the TTaskHandle class of the task
classes 406 1s shown in Code Example 4, below. A routine called “example2” 1s shown
in Code Example 3, below. The “example2” routine includes a decomposition

statement which causes the suspend() method to be executed.
void example2(TTaskHandle& aTask)

{

TRY

1
;

CATCH(TKemelException)

aTask.Suspend(); //suspend all threads on task aTask

(
printf(“Couldn’t suspend threads *); // error occured
)
ENDTRY;
/...

;

CODE EXAMPLE 3
void TTaskHandle::Suspend()

{

kern_ return_ t error;
if({error = task__suspend(fTaskControlPort)) = KERN__SUCCESS)
THROW(TKernelException()); // Error indicator
h
CODE EXAMPLE 4
Where:
fTaskControlPort 1s an instance variable of the TTaskHandle class that contains
the Mach thread control port for the task the class represents.
TKernel Exception 1s the C++ exception class that 1s thrown when a kernel
routine gets an error.
THROW, TRY, CATCH, and ENDTRY are part of the C++ language that allow
you to throw and catch C++ exceptions.
The implementation of the GetLevel({) method from the
TPseudoReal TimeThreadSchedule class of the scheduling classes 414 1s shown 1n Code
Example 6, below. A routine called “example3” is shown in Code Example 5, below.
The “example3” routine includes a decomposition statement which causes the
GetLevel() method to be executed.
void example3(TPseudoRealTimeThreadSchedule& aSchedule)
1
PriorityLevels curPriority;
curPriority = aSchedule.GetLevel (); // Get thread’s current priority
/...
h
CODE EXAMPLE 5
PriorityLevels TPseudoReal TimeThreadSchedule::GetLevel()
1
struct task thread sched info schedInto;
thread_ sched_ info schedInfoPtr = schedInfo;
mach__msg type number_ treturnedSize;
returnedSize = sizeof (schedInfo);
vold thread_ info (fThreadControlPort, THREAD_ SCHED_ INFO, schedInfoPtr,
&returnedSize);
return (schedInfo.cur_ priority);
]
CODE EXAMPLE 6
Where:
fThreadControlPort 1s an instance variable of the
TPseudoReal TimeThreadSchedule class. It contains the Mach thread control port of
the thread for which the class 1s a schedule.
The implementation of the GetKernel Version() method from the THostHandle class of
the machine classes 418 1s shown in Code Example &, below. A routine called
“example4” 1s shown in Code Example 7, below. The “example4” routine includes a

decomposition statement which causes the GetKernel Version() method to be executed.
void example4(THostHandle& aHost)

1

kernel wversion tversion;
aHost.GetKernelVersion (&version); // get version of kernel currently
rUnning

/...
;

CODE EXAMPLE 7
void THostHandle::GetKernelVersion (kernel version_ té& theVersion)

{

36

US 7,424,704 B2
37

-continued

vold host_ kernel version(fHostPort, theVersion);

h

CODE EXAMPLE 8
Where:

fHostPortis an instance variable of the THostHandleclass that contains the Mach
host control port for the host the class represents.

The implementation of the GetMakeSendCount() method from the
TPortRecerveRightHandle class of the IPC classes 410 1s shown in Code Example 10,
below. A routine called “example5™ 1s shown 1n Code Example 9, below. The
“example5” routine includes a decomposition statement which causes the
GetMakeSendCount() method to be executed. As evident by its name, the
GetMakeSendCount() method accesses the Mach to retrieve a make send count
associated with a port. The GetMakeSendCount () method includes a statement to call
mach_port_ get attributes, which is a Mach procedurally-oriented system call that
returns status information about a port. In GetMakeSendCount(), fTheTask 1s an
instance variable of the TPortReceiveRightHandle object that contains the task control
port of the associated task, and fThePortName 1s an instance variable of the
TPortReceiveRightHandle object that contains the port right name of the port
represented by the TPortReceiveRightHandle object.

void example3(TPortReceiveRightHandle& aReceiveRight)

1

unsigned long count;
count = aReceiveRight.GetMakeSendCount();
/...
]
CODE EXAMPLE 9
unsigned long TPortReceiveRightHandle::GetMakeSendCount()
1
mach_ port_status tthelnfo; //port status info returmed by Mach
mach__msg type number ttheSize; //size of info returned by
vold mach_ port get attributes(fTheTask, fThePortName,
MACH_PORT_RECEIVE_STATUS,
&thelnfo, &theSize);
return(thelnfo.mps_ mscount);
}CODE EXAMPLE 10
Variations on the present invention will be obvious to persons skilled in the
relevant art based on the discussion contained herein. For example, the scope of the
present invention includes a system and method of enabling a procedural application
to access 1n a procedural manner an object-oriented operating system having a native
object oriented interface during run-time execution of the application 1n a computer.
This embodiment of the present invention preferably operates by locating in the
application a procedural statement which accesses a service provided by the operating
system, and translating the procedural statement to an object-oriented function call
(1.e., method) compatible with the native object-oriented interface of the operating
system and corresponding to the procedural statement. The object-oriented function
call 1s executed in the computer to thereby cause the operating system to provide the
service on behalf of the application. While various embodiments of the present
invention have been described above, it should be understood that they have been
presented by way of example only, and not limitation. Thus, the breadth and scope of
the present invention should not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with the following claims and
their equivalents.

38

What 1s claimed 1s:

1. A method for running an object-oriented application on
a computer platform including computer hardware and an s
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:
providing an object-oriented interface specitying object-
ortented classes each containing one or more methods, 55
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
application on the plurality of computer platforms to ¢
instantiate objects from the classes and nvoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat- 65
form to provide native operating system services from
the one computer platform;

determining if a particular object-oriented method to be

invoked during runtime execution 1s not present in
executable program memory 1n the computer hardware;
and

loading the particular object-oriented method into the
executable program memory determined to not be
present 1n the executable program memory prior to 1ts
runtime execution.

2. The method of claim 1, which further comprises:

the particular object-oriented method being not present 1n
the executable program memory when the object-ori-
ented program begins execution.

3. The method of claim 1, which further comprises:

the particular object-oriented method being specific to the
computer platiorm.

4. The method of claim 1, which further comprises:

the particular object-oriented method being specific to the
computer hardware.

US 7,424,704 B2

39

5. The method of claim 1, which further comprises:

the particular object-oniented method being specific to the

operating system executing on the computer hardware.

6. The method of claim 1, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

7. The method of claim 1, wherein the native operating
system services are thread services.

8. The method of claim 1, wherein the native operating
system services are task services.

9. The method of claim 1, wherein the native operating
system services are virtual memory services.

10. The method of claim 1, wherein the native operating
system services are inter-process communication (IPC) ser-
VICES.

11. The method of claim 1, wherein the native operating
system services are synchronmization services.

12. The method of claim 1, wherein the native operating
system services are scheduling services.

13. The method of claim 1, wherein the native operating
system services are fault services.

14. The method of claim 1, wherein the native operating
system services are processor and processor set services.

15. The method of claim 1, wherein the native operating
system services are port services.

16. The method of claim 1, wherein the native operating
system services are security services.

17. The method of claim 1, wherein the native operating
system services are lile system services.

18. The method of claim 1, wherein the native operating
system services are graphical user interface (GUI) services.

19. A computer program product embodied on a computer
storage medium, for runming an object-oriented application
on a computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, the program
product performing the steps of:

providing an object-oriented interface specifying object-

oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platiorms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
application on the plurality of computer platforms to
instantiate objects from the classes and ivoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented iterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

determining if a particular object-oriented method to be

invoked during runtime execution 1s not present 1n
executable program memory 1n the computer hardware;
and

loading the particular object-oriented method into the

executable program memory determined to not be
present 1n the executable program memory prior to its
runtime execution.

20. The computer program product of claim 19, which
turther comprises:

the particular object-oriented method being not present 1n

the executable program memory when the object-ori-
ented program begins execution.

10

15

20

25

30

35

40

45

50

55

60

65

40

21. The computer program product of claim 19, which
further comprises:

the particular object-oriented method being specific to the
computer platform.

22. The computer program product of claim 19, which
turther comprises:

the particular object-oriented method being specific to the
computer hardware.

23. The computer program product of claim 19, which
turther comprises:

the particular object-oriented method being specific to the
operating system executing on the computer hardware.

24. The computer program product of claim 19, which
turther comprises:

the particular object-oriented method being specific to the
operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

25. A computer program product embodied on a computer
storage medium, for running an object-oriented application
on a computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, the program
product comprising:

program code to provide an object-oriented interface

speciiying object-oriented classes each containing one
or more methods, on the computer platform, the inter-
face implemented on a plurality of computer platforms
including different combinations of computer hardware
and operating systems, the interface used by the same
object-oriented application on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

program code to determine 1f a particular object-oriented
method to be mvoked during runtime execution 1s not
present 1n executable program memory in the computer
hardware; and

program code to load the particular object-oriented method
into the executable program memory determined to not
be present 1n the executable program memory prior to its
runtime execution.

26. The computer program product of claim 25, which
further comprises:

the particular object-oriented method being not present 1n
the executable program memory when the object-ori-
ented program begins execution.

27. The computer program product of claim 25, which
further comprises:

the particular object-oriented method being specific to the
computer platiorm.

28. The computer program product of claim 25, which
further comprises:

the particular object-oriented method being specific to the
computer hardware.

29. The computer program product of claim 25, which
further comprises:

the particular object-oriented method being specific to the
operating system executing on the computer hardware.

US 7,424,704 B2

41

30. The computer program product of claam 25, which
turther comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

31. A computer platform for running an object-oriented
application, including computer hardware and an operating
system executing on the computer hardware, including pro-
gram logic code specific to the operating system and com-
piled for use on the computer hardware, comprising:

a processor; and

a memory coupled to the processor, containing code which

implements an object-oriented interface specifying
object-oriented classes each containing one or more
methods, on the computer platform, the interface imple-
mented on a plurality of computer platforms including
different combinations of computer hardware and oper-
ating systems, the interface used by the same object-
oriented application on the plurality of computer plat-
forms to 1stantiate objects from the classes and mvoke
the object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented iterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the memory programmed to determine 1f a particular

object-oriented method to be invoked during runtime
execution 1s not present 1n executable program memory
in the computer hardware; and

the memory programmed to load the particular object-

ortented method 1nto the executable program memory
determined to not be present in the executable program
memory prior to 1ts runtime execution.

32. The computer platform of claim 31, which further
COmprises:

the particular object-oriented method being not present 1n

the executable program memory when the object-ori-
ented program begins execution.

33. The computer platform of claim 31 which further com-
Prises:

the particular object-oniented method being specific to the

computer platform.

34. The computer platform of claim 31, which further
COmMprises:

the particular object-oriented method being specific to the

computer hardware.

35. The computer platform of claim 31, which further
COmprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware.

36. The computer platform of claim 31, which further
COmMprises:

the particular object-orniented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

37. A method for running an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

loading code that implements an object-oriented interface

specilying object-oriented classes each containing one
or more methods, on the computer platform, the inter-
face implemented on a plurality of computer platforms

10

15

20

25

30

35

40

45

50

55

60

65

42

including different combinations of computer hardware
and operating systems, the interface used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method; and

loading code into the executable program memory that
implements the particular object-oriented method, 111t 1s
not yet loaded prior to 1ts runtime execution.

38. The method of claim 37, which further comprises:

the particular object-oriented method being not present 1n
the executable program memory when the object-ori-
ented program begins execution.

39. The method of claim 37, which further comprises:

the particular object-oriented method being specific to the
computer platform.

40. The method of claim 37, which further comprises:

the particular object-oriented method being specific to the

computer hardware.

41. The method of claim 37, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware.

42. The method of claim 37, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

43. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

using an object-oriented interface specilying object-ori-

ented classes each containing one or more methods, on
the computer platform, the interface implemented on a
plurality of computer platforms including different com-
binations of computer hardware and operating systems,
the interface used by the same object-oriented program
on the plurality of computer platforms to instantiate
objects from the classes and invoke the object-oriented
methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call 1n the object-oriented program, to a par-

ticular object- oriented method not present in executable
program memory;

the particular object-oriented method being loaded 1nto the

executable program memory, 11 1t 1s determined to not be
present in the executable program memory prior to its
runtime execution.

44. The method of claim 43, which further comprises:

the particular object-oriented method being not present 1n

the executable program memory when the object-ori-
ented program begins execution.

45. The method of claim 43, which further comprises:

the particular object-oriented method being specific to the
computer platform.

US 7,424,704 B2

43

46. The method of claim 43, which further comprises:

the particular object-oniented method being specific to the

computer hardware.

47. The method of claim 43, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware.

48. The method of claim 43, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

49. A computer program product embodied on a computer
storage medium, for running an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

program code for loading code that implements an object-

ortented interface specitying object-oriented classes
cach containing one or more methods, on the computer
platform, the interface implemented on a plurality of
computer platforms including different combinations of
computer hardware and operating systems, the interface
used by the same object-oriented program on the plural-
ity of computer platforms to instantiate objects from the
classes and invoke the object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular

object-oriented method not present 1n executable pro-
gram memory; and

program code for loading code into the executable program

memory that implements the particular object-oriented
method, 11 1t 1s not yet loaded prior to its runtime execu-
tion.

50. The computer program product of claim 49, which
turther comprises:

the particular object-oriented method being not present 1n

the executable program memory when the object-ori-
ented program begins execution.

51. The computer program product of claam 49, which
turther comprises:

the particular object-oriented method being specific to the

computer platform.

52. The computer program product of claim 49, which
turther comprises:

the particular object-oriented method being specific to the

computer hardware.

53. The computer program product of claim 49, which
turther comprises:

the particular object-orniented method being specific to the

operating system executing on the computer hardware.

54. The computer program product of claam 49, which
turther comprises:

the particular object-oniented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

55. An object-oriented computer program product embod-
ied on a computer storage medium, to run on a computer
platform including computer hardware and an operating sys-
tem executing on the computer hardware, including program
logic code specific to the operating system and compiled for
use on the computer hardware, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

44

program code for using an object-oriented interface speci-
fying object-oriented classes each containing one or
more methods, on the computer platform, interface
implemented on a plurality of computer platforms
including different combinations of computer hardware
and operating systems, the interface used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

program code for calling with the object-oriented program,

a particular object-oniented method not present 1n
executable program memory;

the particular object-oriented method being loaded 1nto the

executable program memory, 11 1t 1s determined to not be
present in the executable program memory prior to its
runtime execution.

56. The computer program product of claim 55, which
further comprises:

particular object-oriented method being not present in the

executable program memory when the object-oriented
program begins execution.

57. The computer program product of claim 55, which
further comprises:

the particular object-oriented method being specific to the

computer platform.

58. The computer program product of claim 55, which
turther comprises:

the particular object-oriented method being specific to the

computer hardware.

59. The computer program product of claim 55, which
further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware.

60. The computer program product of claim 55, which
further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

61. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platiforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call 1n the object-oriented program, to a par-
ticular object-oriented method not present 1n executable
program memory;

US 7,424,704 B2

45

the particular object-oriented method being loaded mnto the
executable program memory, 11 1t 1s determined to not be
present 1n the executable program memory prior to its
runtime execution.

62. The method of claim 61, which further comprises:

the particular object-oriented method being not present 1n
the executable program memory when the object-ori-
ented program begins execution.

63. The method of claim 61, which further comprises:

the particular object-oriented method being specific to the
computer platform.

64. The method of claim 61,which further comprises:

the particular object-oriented method being specific to the
computer hardware.

65. The method of claim 61, which further comprises:

the particular object-oniented method being specific to the

operating system executing on the computer hardware.

66. The method of claim 61, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

67. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and nvoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call in the object-oriented program, to a par-

ticular object-oriented method not present in executable
program memory; and

causing the particular object-oriented method to be loaded

into the executable program memory, 1t 1t 1s determined
to not be present in the executable program memory
prior to 1ts runtime execution.

68. The method of claim 67, which further comprises:

the particular object-oriented method being not present 1n

the executable program memory when the object-ori-
ented program begins execution.

69. The method of claim 67,which further comprises:

the particular object-oniented method being specific to the
computer platform.

70. The method of claim 67, which further comprises:

the particular object-oriented method being specific to the
computer hardware.

71. The method of claim 67, which further comprises:

the particular object-oniented method being specific to the
operating system executing on the computer hardware.
72. The method of claim 67,which further comprises:

the particular object-oriented method being specific to the
operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

10

15

20

25

30

35

40

45

50

55

60

65

46

73. An object-oriented computer program product embod-
ied on a computer storage medium, to run on a computer
platform including computer hardware and an operating sys-
tem executing on the computer hardware, including program
logic code specific to the operating system and compiled for
use on the computer hardware, the computer program product
comprising;
program code for invoking an object-oriented interface
speciiying object- oriented classes each containing one
or more methods, on the computer platform, the inter-
face implemented on a plurality of computer platiforms
including different combinations of computer hardware
and operating systems, the interface used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;
the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;
program code for invoking a particular object-oriented
method not present in executable program memory; and

program code for causing the particular object-oriented
method to be loaded into the executable program
memory, 1f 1t 1s determined to not be present in the
executable program memory prior to its runtime execu-
tion.

74. The computer program product of claim 73, which
further comprises:

the particular object-oriented method being not present 1n

the executable program memory when the object-ori-
ented program begins execution.

75. The computer program product of claim 73, which
turther comprises:

the particular object-oriented method being specific to the

computer platform.

76. The computer program product of claim 73, which
further comprises:

the particular object-oriented method being specific to the

computer hardware.

77. The computer program product of claim 73, which
further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware.

78. The computer program product of claim 73, which
further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

79. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platiforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-

US 7,424,704 B2

47

ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call in the object-oriented program, to a par-

ticular object-oriented method not present 1n executable
program memory, the method programmed to obtain a
particular one of the native operating system services;
and

causing the loading into the executable program memory

of the particular object-oriented method, 1f the particular
method 1s determined to not be present, wherein the
particular object-oriented method mmvokes code specific
to a particular one of the plurality of computer platiorms.
80. The method of claim 79, which further comprises:
the particular object-oriented method being not present 1n
the executable program memory when the object-ori-
ented program begins execution.

81. The method of claim 79, which further comprises:

the particular object-oriented method being specific to the

computer platform.

82. The method of claim 79, which further comprises:

the particular object-oriented method being specific to the

computer hardware.

83. The method of claim 79, which further comprises:

the particular object-oriented method being specific to the

operating system executing on the computer hardware.

84. The method of claim 79, which further comprises:

the particular object-oniented method being specific to the

operating system executing on the computer hardware
and the program logic code being responsive to the par-
ticular object-oriented method.

85. An object-oriented computer program product embod-
ied on a computer storage medium, to run on a computer
platform including computer hardware and an operating sys-
tem executing on the computer hardware, including program
logic code specific to the operating system and compiled for
use on the computer hardware, the computer program product
comprising;

program code for mvoking an object-oriented interface

speciiying object-oriented classes each containing one
or more methods, on the computer platform, the inter-
face implemented on a plurality of computer platiorms
including different combinations of computer hardware
and operating systems, the interface used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

program code for mvoking a particular object-oriented

method not present 1n executable program memory, the
method programmed to obtain a particular one of the
native operating system services; and

program code for causing the loading 1nto the executable

program memory ol the particular object-oriented
method, 11 the particular method 1s determined to not be
present, wherein the particular object-oriented method
invokes code specific to a particular one of the plurality
of computer platforms.

86. A method for running an object-orniented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

48

loading code that implements an object-oriented interface
speciiying object-oriented classes each containing one
or more methods, on the computer platform, the inter-
face implemented on a plurality of computer platiorms
including different combinations of computer hardware
and operating systems, the interface used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present 1n executable pro-
gram memory, the method programmed to obtain a par-
ticular one of the native operating system services; and

loading 1nto the executable program memory the particular
object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-
oriented method invokes code specific to a particular one
of the plurality of computer platiforms.

87. A computer program product embodied on a computer
storage medium, for running an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, the computer
program product comprising:

program code for loading code that implements an object-

ortented interface specifying object-oriented classes
cach containing one or more methods, on the computer
platiorm, the interface implemented on a plurality of
computer platforms including different combinations of
computer hardware and operating systems, the interface
used by the same object-oriented program on the plural-
ity of computer platforms to instantiate objects from the
classes and 1voke the object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present 1n executable pro-
gram memory, the method programmed to obtain a par-
ticular one of the native operating system services; and

program code for loading into the executable program
memory the particular object-oriented method, it the
particular method 1s determined to not be present,
wherein the particular object-oriented method 1nvokes
code specific to a particular one of the plurality of com-
puter platforms.

88. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented library, including object-ori-

ented classes each containing one or more methods, on
the computer platiorm, the library executable on a plu-
rality of computer platiorms including different combi-
nations of computer hardware and operating systems,
the library responsive to the execution of the same
object-oriented program on the plurality of computer

US 7,424,704 B2

49

platforms which instantiates objects from the classes
and 1nvokes the object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call in the object-oriented program, to a par-

ticular object-oriented method not present 1n executable
program memory;

the particular object-oriented method being loaded into the

executable program memory, 111t 1s determined to not be
present 1n the executable program memory prior to 1ts
runtime execution.

89. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

ortented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platiorms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call 1n the object-oriented program, to a par-
ticular object-oriented method not present 1n executable
program memory;

the particular object-oriented method being copied into the
executable program memory, 11 1t 1s determined to not be
present 1n the executable program memory prior to its
runtime execution.

90. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

ortented classes each containing one or more methods,
on the computer platiorm, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call in the object-oriented program, to a par-
ticular object-oriented method not present in executable
program memory;

the particular object-oriented method being transferred
into the executable program memory, 11 1t 1s determined
to not be present 1n the executable program memory
prior to 1ts runtime execution.

10

15

20

25

30

35

40

45

50

55

60

65

50

91. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platiforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call in the object-oriented program, to a par-
ticular object-oriented method not present 1n executable
program memory;

the particular object-oriented method being sent to the
executable program memory, 11 1t 1s determined to not be
present in the executable program memory prior to its
runtime execution.

92. A method for an object-oriented program running on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

invoking an object-oriented interface specilying object-

oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platiorms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

including a call 1n the object-oriented program, to a par-
ticular object-oriented method not present 1n executable
program memory;

the particular object-oriented method being placed into the
executable program memory, 11 1t 1s determined to not be

present 1n the executable program memory prior to 1ts
runtime execution.

93. A method for runming an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

loading an object-oriented library, including object-ori-

ented classes each containing one or more methods, on
the computer platiorm, the library executable on a plu-
rality of computer platforms including different combi-
nations of computer hardware and operating systems,
the library responsive to the execution of the same
object-oriented program on the plurality of computer
platforms which instantiates objects from the classes
and invokes the object-oriented methods;

US 7,424,704 B2

51

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present 1in executable pro-
gram memory, the method programmed to obtain a par-
ticular one of the native operating system services; and

loading 1nto the executable program memory the particular
object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-
ortented method invokes code specific to a particular one
of the plurality of computer platforms.

94. A method for running an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

copying code into executable program memory that imple-
ments an object-oriented 1nterface specifying object-
ortented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present in the executable
program memory, the method programmed to obtain a
particular one of the native operating system services;
and

copying into the executable program memory the particu-
lar object-oriented method, 1f the particular method 1s
determined to not be present, wherein the particular
object-oriented method 1nvokes code specific to a par-
ticular one of the plurality of computer platforms.

95. A method for running an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

transferring code 1nto executable program memory that
implements an object-oriented interface specilying
object-oriented classes each containing one or more
methods, on the computer platform, the interface imple-
mented on a plurality of computer platforms including
different combinations of computer hardware and oper-
ating systems, the interface used by the same object-
oriented program on the plurality of computer platforms
to 1nstantiate objects from the classes and 1nvoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present in the executable

10

15

20

25

30

35

40

45

50

55

60

65

52

program memory, the method programmed to obtain a
particular one of the native operating system services;
and

transierring 1into the executable program memory the par-

ticular object-oriented method, 11 the particular method
1s determined to not be present, wherein the particular
object-oriented method 1nvokes code specific to a par-
ticular one of the plurality of computer platiforms.

96. A method for runnming an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

sending code to executable program memory that imple-
ments an object-oriented 1nterface specifying object-
oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present in the executable
program memory, the method programmed to obtain a
particular one of the native operating system services;
and

sending to the executable program memory the particular
object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-
oriented method invokes code specific to a particular one
of the plurality of computer platforms.

97. A method for runming an object-oriented program on a
computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

placing code mnto executable program memory that imple-
ments an object-oriented 1nterface specilying object-
oriented classes each containing one or more methods,
on the computer platiorm, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services {rom
the one computer platform;

the object-oriented program including a call to a particular
object-oriented method not present in the executable
program memory, the method programmed to obtain a
particular one of the native operating system services;
and

placing into the executable program memory the particular
object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-

US 7,424,704 B2

53

ortented method invokes code specific to a particular one
of the plurality of computer platforms.

98. A method for running object-oriented software on a
computer platform including computer hardware with
executable program memory and an operating system execut-
ing on the computer hardware, the operating system compiled
for use on the computer hardware, comprising:

running object-oriented software on a computer platform,

the soltware instantiating objects from classes and
invoking object-oriented methods that make requests for
native operating system services from the computer plat-
form;

invoking an object-oriented library on the computer plat-

form, the invoking being in order to call for native oper-
ating system services, the library including object-ori-
ented classes each containing one or more methods, the
library available for a plurality of computer platforms
including different combinations of computer hardware
and operating systems, the library used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

activating a program logic code specific to the operating

system, the activating being by the object-oriented
library 1n response to the call for native operating system
services;

the object-oriented soitware including a call to a particular
object-oriented method not already present i the
executable memory; and

causing the loading into the executable program memory
of the particular object-oriented method, 11 it 1s deter-
mined to not have been present in the executable pro-
gram memory prior to 1ts runtime execution.

99. A method for running software on a computer platform
including computer hardware with executable program
memory and an operating system executing on the computer
hardware, the operating system compiled for use on the com-
puter hardware, comprising:

running object-oriented software on a computer platform,
the soltware instantiating objects from classes and
invoking object-oriented methods that make requests for
native operating system services from the computer plat-
form;

invoking an object-oriented library on the computer plat-
form, the invoking being 1n order to call for native oper-
ating system services, the library including object-ori-
ented classes each containing one or more methods, the
library available for a plurality of computer platforms
including different combinations of computer hardware
and operating systems, the library used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

activating a program logic code specific to the operating
system, the activating being by the object-oriented
library 1n response to the call for native operating system
services;

the object-oriented soitware including a call to a particular
object-oriented method not already present i the
executable memory, the method to be called by the
object-oriented software to request a particular one of
the native operating system services; and

causing the loading into the executable program memory
of the particular object-oriented method, 11 it 1s deter-
mined to not have been present in the executable pro-
gram memory prior to 1ts runtime execution.

5

10

15

20

25

30

35

40

45

50

55

60

65

54

100. A method for running software on a computer plat-
form including computer hardware with executable program
memory and an operating system executing on the computer
hardware, the operating system compiled for use on the com-
puter hardware, comprising:

running object-oriented software on a computer platiorm,

the software instantiating objects from classes and
invoking object-oriented methods that make requests for
native operating system services from the computer plat-
form;

invoking an object-oriented library on the computer plat-

form, the 1nvoking being 1n order to call for native oper-
ating system services, the library including object-ori-
ented classes each containing one or more methods, the
library available for a plurality of computer platiforms
including different combinations of computer hardware
and operating systems, the library used by the same
object-oriented program on the plurality of computer
platforms to instantiate objects from the classes and
invoke the object-oriented methods;

attempting to invoke the operating system with the object-
oriented library 1n response to the call for native operat-
Ing system services, by invoking a particular object-
ortented method not already present in the executable
memory; and

causing the loading into the executable program memory
of the particular object-oriented method, 1t 1t 1s deter-
mined to not have been present in the executable pro-
gram memory prior to 1ts runtime execution.

101. A computer program product embodied on a computer
storage medium, for runmng object-oriented soitware on a
computer platform including computer hardware with
executable program memory and an operating system execut-
ing on the computer hardware, the operating system compiled
for use on the computer hardware, the computer program
product comprising:

program code for running object-oriented soitware on a

computer platform, the software instantiating objects
from classes and ivoking object-oriented methods that
make requests for native operating system services from
the computer platform;

program code for mvoking an object-oriented library on
the computer platform, the 1nvoking being in order to
call for native operating system services, the library
including object-oriented classes each containing one or
more methods, the library available for a plurality of
computer platforms including different combinations of
computer hardware and operating systems, the library
used by the same object-oriented program on the plural-
ity of computer platforms to instantiate objects from the
classes and 1voke the object-oriented methods;

a procedural program logic code specific to the operating
system, being activated by the object-oriented library 1n
response to the call for native operating system services;

program code for imvoking a particular object-oriented

method not already present in the executable memory;
and

program code for causing the loading into the executable
program memory ol the particular object-oriented
method, 111t 1s determined to not have been present in the
executable program memory prior to its runtime execu-
tion.

102. A computer program product embodied on a computer
storage medium, for runming software on a computer platform
including computer hardware with executable program
memory and an operating system executing on the computer

US 7,424,704 B2

3

hardware, the operating system compiled for use on the com-
puter hardware, the computer program product comprising:

program code for running object-oriented software on a
computer platform, the software instantiating objects
from classes and invoking object-oriented methods that
make requests for native operating system services from
the computer platiorm;

program code for mvoking an object-oriented library on
the computer platform, the mvoking being in order to
call for native operating system services, the library
including object-oriented classes each containing one or
more methods, the library available for a plurality of
computer platforms including different combinations of
computer hardware and operating systems, the library
used by the same object-oriented program on the plural-
ity of computer platforms to instantiate objects from the
classes and ivoke the object-oriented methods;

a program logic code specific to the operating system,
being activated by the object-oriented library in
response to the call for native operating system services;

program code for mmvoking a particular object-oriented
method not already present 1n the executable memory,
the method being invoked by the object-oriented soft-
ware to request a particular one of the native operating
system services; and

program code for causing the loading into the executable
program memory of the particular object-oriented
method, 111t 1s determined to not have been present in the
executable program memory prior to 1ts runtime execu-
tion.

103. A computer program product embodied on a computer
storage medium, for runming soitware on a computer platform
including computer hardware with executable program
memory and an operating system executing on the computer
hardware, the operating system compiled for use on the com-
puter hardware, the computer program product comprising:

program code for running object-oriented software on a
computer platform, the software instantiating objects
from classes and invoking object-oriented methods that
make requests for native operating system services from
the computer platform;

program code for mvoking an object-oriented library on
the computer platiorm, the invoking being 1n order to
call for native operating system services, the library
including object-oriented classes each containing one or
more methods, the library available for a plurality of
computer platforms including different combinations of
computer hardware and operating systems, the library
used by the same object-oriented program on the plural-
ity of computer platforms to instantiate objects from the
classes and invoke the object-oriented methods;

program code for attempting to invoke the operating sys-
tem with the object-oriented library 1n response to the
call for native operating system services, by invoking a
particular object-oriented method not already present 1n
the executable memory; and

program code for causing the loading into the executable
program memory of the particular object-oriented
method, 111t 1s determined to not have been present in the
executable program memory prior to 1ts runtime execu-
tion.

104. A computer platiorm for running object-oriented soit-
ware on a computer platform including computer hardware
with executable program memory and an operating system

10

15

20

25

30

35

40

45

50

55

60

65

56

executing on the computer hardware, the operating system
compiled for use on the computer hardware, comprising:
a processor; and
a memory coupled to the processor, containing program
code which implements object-oriented soitware on the
computer platform, the software instantiating objects
from classes and invoking object-oriented methods that
make requests for native operating system services from
the computer platform;
program code in the memory which implements an object-
oriented library on the computer platiform, the invoking
being 1n order to call for native operating system ser-
vices, the library including object-oriented classes each
containing one or more methods, the library available
for a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the library used by the same object-oriented pro-
gram on the plurality of computer platforms to instanti-
ate objects from the classes and invoke the object-
oriented methods;
program logic code specific to the operating system 1n the
memory, activated by the object-oriented library in
response to the call for native operating system services;

program code 1n the memory to invoke a particular object-
ortented method not already present in the executable
memory; and
program code 1n the memory to cause the loading into the
executable program memory of the particular object-
oriented method, 1f 1t 1s determined to not have been
present in the executable program memory prior to its
runtime execution.
105. A computer platform for running object-oriented soft-
ware on a computer platform including computer hardware
with executable program memory and an operating system
executing on the computer hardware, the operating system
compiled for use on the computer hardware, comprising:
a processor; and
a memory coupled to the processor, containing program
code which implements object-oriented soitware on the
computer platform, the software instantiating objects
from classes and mvoking object-oriented methods that
make requests for native operating system services from
the computer platiorm;
program code 1n the memory which implements an object-
oriented library on the computer platiform, the invoking
being 1n order to call for native operating system ser-
vices, the library including object-oriented classes each
containing one or more methods, the library available
for a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the library used by the same object-oriented pro-
gram on the plurality of computer platforms to nstanti-
ate objects from the classes and invoke the object-
oriented methods:
program logic code specific to the operating system 1in the
memory, activated by the object-oriented library 1n
response to the call for native operating system services;

program code in the memory to 1nvoke a particular object-
ortented method not already present in the executable
memory, the method being invoked by the object-ori-
ented soltware to request a particular one of the native
operating system services; and

program code 1n the memory to cause the loading 1nto the

executable program memory of the particular object-
oriented method, 1f 1t 1s determined to not have been
present in the executable program memory prior to its
runtime execution.

US 7,424,704 B2

S7

106. A computer platform for running object-oriented soit-
ware on a computer platform including computer hardware
with executable program memory and an operating system
executing on the computer hardware, the operating system
compiled for use on the computer hardware, comprising:

a processor; and

a memory coupled to the processor, containing program

code which implements object-oriented software on a
computer platform, the software instantiating objects
from classes and invoking object-oriented methods that
make requests for native operating system services from
the computer platform;

program code 1n the memory which implements an object-

oriented library on the computer platiform, the invoking
being 1n order to call for native operating system ser-
vices, the library including object-oriented classes each
containing one or more methods, the library available
for a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the library used by the same object-oriented pro-
gram on the plurality of computer platforms to nstanti-
ate objects from the classes and invoke the object-
oriented methods:

program code in the memory to attempt invoking the oper-

ating system with the object-oriented library in response
to the call for native operating system services, by invok-
ing a particular object-oriented method not already
present 1n the executable memory; and

program code 1n the memory to cause the loading into the

executable program memory of the particular object-
oriented method, 1f 1t 1s determined to not have been
present 1n the executable program memory prior to its
runtime execution.

107. A method for running an object-oriented program on
a computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

providing an object-oriented interface specitying object-

oriented classes each containing one or more methods
on the computer platform, the interface implemented on
a plurality of computer platiorms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform, which are requested by the
object-oriented program;

determining 1f object-oriented methods to be invoked dur-

ing runtime execution are not present 1n executable pro-
gram memory in the computer hardware; and

loading the object-oniented methods into the executable

program memory determined to not be present 1n the
executable program memory prior to their runtime
execution, where the loading occurs after the object-
oriented program has begun executing.

108. A method for running an object-oriented program on
a computer platform including computer hardware with
executable program memory and an operating system execut-
ing on the computer hardware, including program logic code
specific to the operating system and compiled for use on the
computer hardware, comprising:

10

15

20

25

30

35

40

45

50

55

60

65

58

running the object-oriented program on a computer plat-
form, the program instantiating objects from classes and
invoking object-oriented methods that make requests for
native operating system services from the computer plat-
form;

invoking with the object-oriented program, an object-ori-

ented interface on the computer platiform, the mvoking
being 1n order to call for native operating system ser-
vices, the interface including object-oriented classes
cach containing one or more methods, the interface
available for a plurality of computer platiorms including
different combinations of computer hardware and oper-
ating systems, the interface used by the same object-
oriented program on the plurality of computer platforms
to 1nstantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform, which are requested by the
object-oriented program;

the object-oriented program attempting to invoke a particu-

lar object-oriented method not present in executable
program memory, the method programmed to call the
program logic code to obtain a particular one of the
native operating system services; and

causing the loading into the executable program memory

of the particular object-oriented method, 1t 1t 1s deter-
mined to not have been present in the executable pro-
gram memory prior to the runtime execution of the pro-
gram, where the loading occurs aiter the object-oriented
program has begun executing.

109. A method for runming an object-oriented program on
a computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

loading an object-oriented library, including object-ori-

ented classes each containing one or more methods, on
the computer platform, the library executable on a plu-
rality of computer platforms including different combi-
nations of computer hardware and operating systems,
the library responsive to the execution of the same
object-oriented program on the plurality of computer
platforms which instantiates objects from the classes
and invokes the object-oriented methods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented library implemented on the one computer platiform
to provide native operating system services from the one
computer platform, which are requested by the object-
oriented program;

the object-oriented program attempting to invoke a particu-

lar object-oriented method not present 1n executable
program memory, the method programmed to call the
program logic code to obtain a particular one of the
native operating system services; and

loading 1nto the executable program memory the particular

object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-
oriented method invokes code specific to a particular one
of the plurality of computer platforms, where the loading
occurs aiter the object-oriented program has begun
executing.

110. A method for runming an object-oriented program on
a computer platform including computer hardware with

US 7,424,704 B2

59

executable program memory and an operating system execut-
ing on the computer hardware, including program logic code
specific to the operating system and compiled for use on the
computer hardware, comprising:
running the object-oriented program on a computer plat-
form, the program instantiating objects from classes and
invoking object-oriented methods that make requests for
native operating system services from the computer plat-
form;
invoking with the object-oriented program, an object-ori-
ented interface on the computer platform, the invoking
being 1n order to call for native operating system ser-
vices, the interface including object-oriented classes
cach containing one or more methods, the interface
available for a plurality of computer platforms including
different combinations of computer hardware and oper-
ating systems, the interface used by the same object-
oriented program on the plurality of computer platforms
to 1nstantiate objects from the classes and 1voke the
object-oriented methods;
the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented interface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform, which are requested by the
object-oriented program;
the object-oriented program attempting to invoke a particu-
lar object-oriented method not present 1n executable
program memory, the method programmed to call the
program logic code specific to the hardware of the com-
puter platform, to obtain a particular one of the native
operating system services; and
causing the loading into the executable program memory
of the particular object-oriented method, 11 it 1s deter-
mined to not have been present in the executable pro-
gram memory prior to the runtime execution of the pro-
gram, where the loading occurs aiter the object-oriented
program has begun executing.
111. A method for running an object-oriented program on
a computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:
loading an object-oriented library, including object-ori-
ented classes each containing one or more methods, on
the computer platiorm, the library executable on a plu-
rality of computer platforms including different combi-
nations of computer hardware and operating systems,
the library responsive to the execution of the object-
ortented program which instantiates objects from the
classes and invokes the object-oriented methods, the
library used by the same object-oriented program on the
plurality of computer platforms to instantiate objects
from the classes and invoke the object-oriented meth-
ods;
the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented library implemented on the one computer platform
to provide native operating system services from the one
computer platform, which are requested by the object-
oriented program;
the object-oriented program attempting to imnvoke a particu-
lar object-oniented method not present in executable
program memory, the method programmed to call the
program logic code specific to the hardware of the com-
puter platform to obtain a particular one of the native
operating system services; and

10

15

20

25

30

35

40

45

50

55

60

65

60

loading 1nto the executable program memory the particular
object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-
ortented method invokes code specific to a particular one
of the plurality of computer platforms, where the loading
occurs ailter the object-oriented program has begun
executing.

112. A method for running an object-oriented program on
a computer platform including computer hardware with
executable program memory and an operating system execut-
ing on the computer hardware, including program logic code
specific to the operating system and compiled for use on the
computer hardware, comprising:

running the object-oriented program on a computer plat-
form, the program instantiating objects from classes and
invoking object-oriented methods that make requests for
native operating system services from the computer plat-
form;

invoking with the object-oriented program, an object-ori-
ented interface on the computer platiform, the mvoking
being 1n order to call for native operating system ser-
vices, the interface including object-oriented classes
cach containing one or more methods, the interface
available for a plurality of computer platiorms including
different combinations of computer hardware and oper-
ating systems, the interface used by the same object-
oriented program on the plurality of computer platforms
to 1nstantiate objects from the classes and invoke the
object-oriented methods;

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services {rom
the one computer platform, which are requested by the
object-oriented program;

the object-oniented program attempting to mvoke an
object-oriented method not present 1n executable pro-
gram memory to obtain a particular one of the native
operating system services, the method programmed to
call the program logic code specific to a corresponding
one of the plurality of computer platforms, to obtain the
particular one of the native operating system services;

causing the identifying of a particular object-oriented
method, which calls program logic code specific to the
hardware of the platform to obtain the particular one of
the native operating system services; and

causing the loading into the executable program memory
of the particular object-oriented method, 11 it 1s deter-
mined to not have been present in the executable pro-
gram memory prior to the runtime execution of the pro-
gram, where the loading occurs aiter the object-oriented
program has begun executing.

113. A method for runming an object-oriented program on

a computer platform including computer hardware and an
operating system executing on the computer hardware,
including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:
loading an object-oriented library, including object-ori-
ented classes each containing one or more methods, on

the computer platiorm, the library executable on a plu-
rality of computer platforms including different combi-
nations of computer hardware and operating systems,

the library responsive to the execution of the object-
ortented program which instantiates objects from the
classes and invokes the object-oriented methods, the
library used by the same object-oriented program on the

US 7,424,704 B2

61

plurality of computer platforms to instantiate objects
from the classes and 1invoke the object-oriented meth-
ods;

the program logic code on any one of the plurality of

computer platforms being responsive to the object-ori-
ented library implemented on the one computer platform
to provide native operating system services from the one
computer platform, which are requested by the object-
oriented program;

the object-oriented program attempting to mvoke an
object-oriented method not present 1n executable pro-
gram memory to obtain a particular one of the native
operating system services, the method programmed to
call the program logic code specific to a corresponding
on of the plurality of computer platforms, to obtain the
particular one of the native operating system services;

causing the identifying of a particular object-oriented
method, which calls program logic code specific to the
hardware of the platform to obtain the particular one of
the native operating system services; and

loading 1into the executable program memory the particular
object-oriented method, 11 the particular method 1s deter-
mined to not be present, wherein the particular object-
ortented method invokes code specific to aparticular one
of the plurality of computer platforms, where the loading
occurs after the object-oriented program has begun
executing.

114. A method for running an object-oriented program on

a computer platform including computer hardware and an
operating system executing on the computer hardware,

5

10

15

20

25

62

including program logic code specific to the operating system
and compiled for use on the computer hardware, comprising:

providing an object-oriented 1nterface specifying object-
oriented classes each containing one or more methods,
on the computer platform, the interface implemented on
a plurality of computer platforms including different
combinations of computer hardware and operating sys-
tems, the interface used by the same object-oriented
program on the plurality of computer platforms to
instantiate objects from the classes and invoke the
object-oriented methods;

the object-oriented interface including a designation as to
which methods mvoke program logic code to provide
native operating system services from the computer plat-
form:

the program logic code on any one of the plurality of
computer platforms being responsive to the object-ori-
ented mterface implemented on the one computer plat-
form to provide native operating system services from
the one computer platform;

determining if a particular object-oriented method to be
invoked during runtime execution 1s not present in
executable program memory 1n the computer hardware;
and

loading the particular object-oriented method into the
executable program memory determined to not be
present 1n the executable program memory prior to 1ts
runtime execution.

	Front Page
	Drawings
	Specification
	Claims

