US007415542B2
a2 United States Patent (10) Patent No.: US 7.415,542 B2
Hennedy et al. 45) Date of Patent: Aug. 19, 2008
(54) MICRO-PROGRAMMABLE FILTER ENGINE (58) Field of Classification Search 708/300,
HAVING PLURALITY OF FILTER 708/320, 603, 622; 709/205; 710/1,3
ELEMENTS INTERCONNECTED IN CHAIN See application file for complete search history.
CONFIGURATION WHEREIN ENGINE (56) References Cited
SUPPORTS MULTIPLE FILTERS FROM
FILTER ELEMENTS U.S. PATENT DOCUMENTS
_ 5,243,551 A 9/1993 Knowles et al. 708/603
(75) Inventors: Michael Hennedy, Holmdel, NJ (US); 5432723 A 7/1995 Chenetal. wovvvrovvv., 708/300
Vladimir Friedman, Scotch Plains, NJ 6,263,354 Bl 7/2001 Gandhi ..ceevvenennennaann.., 708/320
(US)j Artemas Spezia]ej Hazlet, NJ 6,279,019 Bl 8/2001 Ohetal. .cccovvvnvennn...... 708/300
(US); Mohammad Reza Sherkat, 6,314,393 B1 11/2001 Zhengetal. 704/223
- 6,823,353 B2* 11/2004 Fischeretal. 708/622
Hllleorough’ N (US) 6,952,709 B1* 10/2005 Dujardin et al. 708/300
: _ . 2002/0161806 Al1* 10/2002 Shaikhcovvvevvneann..... 708/300
(73) Assignee: "%‘Sal"g Devices, Inc., Norwood, MA 2004/0101039 Al* 5/2004 Glendenning 375/232
() 2004/0181564 Al 9/2004 Maclnnis etal. 708/322
2005/0251542 Al1* 11/2005 Hennedyetal. 708/300

(*) Notice: Subject to any disclaimer, the term of this | |
patent 1s extended or adjusted under 35 * cited by examiner

U.S.C. 154(b) by 496 days. Primary Examiner— lammara Peyton

(21) Appl. No.: 10/871,509 (74) Attorney, Agent, or Firm—Bromberg & Sunstein LLP

(22) Filed: Jun. 18, 2004 (57) ABSTRACT

A micro-programmable filter (MFE) engine includes mul-

(65) Prior Publication Data tiple programmable filter elements and a microcode control-
US 2005/0283500 A1 Dec. 22, 2005 ler. The filter elements can be configured, controlled, and
combined 1n different ways to implement different types of
(51) Inmt. CL filters. The MFE preferably supports multiple-execution
GO6L’ 3/00 (2006.01) instructions that allow a single instruction to perform multiple
GO6F 7/38 (2006.01) moves 1nto accumulators for etficient data movement 1nside
GO6F 17/10 (2006.01) MFE.
(52) US.CL ..., 710/1; 708/300; 708/320;
708/603; 708/622; 709/205; 710/3 50 Claims, 21 Drawing Sheets
000
510 520 230
~IR IR FIR
128 4 Biquad Interpolator
40 500 060
FIR IR FIR

TDQ 4 Biquad Decimator

U.S. Patent Aug. 19, 2008 Sheet 1 of 21 US 7,415,542 B2

14

150 .. Discrete » 160
. i Components

120

220

PHY
Layer

US 7,415,542 B2

Sheet 2 of 21

Aug. 19, 2008

U.S. Patent

Ocl

!

¢ OIA

19AEQ|lolU]
-9(]

L&

18p029(]

Jd4

oLt

19|qwelosa(]

odO
buiwe.

45

19114 oW lap02a
1211617 SRS FAN
743 445 0ce
191]| lapoou
i PO iown
0L€ 80¢

19AE9|I9]U]|

90¢

lapoou3

14013

44

bulquields

odO
buiwe.

c0¢g

OLC

O0LC

U.S. Patent Aug. 19, 2008 Sheet 3 of 21 US 7,415,542 B2

400

41 430

FIR FIR
128 Interpolator

440

FIR
196

450 460

= FIR 0 FIR

TDQ Decimator

U.S. Patent Aug. 19, 2008 Sheet 4 of 21 US 7,415,542 B2

500
010 230
FIR FIR
128 Interpolator

40 o0 60

FIR IR FIR
TDQ 4 Biquad Decimator

10 600

MPU

620

MFE

FIG. 6

U.S. Patent Aug. 19, 2008 Sheet 5 of 21 US 7,415,542 B2

Microcode
Controller

FIG. 7

) &
@ o
>< (O
D S
O

= =
= O
E O
<

US 7,415,542 B2

Sheet 6 of 21

Aug. 19, 2008

U.S. Patent

19]]011U0D)

SPO20IDIIN

008

068

S10)e|NWNIDYY

slaxa|dn|n

U.S. Patent Aug. 19, 2008 Sheet 7 of 21 US 7,415,542 B2

- Z
& N 3
o) r &)
L —
. S
(C
- X S
O o - -
Ewo = =
_C@'l— O
Cf)q_)m O
0 o <

FIG. 9

pZd
-
o
o)

U.S. Patent Aug. 19, 2008 Sheet 8 of 21 US 7,415,542 B2

-
O
-
T
-
O
e
©
-
(% E
)
3
-
O <(
-
—
-
A 8|
- -
A ™—
i e
- -
N\ I
- -
p— r
= =
0 O

BN

US 7,415,542 B2

Sheet 9 of 21

Aug. 19, 2008

U.S. Patent

101e[NWN22Y

0911

0511

143

0011

IBYIYS
jallegq

laxa|dninin

[l OIA

(peAeleq)
12p02a(

UOI11ONI}S U]

ClLil

18p029(]
uonoNASU|

clil

Jd

Alowa N
UONONAISU]

LLLL

US 7,415,542 B2

Sheet 10 of 21

Aug. 19, 2008

U.S. Patent

[> —__>
u—bain MO o bai

N

8¢cl

OcC| 1NOY
AP 91 Xp9

WS }90]

Z&A) W Il
b.J

5 1D

=

N .
< O a Ce
D34 8E

rddd)

v__u._ v__U?:
< 9LX$9
INoX Wa e1eq

ippey

ddIND
HMINC -
ddIN(=

IppesIppepa
POCl

APX

U.S. Patent Aug. 19, 2008 Sheet 11 of 21 US 7,415,542 B2

7
SO0 0300 0000
FIG. I3

Mclk
Xclk

Addr
Sclk

J

RXx re

US 7,415,542 B2

Sheet 12 of 21

Aug. 19, 2008

U.S. Patent

vl OIA

buiwi | ¥ Ag uonewinaqg ++1Say

'pPasn aJle sjuswa|3 13114 7
ZHIN 9€ =19 9334 ZHIN 8'8 =PX ZHW P 1 =AIPIN

19114 4|4 de]-g¢

)) G G 0 i 4 . G 60 6 06 B0 €0 6 <0 U8 G) &
i O Gy (0 B0 0 D 0 (0 6 D 0 8 0 8 G0 8

2000000000000 00000000

bay oY

bas AY

IPPYOD
APPYIM
1PPYPYH

AIPX

no
d.1d

b [}o,
23(]

AR

US 7,415,542 B2

Sheet 13 of 21

Aug. 19, 2008

U.S. Patent

S1 OIA

buiwi] ¢ Ag uonewdsq +1Sav
'pasn s|uawa|g Jall |
ZHIN 9€ =19 28d ZHIN #'¥ = 119X ZHI ¥+ 1 = AP

19114 4|4 de]-g¢

2388030080228 00280D000 D NN
_ _ - - - IPPYO0D
: - : - : - : - : - m 1PPVPY

AI9X

d.1d

A0
28(J

4 4 4 4 L E E fm_ L %I- E _M:A _m; L E E E iIE E 4 4 SO

US 7,415,542 B2

Sheet 14 of 21

Aug. 19, 2008

U.S. Patent

91 "DIA

Buiwi| ¢ Ag uonejodiaiyy

‘pasn sijuaws|3 49114 |
ZHIN 9€ =19 $XIJ] ZHIN 8 =AI9X ZHW v = AIPIA

191]14 ¢ Aq e1ejodisiu) dej-9|

PRI

B bxixb _ = m ¥

SPP TSt P slsixixbed It It [Edxixtx

M “Euma_mmzm““m“““m“mm. F

L T N i x KK ist _l L Buistd 10 x|
Z ! A..“__““m“““ © 1oceus

Alowap e1eq

> @@EEEEEE@E@@EE@EE@E@E o o
200000000 0000000000000 N
2000003000000 0 008000008

1PPYQD
2000000000000 000000 0 60

U)C\l

AI9X

no
d.1d

RS,
LX1U|

AP

U.S. Patent Aug. 19, 2008 Sheet 15 of 21

1700

1740

1710

r
O
a
<

(o LO

- -

2 S

LPO CNITR

(o
-
CY)
™~
A +
— o
+
0
-
~
— Z O [C O WO — OZFL0

Lp1Ena

LP1 CNIR

INIT

1/80

CITLREG

US 7,415,542 B2

FIG. 17

US 7,415,542 B2

Sheet 16 of 21

Aug. 19, 2008

U.S. Patent

1NO H3IHD

81 "OIA

1NO H3IHD

044

NI D340

OLXY9

NO

QL X9
NG

NI

US 7,415,542 B2

Sheet 17 of 21

Aug. 19, 2008

U.S. Patent

1IN0 N4

0G61| <t

U "boud
2d 3

0861}

AOWBN
welboid
wd3

0961

eus epaq ¢

13]|0u07) J3)|1

41 dSd

U.S. Patent Aug. 19, 2008 Sheet 18 of 21 US 7,415,542 B2

AcCC 1

ACCO

FIG. 20

@
—
C
—
X

U.S. Patent Aug. 19, 2008 Sheet 19 of 21 US 7,415,542 B2

| M

" O\

2102 2104 2106 2108 |

: : : I

|
FE2\ 16 16 |FE2Y 16 16 |FE2\ 16 16 |[FE2Y 16 16 -
Filter Filter Filter Filter Filter Filter Filter || Filter |-
Elementl|Element| | |Element||[Element| | |Element|Element| | [Element||Element||
(FEO) | (FEO) (FEO) | (FEO) (FEO) | (FEO) (FEOQ) || (FEQ) |:

SSL I_‘i\ss 33‘i_|

38 38 i\ i 38 33 38 .
\ / y
‘ Scale\ Scale

14

E6 E7] ES E9]
Reg Reg | Reg | Reg |
32 32 32 32
. 38
Filter
ES Element m
(FEQ)
-
2124
| Filter 38
E4 Element Reg
| (FEO) 4 38 B
2122 i
Filter 38 _) Scale
1 E3 Element Reg 2134
| (FEO) ' 2136]
2120 N
Filter 33 ‘ Ureg 4— ‘ Vreg
! F72|Element Reg l >
| (FEO) 4 16
2118 . I\
Filter) g —
1 Elementi_ Reg
~— | (FEO) 4
2116
Filter m 33 Ry TRM
EOD Element
~ | (FEO)
2114 |
IFFT Mem =
> E
G

To FIG. 21B

FIG. 214

U.S. Patent Aug. 19, 2008 Sheet 20 of 21 US 7,415,542 B2

= |
N]
o | 2110 2112 2126 2128 2130
T /
-
S | AR
w1 FE2\ 16 " E13 E14 2100
|
. Filter Filter Filter Filter Filter Filter [
| Element Element||Element Element Element] |Element
i (FEO) || (FEQ) (FEO) (FEO) (FEO)
: 38 38
! ___/ Reg Reg Reg
! Scale 38 38 38
| '_l'
|
|
| Reg
|
|
| 15-t0-1 by 38 Multiplexer
@
|
Fé rx TRM
G
! T lnstruction
| RAM
: 2140
BUF1
| ~—
i 2142 '
! Inst
| Decoder
; FFT Mem SUFC
—"]
i 2144
|
i JPASELJ[1:0]
| Prog & Loop
. Cntrs SOFT_RST,LAUNCH, TRIGGER[1:0]
<| <]
-
Q I MFE_STBJ[3:0]
L |
E .
O |
T

FIG. 218

U.S. Patent Aug. 19, 2008 Sheet 21 of 21 US 7,415,542 B2

2210 2230

Accumulators Output
(Ureg, Vreq) Registers

Input
Registers

US 7,415,542 B2

1

MICRO-PROGRAMMABLE FILTER ENGINE
HAVING PLURALITY OF FILTER
ELEMENTS INTERCONNECTED IN CHAIN
CONFIGURATION WHEREIN ENGINE
SUPPORTS MULITTPLE FILTERS FROM
FILTER ELEMENTS

CROSS-REFERENCE TO RELATED
APPLICATION(S)

The present application may be related to the following
commonly owned U.S. patent applications, which were filed
on even date herewith and are hereby incorporated herein by
reference 1n their entireties:

U.S. patent application Ser. No. 10/871,794 entitled DIGI-
TAL FILTER USING MEMORY TO EMULATE A VARI-
ABLE SHIFT REGISTER; and

U.S. patent application Ser. No. 10/871,411 entitled
MICRO-PROGRAMMABLE DIGITAL FILTER.

FIELD OF THE INVENTION

The present imnvention relates generally to communication
systems, and more particularly to a micro-programmable fil-
ter engine having multiple programmable filter elements that
can be configured, controlled, and combined 1n different ways
to implement different types of filters.

BACKGROUND OF THE INVENTION

Certain communication devices transmit and receive sig-
nals over a communication medium, such as a wireline, wire-
less, or optical communication medium. These communica-
tion devices typically include digital filters for performing
various filtering operations, such as Finite Impulse Response
(FIR) filtering, Infimte Impulse Response (IIR) filtering,
decimation, interpolation, and echo cancellation. The types
and configurations of digital filters (e.g., the number of taps or
bi1-quads) for a particular implementation are typically
selected based on the type of communication system and the
expected characteristics of the communication medium.
Often, the types and configurations of digital filters selected
for a particular implementation are trade-oifs to obtain
acceptable performance over a range of possible conditions.

SUMMARY OF THE INVENTION

A micro-programmable filter engine (MFE) provides a
flexible and programmable digital filter architecture for
implementing various digital filters in hardware 1n a commu-
nication device. The MFE includes multiple programmable
filter elements and a microcode controller. The filter elements
can be configured, controlled, and combined in different ways
to implement different types of filters. The MFE preferably
supports multiple-execution 1nstructions that allow a single
instruction to perform multiple moves 1nto accumulators for
ellicient data movement inside MFE.

In one aspect of the invention, there 1s provided a micro-
programmable filter engine having a first plurality of pro-
grammable filter elements, at least one of which including a
first microcode control program for internal control of the
programmable filter element. The micro-programmable filter
engine also has programmable interconnection logic coupled
to the programmable filter elements for selectively combin-
ing, scaling, and accumulating output values recerved from
the programmable filter elements and selectively providing
accumulated values as iputs to the programmable filter ele-

5

10

15

20

25

30

35

40

45

50

55

60

65

2

ments. The micro-programmable filter engine also has a filter
controller coupled to the programmable filter elements and
the programmable interconnection logic. The filter controller
has a second microcode control program for external control
of the programmable filter elements and the programmable
interconnection logic.

The filter controller may include an mstruction memory for
storing the second control program and at least one 1nstruc-
tion decoder coupled to the mstruction memory for program-
ming the programmable filter elements and the program-
mable interconnection logic based on the second control
program. The filter controller may include a plurality of pro-
gram counters for running different iterations of the second
control program for different filter elements. The filter con-
troller may include a plurality of loop counters for runming
different 1terations of second control program loops for dii-
terent filter elements.

The programmable 1nterconnection logic may include a
multiplexer coupled to the first plurality of programmable
filter elements for selectively driving output values recerved
from the first plurality of programmable filter elements, a
barrel shifter coupled to the multiplexer for receiving the
values and selectively scaling the values according to a scal-
ing factor programmed by the first filter controller, and at least
one accumulator coupled to the barrel shifter for selectively
accumulating scaled values from the barrel shifter. The pro-
grammable 1nterconnection logic may further include pro-
grammable feedback logic coupled to the at least one accu-
mulator and to the filter elements for selectively providing the
accumulated values as iputs to the programmable filter ele-
ments.

At least one programmable filter element having a first
microcode control program may include 1ts own plurality of
programmable filter elements, programmable interconnec-
tion logic, and filter controller. This filter controller controls
the programmable filter elements and the programmable
interconnection logic according to the first control program.

At least one programmable filter element may include at
least one memory for storing data samples and coellicients, a
multiplier for multiplying data samples read from the at least
one memory with corresponding coellicients read from the at
least one memory, an accumulator for summing multiplier
outputs, and control logic for controlling the at least one
memory, the multiplier, and the accumulator. The control
logic logically shifts the data samples read from the at least
one memory and writes the logically shifted data samples
back into the at least one memory so as to emulate a shift
register.

Within the micro-programmable filter engine, the filter
controller may allow each programmable filter element to
operate mdependently to perform different filtering func-
tions. Alternatively, the micro-programmable filter engine
may allow operation of multiple programmable filter ele-
ments to be combined to perform a single filtering function.
The filter controller can implement a plurality of filters, each
having a symbol rate, and the repetitive execution, by the first
filter controller, of a loop containing a number of single-clock
instructions can be completed 1n the number of clocks that are
required for execution of a symbol for the filter having the
slowest symbol rate. During each symbol period of the slow-
est symbol rate filter, filters with faster symbol rates than the
slowest symbol rate filter can operate on multiple symbols.
Also during each symbol period of the slowest symbol rate
filter, filters with faster symbol rates than the slowest symbol
rate filter can complete execution of a symbol and then remain
idle for the remainder of the symbol period.

US 7,415,542 B2

3

The filter controller has a set of microcode instructions that
can be used to control the filter elements and the program-
mable interconnection logic. Each microcode instruction
may contain a clock field that 1s used by the filter controller to
apply solftware-generated clocks to the individual filter ele-
ments. A software-controlled clock may be generated by pro-
gramming a value of one or zero 1n the clock field 1n each
microcode 1nstruction, such that the sequence of ones and
zeros directly generate a plurality of symbol clocks at a fre-
quency dictated by the sequence and the length of instruction
loop. Symbol clocks applied to the plurality of filter elements
may be dynamically selected via software and the frequencies
may be determined by a field in the instruction set. Each
microcode 1nstruction may contain a loop evaluation bit that
1s evaluated by the filter controller during the execution of
cach instruction.

In another aspect of the invention, there 1s provided appa-
ratus for digital filtering including a plurality of program-
mable filter elements, at least one of which including a first
microcode control program for internal control of the pro-
grammable filter element. The apparatus also includes first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
and first means for selectively combining, scaling, and accu-
mulating output values recerved from the first plurality of
programmable filter elements and for selectively providing
accumulated values as inputs to the first plurality of program-
mable filter elements.

The first means for programming the first plurality of pro-
grammable filter elements based on a second microcode con-
trol program may include an instruction memory for storing
the second control program and means for decoding the sec-
ond control program for programming the first plurality of
programmable filter elements and the first programmable
interconnection logic based on the second control program.
The first means for programming the first plurality of pro-
grammable filter elements based on a second microcode con-
trol program may include means for running different 1tera-
tions of the second control program for different filter
clements. Alternatively, the first means for programming the
first plurality of programmable filter elements based on a
second microcode control program may include means for
running different i1terations of second control program loops
for different filter elements.

The first means for selectively combining, scaling, and
accumulating output values recerved from the first plurality of
programmable filter elements and for selectively providing
accumulated values as iputs to the first plurality of program-
mable filter elements may include means for selectively out-
putting values received from the first plurality of program-
mable filter elements, means for receiving the outputted
values and selectively scaling the outputted values according,
to a pre-programmed scaling factor, and means for selectively
accumulating scaled values. The first means for selectively
combining, scaling, and accumulating output values recerved
from the first plurality of programmable filter elements and
for selectively providing accumulated values as mputs to the
first plurality of programmable filter elements may also
include means for selectively providing the accumulated val-
ues as inputs to the first plurality of programmable filter units.

At least one programmable filter element having a first
microcode control program may include a second plurality of
programmable filter elements, second means for program-
ming the second plurality of programmable filter elements
based on the first microcode control program, and second
means selectively combining, scaling, and accumulating out-
put values received from the second plurality of program-

10

15

20

25

30

35

40

45

50

55

60

65

4

mable filter elements and selectively providing accumulated
values as inputs to the second plurality ol programmable filter
clements.

At least one of the first plurality of programmable filter
clements may include at least one memory for storing data
samples and coellicients, means for combining data samples
read from the at least one memory with corresponding coet-
ficients read from the at least one memory, and means for
logically shifting the data samples read from the at least one
memory and writing the logically shifted data samples back
into the at least one memory so as to emulate a shift register.

The first means for programming the first plurality of pro-
grammable filter elements based on a second microcode con-
trol program may include means for each programmable filter
clement to operate independently to perform different filter-
ing functions. Alternatively, the first means for programming
the first plurality of programmable filter elements based on a
second microcode control program may include means for
allowing operation of multiple programmable filter elements
to be combined to perform a single filtering function.

The first means for programming the first plurality of pro-
grammable filter elements may include means for implement-
ing a plurality of filters, each having a symbol rate, wherein
the repetitive execution of a loop containing a number of
single-clock instructions can be completed in the number of
clocks that are required for execution of a symbol for the filter
having the slowest symbol rate. The means for implementing
a plurality of filters may include means for operating on
multiple symbols, during each symbol period of the slowest
symbol rate filter, for filters with faster symbol rates than the
slowest symbol rate filter. The means for implementing a
plurality of filters may include means for completing execu-
tion of a symbol and then remaining idle for the remainder of
the symbol period, during each symbol period of the slowest
symbol rate filter, for filters with faster symbol rates than the
slowest symbol rate filter.

The first means for programming the first plurality of pro-
grammable filter elements may include means for applying
software-generated clocks to the individual filter elements
based on a clock field 1n each microcode instruction. A soft-
ware-controlled clock may be generated by programming a
value of one or zero 1n the clock field in each microcode
instruction, such that the sequence of ones and zeros directly
generate a plurality of symbol clocks at a frequency dictated
by the sequence and the length of 1nstruction loop. The sym-
bol clocks applied to the plurality of filter elements may be
dynamically selected via software and the frequencies may be
determined by a field 1n the instruction set. Each microcode
instruction may contain a loop evaluation bit that 1s evaluated
during the execution of each 1nstruction.

In another aspect of the invention, there i1s provided a
communication device including a transceiver for transmit-
ting and receiving communication signals and a micro-pro-
grammable filter engine in communication with the trans-
ceiver for processing digitized data samples corresponding to
the communication signals. The micro-programmable filter
engine has a first plurality of programmable filter elements, at
least one of which including a first microcode control pro-
gram for internal control of the programmable filter element.
The micro-programmable filter engine also has program-
mable interconnection logic coupled to the programmable
filter elements for selectively combining, scaling, and accu-
mulating output values received from the programmable filter
clements and selectively providing accumulated values as
inputs to the programmable filter elements. The micro-pro-
grammable filter engine also has a filter controller coupled to
the programmable filter elements and the programmable

US 7,415,542 B2

S

interconnection logic. The filter controller has a second
microcode control program for external control of the pro-
grammable filter elements and the programmable 1ntercon-
nection logic.

The filter controller may include an mstruction memory for
storing the second control program and at least one instruc-
tion decoder coupled to the mstruction memory for program-
ming the programmable filter elements and the program-
mable interconnection logic based on the second control
program. The filter controller may include a plurality of pro-
gram counters for running different iterations of the second
control program for different filter elements. The filter con-
troller may include a plurality of loop counters for running,
different 1terations of second control program loops for dii-
terent filter elements.

The programmable interconnection logic may include a
multiplexer coupled to the first plurality of programmable
filter elements for selectively driving output values recerved
from the first plurality of programmable filter elements, a
barrel shifter coupled to the multiplexer for receiving the
values and selectively scaling the values according to a scal-
ing factor programmed by the first filter controller, and at least
one accumulator coupled to the barrel shifter for selectively
accumulating scaled values from the barrel shifter. The pro-
grammable 1nterconnection logic may further include pro-
grammable feedback logic coupled to the at least one accu-
mulator and to the filter elements for selectively providing the
accumulated values as inputs to the programmable filter ele-
ments.

At least one programmable filter element having a first
microcode control program may include 1ts own plurality of
programmable filter elements, programmable 1nterconnec-
tion logic, and filter controller. Thus filter controller controls
the programmable filter elements and the programmable
interconnection logic according to the first control program.

At least one programmable filter element may include at
least one memory for storing data samples and coefficients, a
multiplier for multiplying data samples read from the at least
one memory with corresponding coeltlicients read from the at
least one memory, an accumulator for summing multiplier
outputs, and control logic for controlling the at least one
memory, the multiplier, and the accumulator. The control
logic logically shifts the data samples read from the at least
one memory and writes the logically shifted data samples
back into the at least one memory so as to emulate a shift
register.

Within the micro-programmable filter engine, the filter
controller may allow each programmable filter element to
operate mdependently to perform different filtering func-
tions. Alternatively, the micro-programmable filter engine
may allow operation of multiple programmable filter ele-
ments to be combined to perform a single filtering function.
The filter controller can implement a plurality of filters, each
having a symbol rate, and the repetitive execution, by the first
filter controller, of a loop containing a number of single-clock
instructions can be completed 1n the number of clocks that are
required for execution of a symbol for the filter having the
slowest symbol rate. During each symbol period of the slow-
est symbol rate filter, filters with faster symbol rates than the
slowest symbol rate filter can operate on multiple symbols.
Also during each symbol period of the slowest symbol rate
filter, filters with faster symbol rates than the slowest symbol
rate filter can complete execution of a symbol and then remain
idle for the remainder of the symbol period.

The filter controller has a set of microcode instructions that
can be used to control the filter elements and the program-
mable interconnection logic. Each microcode instruction

10

15

20

25

30

35

40

45

50

55

60

65

6

may contain a clock field that 1s used by the filter controller to
apply software-generated clocks to the individual filter ele-
ments. A software-controlled clock may be generated by pro-
gramming a value of one or zero 1n the clock field 1n each
microcode 1nstruction, such that the sequence of ones and
zeros directly generate a plurality of symbol clocks at a fre-
quency dictated by the sequence and the length of instruction
loop. Symbol clocks applied to the plurality of filter elements
may be dynamically selected via software and the frequencies
may be determined by a field in the instruction set. Each
microcode 1nstruction may contain a loop evaluation bit that
1s evaluated by the filter controller during the execution of
cach instruction.

a first plurality of programmable filter elements, at least
one of said first plurality of programmable filter elements
having a first microcode control program for internal control
of the programmable filter element;

first programmable interconnection logic coupled to the
first plurality of programmable filter elements for selectively
combining, scaling, and accumulating output values recerved
from the first plurality of programmable filter elements and
selectively providing accumulated values as imnputs to the first
plurality of programmable filter elements; and

a first filter controller coupled to the first plurality of pro-
grammable filter elements and the first programmable 1nter-
connection logic, the first filter controller having a second
microcode control program for external control of the first
plurality of programmable filter elements and the first pro-
grammable interconnection logic.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

FIG. 11s ablock diagram showing the relevant components
of a digital subscriber line modem 1n accordance with an
embodiment of the present invention;

FIG. 2 1s a block diagram showing relevant components of
a digital chip 1n accordance with an embodiment of the
present invention;

FIG. 3 shows the general structure of the physical layer in
accordance with an embodiment of the present invention;

FIG. 4 shows an exemplary digital filter configuration 1
that might be used 1n a digital subscriber line modem under
good line conditions;

FIG. § shows an exemplary digital filter configuration that
might be used 1n a digital subscriber line modem under bad
line conditions;

FIG. 6 1s a block diagram showing a digital filtering system
in accordance with an embodiment of the present invention;

FIG. 7 1s a block diagram the general architecture of an
micro-programmable filter engine 1n accordance with an
embodiment of the present invention;

FIG. 8 1s a block diagram showing the general architecture
an exemplary micro-programmable filter engine having both
FE2 filter elements and FEO filter elements 1n accordance
with an embodiment of the present invention;

FIG. 9 shows an exemplary architecture for a finite impulse
response filter as known 1n the art;

FIG. 10 1s a block diagram showing the general architec-
ture of a preferred FEO filter element 1in accordance with an
embodiment of the present invention;

FIG. 11 1s a block diagram showing the general architec-
ture of the FE2 filter element 1n accordance with an embodi-
ment of the present invention;

FIG. 12 15 a schematic diagram showing the relevant com-
ponents of an FEO filter element 1n accordance with an
embodiment of the present invention;

US 7,415,542 B2

7

FIG. 13 1s a timing diagram illustrating operation of a
typical eight-tap FIR filter in accordance with an embodiment
of the present invention;

FIG. 14 1s a timing diagram illustrating operation of a
decimator for ADSL++ decimation by four in accordance
with an embodiment of the present invention;

FIG. 15 1s a timing diagram illustrating operation of a
decimator for ADSL+ decimation by four 1n accordance with

an embodiment of the present invention;

FI1G. 16 1s a timing diagram 1llustrating an exemplary inter-
polation by four for a 16-tap filter in accordance with an

embodiment of the present invention;

FIG. 17 1s a block diagram of an address generator in
accordance with an embodiment of the present invention;

FIG. 18 shows an exemplary data path for memory testing,
in accordance with an embodiment of the present invention;

FIG. 19 1s a schematic diagram showing the FE2 filter
clement 1n accordance with an embodiment of the present
imnvention;

FIG. 20 1s a representation of a second order infinite
impulse response filter as known 1n the art;

FIG. 21 1s a schematic diagram showing the micro-pro-
grammable filter engine top level architecture 1n accordance
with an embodiment of the present invention; and

FI1G. 22 shows a representation of data flows along discrete
segments 1n the micro-programmable filter engine in accor-
dance with an embodiment of the present invention.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

A micro-programmable filter engine (MFE) provides a
flexible and programmable digital filter architecture for
implementing various digital filters in hardware 1n a commu-
nication device. The MFE includes multiple programmable
filter elements and a microcode controller. The filter elements
can be configured, controlled, and combined 1n different ways
to implement different types of filters. The MFE preferably
supports multiple-execution nstructions that allow a single
instruction to perform multiple moves 1nto accumulators for
eificient data movement inside MFE. Various aspects of the
present invention are described herein with reference to
embodiments for a digital subscriber line (DSL) modem
application, although the present invention 1s in no way lim-
ited to such an application, and various embodiments of the
present invention can be used 1n other types of communica-
tion devices and applications.

FIG. 1 1s a block diagram 100 showing the relevant com-
ponents of a DSL modem 110 in accordance with an embodi-
ment of the present ivention. Generally speaking, the DSL
modem 110 has an interface to a phone line 160 and an
interface to a computer 150, such as a USB interface, an
Ethernet interface, or a PCI interface. Among other things, the
DSL modem 110 typically includes a digital chup 120, an
analog chip 130, and discrete components 140.

FIG. 2 1s a block diagram showing relevant components of
the digital chip 120 1n accordance with an embodiment of the
present mvention. Among other things, the digital chip 120
includes physical (PHY) layer logic 220 and upper layer logic
210. The upper layer logic 210 typically performs such func-
tions as protocol, packet processing, security, Ethernet, and
ATM/aggregation functions. The PHY layer 220 implements
the DSL physical layer functions for one or more “flavors™ of
DSL, including such functions as digital filtering, modula-
tion/demodulation, echo cancellation, Viterbi (trellis) coding/

10

15

20

25

30

35

40

45

50

55

60

65

8

decoding, interleaving/deinterleaving, forward error correc-
tion (FEC) coding/decoding, framing, CRC, and scrambling/
descrambling.

FIG. 3 shows the general structure of the PHY layer 220 1n
accordance with an embodiment of the present mvention.
PHY layer 220 components are divided generally into trans-
mitter (ITx) components and receiver (Rx) components. The
transmitter components typically include framing/CRC/
scrambling logic 302, FEC encoding logic 304, interleaving
logic 306, Viterbi encoding logic 308, modulation logic 310,
and digital filtering logic 312. The recerver components typi-
cally include digital filtering logic 324, demodulation logic
322, Viterb1 decoding logic 320, deinterleaving logic 318,
FEC decoding logic 316, and framing/CRC/descrambling
logic 314.

Within the DSL modem 110, digital filtering 1s used to
perform such functions as finite impulse response (FIR) fil-
tering, infinite impulse response (I1IR) filtering, echo cancel-
lation, decimation, and interpolation. It should be noted that
the type(s) of filtering, the topology of the filters (i.e., where
in the transmitter and receiver paths the filtering gets done),
and the filter parameters can be selected for a particular
implementation, DSL version, or line condition.

FIG. 4 shows an exemplary digital filter configuration 400
that might be used in a DSL modem under good line condi-
tions. In the transmit path, the signal 1s filtered using a FIR
filter 410 with 128 taps, an IIR filter 420 with two bi-quads,
and an FIR-based interpolator 430. In the receive path, the
signal 1s filtered using an FIR-based decimator 460 and 1s
combined with the output from an FIR echo canceller 440

with 196 taps, and the resulting signal 1s filtered using an FIR
f1lter 450.

FIG. 5 shows an exemplary digital filter configuration 500
that might be used 1n a DSL modem under bad line condi-
tions. In the transmit path, the signal 1s filtered using an FIR
filter 510 with 128 taps, an IIR filter 520 with four bi-quads,
and an FIR-based interpolator 330. In the receive path, the
signal 1s filtered using an FIR-based decimator 560, an IIR

filter 550 with four bi-quads, and an FIR filter 540. There 1s no
echo canceller 1n this configuration.

In order to support various types of digital filtering func-
tions, embodiments of the present invention preferably
include a micro-programmable filter engine (MFE) that can
be programmed to implement multiple types of filter and
perform multiple filtering operations essentially 1n parallel.
FIG. 6 1s a block diagram showing a digital filtering system
600 1n accordance with an embodiment of the present inven-
tion. Among other things, the digital filtering system 600
includes a main processing unit (MPU) 610 interconnected
with a MFE 620. The MPU 610 programs the MFE 620 to
implement various digital filters and perform various digital
filtering operations.

FIG. 7 1s a block diagram the general architecture of an
MFE 700 1n accordance with an embodiment of the present
invention. Among other things, the MFE 700 includes a num-
ber of programmable filter elements (FEs) 710,-710,, (re-
terred to individually as an FE 710 and plurally as FEs 710),
a number of programmable multiplexers 730, a number of
programmable accumulators 740, and a microcode controller
750 for programming and controlling the various program-
mable elements. In an exemplary embodiment of the mnven-
tion, the MFE 700 includes four accumulators 740. The mul-
tiplexers 730 and the four accumulators 740 allow for five
separate digital filters to be implemented simultaneously.
Among other things, the microcode controller 750 partitions
the FEs 710 1nto separate functions (e.g., a particular filtering

US 7,415,542 B2

9

application may require two or more FEs 710 working 1n
conjunction) and performs data movement between FEs 710.

Within the MFE 700, the FEs can be configured imndividu-
ally and can be configured so as to perform multiple filtering
functions simultaneously. A single FE 710 can be used to
perform a particular filtering function, or multiple FEs 710
can be “cascaded” to form longer filters as discussed below.
The microcode controller 750 can control the multiplexers
730 to direct any FE 710 to any accumulator 740 and can
control the multiplexers 730 so that multiple FEs 710 are
directed to one accumulator 740.

Thus, a collection of filter elements can be used to 1mple-
ment a single, large filter or a number of small filters, by
simply configuring the operation of each filter element. The
filter element has the property of being cascadable, or con-
nected 1n series, to allow the implementation of large filters. A

large N-tap filter 1s implemented across multiple filter ele-
ments by computing partial sum of products in each filter
clement and then summing the filter element outputs. Pre-
terred embodiments are flexible enough to allow execution of
FIR filters, IIR filters, and different FIR variations such as

decimation and interpolation.

In an exemplary embodiment of the present invention, the
MFE includes two types of FEs. The first type of FE (referred
to hereinaiter as the FEO filter element) can be used to imple-
ment FIR filters as well as other functions such as decimation
and interpolation. The second type of FE (referred to herein-
alter as the FE2 filter element) imncludes two FEO filter ele-
ments and additional logic, and can be used to implement
both IIR filters and FIR filters as well as other functions such
as decimation and interpolation. The FEOQ and FE2 filter ele-
ments are described more fully below.

FIG. 8 15 a block diagram showing the general architecture
an exemplary MFE 800 having both FE2 filter elements 810 -

810, , (referred to individually as an FE2 810 and plurally as
FE2s 810) and FEO filter elements 820,-820,(referred to

individually as an FEO 820 and plurally as FEOs 820) 1n
accordance with an embodiment of the present invention. The
number of FE2s 810 1s preferably selected based on a prede-
termined maximum number of IIR filters that will need to be
supported by the DSL modem for whatever DSL variants are
supported by the DSL modem. In a preferred embodiment of
the present invention, the MFE includes six FE2s 810 and
nine separate FEQs 820. The MFE 800 also includes a number
of programmable multiplexers 830, a number of program-
mable accumulators 840, and a microcode controller 850 for
programming and controlling the various programmable ¢le-
ments.

The FEO filter element 1s a basic filter element designed
specifically for implementing FIR filters, but can also be used
to implement other FIR -like functions such as decimation and
interpolation. The preferred FEO can support up to a 64-tap

filter, although multiple FEOs can be cascaded to form longer
FIR filters.

In traditional N-tap FIR filter implementations, data passes
through an N-stage shift register where the output of each
stage 1s multiplied with a corresponding coellicient, and the
sum of the products constitutes the filter output. FIG. 9 shows
an exemplary architecture for a FIR filter 900 as known in the
art. The FIR filter 900 has a shiit register 910 consisting of a
number of interconnected flip-flops 920,-920,, (R1-RN) and
a number of coellicient registers 930,-930,, (C1-CN). Using
the multiplexers 940 and 950 and the multiplier 960, each
register 920 1s multiplied by a corresponding coetficient 930,
and the result 1s stored 1n an accumulator 970. A typical FIR

10

15

20

25

30

35

40

45

50

55

60

65

10

filter might have 128 filter taps (1.e., N=128). For 16-bit data,
the shift register 1s typically 16 deep (1.e., each register R
includes 16 tlip-tlops).

In preferred embodiments of the present invention, the FE(
filter element uses memory instead of registers to store both
data and filter coellicients 1n order to reduce the amount of
hardware necessary. Specifically, the shiit registers and the
coellicient registers are replaced with small random access
memories and associated control logic. For convenience, the
memory that replaces the shift register 1s referred to as the
Data Memory (DM) and the memory that replaces the coet-
ficient registers 1s referred to as the Coetlicient Memory
(CM). Among other things, the control logic manipulates the
data in the DM so as to emulate a shift register, specifically by
performing appropriate “read-modily-write” operations
(e.g., read a word from the memory, shiit it one bit, and write
it back to the memory). The FE0 architecture takes advantage
of the speed of modern integrated circuitry and iterates 1in time
the multiply-accumulate function of the filter 1n such a way
that allows on-the-1ly configuration of the filter properties. A
much faster clock than the frequency of the imncoming data
clock 1s used to operate the filter. The size of the DM and the
CM 1s determined by the ratio of the system clock to that of
the incoming data, such that, for each data mput, a filter
output 1s generated.

FIG. 10 1s a block diagram showing the general architec-
ture of a preferred FEO filter element 1000 1n accordance with
an embodiment of the present invention. Among other things,
the FEO filter element 1000 includes a multiplexer 1010, a
data memory (DM) 1020, a register 1030, a coelficient
memory (DM) 1040, a register 1050, a multiplier 1060, and
an accumulator 1070. A loopback path from the register 1030
to the multiplexer 1010 allows data to be read from the DM
1020, shifted, and written back into the DM 1020. Data read
from DM 1020 into register 1030 1s multiplied by a corre-
sponding coelficient read from CM 1040 into register 1050
using multiplier 1060, and the result 1s stored in an accumu-
lator 1070. In an exemplary embodiment of the invention, the
DM 1020 and the CM 1040 are 64x16 bit random access
memories, and so the FE0 1000 can implement up to a 64-tap
FIR filter. It should be noted that multiple FEOs can be cas-
caded 1n order to form FIR filters having more than 64 taps
(e.g., two FEOs can be cascaded to form a 128-tap filter with
functionality similar to that shown 1n FI1G. 9). It should also be
noted that an FEO can be used to implement a filter having
fewer than 64 taps and that multiple FEOs can be used to form
filters where the number of taps 1s not a multiple of 64 (e.g.,
can use 48 bits from each of two FEOs to form a filter with 96
taps).

The FE2 filter element 1s a more complex filter element
designed specifically for implementing both FIR and IIR
filters, but can also be used to implement other FIR-like
functions such as decimation and interpolation. In preferred
embodiments of the invention, each FE2 contains two FEQ
filter elements and additional hardware, including a filter
controller (FC), a barrel shifter, and an output accumulator.
The FEO blocks can operate independently or can be cascaded
to form various filters. The FE2 can be used to implement
some number of bi-quads for IIR filtering (where the number
of bi-quads depends on, among other things, the number of
clock cycles per symbol) or up to a 128-tap FIR filter. In the
FE2, the computation resolution of the IIR filter 1s twice that
of the FIR filter. The IIR filter execution 1s based on micro-
code stored 1n a small mstruction memory within the FC.
Each mstruction is capable of executing multiple data moves.

In certain embodiments of the present ivention, the FC
includes an 1nstruction memory, a program counter, and two

US 7,415,542 B2

11

identical instruction decoders, one for each FEO filter ele-
ment. A delay 1s mtroduced between the two instruction
decoders so that the two instruction decoders operate 1n a
ping-pong fashion in order to share the single instruction
memory. A program to execute a bi-quad starts at time n, 18
decoded with the first instruction decoder, and runs on the first
FEO filter element. The same program, delayed by one clock,
1s decoded with the second instruction decoder, and runs on
the second FEO filter element. The delay facilitates resource
sharing when partial results need to be scaled in the barrel
shifter or partially summed at the output accumulator.

FIG. 11 1s a block diagram showing the general architec-
ture of the FE2 filter element 1100 1n accordance with an
embodiment of the present invention. Among other things,
the FE2 filter element 1100 1ncludes a filter controller (FC)
1110, two FEO filter elements 1120 and 1130, a multiplexer
1140, a barrel shifter 1150, and an accumulator 1160. As
discussed above, the FC 1110 1ncludes an instruction memory
1111, two 1dentical instruction decoders 1112 and 1113, pro-
gram counter 1114, and register 1115. Operation of the
instruction decoder 1113 1s delayed by one clock cycle from
that of the mstruction decoder 1112 so that both can share the
instruction memory 1111.

For IIR filtering, the number of bi-quads that can be
executed by the FE2 filter element 1100 1s dependent on the
rate of the mncoming data and the execution length for each
bi-quad. Assuming that an input sample arrives every M clock
Cycles and that a bi-quad 1s computed in W clock cycles, the
maximum number of bi-quads that can be calculated 1s the
integer result of the ratio M/W. During execution of K bi-
quads (K>1), the microcode repeats the same instruction
sequence K times 1n a zero-overhead loop. When 1n FIR
mode, only the filter elements 1120 and 1130, multiplexer
1140, barrel shifter 1150, and output accumulator 1160 por-
tions of the block are active. The number of taps N 1n the FIR
filter 1s dictated by the ratio of the system clock to the data
clock, where the data clock 1s defined as the slower rate of
either rate at which data 1s produced by the filter or applied to
the filter. Each FE0 1120, 1130 1s capable of computing up to
N taps and the two FEOs 1120, 1130 can be cascaded to
compute up to 2N taps. Running concurrently, each FEO
produces a partial result that gets summed to the output accu-
mulator 1160 1n the final tally.

In preferred embodiments of the invention, the double-
precision data flow graph of the FE2 1s split into two merged
single precision data flow graphs. This allows double-preci-
sion operations of the FE2 to be run on two FE0 functional
blocks. Specifically, as described above, each FEO functional
block 1s a 16-bit block, and the FE2 functional block 1s a
32-bit block. Implementing an IIR filter using the FE2 func-
tional block mvolves multiplying a 16-bit coellicient by a
32-bit value to produce a 48-bit value (1.e., C[15:0]*D[31:0]).
The multiplication problem 1s preferably split into two parts,
specifically C[15:0]*D[31:16]+C[15:0]*D[15:0]. The barrel
shifter and accumulator allow the upper product and the lower
product to be added. The 48-bit values are fed back into the
two FEO blocks (see FIG. 9).

A particular feedback technique combines inter-bi-quad
scaling with the summation of intermediate values. With rei-
erence to FI1G. 9, the 48-bit values produced by FE2 double-
precision computations are fed back into the two 16-bit FE(
blocks. This requires scaling of the 48-bit values. This scaling,
1s done on the fly by controlling the barrel shiiter.

FI1G. 12 1s a schematic diagram showing the relevant com-
ponents of an FEO filter element 1200 in accordance with an
embodiment of the present invention. Among other things,

the FEO 1200 includes a data memory (DM) 1204, a coetii-

10

15

20

25

30

35

40

45

50

55

60

65

12

cient memory (CM) 1206, configuration registers (CFR)
1210, various multipliers and accumulators (MAC), and an
address generator (ADG) 1212. The function of each compo-

nent will be described 1n detail.

Within the MFE, each FEO is typically connected to two
adjacent filter elements. Specifically, the CREG_OUT output
1228 of one FEO 1s connected to the CREG_IN 1mnput 1226 of
the adjacent FE0. A similar interconnection between the two
FEO filter elements of the FE2 filter element exists.

The FEO 1s event driven. Therefore, a single pulse on
XCLK 1230 triggers the element to complete a single sweep
of execution, as programmed 1n CFR 1210. Single loops or
nested loops can be run, as described below.

FIG. 13 1s a timing diagram illustrating operation of a
typical eight-tap FIR filter in accordance with an embodiment
of the present invention. Sclk 1234 signals the loading of a
new data sample into register X (Rx) 1202. Xclk 1230 pro-
vides the trigger to launch a single sweep operation. The
master clock (Mclk) 1232 actually clocks all memories and
storage eclements 1 the FEO so that the write and read
addresses of the DM 1204 are the same. The expected result
of the FIR filter 1s:

MAC#)={DS#n)*CO+DS(n-1)*C1+
(n-7)*C7}

+1S5

or,
MAC)=2' _, DS(n-i)*C,

where DS(X) represents data sample x and Cy represents
coellicient y. These conventions will be continued 1n the
discussion below.

When programmed as an FIR filter, the FEO essentially
works as follows. First, 1t 1s assumed that DM[7:0] contains
{DS(n-8). DS(n-1)} and CM][7:0] contains {C7...CO0}. The
MAC accumulates [Ry*Rc], where Ry 1s register Y 1208 and
Rc 1s register C 1214.

At Mclk(1), the current content of DM(0), which 1s DS(n-
1), 1s loaded 1nto Ry 1208 and the current content of CM(0),
which 1s C0, 1s loaded 1nto Rc 1214. Rx(n) 1s selected through
multiplexer DMnxt 1236 and 1s written into DM(0), or, DS(n)
which was loaded into register Rx 1202 on the last Sclk 1234
event 1s DM location 0. The MAC 1s loaded with DS(n-8)
*(C7. The MAC content at this point 1s transferred to a holding
register 1224 because 1t contains a sample output.

At Mclk(2), DM(1), which 1s DS(n-2), 1s loaded into Ry
1208 and CM(1) 1s loaded into Rc 1214. DMnxt 1236 points
to Ry 1208 and the current content of Ry 1208, which 1s
DS(n-1), 1s written into DM(1). The MAC 1s overwritten with
DS(n-1)*C0. The overwrite operation 1s important because 1t
sets up the MAC for computing the next sample output.

At Mclk(3)-Mclk(8), the process described above for Mclk
(2) 1s repeated. DM(k) 1s DS(n-k-1) and 1s loaded mto Ry
1208 while CM(K) 1s loaded 1nto Rc 1214. The current con-
tent of Ry 1208 1s written into DM(k). The MAC 1s accumu-
lated with Ry*Rc.

FIG. 14 1s a timing diagram illustrating operation of a
decimator for ADSL++ decimation by four in accordance
with an embodiment of the present invention. FIG. 15 1s a
timing diagram illustrating operation of a decimator for
ADSL+ decimation by four 1n accordance with an embodi-
ment of the present invention. For every four input samples,
the decimator generates a single output. The data memory
DM 1s segmented into groups of four as shown below and the
write and read addresses of the memory are the same. Data 1s
shifted from a column to the adjacent column on the left.

US 7,415,542 B2

13

Din(3) — 3 7 (11 15
Din(2) — 2 6 [10] 14]
Din(1) — 1 S 9 13]
Din(0) — o £] 12

Data shifts from right to left —

FIGS. 14 and 15 show the alignment of Ry and Rc contents
to produce the desired output. Input samples are loaded 1nto
DM by DecClk and output samples are clocked out on xclk. In
the general case of decimation by n for a filter with length L,
the DM 1s partitioned to L/n columns with n members in each
column.

FI1G. 16 1s a timing diagram 1llustrating an exemplary inter-
polation by four for a 16-tap filter in accordance with an
embodiment of the present invention. For every input sample,
the filter generates four output samples. The DM read and
write addresses of the interpolator are different. The bottom
of FIG. 16 shows the position of input data samples 1n DM. At
Intx4_clk(n), data samples 3, 2,1, and 0 are 1n positions 0, 4,
8, and 12, respectively. Therefore, output Qout(n)=K0*DM
(4)+K4*DM(8)+K8*DM(12)+K12*DM(1). The contents of
DM(12,8,4.1) are S2, S1, S0 and S3 respectively. Therelore,
Qout(n+1)=Qout(n)+K1*DM(5)+K5*DM(9)+K9*DM
(13)+K13*DM(2), where DM[5.,9,13,2] contain S3, S2, S1
and S0 respectively. The process 1s repeated every Intx4_clk
and the accumulator output 1s overwritten every Xclk. During
the course of an Xclk period, the newest four data samples are
multiplied with the full set of coetlicients K[15:0] and the

product 1s accumulated.

The dual loop mode 1s used to generate the proper address-
ing for executing the decimator and interpolator functions as
described previously. The following 1s a description of how
this mode operates. It 1s assumed that LP1 counts down
LP1_N times and its initial value 1s LP1_BASE (loaded 1n
LLP1_CNTR) and that LP0 counts LP0_N times (loaded 1n
LP0_CNTR) with a displacement of LPO_INCR. The first
value of LP1 (LP1_BASE) 1s loaded 1nto the output REG to
coincide with the assertion of Xclk, LP1 CNTR decrements
by 1 so that LP1_CNTR contains (LP1_BASE-1), and
LP0_CNTR pre-loads with the value LPO_N. On the next
LP0_N Mclk, the content of output REG 1s LP1_BASE+
n*LP0_INCR, where nel, 2 . . . LPO_N. The corresponding
valuein LP0 _CNTR 1s LPO0_N-n. When LP0_CNTR=0, then
the next clock coincides with Xclk and the new value of
LLP1_BASE is loaded mto the output REG, and the second
pass of LP1 begins. The entire process described above 1s
repeated until both loop counters LP1 and LP0 expire, or
equal zero. The output REG 1s loaded with LP1_BASE 1n
anticipation of the next Xclk. The number of Mclks for com-
pleting a sweep 1s (LP1_BASE+1)*(LP0_N+1).

The single loop mode provides the addressing generation
function for simple N-tap FIR filters. It 1s assumed that LP0
counts LP0_N times (loaded in LP0_CNTR) with a displace-
ment of LPO_INCR. During each sweep, LP0_CNTR counts
up LPO_N times and the output REG=n*LP0_INCR. At the

end of the sweep, the output REG 1s reset to zero.

The memory bypass mode 1s optimized for a fast, symmet-
ric or non-symmetric FIR filter operation. CFG1 and CFG2
must have a value of one, CFG0 a value of one or two depend-
ing on 1ts position in the chain of cascaded filters, and the end
filter position requires a value of two. Every Xclk, samples are
shifted serially through the filter element and the sum of
Ry+Rc 1s multiplied by the CM output. The result 1s stored 1n
the accumulator (Acc). In non-bypass operation, Rc 1s mul-

10

15

20

25

30

35

40

45

50

55

60

65

14

tiplied by the default CFG3 value of zero. CFG3 controls the
symmetry operation of the filter (zero for non-symmetric, one
for symmetric).

FIG. 17 1s a block diagram of the address generator (ADG)
1700 1n accordance with an embodiment of the present inven-
tion. The ADG 1700 controls the overall operation of the FEO.
For the sake of discussion, a sweep 1s defined as the time
period between adjacent sample clocks (Xclk), where the
Xclk controls the slower data transfer in or out of the FEO. For
example, in decimation, Xclk controls the output; 1n interpo-
lation, Xclk controls the input.

The ADG 1700 operates on the principle that Xclk triggers
a single sweep and a sweep 1s composed of one or two nested
loops, namely LP0 and LP1. The INIT CNTR 1720 counts up
or down by one. The rest of the structure counts by the
displacement of INCR REG 1710 content. LP0 and LP1
counters 1760 and 1770, respectively, control the operation of
the nested loops.

The INCR REG 1710 content 1s a two’s complement value
ranging from -32 to +31. The adder (ADDR) 1730 output 1s
always positive and ranges between O and 63. The INIT
CNTR 1720 1s always positive. The adder 1730 recerves as
inputs the contents of INCR REG 1710 and the contents of
REG 1750 and sign extends both imnputs to seven bits 1n order
to behave correctly and yield a result 1n the proper range. The
multiplexer (mux) 1740 allows either the contents of the INIT
CNTR 1720 or the output of the adder 1730 to be directed to
REG 1750. The CTL REG 1780 controls operation of the
ADG.

An nstruction based controller, or engine, can take over the
filter element control through the filter controller (FC) port.
The FC port provides the flexibility to customize the filter
operation being implemented in the FE0 data path. The FEO 1s
thus capable of implementing FIR and IIR filtering functions.

In FE2 configuration, the FC port 1s used to pass control to
FEO.

r

The following 1s a description of various FEO signals
including the signal name, direction (I=input, O=output), and
width:

Signal
From/To Name Dir Width Description
General mclk I 144 MHz main digital clock
resn I asynchronous reset
sclk I xclk pulse
fclk I fast clock pulse for interpolation
and decimation
fdin I 16 1mput from top level filter
inrdy I 1 1nput ready read pulse
fdout O 38 filter output
ready O] filter output ready
CRB crb__wrn I crb write enable (low)
crb_ rdn I 1 crb read enable (low)
crb__data I 16 crb write data
crb__addr I 3 crb read/write address
crb_ rdata O 16 crbreaddata
crb__drdy O] crb read data ready pulse
DMA dma_ wrn I dma write enable (low)
dma_ rdn I 1 dma read enable (low)
dma_data I 16 dma write data
dma_ addr I 7 dma read/write address
dma_ rdata O 16 dma read data
dma_ drdy O 1 dma read data ready pulse
FEO X1 I 16 imput from previous FEO in
chain
creg In I 16 mput from next FEO 1n chain
xout O 16 output to next FEO in chain
creg out O 16 output to previous FEO 1n chain

US 7,415,542 B2

15

-continued

Signal
From/To Name Dir Width Description
IIR fd__in I 1 feed mmput through FEO
without any operations
IX__ XIn I 1 write xin to Rx
ry__ctrl I 1 Ry write enable
ry__sel I 1 write DM or Rx to Ry
1DMrda I 4 DM read address
IC__cm I 1 write CM to Rc
1CMrda I 6 CM read address
acc__add I accumulator addition operation
acc__owt I accumulator overwrite operation
dm__wen I DM write enable (low)
iDMwta I 4 DM write address
1Ir_ena I 1 IIR mode of operation
SCAN SE I 1 Scan mode of operation

For the purpose of testing, registers, adders, multiplexers
and MAC will be tested using scan. Memory testing uses
special provisioning. Specifically, DM and CM are enclosed
in a special wrapper that bypasses the physical memory dur-
ing scan test. The bypass permits all inputs to connect to the
16-bit output bus of the wrapper in order to provide visibility
to the memory control and data inputs. The MPU port 1s used
to write data directly to either DM or CM of any FEO. The read
back path to the MPU is not direct but goes through Ry and Rc
tor DM, or, Rc for CM, of the FE0 under test, plus Rc of each
FEO between the first FEO and the FEO under test. The first
FEO 1s the unit where CREG _OUTT drives the MPU data bus.
FIG. 18 shows an exemplary data path for memory testing 1n
accordance with an embodiment of the present invention. The

FEOs are chained together by connecting the CREG_OUT
from one FEO to the CREG_IN of the adjacent FEO.

In an exemplary embodiment of the present invention, the
configuration registers (CFG) are defined as follows:

Name = CFG CTL Addr = Ox00

Bit(s) Mmnemonic Description
9] slave configure input protocol to be a slave unit
8] cfg_int configure for interpolation mode
7] cfg dec configure for decimation mode
6] cfg_rxi configure Rx mput from fdin or xin
5] Go gated mclk signal
4] cfg__sym configure into symmetric mode (untested)
3] cfg_ byp conflgure into memory bypass mode (untested)
2] cfg__cms configure multiplier input (unknown operation)
[1:0] cig rc configure Rc mput (untested/unknown operation)
Name = LPO CTL Addr = 0x01
Bit(s) Mnemonic Description
[5:0] LPOCNT number of cycles loop zero runs for

10

15

20

25

30

35

40

45

50

55

60

65

16

Name = LP1CTL Addr = 0x02

Bit(s) Mnemonic Description
[7] LPlon active loop 1
[6] LPlup set counter for loop 1 to increment or decrement
[5:0] LPlbase set maximum value for loop 1 counter
Name = INIT Addr = 0x03
Bit(s) Mnemonic Description
[5:0] INIT initial value of address if loop 1 1s inactive
Name = INCR Addr = 0x04
Bit(s) Mnemonic Description
[5:0] INCR value of address incrementing

Name = intctl Addr = 0x035

Bit(s) Mnemonic Description
6] 1nt_ectl

| enable external interpolation output pulse
[5:0] 1p__fval

internal interpolation pulse counter max value

FIG. 19 1s a schematic diagram showing an FE2 filter
clement 1900 1n accordance with an embodiment of the
present invention. FE2 1s the next element up in the MFE
hierarchy. It 1s composed of a pair of FEOs 1910 and 1920, a
barrel shifter 1930, an adder 1940, an accumulator 1950, and
program execution hardware including an instruction (pro-
gram) memory 1960, an instruction decoder 1970, and a
program counter 1980. The FE2 can be configured as two
independent or two cascaded FEO filter modules or can imple-
ment an IR filter. The FE2 has a microcode-driven architec-
ture to allow for IIR flexibility.

The following table describes the FE2 internal registers:

name loc width Description

Rx FEO [15:0] Holds input data to be used later.

Ry FEO [15:0] Multiplier input A. Also writes data back to
storage.

Rc FEO [15:0] Multiplier input B. Data 1s from coeflicients.

acc FEO [37:0] Accumulation register after multiplier. Local
HI/LO values.

acl FE2 [47:0] Accumulation after shifting and addition of HI

and L.O values.

The FE2 instruction memory 1s 32 words long with a width
of 16 bits. Instruction bits [15:14] indicate the type of instruc-
tion, where [0:0] 1s used for setup instructions, [0:1] 1s used
for start/stop instructions, [1:0] 1s used for external math
mstructions, and [1:1] 1s used for internal math 1nstructions.
Setup 1nstructions control the configuration registers. Start
instructions operate on external data and perform internal
data pre-fetch. The stop instruction controls operations that
occur at the end of a loop. The internal math instruction

US 7,415,542 B2

17

controls internal data storage and math operators. The exter-
nal math instruction controls the accumulator and shifter at
the FE2 top level.

Setup instructions control all of the configuration registers.
Setup mstructions have the following format:

Bits

18

mode (151 [14] [13] [12] [11] [10] [9]

slave loop

8]

Q11

[7] [8]

set-up 0 0 wtur 1r wt slv loop n

15
The wt ur[13] and 11r[12] bits are used to control IIR mode.

When IIR mode 1s disabled (O=default), the FEOs operate
using their own control registers; when IIR mode 1s enabled
(1), the FEOs are controlled by the FC program instructions.
When the value 1 wt 11r[13] 1s high (1), then IIR mode 1s

either enabled or disabled according to the value of 11r[12];
when the value 1n wt 11r [13] 1s low (0), then the IIR mode 1s
unchanged.

20

The wt slv[11] and slave[10] bits are used to control slave
mode. When slave mode 1s disabled (O=default), the FE2
receives external mput 1s from a filter operating on a separate
filtering function; when slave mode 1s enabled (1), the exter-
nal mput 1s from a linked filter operating on the same 1ir
function so that input from a linked filter comes 1n from a
different port, uses the xclk as an input ready signal, and 1s fed 30
into the FEOs using special multiplexers. When the value in wt
slv[11] 1s high (1), then slave mode is either enabled or
disabled according to the value of slave[10]; when the value
in wt slv 1s low (0), then slave mode 1s unchanged.

25

[>] [4]

offset set offset n

The loop[9], on [8], and loop n[7-5] bits are used to control
looping. When the loop[9] bit 1s high (1), the value of the on
[8] bit controls whether a loop 1s active (1) or mmactive (0), and
the value of the loop n[7-35] bits specifies the number of
iterations that the loop will run, where a value of n runs the
loop (n+1) times. The loop start and end address values are
determined by a separate instruction (eval).

The offset[4], set[3], and offset n[2-0] bits are used to
control offsets. If there 1s a running loop, the default offset 1s
the current iteration of the running loop (3'hO if there 1s no
loop). The value of Offset_n1s appended to the end of the data
and the coellicient memory addresses. When Offset_n 1s set,
by Offset_onequaling 1, then the value of Offset_n 1s offsetn.

The write enable signal offset 1s used to write to the register
Offset_on the signal set and Offset_n the signal offset n.

Start instructions control and operate on external input
data, and also allow “pre-fetch” from the data and coelficient
memories side the FEO filter elements. Start instructions
have the following format:

Bits

mode [15] [14]

start 0 1 0

45

[13] [12]

[11] (1o} [®]

fdin shift]l shiftr shift n

read dmrda cmrda

The 1d 1 [12] bit 1s used to allow external input (irom the
port FD) to bypass the FEOs to the shifting logic to be fed back
to the FEOs on the next clock cycle. This 1s only used 1f slave
mode 1s disabled.

Stop 1nstructions control operations that occur at the end of
a loop or IIR operation. Stop 1nstructions have the following
format:

Bits

mode [15]

stop 0

60

[14]

[13] [12] [t [10] 9]

1 1 wait waiton flag jump eval address

Internal math 1nstructions control the data storage, multi-
plier, and accumulator internal to the FEQ modules. The fol-
lowing 1s the format of internal math 1nstructions:

US 7,415,542 B2

19

20

Bits
mode [15] [14] [13] [12] [o] Pl 71 16l 5] [4]-13] [2]-[0]
math 1 1 rxxmm acowt acpls dmry dmwta ryrx rydm rccm dmrda cmrda

External math instructions control the accumulator and 10 1n FIG. 22, there are essentially three data tlows within the

shifter that are external to the FE0 modules, and also allow for
“pre-fetch” of memory. The following 1s the format of exter-
nal math 1nstructions:

MFE 2100, specifically (1) from FEs 2220 to accumulators
2210; (2) from accumulators 2210 to FEs 2220 or output
registers 2230; and (3) from 1nput registers 2240 to FEs 2220.

Bits
mode [15] [14] [13] [12] [11] [10] [9]-[8] [7] [6] [5] [4]-[3] [2]-[9]
ext 1 0 al owt alplsshift]l shiftr shiftn read dmrda cmrda ext math 1
math

An IIR filter utilizes five coellicient values plus a coelli-
cient with value one for each second order calculation. Each
group ol si1x coeflicients 1s stored in addresses zero through
seven. The CM address mask specifies up to eight groups of
coellicients. The coellicients are addressed as (offset/
loop_cntr[2:0], cmrda|2:0]), 1.e., the coellicients for the last
stage of a sixth order IIR are contained in the address range
010000-010110. The programmer has the freedom of decid-
ing which address within a range contains a particular coet-
ficient. The FE2 typically finishes a basic IIR bi-quad 1n 15
mclk cycles, and 1s capable of finishing n bi-quads in 3+12n
mclk cycles. For 8.8 MHz sample clock frequency, one bi-
quad per FE2 can be completed within that period. For a 4.4
MHz sample clock, two bi-quads, and at a 2.2 MHz fre-
quency, five bi-quad operations can be performed in a single
FE2 unait.

The looping capability facilitates implementing I1R filters
in stages of second order configuration. Each loop path
executes a second order IIR filter as shown 1n FI1G. 20.

FI1G. 21 15 a schematic diagram showing the MFE top level
architecture 2100 in accordance with an embodiment of the
present invention. As discussed above, the MFE performs a
set of filtering functions concurrently and provides a pro-
grammable mechamism for interconnecting these filtering
tfunctions. The top level binds together six FE2 filter elements
2102-2112 (elements E6-E11, respectively), nine separate
FEO filter elements 2114- 2130 (elements E0-E5 and E12-
E14, respectively), a barrel-shifter 2134, two accumulators
2136 and 2138 (referred to as Ureg and Vreg, respectively),
instruction memory 2140, instruction decoder 2142, program
and loop counters 2144, and various control and I/O registers
(not numbered for convenience). A filter controller imple-
menting a micro-coded program provides control for filter
output data assembly, accumulation, and movement at the top
level. Among other things, the MFE top level 2100 drives the
symbol timing control of all FEs, provides flexible intercon-
nect between filters, scales filter results, controls mput/out-
put, and provides master timing control for all filtering func-
tions.

FI1G. 22 shows a representation of data flows along discrete
segments 1n the micro-programmable filter engine in accor-
dance with an embodiment of the present invention. As shown

25

30

35

40

45

50

55

60

65

Thus, data flow within the MFE 1s geared specifically toward
solving a class of problems efficiently. Similarly, the arith-
metic executed 1n the MFE 1s substantially limited to accu-
mulations and barrel-shifting and so 1s geared specifically
toward solving a class of problems efficiently.

The MFE operates 1n a single zero-overhead tight loop
either indefinitely or as specified by the user. Multiple code
images loaded 1n program memory aiford the engine the
ability of context switching on symbol or frame boundaries,
as selected by the user. Arithmetic, rounding, and scaling
operations performed by the MFE have inherent overtlow
protection.

MFE 1nstructions are 25 bits long. The instruction set con-
tains dedicated fields for symbol clocks to the individual
clements and a watit field to embed execution control within
the mstruction set.

Instruction bit 24 1s the wait (Wn) field. When set, the Wn
bit 1s an 1immediate execution 1nstruction that the MFE rec-
ognizes on the next clock and causes execution of an 1indefi-
nite wait following completion of executing the current
instruction. This wait 1s terminated by assertion of the mput
trigger.

Instruction bits 23-20 (C3-C0, respectively) are dedicated
bits for providing four soft clocks to all FEs. Each FE requires
two clock rates, namely Xclk and Fclk, which are provided by
these four bits C3-C0. A soit clock connection 1s made
between one of C3-C0 to an FE’s Xclk or Fclk by executing
a setup mstruction (CLKSET), as described below. The fre-
quency of each clock 1s determined by the number of system
clocks 1n a loop and the number of 1°s and 0’s 1n each field
(C3-C0). For example, 11 the symbol clock rate 1s 64 system
clocks, then the program loop length should be a multiple of
64 clocks. By placing a single 1 1n one instruction at the C0
field, while keeping the same field O 1n the rest of the 63
istructions yields the correct symbol clock rate. Double the
frequency 1s generated by setting 2 bit fields at a distance o1 32
istructions apart and so on.

MFE 1nstructions support simultaneous moves or a move
plus arithmetic operation or two moves plus either a loop

evaluation/jump operation. An Amove operation 1s from
ASRC (Source A) to ADST (Destination A) and a Bmove

operationis from BSRC (Source B)to BDST (Destination B).

US 7,415,542 B2

21 22
ASRC is selected from the set {E14 ... EO}, and is encoded The MFE supports two nested loops. The outer loop 1s
as shown 1n the Source/Destination Resources Address table specified by an immediate jump instruction JPMOV while the

below. ADST is selected from the set {Ureg (1), Vreg (0)}. inner loop 1s controlled with a LPMOYV 1nstruction, where the
BSRC is selected from the set {Ureg (10), Vreg (00), Rxtrm- aumber of iterations is declared.

reg (01), IFFTreg (11)}. BDST is selected from the set 5
{E14 ...EOQ, FFTreg, Txtrmreg, Ureg, Vreg!}, and is encoded
as shown 1n the Source/Destination Resources Address table

below. for an exemplary embodiment of the present invention:

The following 1s the format of the CLR (clear) instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 % 7 o6 5> 4 3 2 1 0O

wn C3 C2 ¢C1 ¢cob o o o o0 ©0O o o0 ©o0o oo oo o o o0 o o o0 0 0o 0 0

The CLR (clear) instruction clears all resources 1n the
datapath.
The following 1s the format of the ADSTSET (destination

20 A set) instruction for an exemplary embodiment of the
present invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

wn C3 C2 ¢C1 ¢co o o o o o o0 o0 1 o0 0 0 0 0 0 LP EN RS OWR SUB RND

30 The LP[3] bit 1s used to select between LPMOV and
TPMOV registers that hold ADST for each instruction. Only a
single ADST 1s assigned to each of the two mnstructions. The
EN[4] bit 1s used to enable (1) the implicit ADST field for
instructions LPMOV and JPMOYV or disable (0) the Amove

35 operation. The RS[3] bit1s used to select Vreg (0) or Ureg (1).
The OWR[2] bit1s used to overwrite the selected register. The
SUBJ[1] bit 1s used to subtract ASRC from the selected regis-
ter (1.e., add the two’s complement of ASRC to the register).
The RND[O] bt 1s used to round the sum before storing in the

40 selected register.

The following 1s the format of the FLGSET (flag set)
instruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0O

wn C3 C2 ¢C1 ¢0b o o oo oo ©0 o 1 o o o0 0 0 F/ F6 F5 F4 F3 F2 F1 FO

The FLGSET nstruction 1s used to modity flag fields
F7-FO0.
The following 1s the format of the STBSET (strobe set)
55 1nstruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 &8 7 6 5 4 3 2 1 0

wn C3 ¢C2 ¢c1 ¢co o o o o o o0 1 1 0o O o0 0O 0 0 0 0 Sth3 Sth2 §Stbl SthO

US 7,415,542 B2

23

The STBSET instruction asserts a four-bit output strobe
mie_stb[3:0] for one clock period. The strobes may be used to
request data from an external resource or to signal data avail-

able. The data valid input from the resource 1s used to register
the dataset. 5

The following 1s the format of the MODESET (mode set)
instruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

wn C3 €2 ¢Cc1 ¢bo o o ©o0o o0 o 1 0 0 0 0 0

The MODESFET 1nstruction determines the MFE opera-
tional mode. Bits[1] and [0] are mput trigger enable bits
(1=enable).

The following 1s the format of the ARITH (arnthmetic) 20
instruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
wn C3 C2 C1 €CoO O 0 1 O ASRC OWR RND
30

The OWR][11] bit 1s used to overwrite the selected register
with the value 1n ASRC[15-12]. The RNDJ[10] bit 1s used to
enable rounding. The AOP[9-8] bits are used to select arith-
metic operations, where 00=BSRC+ASRC, 01=BSRC-
ASRC, 10=Ureg-Vreg, and 11=Ureg+Vreg. The RS[7] reg- 35
ister select bit 1s used to select a destination register. The
SCALE][4-0] b1t are used to shift the result.

The following 1s the format of the CLKSET (clock set)
istruction for an exemplary embodiment of the present
ivention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

wn C3 C2 C1 ¢b 0o 1 ©0O 0 X X X X X X X

The CLKSET 1nstruction writes a four-bit mask register
that specifies to the MFE the source of XCLK[FCLK] to the 50
destination FE or resource addressed by the Addr field. The
decoding of ADDR 1s per the Source/Destination Resources
Address table below. Each FE has the source of its XCLK
|FCLK] specified by the two-bit field in this mask. The decod-
ing of FCSEL/XCSEL 1s as tollows: 00=C0, 01=C1, 10=C2, 55
11=C3.

The following 1s the format of the LPSET (loop set)
instruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

wn C3 C2 C1 €Co 0o 0 0 1 §SI 8SC X X

8 7
0 0
9 8
AOP
8 7
8 7

6 5 4

o 0 U

7 6 5
RS BSRC

6 5 4

ADDR

6 5 4

LPLEN

24

3 2 1

X x TRIGI1

4 3 2 1
SCALE
3 2 1 0

FCSEL XCSEL

0

TRIGU

0

US 7,415,542 B2

25

The LPSET instruction sets up loop control. The SI[15] bit
1s used to start an indefinite zero-overhead loop whose end 1s
marked with a LPMOYV 1nstruction. An indefinite loop returns
to the 1nstruction that follows a LPSET. The SC[14] bit1s used
to start a loop that repeats LPLEN[11-0] times, whose end 1s
marked with a LPMOV 1nstruction.

The following 1s the format of the JPSET (qump set)
istruction for an exemplary embodiment of the present
ivention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

wn C3 C2 C1 €Co 0 0 1 1 SEL X X X X

The JPSET instruction defines the next instruction address
when a JPMOV 1s executed at JPADDR. The SEL[15-14] bits
provide the register address to which the Jump Address 1s
written. The encoding of this field 1s as follows: 00=JPA0
(Detault), 01=JPA1, 10=JPA2, 11=JPA3. The JPADDR][9-0]

bits are the physical address.

The following 1s the format of the JIPMOV (jump move)
instruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

wn C3 C2 C1 €Co O 1 1 O ASRC

The JPMOV instruction 1s typically the next-to-last
instruction in the main loop. Two move operations and an
immediate jump to address JPADDR are executed. The
ADST field 1s defined by mstruction ADSTSET, which gen-
erally must be executed prior to this mstruction. The Bmove
source BSRC 1s limited to Ureg (when 1) and Vreg (when 0).
BDST 1s defined in the Source/Destination Resources
Address table. A Bmove can move data from Ureg to Vreg but
not the reverse. The SCALE field allows scaling to be per-
tormed by selecting specified output bits. The SCALE field 1s
encoded according to the Barrel Shiit table below. The scale
operation applies to the Amove only.

The following 1s the format of the LPMOV (loop move)
instruction for an exemplary embodiment of the present
invention:

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10

wn C3 C2 C1 €CO O 1 1 1 ASRC

20

25

9

BDST

40

45

9

BDST

26

IPADDR

8 7 6 5 4 3 2 1 0

BSRC SCALE

The LPMOV instruction 1s typically the next-to-last ;, move data tfrom Ureg to Vreg but not the reverse. The SCALE

instruction in an inner loop with a finite number of iterations.
Two move operations and an immediate jump to 1nstruction
that follows a LPSET are executed. The ADST field 1s defined

by mnstruction ADSTSET, which generally must be executed

prior to this mnstruction. The Bmove source BSRC 1s limited
to Ureg (when 1) and Vreg (when 0). BDST is defined in the
Source/Destination Resources Address table. A Bmove can-

65

field allows scaling to be performed by selecting specified
output bits. The SCALE field 1s encoded according to the
Barrel Shift table below. The scale operation applies to the
Amove only.

The following 1s the format of the MOV (move) instruction
for an exemplary embodiment of the present invention:

27
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
wWwn C3 C2 Cl1 CO 1 ADST ASRC BDST BSRC
The MOV instruction moves data from ASRC to ADST
with scaling applied simultaneously with a move from BSRC
to BDST. The Amove 1s not executed 1f ASRC=0x0F (1.e., 10
hexadecimal OF). Stmilarly, the Bmove 1s not executed i1 the Address
BDST=0x1F. The ADST field includes three bits, namely the 00011
OWR] 18] overwrite bit, the RS[17] register select bit, and the 00100
Round[16] bit. The SCALE field allows scaling to be per- 00101
formed by selecting specified output bits. The SCALE field1s 15 00110
encoded according to the Barrel Shift table below. V0111
The following 1s the Barrel Shift table used for scaling, as g;‘gg?
discussed above: 01010
01011
20 01100
01101
Scale Field Selected bits out g }(1]
00000 37:22 10000
00001 36:21 10001
00010 35:20 73 10010
00011 34:19 10011
00100 33:18 10100
00101 32:17 10101
00110 31:16 10110
00111 30:15 10111
01000 29:14 11000
01001 28:13 30 11001
01010 27:12 11010
01011 26:11 11011
01100 25:10 11100
01101 24:9 11101
01110 238 11110
01111 22:7 35 11111
10000 21:6
10001 20:5
10010 19:4
10011 1R8:3
10100 17:2
10101 16:1 40
10110 15:0

US 7,415,542 B2

-continued

Resource

E3
E4
ES
Eo6-L
E7-L

FFT MEM
IFFT MEM
RxClk_out

E6-H
E7-H
E&-H
E9-H
E10-H
E11-H
BUFO
BUF1
BUE?2
None

The following 1s an exemplary address map for the MFE
2100. With reference to FI1G. 21, FEO_0 to FE0_8 are mapped

The 1following 1s the Source/Destination Resources
Address table used for addressing, as discussed above:

Address

00000
00001
00010

Resource

EO
El
E2

to the instantiations E0-E5 and F12-E14, while FE2 9 to
FE2 14 are mapped to the instantiations E6-E11.

FEO_O
45
DMA access
Address Range RAM 15-0
03000 030BC DM dpreg64x16 Data Memory
50 03100 031BC CM spregb6dx16 Coelflicient Memory

CRB access
Address
Range Register 15-10 9 8 7 06 S 4 3 2 1-0
07980 cig_ ctl slave int dec rxi go sym byp cms rci
07984 1p0_ ctl IpOcnt
07988 Ipl_ ctl on up Ipl1__base
0798C INIT INIT
07990 INCR INCR
07994 nt_ ctl ectl ip__fval

Address Range

US 7,415,542 B2

29

DMA access 5

RAM 15-0

03200 032BC DM dpreg64x16 Data Memory
03300 033BC CM spregb4x16 Coeflicient Memory

CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
079A0 cig_ ctl slave it dec rxi go sym byp cms 1cl
079A4 1p0_ ctl IpOcnt
079A8 Ipl__ctl on up Ipl__base
079AC INIT INIT
079B0 INCR INCR
079B4 1nt_ ctl etcl 1ip__fval
FEO_2
30
DMA access
Address Range RAM 15-0
335

03400 034BC DM dpreg64x16 Data Memory
03500 035BC CM spregb4x16 Coeflicient Memory

CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
079C0 cig_ ctl slave it dec rxi g0 sym byp cms 1cI
079C4 1p0__ctl IpOcnt
079C8 Ipl__ctl on up Ipl__base
O79CC INIT INIT
079D0 INCR INCR
079D4 int_ ctl ectl 1ip__fval
FEO_3 55
DMA access 60
Address Range RAM 15-0

03600 036BC DM dpreg64x16 Data Memory
03700 037BC CM spregb4dx16 Coeflicient Memory

65

30

Address

31

CRB access

US 7,415,542 B2

Range Register 15-10 9 8 7 6 5 4 3 2
079E0 cig_ ctl slave 1nt dec rxi go sym byp cms
079E4 1p0_ ctl IpOcnt
O79E8 lpl_ ctl on up Ipl__base
079EC INIT INIT
079F0 INCR INCR
079F4 1nt_ ctl ectl 1ip__fval

FEO 4 15

DMA access
Address Range RAM 15-0 20
03800 038BC DM dpreg64x16 Data Memory
03900 039BC CM spregb4x16 Coeflicient Memory
CRDB access

Address

Range Register 15-10 9 8 7 6 5 4 3 2
07A00 clfg_ ctl slave it dec rxi oo sym byp cms
07A04 1pO__ctl IpOcnt
07A08 Ipl__ctl on up Ipl__base
07AOCINIT INIT
07A10 INCR INCR
07A14 int_ ctl ectl 1ip__fval

FE0_5 a0

DMA access
Address Range RAM 15-0 45
03A00 U03ABC DM dpreg64x16 Data Memory
03B0O0 03BBC CM spregb4dx16 Coeflicient Memory
CRDB access
Address

Range Register 15-10 9

07A20 cfg_ ctl
07A24 IpO_ ctl
07A28 Ipl_ ctl

O7A2CINIT
07A30 INCR
07A34 int ctl

slave

int dec rxi oo

Oon up

ectl

sym byp cms
IpOcnt
Ipl__base
INIT
INCR

1ip__fval

1-0

Icl

1-0

rcl

1-0

rcl

32

US 7,415,542 B2

33

DMA access 5

Address Range RAM 15-0

03C00 03CBC DM dpreg64x16 Data Memory
03D00 03DBC CM spregb4x16 Coeflicient Memory

CRB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07A40 cig_ ctl slave mt dec rxi go sym byp cms r1cI
07A44 1p0__ctl IpOcnt
07A48 Ipl__ctl on up Ipl__base
07A4CINIT INIT
07A50 INCR INCR
07A54 int_ ctl ectl 1ip__fval
FE0_7 .
DMA access
Address Range RAM 15-0 35
03E00 03EBC DM dpreg64x16 Data Memory
03F00 03FBC CM spregb4x16 Coeflicient Memory
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07A60 cfg_ ctl slave it dec rxi oo sym byp cms 1cl
07A64 1p0__ctl IpOcnt
07A68 Ipl__ctl on up Ipl__base
O7A6CINIT INIT
07A70 INCR INCR
07A74 1nt_ ctl ectl 1ip__fval
FEO_8
60
DMA access

Address Range RAM 15-0

04000 040BC DM dpreg64x16 Data Memory
04100 041BC CM spregb4x16 Coeflicient Memory 65

34

US 7,415,542 B2

CRB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07AR0 cig_ ctl slave 1nt dec rxi go sym byp cms r1cl
07AR4 1p0_ ctl IpOcnt
O7A88 Ipl__ctl on up Ipl__base
O7ARCINIT INIT
07A90 INCR INCR
07A94 1nt_ ctl ectl 1ip__fval
E2 O: 15
DMA access
Address Range ~ RAM 15-0 20
00000 Q00BC DMO dpreg64 x 16 Data Memory
00100 001BC CMO spregb4d x 16 Coefficient Memory
00200 002BC DMI1 dpreg64 x 16 Data Memory
00300 003BC CM1 spregb4d x 16 Coefficient Memory
00400 0043C PM spreg32 x 12 Program Memory 25
CRB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07AA0 cig_ ctl slave 1t dec rxi g0 sym byp CIms Ici
07AA4 1pO__ctl IpOcnt
O7AA8 Ipl_ ctl on up Ipl__base
07AAC INIT INIT
07ABO INCR INCR
07AB4 nt_ ctl ectl ip_ fval
E2 10:
45
DMA access
Address Range RAM 15-0
Q0RO0 008BC DMO dpregb4 x 16 Data Memory
00900 009BC CMO spregb4 x 16 Coeftlicient Memory 50
O0A00 O0DABC DMI dpregb4 x 16 Data Memory
O0B0O0O OOBBC CMI1 spregb4 x 16 Coeftlicient Memory
Q0C00 00C3C PM spreg32 x 12 Program Memory
CRB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07840 cifg_ ctlO slave int dec rxi go sym byp cms IcCi
07844 1p0__ctlO IpOcnt
07848 Ipl_ ctlO on up Ip1__base
0784C INITO INIT
07850 INCRO INCR
07854 1nt_ ctlO ectl ip__fval

36

US 7,415,542 B2

38

-continued
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07860 cig_ctll slave 1nt dec rxi go sym byp cms r1cI
07864 1p0_ ctll IpOcnt
07868 Ipl_ ctll on up Ip1__base
0786C INIT1 INIT
07870 INCRI11 INCR
07874 1nt_ ctll ectl ip__fval
E2 11: 15
DMA access
Address Range ~ RAM 15-0 20
01000 010BC DMO dpreg64 x 16 Data Memory
01100 011BC CMO spregb4d x 16 Coefficient Memory
01200 012BC DMI dpreg64 x 16 Data Memory
01300 013BC CM1 spregb4d x 16 Coefficient Memory
01400 0143C PM spreg32 x 12 Program Memory 25
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
07880 cfg ctlO slave 1t dec rxi go sym byp cms rcI
07884 1p0__ctlO IpOcnt
07888 Ipl_ ctlO on up Ip1__base
0788C INITO INIT
07890 INCRO INCR
07894 1nt_ ctlO ectl ip__fval
078A0 cfg_ ctll slave 1t dec rxi g0 Ssym byp cms IcCl
078A4 Ip0_ ctll IpOcnt
O78A8 Ipl__ctll on up Ipl__base
078ACINIT1 INIT
078B0 INCRI11 INCR
078B4 int_ ctll ectl ip_ fval
45
E2 12:
DMA access 50
Address Range RAM 15-0
01800 01¥BC DMO dpregb4 x 16 Data Memory
01900 019BC CMO spregb4 x 16 Coellicient Memory
01A00 OlABC DMI dpregb4 x 16 Data Memory
01BOO 01BBC CM1 spregb4 x 16 Coefficient Memory 33
01C00 01C3C PM spreg32 x 12 Program Memory
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
078C0 cfg_ ctlO slave 1t dec rxi g0 sym byp cms rcCl

078C4 1p0__ctlO IpOcnt

US 7,415,542 B2

-continued
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0
078C8 Ipl__ctlO on up Ip1__base
078CC INITO INIT
078D0 INCRO INCR
078D4 1nt_ ctlO ectl ip__fval
078E0 cfg_ ctll slave int dec rxi go sym byp cms rci
078F4 1p0_ ctll IpOcnt
O78ER Ipl_ ctll on up Ip1__base
078EC INIT1 INIT
078F0 INCRI11 INCR
078F4 1nt_ ctll ectl ip__fval
FE2_13:
20
DMA access
Address Range RAM 15-0
02000 020BC DMO dpreg64 x 16 Data Memory
02100 021BC CMO spregb4d x 16 Coefficient Memory 75
02200 022BC DMI dpreg64 x 16 Data Memory
02300 023BC CMl1 spregb4 x 16 Coefllicient Memory
02400 0243C PM spreg32 x 12 Program Memory
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3 2 1-0

07900 cifg_ ctlO
07904 IpO_ ctlO

slave 1t dec rxi

g0 sym byp cms
IpOcnt

rcl

07908 Ipl_ ctlO on up Ipl__base
0790C INITO INIT
07910 INCRO INCR
07914 int_ ctlO ectl 1p_ fval
07920 cig_ ctll slave 1t dec rxi g0 sym byp cms rcCl
07924 1p0_ ctll IpOcnt
07928 Ipl__ctll on up Ipl__base
0792C INIT1 INIT
07930 INCRI11 INCR
07934 nt_ ctll ectl 1p_ fval
FE2 14:
50
DMA access
55
Address Range RAM 15-0
02800 028BC DMO dpreg64 x 16 Data Memory
02900 029BC CMO spregb4d x 16 Coefficient Memory
02A00 02ABC DMI1 dpreg64 x 16 Data Memory 60
02B00 02BBC CMI1 spregb4 x 16 Coeftlicient Memory
02C00 02C3C PM spreg32 x 12 Program Memory

40

US 7,415,542 B2

41
CRDB access
Address
Range Register 15-10 9 8 7 6 5 4 3
07940 cig ctlO slave 1nt dec rxi g0 sym byp
07944 1p0_ ctlO IpOcnt
07948 Ipl_ ctlO on up Ipl__base
0794C INITO INIT
07950 INCRO INCR
07954 1nt_ ctlO ectl 1p_ fval
07960 cfg_ctll slave 1mt dec rxi g0 sym byp
07964 1p0__ctll IpOcnt
07968 Ipl_ ctll on up Ipl__base
0796C INIT1 INIT
07970 INCRI11 INCR
07974 1nt_ ctll ectl 1p__fval

Because the MFE 1s programmable, various filter configu-
ration profiles can be pre-defined for use with various respec-
tive line conditions, and the MFE can be programmed with an
appropriate configuration profile based on actual or expected
line conditions. Each configuration profile can define such
things as the type(s) of filters, the topology of the filters (1.¢.,
where 1n the path the filtering gets done), and the filter param-
cters. Line conditions, such as echoes, noise, and frequency
response, can be characterized, for example, using line prob-
ing or other active and/or passive characterization techniques.
The appropriate configuration profile can be selected based
on the results of the characterization.

It should be noted that the following claims may use the
term *“at least one” to indicate the inclusion of one or more of
a particular element, but the omission of that term from a

particular claim element 1s not to be construed as a limitation
to just one of that element.

The present invention may be embodied 1n other specific
forms without departing from the true scope of the invention.
The described embodiments are to be considered 1n all
respects only as 1llustrative and not restrictive.

What 1s claimed 1s:
1. A micro-programmable filter engine comprising:

a first plurality of programmable filter elements 1ntercon-
nected 1n a chain configuration, each filter element hav-
ing a {irst data input and a first data output, the first data
input coupled to the first data output of a previous filter
clement 1n the chain, the first data output coupled to the
first data input of a next filter element 1n the chain, each
filter element also having a second data mput and a
second data output, at least one of said first plurality of
programmable filter elements having a first microcode
control program for internal control of the program-
mable filter element;

first programmable interconnection logic coupled to the
second data 1nputs and outputs of the first plurality of
programmable filter elements for selectively combining,
scaling, and accumulating output values recerved from
the first plurality of programmable filter elements and
selectively providing accumulated values as inputs to
the first plurality of programmable filter elements; and

a first filter controller coupled to the first plurality of pro-
grammable filter elements and the first programmable
interconnection logic, the first filter controller having a
second microcode control program for external control
of the first plurality of programmable filter elements and
the first programmable 1nterconnection logic, whereby

CIT1S

20

25

30

35

40

45

50

55

60

65

42

1-0

Icl

rcl

the micro-programmable filter engine supports 1mple-
mentation of multiple filters formed from one or more
filter elements.

2. A micro-programmable filter engine according to claim

1, wherein the first filter controller comprises:

an istruction memory for storing the second control pro-
gram; and

at least one 1nstruction decoder coupled to the mstruction
memory for programming the first plurality of program-
mable filter elements and the first programmable inter-
connection logic based on the second control program.

3. A micro-programmable filter engine according to claim

1, wherein the first filter controller further comprises a plu-
rality of program counters for runmng different iterations of
the second control program for different filter elements.

4. A micro-programmable filter engine according to claim

1, wherein the first filter controller further comprises a plu-
rality of loop counters for running different iterations of sec-
ond control program loops for different filter elements.

5. A micro-programmable filter engine according to claim

1, wherein the first programmable interconnection logic com-
Prises:

a multiplexer coupled to the first plurality of programmable
filter elements for selectively driving output values
received from the first plurality of programmable filter
elements;

a barrel shifter coupled to the multiplexer for receiving the
values and selectively scaling the values according to a
scaling factor programmed by the first filter controller;
and

at least one accumulator coupled to the barrel shifter for
selectively accumulating scaled values from the barrel
shifter.

6. A micro-programmable filter engine according to claim

5, wherein the first programmable interconnection logic fur-
ther comprises:

programmable feedback logic coupled to the at least one
accumulator and to the second data mputs of the first
plurality of filter elements for selectively providing the
accumulated values as mputs to the first plurality of
programmable filter elements.

7. A micro-programmable filter engine according to claim

1, wherein at least one programmable filter element having a
first microcode control program comprises:

a second plurality of programmable filter elements;

second programmable interconnection logic coupled to the
second plurality of programmable filter elements for
selectively combiming, scaling, and accumulating output

US 7,415,542 B2

43

values received from the second plurality of program-
mable filter elements and selectively providing accumus-
lated values as inputs to the second plurality of program-
mable filter elements; and

44

17. A micro-programmable filter engine according to claim
1, wherein each microcode instruction of the instruction set of
the first filter controller contains a loop evaluation bit, and
wherein the first filter controller evaluates the loop evaluation

a second filter controller coupled to the second plurality ot 5 bit during the execution of each instruction.

programmable filter elements and the second program-
mable interconnection logic for controlling the second
plurality of programmable filter elements and the second
programmable interconnection logic according to the
first control program.

8. A micro-programmable filter engine according to claim

1, wherein at least one of the first plurality of programmable
filter elements comprises:

at least one memory for storing data samples and coetli-
cients;

a multiplier for multiplying data samples read from the at
least one memory with corresponding coellicients read
from the at least one memory;

an accumulator for summing multiplier outputs; and

control logic for controlling the at least one memory, the
multiplier, and the accumulator, the control logic logi-
cally shifting the data samples read from the at least one
memory and writing the logically shifted data samples
back into the at least one memory so as to emulate a shift
register.

9. A micro-programmable filter engine according to claim

1, wherein the first filter controller allows each programmable
filter element to operate independently to perform different
filtering functions.

10. A micro-programmable filter engine according to claim

1, wherein the first filter controller allows operation of mul-
tiple programmable filter elements to be combined to perform
a single filtering function.

11. A micro-programmable filter engine according to claim
1, wherein the first filter controller can implement a plurality
of filters, each having a symbol rate, and wherein the repeti-
tive execution, by the first filter controller, of a loop contain-
ing a number of single-clock instructions can be completed 1n
the number of clocks that are required for execution of a
symbol for the filter having the slowest symbol rate.

12. A micro-programmable filter engine according to claim
11, wherein, during each symbol period of the slowest symbol
rate filter, filters with faster symbol rates than the slowest
symbol rate filter can operate on multiple symbols.

13. A micro-programmable filter engine according to claim
11, wherein, during each symbol period of the slowest symbol
rate filter, filters with faster symbol rates than the slowest
symbol rate filter can complete execution of a symbol and
then remain 1dle for the remainder of the symbol period.

14. A micro-programmable filter engine according to claim
1, wherein each microcode instruction 1n the instruction set of
the first filter controller contains a clock field, and wherein the
first filter controller applies soltware-generated clocks to the
individual filter elements based on the clock field.

15. A micro-programmable filter engine according to claim
14, wherein a software-controlled clock can be generated by
programming a value of one or zero 1n the clock field 1n each
microcode instruction, such that the sequence of ones and
zeros directly generate a plurality of symbol clocks at a fre-
quency dictated by the sequence and the length of instruction
loop.

16. A micro-programmable filter engine according to claim
1, wherein symbol clocks applied to the plurality of filter
clements are dynamically selected via software and the fre-
quencies are determined by a field 1n the 1nstruction set of the
first filter controller.

10

15

20

25

30

35

40

45

50

55

60

65

18. Apparatus for digital filtering comprising:

a first plurality of programmable filter elements intercon-
nected 1n a chain configuration, at least one of said first
plurality of programmable filter elements having a first
microcode control program for internal control of the
programmable filter element;

first means for programming the first plurality of program-
mable filter elements based on a second microcode con-
trol program; and

first means for selectively combining, scaling, and accu-
mulating output values received from the first plurality
of programmable filter elements and for selectively pro-
viding accumulated values as imnputs to the first plurality
of programmable filter elements, whereby the apparatus
supports implementation of multiple filters formed from
one or more filter elements.

19. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
COmprises:

an struction memory for storing the second control pro-
gram; and

means for decoding the second control program for pro-
gramming the first plurality of programmable filter ele-

ments and the first programmable 1nterconnection logic
based on the second control program.

20. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
turther comprises means for running different iterations of the
second control program for different filter elements.

21. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
further comprises means for running different iterations of
second control program loops for different filter elements.

22. Apparatus according to claim 18, wherein the first
means for selectively combining, scaling, and accumulating
output values receirved from the first plurality of program-
mable filter elements and for selectively providing accumu-
lated values as mputs to the first plurality of programmable
filter elements comprises:

means for selectively outputting values recerved from the
first plurality of programmable filter elements;

means for receiving the outputted values and selectively
scaling the outputted values according to a pre-pro-
grammed scaling factor; and

means for selectively accumulating scaled values.

23. Apparatus according to claim 22, wherein the first
means for selectively combining, scaling, and accumulating
output values receirved from the first plurality of program-
mable filter elements and for selectively providing accumu-
lated values as mputs to the first plurality of programmable
filter elements further comprises:

means for selectively providing the accumulated values as
iputs to the first plurality of programmable filter ele-
ments.

US 7,415,542 B2

45

24. Apparatus according to claim 18, wherein at least one
programmable filter element having a first microcode control
program COmprises:

a second plurality of programmable filter elements;

second means for programming the second plurality of

programmable filter elements based on the first micro-
code control program; and
second means selectively combining, scaling, and accumu-
lating output values recerved from the second plurality of
programmable filter elements and selectively providing accu-
mulated values as mputs to the second plurality of program-
mable filter elements.

25. Apparatus according to claim 18, wherein at least one
of the first plurality of programmable filter elements com-
Prises:

at least one memory for storing data samples and coetli-

cients:;

means for combining data samples read from the at least

one memory with corresponding coelficients read from
the at least one memory; and
means for logically shifting the data samples read from the at
least one memory and writing the logically shifted data
samples back into the at least one memory so as to emulate a
shift register.

26. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
COmMprises:

means for each programmable filter element to operate

independently to perform different filtering functions.

277. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
COmMprises:

means for allowing operation of multiple programmable

filter elements to be combined to perform a single filter-
ing function.

28. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
COmMprises:

means for implementing a plurality of filters, each having a

symbol rate, wherein the repetitive execution of a loop
containing a number of single-clock instructions can be
completed in the number of clocks that are required for
execution of a symbol for the filter having the slowest
symbol rate.

29. Apparatus according to claim 28, wherein the means
for implementing a plurality of filters comprises:

means for operating on multiple symbols, during each

symbol period ol the slowest symbol rate filter, for filters
with faster symbol rates than the slowest symbol rate
filter.

30. Apparatus according to claim 28, wherein the means
for implementing a plurality of filters comprises:

means for completing execution of a symbol and then

remaining 1dle for the remainder of the symbol period,
during each symbol period of the slowest symbol rate
filter, for filters with faster symbol rates than the slowest
symbol rate filter.

31. Apparatus according to claim 18, wherein the first
means for programming the first plurality of programmable
filter elements based on a second microcode control program
COmprises:

means for applying software-generated clocks to the indi-

vidual filter elements based on a clock field in each
microcode instruction.

5

10

15

20

25

30

35

40

45

50

55

60

65

46

32. Apparatus according to claim 31, wherein a software-
controlled clock can be generated by programming a value of
one or zero 1n the clock field in each microcode 1nstruction,
such that the sequence of ones and zeros directly generate a
plurality of symbol clocks at a frequency dictated by the
sequence and the length of instruction loop.

33. Apparatus according to claim 18, wherein the symbol
clocks applied to the plurality of filter elements are dynami-
cally selected via software and the frequencies are deter-
mined by a field 1n the mstruction set of the first filter con-
troller.

34. Apparatus according to claim 18, wherein each micro-
code mstruction contains a loop evaluation bit, and wherein
the loop evaluation bit 1s evaluated during the execution of
each instruction.

35. A micro-programmable filter engine according to claim
1, wherein the first plurality of programmable filter elements
are configurable to perform at least one of: finite 1mpulse
response (FIR) filtering, infinite impulse response (I1IR) fil-
tering, echo cancellation, decimation, and interpolation.

36. A micro-programmable filter engine according to claim
7, wherein the second plurality of programmable filter ele-
ments are configurable to perform at least one of: finite
impulse response (FIR) filtering, infinite impulse response
(IIR) filtering, echo cancellation, decimation, and interpola-
tion.

37. A micro-programmable filter engine according to claim
1, wherein the first plurality of programmable filter elements
are operably coupled to a transcerver for at least one of pro-
cessing communication signals provided by the transcerver
and providing processed signals to the transceiver.

38. A micro-programmable filter engine according to claim
3’7, wherein the transceiver 1s a digital subscriber line trans-
celver.

39. A micro-programmable filter engine according to claim
3’7, wherein the communication signals provided by the trans-
ceiver include digitized data samples.

40. A micro-programmable filter engine according to claim
3’7, wherein the communication signals provided by the trans-
ceiver are converted into digitized data samples.

41. A micro-programmable filter engine according to claim
377, wherein the processed signals provided to the transcerver
include digitized data samples.

42. A micro-programmable filter engine according to claim
3’7, wherein the first plurality of programmable filter elements
are configurable to perform at least one of finite impulse
response (FIR) filtering, infinite impulse response (1IR) fil-
tering, echo cancellation, decimation, and interpolation on
the communication signals provided by the transceiver.

43. A micro-programmable filter engine according to claim
18, wherein the first plurality of programmable filter elements
are configurable to perform at least one of: finite impulse
response (FIR) filtering, infinite impulse response (IIR) 1il-
tering, echo cancellation, decimation, and interpolation.

44. A micro-programmable filter engine according to claim
24, wherein the second plurality of programmable filter ele-
ments are configurable to perform at least one of: finite
impulse response (FIR) filtering, infinite impulse response
(IIR) filtering, echo cancellation, decimation, and interpola-
tion.

45. A micro-programmable filter engine according to claim
18, wherein the first plurality of programmable filter elements

US 7,415,542 B2

47

are operably coupled to a transceiver for at least one of pro-
cessing communication signals provided by the transcerver
and providing processed signals to the transceiver.

46. A micro-programmable filter engine according to claim
45, wherein the transcerver 1s a digital subscriber line trans-
Ce1Ver.

47. A micro-programmable filter engine according to claim
45, wherein the communication signals provided by the trans-
ceiver include digitized data samples.

48. A micro-programmable filter engine according to claim
45, wherein the communication signals provided by the trans-
ceiver are converted into digitized data samples.

48

49. A micro-programmable filter engine according to claim
45, wherein the processed signals provided to the transcerver
include digitized data samples.

50. A micro-programmable filter engine according to claim
45, wherein the first plurality of programmable filter elements
are configurable to perform at least one of finite impulse
response (FIR) filtering, infinite 1mpulse response (IIR) fil-
tering, echo cancellation, decimation, and interpolation on

o the communication signals provided by the transceiver.

	Front Page
	Drawings
	Specification
	Claims

