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EXPLOSIVE EVENT DISCRIMINATION
METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims benefit under 35 USC 199(e) of

provisional application 60/593,063, filed Dec. 6, 2004, the

entire file wrapper contents of which provisional application
are herein incorporated by reference as though tully set forth
at length.

FIELD OF THE INVENTION

This invention pertains generally to the detection and dis-
crimination of explosive events. More particularly, 1t pertains
to a method that uses acoustic sensors for discriminating
between high-charge explosions and explosions from sys-
tems potentially deploying chemical and/or biological sys-
tems.

BACKGROUND OF THE INVENTION

Currently employed chemical and biological detection sys-
tems rely upon direct contact with lethal chemical/biological
agents 1 order to warn of the existence of such agents.
Examples of these systems include detection mechanisms
that incorporate chemically reactive materials that change
color upon contact with a chemical agent.

Unfortunately, such chemically reactive systems are typi-
cally mneffective at detecting biological materials. And since
they are only effective when 1n an already contaminated area,
the do not provide any early warning to first responders or
troops.

SUMMARY OF THE INVENTION

In recognition of the substantial deficiencies in the art and
the urgent needs of contemporary society, we have developed
a method for discriminating between explosive events that
result from high-charge explosions and those explosions
which may potentially distribute chemical/biological agents.

In operation, our nventive method employs an acoustic
sensor used in conjunction with a novel algorithm to detect an
airburst or other explosive event and subsequently determine
whether that explosive event was a high explosive, or chemi-
cal/biological blast. Advantageously, our method and related
algorithm are highly reliable, and permit sensor placement
geographically remote from the explosive event and therefore
out of harms way. Consequently, our iventive method and
algorithm permit—ifor the first time—an early warning of
explosively deployed, incoming chemical/biological agents.

According to our invention, a discrete wavelet transform 1s
used to extract predominant components of particular char-
acteristics of explosive events. Highly reliable discrimination
1s achieved with a feedforward neural network classifier
trained on a feature space derived from the distribution of
wavelet coellicients and higher frequency details found
within different levels of the multiresolution analysis.

DESCRIPTION OF THE DRAWING

(Ll

FIG. 1(a) 1s a graph depicting acoustic signatures of a H.
blast;

FIG. 1(b) 1s a graph depicting acoustic signatures of a
Simulated CB blast;
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2

FIG. 1(c) 1s a graph depicting an air burst for base injection
round;

FIG. 2(a) 1s a graph of the scaling function for a
Daubechies wavelet having n=3;

FIG. 2(b) 1s a graph of the translation function for a
Daubechies wavelet having n=3;

FIG. 3 1s a schematic of a multirate filter bank used as a
five-level wavelet decomposition tree;

FIG. 4(a-c) are graphs showing blast waves from three
distinct artillery rounds of interest followed by four signals
derived from the multiresolution analysis of FIG. 4;

FIG. 5(a-b) are graphs of acoustic signatures for a CB blast
6(a) and a HE blast 6(b) along with features extracted using,
DWT according to the present invention;

FIG. 6(a-f) are scatter plots showing four permutations of
2-D subspaces for the set of DSI test data used to train and
mitially benchmark the performance of a neural network
classifier;

FIG. 7 1s a diagram of a standard, multilayer feedforward
neural network used in accordance with the present invention;

FIG. 8 1s a diagram of the neural network used 1n accor-
dance with the present mnvention having N inputs, N hidden
layers and N output layers;

FIG. 9-FIG. 11 are tflow charts depicting the steps involved
with our inventive method; and

FIG. 12 1s a schematic diagram of a neural network used to
classity our experimental test data sets.

DETAILED DESCRIPTION

In implementing our inventive method and algorithm, we
make use of wavelet analysis to i1dentify distinct, disjoint
feature sets that remain consistent for a given class of explo-
stve event, and do not degrade dramatically with long-range
propagation. With initial reference to FIG. 1 there 1s shown
three representative acoustic signatures which are complex,
non-stationary signatures that are categorically poor candi-
dates for prior-art methods that employ feature extraction and
segmentation via Fourier analysis or the short-time Fourier
Transform.

In particular, and with reference to FIG. 1(a), there 1s
shown a signature of a typical blast of a HE round. As can be
observed from this FIG. 1(a), such a blast includes high
frequency precursors to the main blast—typically generated
by supersonic shrapnel elements. The main blast, exhibits a
large amplitude along with a strong under-pressure element
generated by a large quantity of explosive rapidly burning.
Such blast signatures are typically very short duration.

FIG. 1(b), on the other hand, shows a signature of a simu-
lated CB blast. In contrast to the HE signature of FIG. 1(a),
the CB signature of FIG. 1(b) exhibits a small amplitude
associated with the blast, an elongated burn time following
the main blast and a relatively weak under-pressure compo-
nent(s). As can be appreciated, the elongated burn time fol-
lowing the main blast 1s deliberately slow, such that proper
release of the chemical/biological agents occurs.

Finally, FIG. 1(¢) shows a typical blast signature of a round
which 1s characterized by a short duration pulse (resulting
from base ejection rounds), a weak under pressure (resulting
from a relatively small amount of explosive), and a slow burn
time—perhaps to properly discharge any chemical/biological
contents of the round.

In sharp contrast, and as we shall show, these non-station-
ary, transient and oiten oscillatory signals are efficiently rep-
resented according to our mventive teachings with wavelet
bases that eflectively capture the time-frequency distribution
of such signal components. Toward this end, our inventive
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method employing wavelet transforms provides a scalable
time-frequency representation of explosive blast signatures
and uncovers details that are not readily found using conven-
tional signal processing techniques.

As cannow be appreciated, the wavelet analysis which will
serve as the basis of our inventive method permits the efficient
representation of non-stationary, transient and oscillatory sig-
nals. In addition, 1t exhibits desirable localization properties
in both time and frequency that has appropriate decay in both
properties. Finally, and particularly relevant to the instant
invention, 1t provides a scalable time-irequency representa-
tion of a representative explosive event, for example, an artil-
lery blast signature.

Importantly, our inventive method employing wavelet mul-
tiresolution analysis permits the i1solation of noise and its
removal from a baseband signal ol interest—a process
referred to as wavelet denoising. This wavelet denoising
aspect of our inventive method attempts to remove noise
components from signal components regardless of the fre-
quency content of the signal, which turns out to be far more
eificient that conventional filtering methods that retain base-
band signal components and suppress high frequency noise.

Discrete Wavelet Transform and Multiresolutional Analysis

By way of some additional background, the Discrete
Wavelet Transform (DWT) 1s derived from subband filters
and 1s based on a multiresolution decomposition of a signal to
give a coarser and coarser approximation to an original signal
by removing high frequency detail at each level of decompo-
sition. In other words, the wavelet transform 1s a multireso-
lution transtform that maps low frequency mformation of sig-
nals ito a coarsely sampled subspace and maps high
frequency information into more finely sampled spaces. The
DWT 1s defined by a scaling function:

| L1 (1)
() =22 ) Iy 1¢(2x— )
k=0

and a wavelet function:

[ L1 (2)
Wix) = QEZ i+1P(2x — k)
k=0

where h, and g, are analysis filters. As can be readily appre-
ciated by those skilled in the art, choosing an appropriate
wavelet filter 1s important in retaining the characteristics of
the transient signals 1n question.

The quality of the wavelet decomposition depends largely
on the ability to approximate the signal with wavelets, so the
choice of the wavelet scaling function should have properties
similar to the original signal. The output of the wavelet trans-
torm shows the correlation between the signal and the wavelet
as a function of time.

Probably the easiest method for choosing a wavelet 1s to
simply copy a signal’s time-frequency behavior. Unfortu-
nately however, most transient signals cannot be used as
wavelet basis functions since they resemble exponentially
damped sinusoids and do not possess a zero mean.

Accordingly, the wavelet basis we preferably use herein 1s
a known, db5 wavelet defined by Daubechies that has the
scaling function and translation function shown graphically
in FI1G. 2(a) and FI1G. 2(b), respectively. Note further that the
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4

scaling function resembles the blast signature(s) for the
waves shown in FIG. 1(a) and FIG. 1(b), as well as the short
pulse preceding the main blast in FIG. 1(¢).

With reference now to FIG. 3, there 1s shown a schematic of
a multiresolution filter bank used to implement the DWT
using low pass and high pass wavelet filters to decompose an
input signal into different frequency bands. At each level of
decomposition, the high pass filter defined 1n Equation (2)
produces detail information, D,, while the low pass filter
associated with the scaling function 1n Equation (1) produces
coarse approximations, A _ .

The process of successive low pass and high pass filtering,
of an mput signal to implement the DWT 1s oltentimes
referred to as the Mallat algorithm. The resulting banks of
dyadic multirate filters are used to split up the input signal’s
frequency components into different subbands at each
decomposition level, each with a subset of frequencies span-
ning half of the original frequency band. If the original signal
1s sampled at a frequency of Is Hz, then the output of the first
high pass filter which 1s the first detail coefficient D |, captures
the band of frequencies between 1s/2 and fs/4. This doubles
the frequency resolution as the uncertainty in frequency 1s
reduced by a factor of 2.

In the same fashion, the high pass filter in the second stage
captures signal components with a bandwidth between 1s/4
and 1s/8, and so on. In this way, an arbitrary frequency reso-
lution 1s obtained. Since the mput signal at each stage of
decomposition contains the highest frequency equivalent to
twice that of the output stages, 1t can be sampled at half the
original sampling frequency, thus discarding half of the
samples with no loss of information. Advantageously, this
decimatation by 2 halves the time resolution of the entire

signal as the input signal 1s represented by halt of the total
number of samples and etffectively doubles the scale.

Turning now to FIG. 4(a)-FIG. 4(c), there are shown blast
waves Irom three distinct rounds of interest, followed by four
signals dertved from the multiresolutional analysis shown 1n
FIG. 3, the coellicients at level 5 and detail signals at levels, 5,
4, and 3 respectively. The feature space 1s comprised of primi-
tives dertved from the normalized energy distributions within
the details at level 5, 4, and 3, centered about the maximum
value of the blast wave. In addition, a fourth feature 1s
obtained from values derived from the coetlicients at level 5.

Features such as the rise time for the blast wave and the low
frequency content found within the acoustic signals 1s least
attenuated over long propagation distances when compared
to some of the predominant features mnitially 1dentified for
discrimination. From the signal plots of FIGS. 4(a), 4(b), and
4(c), 1t can be seen that at varying levels of decomposition
beyond level 2, diflerences in the energy distributions within
the details differ dramatically prior to the max peak pressure
of each blast with respect to energy distributions after the
blast has occurred. Furthermore, this energy 1s not amplitude
dependent as the baseband signal 1s filtered by the scaling
function and only the high-frequency noise components are
captured within the details after decomposition.

FIG. 5(a-b) show acoustic signatures for a CB blast 3(a)
and a HE blast 3(b) along with features extracted using our
inventive DW'T method.

Now, if we let t, denote the sample time where the maxi-
mum peak over pressure of a blast wave occurs, and lett =a.,
B=1 for t,>1g aqd >ty Sllf:h thatt, to: tj.d. We j[hen define the
energy distribution within the details just prior to the max
peak pressure as:
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o (3)

Where N=t_-t,. We define the energy distribution at that
point immediately after the max pressure as:

10
. (4)

15
Where M=t.—t,. Since evaluations of equations (3) and

(4)>0, we are able to define analytic features using the ratio of
the normalized energy distributions within the details as:

20
D; ] (9)

Note that the first 3-tuple of the features space consists of
X sy Xas X3, Which we believe are usetul to characterize the
explosive blasts of mterest. A fourth feature 1s derived from
the wavelet coellicient obtained at level 5. We integrate the
magnitude of the area for the coellicients between the start

and stop times defined for the details yields:

25

30

4

] & \"
Asarea = log, EZ |As(K)]
. k=1 J

(6)

35

FI1G. 6(a-f) shows scatterplots of all of the permutations of
2-D subspaces for the set of DSI test data used to train and
initially benchmark the performance of a neural network
classifier. As used on those plots, an “x™ 1

an “x”’ 1s used to indicate 40

teatures dertved from a CB blast while the corresponding HE
teature points are depicted with a *“.””. Note that the subspaces

reveal a high degree of separability.

Neural Network Classifier 45

Turning now to a discussion of another important aspect of
the present mmvention, we note that neural networks have
become a powertul tool for solving difficult classification
(mapping) problems with a proven ability to realize non-
linear discriminant functions and complex decision regions
that are often required to ensure separability between classes.
The use of neural networks for classification 1s well docu-
mented and requirements for traming are well known and
understood by those skilled 1n the art.

With reference to FIG. 7, there 1s shown a multilayer feed-
forward neural network that 1s used in conjunction with our
inventive method to perform the instant invention. The neural
network shown 1n FI1G. 7 was chosen by us due to its ability to
learn mappings of any complexity, provided that the number
of hidden layer neurons 1s sufficient to accommodate the
number of separable regions that are required to solve a
particular classification problem.

In general, the network contains N, inputs, N, hidden layer
neurons and N, output layer neurons with no interconnec-
tions within a single layer as shown diagrammatically 1in FIG.
8. In the three-layer network shown in FIG. 7, the connection
weight between the i” input and the j” hidden layer neuron

50

55

60

65

6

will be denoted as w,; and v;; will be used to denote the
connection weight between the i”” neuron in the hidden layer
and the kth output layer neuron. A bias for the i hidden layer
neuron is denoted as brand the bias for the k” output neuron
is b,. x* denotes the set of P, N-tuple feature vectors X,
eRY . xP=[x,"x",, x" 5] used to discriminate between the dif-
ferent classes of explosive events (artillery).

The input layer units or “neurons” propagate signals to the
hidden layer but do not perform any computations. Neurons
in the hidden layer and the output layer compute their
response by taking a weighted sum signals from the previous
layer plus a bias, and then passing the sum through an acti-
vation function.

For example, the output of the i neuron in the hidden layer
upon the presentation of the p” input pattern x° is given by

out” j:f(netp ;) Where
N
nerf = Z wé,-xf+bj,,
=1

and f 1s an activation function that was chosen to be the
signed function:

f(net) = )

1 + g€t

The neural network classifier used to discriminate between
High-Explosive and Chemical/Biological explosive blasts
was trained using a generalized delta rule or back propagation
algorithm. The algornithm sequentially adjusts the intercon-
nection weights within the network, subsequent to the appli-
cation of all patterns 1n a training set, a routine commonly
referred to as an epoch.

In general, when an input pattern x* from a training set is
presented to the network, 1t produces an output that 1s differ-
ent from the target value, say d”. The error for this specific
pattern 1s defined as the squared error

N
1 @ )
E, = 5;;:1: (dl — out])”.

An uncontested nonlinear optimization 1s performed to mini-
mize total error function of the network:

P (8)
E(w)= ) Ep(w)
k=1

Through the incremental computation of the gradient of the
error 1n equation (8), and successive adjustment of the inter-
connection weights so as to achieve the global minimum error
corresponding to E_=0.

Putting the Steps of Our Method Together

We may now describe a more specific set of steps which
will permit our discrimination between types ol explosive

events. The flow charts we use for this purpose are meant to
provide only an outline of the steps. And while we discuss our

inventive method with respect to acoustic sensors detecting
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aerial disturbances, it should be explicitly understood that our
method and algorithms would work equally well with

ground-based seismic or underwater acoustic sensors.

With simultaneous reference to FIG. 9-FIG. 11(d), an
explosive event (block 110) such as an artillery blast emits
characteristic acoustics that are detected by an acoustic trans-
ducer (block 120) which records the characteristic acoustic
signature information. Subsequently, the acoustic data 1s
recorded 1nto a format that i1s readily acceptable as a 1xn
matrix, and 1s then put into pressure (Pa) vs. time to allow for
comparable analysis (block 130).

This collected data may be compared with, for example,
acoustic signature data of explosive events (block 140), This
acoustic signature data 1s applied to a discrete wavelet trans-
form (block 220) using a wavelet at level k, kel, whose
attributes lend themselves to the analysis of our acoustic
signature data with a single wavelet. As can be appreciated,
the wavelet decomposition provides greater resolution of the
baseband signal and the higher-level oscillatory harmonics
associated with the acoustic signature for further analysis.

The primitives collected after the multiresolutional analy-
s1s 1s performed are the detailed coellicients from multiple k
level, kel, decompositions representing the oscillatory har-
monics of the acoustic signature data from the explosive blast
that holds some unique traits of the blast (block 235). In
addition, the primitives collected after the multiresolutional
analysis 1s performed are the approximations coelficients
from multiple k, kel, decompositions representing baseband
information of the acoustic signature from the explosive blast
providing distinctive information of the signature (block
245).

The oscillatory harmonics are the detailed components of
the explosive blast wave derived from multiresolutional
analysis at k levels, kel, of the signature. This information 1s
a “picture” of the energy distribution of the signal at various
resolutions. More specifically, the information just prior to
the max pressure of the blast and immediately after the max
pressure of the blast.

This information 1s summed 1nto two elements prior to max
pressure and after max pressure. The summed values are then
associated with each other in the form of a ratio, with sum-
mation for prior to max pressure divided by the summation of
the information just after the max pressure, the log of the ratio
1s taken and results 1 an n-tuple, nel feature space for each
blast as we perform this calculation for each level of interest
(block 237).

The k™ level, kel baseband information is the approxima-
tion coellicients of the signal with a kth level, kel resolution.
Integrating the area under the energy of the baseband from the
start and stop times, which are defined by the detail coelli-
cients for the signature and the log of the resulting value of the
integration 1s taken and provides an output that gives distinct
information of the signal resulting 1n a m-tuple, mel, feature
space for each blast as we perform this calculation for each
level of interest (block 247).

The n-tuple, nel feature space resulting from the detail
coellicients 1s combined with the m-tuple, mel feature space
resulting from the approximations (block 2535) to form a
single p-tuple, p=n+m feature vector subspace (block 260).
The resulting processed signal information 1s stored for fur-
ther analysis using a classifier.

Tramming data set (block 310) comprises taking p-tuple
p=n+m, feature vector subspace from arbitrarily chosen
acoustic signatures of explosive detonations to create a train-
ing data set of 50% HE blast events and 50% CB blast events
creating a pxp, p=n+m, matrix of information to be used by
the neural network.

Using a classifier—in this case a multi-layer, feedforward
neural network—which takes i1n the primitive features
extracted from acoustic signatures of the explosive blasts 1n
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the form of a p-tuple, p=n+m feature vector subspace describ-
ing the blast, a pre-determined desired output 1s also input as

1s the learning rate and number of hidden layers to train the
neural network (blocks 315, 320).

At block 355, unknown processed data 1s defined as acous-
tic signature data of explosive events similar to the known
training data. Applying the resulting weights from the train-
ing of the neural network results in a trained neural network
(block 360). The unknown processed data 1s then tested
against the trained neural network to produce an output for the
s1igmoid activation function. Applying a decision making pro-
cess to the output of the trained classifier (block 365) results
in a binary representation of an explosive event as either HE
or CB allowing classification of the acoustic signature. The

acoustic signature of the explosive blast 1s then determined to
be either a HE 1n origin (block 375) or CB in ornigin (block

370)

As can now be appreciated and readily understood by those
skilled in the art, our inventive method and algorithms may be
summarized as follows. First, an arbitrary acoustic sensor/
transducer detects an explosive event and records the data as
a data structure with which subsequent processing may be
performed.

Second, the data 1s processed 1n order to extract the pre-
dominant components of the unique characteristics and create
a p-tuple feature vector space. Applying the discrete wavelet
transform to the acoustic signature to perform wavelet
decomposition, we produce a set of details and approxima-
tions at levels k, kel, by parsing the data through a series of
filters providing multiresolution analysis of the signature
thereby creating a set of primitives.

The primitives collected describe a ratio of energy distri-
bution before and after max blast pressure of the high har-
monic portion of the signature described by detail coetlicients
of the blast at levels k, kel. The other primitives used for the
feature space are extracted from the approximation coeifi-
cients that integrates the area of the blast between start and
stop times 1n the baseband. These elements together produce
a p-tuple, p=n+m feature space that s stored as processed data
that will be passed onto a classifier for further analysis.

Third, once the data 1s processed, the power of a multilayer
teedforward neural network 1s used to process the character-
1stic feature space and classily the signature. The processed
data has a set of p-tuple, p=n+m feature vector per signature.
A setof these vectors are arbitrarly selected with no regard to
the data and subsequently associated with a set of desired
outputs between O and 1, where O 1s a high explosive blast and
1 1s a chemical/biological blast. A sample set of p-tuple,
p=n+m feature vectors are used to train the neural network
and after training, a set of associated weights are produced.

Finally, with the classifier trained using a sample set of
data, we apply random sets of vectors from the processed
signature data sets classifying the data as either a high explo-
stve event or a chemical/biological event. Advantageously—
as a result of our inventive method—this discrimination
comes with a high confidence.

EXEMPLARY RESULILS

In evaluating our inventive method, features were extracted
from data sets using the DW'T described previously and
according to equations (5) and (6), we constructed a 4-tuple
feature vector having the form:

F £ F

P P
X=Xps Xp4 Xp3 »AssrEL |

9)

Experiments were conducted to measure the separability of
the feature space and benchmark the performance of the
neural network classifier. The neural network architecture 1s

shown schematically 1n FIG. 12.
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The neural network shown 1n that FIG. 12—having a single
hidden layer neuron—was trained using 22 randomly
selected vectors from a total of 461 signatures. The training
set comprised 11 samples of Artillery Type A HE dataand 11
samples of Artillery Type B CB data collected at several
sensor sites. As can be appreciated, the goal of this training
process was to obtain a neural network output equal to O when
the sample features presented to the input layer corresponded
to a HE explosive event and an output value of 1 when fea-
tures from a CB explosive event are applied.
The network was trained such that the total error 1n Equa-
tion (8) was less than 5e-3 and a learning rate o1 0.1 was used
for the back propagation algorithm. When tested against the
remaining 439 signatures, the network correctly classified
100% of the remaining 225 CB events and misclassified only
4 out of 214 (98.1%) of the remaining HE events. The result-
ing neural network classifier and resulting weights between
layers are shown 1n FI1G. 12.
In a subsequent experiment, a neural network having 4
hidden layer neurons was then trained using the entire data set
from an earlier test. A total of 236 Artillery Type B CB and
225 Artillery Type A HE signatures. The network was then
tested against the data subsequently collected.
The network correctly classified 165 of the total 166 CB
events and misclassified only 6 out of 57 HE events for a rate
01 99.4% and 89.5% respectively. Neural networks having up
to 3 hidden layer neurons could not match or surpass the
classification performance provided with our experimental
architecture having 4 hidden layer neurons. However, the
same results were obtained when training a neural network
having 5 or more hidden layer neurons. Once again, the
explosive events were classified as CB when the output from
the sigmoid activation function (7) produced a value greater
than 2 and HE, otherwise.
As we have now shown, feature extraction methods based
on discrete wavelet transform and multiresolution analysis
facilitates the development of a robust classification method
that affords reliable discrimination between HE and CB
explosive events via acoustic signals produced during deto-
nation. In sharp contrast to prior attempts which have been
based on amplitude dependent features—which vary dra-
matically due to signal attenuation and distortion—our inven-
tive method 1s not dependent upon such features and still
provides remarkably high confidence. In addition, our inven-
tive method provides such a high confidence at ranges
exceeding 1 Km from a blast site!
What 1s claimed 1s:
1. A method for discriminating between explosive events,
said method comprising the steps of:
acquiring data from an explosive event;
extracting particular features from that event;
training a classifier with the extracted features; and
detecting, and subsequently acquiring, acoustic signature
data from additional explosive event(s) using an arbi-
trary acoustic sensor/transducer situated a distance of at
least 1 Km from the explosive event; and

discriminating among the additional explosive events
through the use of the trained classifier.

2. A method for determining a type of explosive event, said
method comprising the steps of:

detecting and subsequently acquiring acoustic signature

data from training explosive event(s) using an arbitrary
acoustic sensor/transducer;

recording, the acquired acoustic signature data 1into a pre-

determined data structure format;

extracting, predominant features from the acoustic signa-

ture data stored in the pre-determined structure;
training, a feedforward neural network with a set of feature
vectors derived from the extracted features; and
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applying, random sets of vectors dertved from acoustic
signature data acquired from an explosive event to the
trained, feedforward neural network:
wherein said trained feedforward neural network produces a
set of desired outputs between 0 and 1, with O representing a
first type of explosive event and 1 representing a second type
of explosive event; and

wherein said arbitrary acoustic sensor/transducer 1s situated
at a distance of at least 1 Km from the explosive event.
3. The method according to claim 1 wherein said data
acquiring step comprises the steps of:
detecting, with an acoustic transducer, acoustic signature
information from the explosive event; and
recording, the acoustic signature information.
4. The method according to claim 1 wherein said feature
extraction step comprises the steps of:
performing a discrete wavelet transform using multireso-
lutional analysis on the acoustic signature information;
collecting a set of primitives comprising a set of detailed
coellicients representing the oscillatory harmonics of
the acoustic signature information;
collecting a set of primitives comprising a set of approxi-
mations coelficients representing baseband information
of the acoustic signature information; and
combining, a feature space resulting from the approxima-
tions coelficients to form a single feature vector sub-
space.
5. The method according to claim 1 wherein said training,
step comprises the steps of:
applying, a training data set comprising a feature vector
subspace from arbitrarily chosen acoustic signatures to a
multi-layer feedforward neural network; and
applying resulting weights to the classifier.
6. The method according to claim 1 wherein said discrimi-
nating step comprises the steps of:
collecting, unknown processed data representing acoustic
signature information from the additional explosive
event wherein said data has been processed 1n a manner
substantially the same as data used to train the classifier;
applying, a decision making process to the output of the
trained classifier such that the output of the classifier 1s a
binary output wherein one of said binary outputs repre-
sents a CB explosive event and the other binary output
represents a HE explosive event.
7. The method according to claim 2 wherein said feature
extraction step comprises the steps of:
creating, a p-tuple feature vector space.
8. The method according claim 7 wherein said feature
extraction step comprises the steps of:
applying a discrete wavelet transform to the acoustic sig-
nature data such that a set of details and a set of approxi-
mations and a set of primitives are produced.
9. The method according to claim 8 further comprising the
steps of:
producing, a p-tuple, combined feature space by combin-
ng:
primitives derived from detail coetlicients of the explosive
event; and
primitives derived from the approximations coellicients of
the explosive blast;
wherein said primitives dertved from the detail coelficients
describe a ratio of energy distribution before and after
max-blast pressure of the high harmonic portion of the
acoustic signature and said primitives dertved from the
approximations coellicients that integrates the area of
the blast between start and stop times 1n a baseband.
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