United States Patent

US007406698B2

(12) (10) Patent No.: US 7.406,698 B2
Richardson 45) Date of Patent: Jul. 29, 2008
(54) DRIVER FRAMEWORK COMPONENT FOR 4,519,553 A 5/1985 Jesse et al.
SYNCHRONIZING INTERACTIONS 4,531,689 A 7/1985 Beach et al.
BETWEEN A MULTI-THREADED 4,965,719 A * 10/1990 Shoensetal. 711/100
ENVIRONMENT AND A DRIVER 5,434,504 A 7/1995 Hollis et al.
OPERATING IN A LESS-THREADED S oy Lheneta
SOFTWARE ENVIRONMENT 5,625,845 A 4/1997 Allran et al.
5,630,132 A 5/1997 All t al.
(75) Inventor: John J. Richardson, Sammamish, WA 5687376 A 11/1997 Cellia; Zl.
(US) 5,715,459 A 2/1998 Celi et al.
5,734,909 A * 3/1998 Bennettcoevevnennn.. 710/200
(73) Assignee: Microsoft Corporation, Redmond, WA 5,745,761 A 4/1998 Celi et al.
(US) 5,745,762 A 4/1998 Celi et al.
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent 1s extended or adjusted under 35 OTHER PURIICATIONS
U.S.C. 154(b) by 805 days.
Lee et al., “A Multi-Granularity Locking Model for Concurrency
(21) Appl. No.: 10/749,787 Control 1n Object-Oriented Database Systems”, Feb. 1996, IEEE,
vol. 8, No. 1, pp. 144-156.*
(22) Filed: Dec. 30, 2003 Primary Examiner—Meng-A1 An
Assistant Examiner—Qing-Yuan Wu
635 Prior Publication Dat - :
(65) rior Bublication 17ata (74) Attorney, Agent, or Firm—Amin, Turocy & Calvin, LLP
US 2005/0144330 Al Jun. 30, 2005
(37) ABSTRACT
(51) Int. CL. _ ‘
GO6F 3/00 (2006.01) The present invention relates to a system and methodology to
GOGF 9/44 (2006.0:h) facilitate automatic interactions between a highly threaded
GOGF 9/146 (200 6.0:h) software environment such as an operating system kernel and
GO6F 13/00 (2006.0:h) a module operating 1n a less threaded environment. This 1s
GOGF 12/00 (2006.0:h) achieved by supplying adapter objects that employ various
GOGF 12/14 (2006.0:h) automated locking components to synchronize interactions
GOGE 7/00 (2006.0:h) between the environments such as processing of events or
(52) U.S.Cl 719 /“321_ 719/315- 719/318: interrupts that may be generated in the system. In one aspect,
TUT T e 716 /?: 22- 710 /2’ 00: 707 /8’ a driver management system 1s provided that includes a driver
52 TField of Classification S b ’ ; 1’ 0/315 tframework component (DFC) that 1s separate from a driver or
(58) Field of Classi c;lllgo/glgezr; 1 328710/200 7077 /8’ other type module, wherein the DFC generates objects that
Q lication file f i | i[" h hist " facilitate seamless interactions between the driver and a
c¢ dpPUEALIDLL HE T0E COMPICTE SEATL IUSTOLY. highly threaded system. A presentation component associ-
(56) References Cited ated with the DFC selectively exposes objects to the driver 1n

U.S. PATENT DOCUMENTS
3,759,456 A 9/1973 Moneagle et al.

a multi-threaded environment.

22 Claims, 10 Drawing Sheets

Ve 110
100
0S KERNEL
4 150 4 AUTOMATIC A
OBJECT STATE SERIALIZATION
LOCKS FOR EVENTS 130
- T T T T e T S e — \—_ - - T -"""_"_"___—_—— o '/:__ _____ :
: ' L |y ,
I
: @ ® @ i
I
| ADAPTER ADAPTER ® © ADAPTER |
: OBJECT 1 OBJECT 2 OBJECTN :
i I
I
: F \ / A ' |
DRIVER FRAMEWORK
PRESENTATION
LOCKS w_
160 120
Y Y - Y

DRIVER(S)

US 7,406,698 B2

Page 2
U.S. PATENT DOCUMENTS 6,421,738 Bl 7/2002 Ratan et al.
6,493,745 B1 12/2002 Cherian

5,835,705 A 11/1998 Larsen et al. 6,546,443 Bl * 4/2003 Kakivayaetal. 710/200
5,933,825 A 8/1999 McClaughry etal. 707/8 6,557,046 B1* 4/2003 McCauleyetal. 719/318
5,999,986 A * 12/1999 McCauley, Il et al. 719/310 6,772,154 B1* 8/2004 Daynesetal. 707/8
6,092,220 A 7/2000 Palmer et al. 6,965,893 Bl * 11/2005 Chanetal.cocevvvveennn... 707/8
6,101,524 A 8/2000 Chor et al. 2002/0032805 Al* 3/2002 Parryccceooeuevvennennn. 709/321
6,108,654 A * 872000 Chanetalcoveen....... 707/8

6,256,775 Bl 7/2001 Flynn * cited by examiner

@\ |
aa .
~ l 'Ol
2 .
=
.A/__..., (S)¥3AING
7P
U -
0zl .\ A

091
" sy9201
NOILV LNISI¥ud

AHJOMIdNVAL d3AIH0

—
o _
S _
© |
™ |
5 _ ¥
|
7> | N 193190 Z 1953rgo
_ ¥3ldvav ¥3Lldvayv
_
|
x [
—
(e _
& |
= _
“ -7
= Ot} SINIAT HO= SHO01
NOILYZITVIN3S 31V1S 193rgo
JILYWOLNY y 0sl —V
73N¥3IM SO

OLlL

U.S. Patent
\

IillIIIJ

Ll 103190
dd1dvayv

US 7,406,698 B2

—
m 123rgo 3n3ano 123790 32IA3A 103rd0 H3AINA
=
0ve 0€Z 022 _/
=
&
A
=
S103rd0 MHOMINVYAS

00¢

U.S. Patent

103rd0O 1S34N03d

0L¢e

US 7,406,698 B2

Sheet 3 of 10

Jul. 29, 2008

U.S. Patent

SHOO TNOILVLINAGS3ad

0Lt

¢ Old

SHOO01104rd0O TVNASLNI

0Ct

130N DONIXOOT L0390

US 7,406,698 B2

Sheet 4 of 10

Jul. 29, 2008

U.S. Patent

SANWIL3AIT LO3rg0

1X31NOD 103rdo

SMO0T
NOILYLNISIHd

007

US 7,406,698 B2

Sheet S of 10

2008

Jul. 29,

U.S. Patent

NOILVZINOHEONAS

ON 3N3N0 ddd 40IA3A d4d dAIE4A d3d

US 7,406,698 B2

Sheet 6 of 10

ONIMOO |
d1IHO DILVINOLNY

0€9

Jul. 29, 2008

U.S. Patent

0¢9

0L9

SNOILVHIAISNOD

ININIO 1 d3HLO

$104rdo

NEERNEIS
ONIMOO T

US 7,406,698 B2

Sheet 7 of 10

Jul. 29, 2008

U.S. Patent

061

0¢.

NOILVZI VIddS
NOILVIN3IS3od

ONISSIO0dd
1S3N03d

L Old

SNONOYHONASY
oYL

S13AdON ONIAVIHHL

U.S. Patent Jul. 29, 2008 Sheet 8 of 10 US 7,406,698 B2

,— 800

ADAPT OBJECT 810
WITH ONE OR MORE
LOCKS

PRESENT OBJECT
TO DRIVER VIA
INTERFACE
FRAMEWORK

820

EMPLOY OBJECT
| OCKS FOR 830
INTERNAL STATE
MANAGEMENT

EMPLOY
PRESENTATION 840
LOCKS FOR EVENT

SERIALIZATION
BETWEEN SYSTEMS

UTILIZE ADAPTER TO | - 850
INTERFACE
BETWEEN HIGHLY |
THREADED SYSTEM
AND LESS

THREADED MODULE

FIG. 8

U.S. Patent Jul. 29, 2008 Sheet 9 of 10 US 7,406,698 B2

— 928
I SR
| Operatmg System E /_ 910

L-'-"--"-'-----------------—.

912

942

Output
Device(s)

Output
Adapter(s)

940

Input

Device(s)

936

Network

Communication Interface

Connection(s)

948

Remote
Computer(s)

Memory
Storage

944

946

FIG. 9

U.S. Patent Jul. 29, 2008 Sheet 10 of 10 US 7,406,698 B2

'/ 1000
010 1030
CLIENT(S) SERVER(S)

>

>

CLIENT SERVER
DATA DATA
STORE(S) STORE(S)
COMMUNICATION
1060 FRAMEWORK 1040

1050

US 7,406,698 B2

1

DRIVER FRAMEWORK COMPONENT FOR
SYNCHRONIZING INTERACTIONS
BETWEEN A MULTI-THREADED
ENVIRONMENT AND A DRIVER
OPERATING IN A LESS-THREADED
SOFTWARE ENVIRONMENT

TECHNICAL FIELD

The present mvention relates generally to computer sys-
tems, and more particularly to a system and method that
employs an adapter object that enables a less threaded sofit-
ware module to interact with a multi-threaded software envi-
ronment while promoting scalability of the overall system.

BACKGROUND OF THE INVENTION

Modern operating systems drive many of today’s technol-
ogy-based innovations by offering a platform for both hard-
ware and software development while serving many diverse
needs. These systems have evolved from more simplistic file
management systems to more complex workstations that pro-
vide high-end performance at reasonable cost. Such systems
often 1include multi-processing architectures, high-speed
memory, advanced peripheral devices, a variety of system
libraries and components to aid soiftware development, and
intricate/interleaved bus architectures, for example. At the
heart of these systems include sophisticated operating sys-
tems that manage not only computer-related hardware but, a
vast array of software components having various relation-
ships. These components are often described in terms of
objects or classes having multi-tiered relationships such as 1n
a hierarchical arrangement for files and directories that are
found 1n many data management systems.

Event driven programs that operate in a multi-threaded
environment are generally concerned with synchronization
between various components associated with the event. Such
programs execute code in response to events (callbacks from
a system to program supplied functions), and typically imple-
ment a state machine that responds to the event and returns. In
an object structured, multi-threaded system, events may
occur concurrently from the same or different objects. Due to
this concurrency, the data in the program can become corrupt
due to concurrent modification by two or more concurrent
events.

This concurrency 1n the program 1s usually mitigated by a
series of locks (code that temporally prevents other code from
completion) associated with the data which serialize the sec-
tions of code that accesses that data. Manually managing this
serialization by separate and unrelated entities (e.g., a device
driver having separate discreet code and management from an
operating system kernel) can lead to errors in which locks are
not utilized when they should be, or not released when the
code returns. Also errors occur by separate, unrelated mod-
ules 1n which locks should be acquired and released 1n a
consistent order, and 11 not—the program causes a deadlock.

The level of effort, and complexity of such program code
increases with each event and data instance that i1s to be
synchronized, thus causing writing a reliable version of the
code a time consuming and difficult task. The chance of
shipping a latent synchronization bug with the program
increases along with this complexity since not all synchroni-
zation cases may be exercised by testing. One example envi-
ronment where these type problems may exist 1s associated
with device drivers. Device drivers are considered important
components of software that allow a computer to take advan-
tage of new hardware devices. In order to expand operating,

5

10

15

20

25

30

35

40

45

50

55

60

65

2

system capabilities, these systems should also provide sup-
port for new hardware devices, and provide associated device
drivers.

Due to the nature of the operating system industry, a large
number of device drivers are not written by the operating
system manufacturer, but by outside third parties, who are
typically hardware owners. Outside third parties typically do
not have access to base team development resources available
within the manufacturer, and are usually more concerned with
quickly getting their device driver to market, otherwise they
can not sell their device, and thus receive revenue. This prob-
lem 1s exacerbated by the fact that many of these drivers run
in an unprotected kernel mode of the operating system (e.g.,
ring 0), which often implies that the slightest coding error
may cause a system crash, or worse, a corruption to files
and/or data.

In another related aspect to the problems described above,
many large software systems operate 1n a highly threaded
model, and support “plug in” software models to extend the
function of the system. Due to the highly threaded nature of
the operating system, plug 1n device drivers generally must
also be highly threaded and programming highly threaded
software modules 1s often complex and time consuming. In
the case of device drivers, they generally execute in unpro-
tected kernel mode and any errors can cause a system crash, or
corruption.

In many cases, simpler modules that control lower
throughput devices may be better served by a less threaded
model. The insertion of a less threaded module 1nside of the
highly threaded operating system should not compromise
overall system parallelism, but only the throughput of the
target device. Due to the current close coupling of the oper-
ating systems threading model with the device driver, drivers
are generally written 1n a hughly threaded manner, even for
lower end hardware devices 1n order that they do not compro-
mise overall system scale-ability. This can occur when
threads “back up” in trying to submit parallel commands to
the driver that may employ a single synchronization lock,
wherein the concurrency of the I/O model can allow multiple
commands to be 1ssued to the driver regardless of how highly
threaded 1t actually 1s.

SUMMARY OF THE INVENTION

The following presents a simplified summary of the inven-
tion 1n order to provide a basic understanding of some aspects
of the invention. This summary 1s not an extensive overview
of the mvention. It 1s not intended to i1dentify key/critical
clements of the mvention or to delineate the scope of the
invention. Its sole purpose 1s to present some concepts of the
invention 1 a simplified form as a prelude to the more
detailed description that 1s presented later.

The present invention relates to systems and methods that
adapt or interface a less threaded sotftware module to a highly
multi-threaded environment while facilitating overall scal-
ability of a system. This 1s achieved via an object-based
adapter that responds to a system such as an operating system
kernel 1n a highly threaded manner while managing a less
threaded series of events 1n accordance with a programming,
module such as a device driver, for example. Thus, the present
invention provides one or more adapter objects that automati-
cally manage and interface interactions between a highly
threaded environment such as an operating system and less
threaded modules such as device drivers or other lower
threaded modules. Such interactions can include automati-
cally managing and controlling how one or more events are
processed between the operating system and drivers even

US 7,406,698 B2

3

though the operating system performs 1 a multi-threaded
environment as opposed to the less threaded environment of
lower level modules.

In one aspect of the present invention, an object 1s con-
structed to act as an adapter between the highly threaded
environment of the software system, and the potentially less
threaded model of a software plug in. The adapter object
generally includes internal state data, and one or more sets of
locks for managing interactions between system and mod-
ules. For example, these locks can include an internal object
state lock that provides synchronization for modifications to
internal object state data. It 1s acquired and released for short
time 1ntervals 1n response to an event from the system that
modifies the object, or an API call from the software module.
This type lock 1s held as long as 1s required to perform a state
update 1 a consistent manner wherein respective routines
exposed to the highly threaded internal software environment
tollow applicable operating rules.

Another type lock includes a presentation lock that 1s
acquired when events are presented through callbacks into a
less threaded software module. When an event handler call-
back (or other routine) returns, this lock 1s automatically
released. In general, the Internal object state lock 1s not held
during these event callbacks. The length of time that the
presentation lock 1s held depends on the threading of the
soltware module being called, and can differ markedly from
the amount of time that the Internal object state lock 1s held.

The object adapter 1n one example code implementation
employs a series of reference counts, request deferrals, and
other programming practices to facilitate object lifetime and
event exposure to the less threaded software module that
generally does not rely on holding the internal state lock. An
object’s mternal state may transition while the presentation
lock 1s held, and the notification of these transitions can be
queued until the presentation lock 1s released. Since the Inter-
nal state lock 1s not held on event callbacks mto the software
module, the software module is free to call API’s exposed by
the object from within the event handler that 1s holding the
presentation lock. Changes to object state that occur as a
result of these API’s that would raise a new event are deferred
until the presentation lock 1s released, similar to the arrival of
system events to the object. This allows a software layer to act
as a boundary layer between the highly threaded software
system and less threaded plug in modules 1n a manner that
does not compromise the scale-ability of the overall system.

To the accomplishment of the foregoing and related ends,
certain 1illustrative aspects of the invention are described
herein 1n connection with the following description and the
annexed drawings. These aspects are indicative of various
ways 1n which the invention may be practiced, all of which are
intended to be covered by the present invention. Other advan-
tages and novel features of the invention may become appar-
ent from the following detailed description of the invention
when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a schematic block diagram of a driver manage-
ment system and model 1n accordance with an aspect of the
present invention.

FIG. 2 1s a diagram of an example framework objects in
accordance with an aspect of the present invention.

FIG. 3 1s a diagram 1illustrating object-locking models in
accordance with an aspect of the present invention.

FI1G. 4 1s a diagram 1llustrating presentation lock aspects in
accordance with an aspect of the present invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 1s a diagram illustrating a hierarchical locking
model 1n accordance with an aspect of the present invention.

FIG. 6 1s a diagram 1illustrating other locking consider-
ations 1n accordance with an aspect of the present invention.

FIG. 7 1s a diagram 1illustrating threading models and pro-
cessing considerations 1n accordance with an aspect of the
present 1nvention.

FIG. 8 15 a flow diagram 1illustrating an automated process
for interacting between a highly threaded environment and a
less threaded module.

FIG. 9 15 a schematic block diagram 1llustrating a suitable
operating environment in accordance with an aspect of the
present invention.

FIG. 10 1s a schematic block diagram of a sample-comput-
ing environment with which the present invention can inter-
act.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a system and methodology
to facilitate automatic interactions between a highly threaded
soltware environment such as an operating system kernel and
a module operating 1n a less threaded environment. This 1s
achieved by supplying adapter objects that employ various
automated locking components to synchronize interactions
between the environments such as processing ol events or
interrupts that may be generated in the system. In one aspect,
a driver management system 1s provided that includes a driver
tframework component (DFC) that 1s separate from a driver or
other type module, wherein the DFC generates objects that
facilitate seamless interactions between the driver and a
highly threaded system. A presentation component associ-
ated with the DFC selectively exposes objects to the driver 1n
a multi-threaded environment. The framework component
also serializes event processing to automatically mitigate race
conditions associated with the event and to simplify driver
code generation and management for processing the event.

As used 1n this application, the terms “component,”
“object,” “model,” “system,” and the like are intended to refer
to a computer-related entity, either hardware, a combination
of hardware and software, software, or software 1n execution.
For example, a component may be, but 1s not limited to being,
a Process running on a processor, a processor, an object, an
executable, a thread of execution, a program, and/or a com-
puter. By way of illustration, both an application running on
a server and the server can be a component. One or more
components may reside within a process and/or thread of
execution and a component may be localized on one com-
puter and/or distributed between two or more computers.
Also, these components can execute from various computer
readable media having various data structures stored thereon.
The components may communicate via local and/or remote
processes such as in accordance with a signal having one or
more data packets (e.g., data from one component interacting
with another component in alocal system, distributed system,
and/or across a network such as the Internet with other sys-
tems via the signal).

Referring mitially to FIG. 1, a driver management system
and model 100 1s 1llustrated in accordance with an aspect of
the present imnvention. The system 100 includes an operating
system of kernel 110 that generally operates or performs in a
multi or highly-threaded software environment (e.g., tens,
hundreds or thousands of threads). The kernel 110 interacts
with a lesser or lower-threaded module (e.g., less than 10
threads) such as one or more drivers 120 via a driver frame-
work component 130 (DFC). In one aspect, the DFC 130

includes a presentation manager (not shown) that selectively

US 7,406,698 B2

S

exposes one or more objects 140 that facilitate interactions
between the kernel 110 and the drivers 120.

In general, the objects 140 act as an adapter between the
highly threaded environment of the software system 110, and
the potentially less threaded model of a software plug-in such
as the drivers 120. The adapter object 140 generally includes
internal state data, and one or more sets of locks for managing
interactions between system and modules. For example, these
locks can include an internal object state lock 150 that pro-
vides synchronization for modifications to internal object
state data. These locks are acquired and released for short
time 1intervals inresponse to an event from the system 110 that
modifies the object, or an API call from the software module
or driver 120. This type lock 1s held as long as 1s required to
perform a state update 1n a consistent manner wherein respec-
tive routines exposed to the highly threaded internal software
environment 110 follow applicable operating rules associated
therewith.

Another type lock includes a presentation lock 160 that 1s
acquired when events are presented through callbacks into the
less threaded software module 120. When an event handler
callback (or other routine) returns, this lock 160 1s automati-
cally released. In general, the Internal object state lock 150 1s
not held during these event callbacks. The length of time that
the presentation lock 160 1s held depends on the threadmg of
the software module being called, and can differ markedly
from the amount of time that the Internal object state lock 150

1s held.

The object adapter 140 1n one example employs a series of
reference counts, request deferrals, and other programming
practices to facilitate object lifetime and event exposure to the
less threaded software module 120 that generally does not
rely on holding the internal state lock 150. An object’s inter-
nal state may transition while the presentation lock 160 1s
held, and the notification of these transitions can be queued
until the presentation lock 160 is released. Since the Internal
state lock 150 1s not held on event callbacks nto the software
module 120, the software module 1s free to call API’s exposed
by the object from within the event handler that 1s holding the
presentation lock 160. Changes to object state that occur as a
result of these API’s that would raise a new event are deferred
until the presentation lock 160 1s released, similar to the
arrival of system events to the object 140.

The DFC 130 provides a software layer (or hardware layer)
to act as a boundary layer between the highly threaded soft-
ware system 110 and less threaded plug 1n modules 120 1n a
manner that does not compromise the scale-ability of the
overall system 100. Internally, the DFC 130 can provide a
number of objects on behalf of the driver 120. These objects
form the basis for request dispatch, locking, and synchroni-
zation, for example.

One aspect of the DFC 130 1s to automatically manage
synchronization and race conditions that can occur 1n a driver
environment. This also provides a flexible configuration
model 1n which the driver designer can select the amount of
synchronization desired, depending on device requirements
and performance goals. In order to provide this flexibility, the
DFC 130 can provide a number of ‘synthetic’ I/O dispatch
and synchronization models to the device driver designer. The
performance ol these models can vary depending on the band-
width and request rates of a particular device. For example, a
driver that employs DFC 130 managed synchronization mod-
els can also utilize DFC supplied functions for synchroniza-
tion. This allows the framework 130 to acquire and release the
proper locks according to the context. When this model 1s
chosen, the frameworks handle driver dispatch, synchroniza-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

tion, as well as complicated conditions such as IRP cancella-
tion synchronization in single and multi-processor environ-
ments.

One model of dispatch in the DFC 130 1s event driven by
the device driver 120 registering a set of callback functions to
the objects 140 at some time 1n 1ts 1mtialization. The various
objects 140 can then call these functions to signal an event
such as when a request 1s ready for the driver 120 to service.
Also, the DFC 130 canraise events that occur such as Delayed
Procedure Calls (DPC’s), I/O cancellation, plug and play or
power management, for example. Synchromization that
occurs between these callbacks and the various events can
depend on the dispatch and synchronization model selected
by the driver when 1t 1s mitialized.

Referring now to FIG. 2, example framework objects 200
are 1llustrated 1n accordance with an aspect of the present
invention. As noted above, one or more objects 200 can be
supplied by a framework component that provide an interface
between highly-threaded systems and lower-threaded mod-
ules. For example, at 210 a Driver Frameworks Request
Object can be generated or presented by the framework com-
ponent. This object represents a request as managed by the
driver frameworks, and various packages. A request may be
passed to a driver by a package, and the driver can operate on
the request by a set of exported methods. Driver Frameworks
packages generally track a request, even 11 1t”s currently being,
operated on, or 1s “owned’ by the driver due to an outstanding
I/O that has been passed to the driver but not yet completed. A
request object can be represented by a handle DFXRE-
QUEST, for example.

At 220, a Driver Object can be provided. The driver object
represents a driver object that the driver frameworks and
associated packages manage. The Driver object 220 may
include one or more Device Objects 230 depending on the
driver’s configuration and successiul calls to DrvDeviceAdd
(), for example. The Driver object 220 can be represented by
the handle DFXDRIVER, for example. The Device Object
230 represents a framework Device object, and 1s also a main
data-structuring object for the driver. Synchronization mod-
¢ls can be optimized around the Device object 230 holding
most, i not all, per device data. The Device object 230 can be
represented by the handle DFXDEVICE, for example, and
can be owned by a parent Driver Object 220.

At 240, a Queue object represents a series of 1/0 requests
that have been accepted from an I/O Dispatch function by a
package, and have not been completed yet to the operating
system. In most cases, these I/O requests are STATUS-
_PENDING 1 a drlver sense. The Queue object 240 15 a
logical concept according to the driver that can represent an
order of outstanding requests, but does not have to lock 1n a
specific ordered implementation, allowing for models 1n
which the driver has control over the priority of requests. A
Queue object 240 generally belongs to a Device object 230,
and a particular device may have multiple queues, configured
by 1ts driver. The synchronization models supported by the
packages allow for fast operation of multiple queues on a
device iI the synchronization model 1s configured as per
queue. The Queue object 240 can be represented by the
handle DFXQUEUE, for example. When the Driver Frame-
works have dispatched a request to the driver, 1t continues to
track an I/0 request on a particular queue until the driver has
completed 1t so that 1t may handle events such as IRP cancel-
lation, device power management state changes, and so forth.

Turming to FIG. 3, an object-locking model 300 1s 1llus-
trated in accordance with an aspect of the present invention.
As discussed above, the driver frameworks component can be
implemented by presenting a series of objects to a device

US 7,406,698 B2

7

driver. The device driver extends these objects by allocating
per object device context data, and registering callback func-
tions to the device driver to act as event handlers. The per
object context data 1s a location for the device driver to asso-
ciate 1ts internal data structures with the object.

The object-locking model 300 can include one or more
internal object locks 310. Since a Frameworks object 1s a
higher level, state-tfull object, 1t makes internal state transi-
tions 1 response to events that occur and are processed by the
frameworks. Frameworks objects can also cause internal state
transitions as the result of API calls from the device driver
onto the object’s methods. Since these objects operate 1n a
multi-threaded environment, they protect their internal data
structures so that these state transitions are consistent. Driver
frameworks objects can protect their internal state transitions
with 1nternal object locks 310.

The device driver generally cannot directly access these
internal object locks 310 1n order to acquire them, or release
them. These locks are acquired and released automatically by
the frameworks object as the result of the driver calling frame-
works API’s, thus the device driver can indirectly effect these
locks. One design principle of the driver frameworks objects
1s that the device driver has no facility to prevent a driver
frameworks object from making an internal state transition.
This 1s due to the free threaded operation of the I/O system,
and the internal implementation of the driver frameworks
objects to conform to this requirement of the I/0 system.

Due to this free threaded requirement, internal object locks
can be implemented utilizing spinlocks. Design guidelines
for these objects can include that spinlocks are held for a
mimmal amount of time to perform a state transition. The
driver frameworks objects implement a fine-grained internal
object-locking model, rather than global, or “chunky” lock-
ing models. Fine-grained 1n this sense implies a dedicated
lock at least per object instance. This does not generally imply
that the driver frameworks 1s prevented from optimizing its
internal I/O “common paths™ to share certain locks. This
tuning can occur automatically over time as the frameworks
are performance profiled.

Another design aspect of the driver frameworks objects 1s
that internal locks are not held across event callbacks to the
device driver. This may prevent the device driver from calling
APTI’s on that object without resorting to recursive locks, and
may provide mismatches between events internal to the
frameworks and the device driver’s ability to handle these
events. As an example, an IoQQueue object that has no requests
should not be prevented from going 1nto a ready state as the
result of a request arriving. This 1s since requests may arrive
automatically from the I/O subsystem and delivered to the
IoQueue, thus causing it to transition from a “No Requests”
state to a “Have Requests” internal IoQueue state.

Another aspect to the object-locking model 300 includes
one or more presentation locks 320. These locks allow a
device driver to synchronize when the driver frameworks
objects callback into the device driver, and 1n some cases
delay, or synchronize the callbacks to a driver-controlled
state. The device driver may also have a different threading or
synchronization model than the free threaded model internal
to the frameworks and the I/O model. In order to provide this
synchronization, Driver frameworks objects implement event
callbacks via presentation locks. Presentation locks 320 syn-
chronize these event callbacks between the device driver and
the frameworks object.

Depending on the locking model selected by the device
driver, presentation locks 320 may be acquired automatically
by the frameworks when an event callback 1s 1voked, thus
serializing that event for the particular object, or the device

10

15

20

25

30

35

40

45

50

55

60

65

8

driver may call locking API’s exposed by the object that
prevent event callbacks until the lock 1s released. It 1s noted
that holding a presentation lock does not prevent the object’s
internal state from changing, but that the object will not
invoke the event callback handler while the presentation lock
1s held. When the presentation lock 320 1s released, new event
callbacks may occur 11 the object 1s 1n a state that may require
it to raise the event to the device driver. In the previously
mentioned IoQueue example, if an I/O request arrives from
the I/0 system while the IoQueue’s presentation lock 1s held
by the device driver, 1t will still transition internally from the
“No Requests” to the “Have Request” state. However, the
device driver 1s not notified by the event callback (e.g.,

DrvloStart callback) until the presentation lock for that
IoQueue 1s released.

Depending on the device driver’s configuration, and the
driver frameworks objects, event callbacks may be at DIS-
PATCH or PASSIVE level. In order to properly support events
that may occur at DISPATCH or PASSIVE level, presentation
locks can be implemented with spinlocks and/or FAST_MU-
TEX’s. Which lock 1s acquired can depend on the event’s
context, and the drivers configured threading model. In cases
in which multiple objects may exist, such as for Device and
IoQueue, API’s for the presentation locks 320 generally act
on the object 1nstance, not the whole family of objects. So
holding the presentation lock on one IoQueue does not pre-
vent other IoQueues from 1nvoking their callback handlers.
Depending on the driver’s design and configuration, this may
not be desirable. In this case one of the hierarchical locking
models may be chosen which are described 1n more detail
below.

FIG. 4 1llustrates other aspects of presentation locks 400 1n
accordance with an aspect of the present invention. At 410,
presentation locks and object context 1s considered. Gener-
ally, each driver frameworks object allows the device driver to
specily an optional Context memory allocation to be associ-
ated with the object’s handle. This context memory 1is
intended for the driver’s use for storing 1ts primary data struc-
tures, or pointing to them. This allows the device driver’s data
model to “follow” the frameworks supplied object hierarchy,
and have its data be presented as an “extension” of the frame-
works objects. The driver frameworks generally do not access
this memory during the lifetime of its associated object
handle, and the memory 1s provided for the device driver. If a
device driver only accesses a particular object’s context
memory from within event callback handlers from that object
instance, the device driver’s context memory, and thus its data
structures would be automatically synchronized by the pre-
sentation lock on behalf of the device driver.

For cases when a device driver needs to access this context
memory from outside of the object instances event callback
handlers, 1t can use the objects presentation lock API’s to
manually synchronize with the objects event callback han-
dlers. This may occur for example under a driver managed
worker thread or DPC routine, though the driver frameworks
provides facilities to automatically synchronize these rou-
tines as well. This potential for automatic synchronization
strongly encourages the device driver to be written utilizing
the frameworks objects context memory, rather than global,
or other memory allocations. By structuring the device driver
in this manner, the device driver can optionally select to have
the frameworks provide the bulk of its synchronization on its
behalf. Since device drivers differ 1n which “level” of object
contains the primary data structure(s), the frameworks pro-
vides different device driver configured locking levels, which
are described below.

US 7,406,698 B2

9

Proceeding to 420, presentation locks and object lifetimes
are considered. Generally, neither of the locks, either the
internal, or the driver visible presentation locks manage
object lifetimes. Object lifetimes are typically managed by
the driver frameworks object manager via reference counting,
or garbage collection for example, 1n a managed object sys-
tem. Most driver frameworks object lifetimes are managed by
the frameworks acquiring and releasing reference counts
automatically. The device driver rarely 1f ever manages object
reference counts, except for special situations, or for utility
objects that 1t has allocated.

Holding a presentation lock does not prevent an object
from leaving memory i 1ts reference count has been decre-
mented. In cases where a device driver 1s managing an
object’s lifetime, 1t 1s responsible to ensure the proper refer-
ence count has been taken on the object for the duration of the
time 1t 1s holding the lock on it. De-referencing an object
causing it to delete while holding a presentation lock can
result 1n a bug check operation.

FIG. 5 illustrates a hierarchical locking model 500 in
accordance with an aspect of the present invention. Device
drivers often differ in how their primary data structures are
associated with objects, and how their I/O flows occur and
which the objects data 1s accessed during primary I/O flows.
To allow tlexibility, the device driver locking model allows a
primary synchronization object level to be chosen by the
driver at configuration time. Device driver locking models
managed by the frameworks rely on the context memory
model described previously to provide driver data structure
storage, or pointers to driver data structures. These data struc-
tures may be accessed from event callback handlers for its
associated object, or may be accessed through pointers 1n
other objects. This generally effects how access to these struc-
tures 1s synchronized.

A simple device driver may store most of 1ts data on the
Driver object, and would be similar to a “global data™ based
driver. Such a driver may have pointers in the Device and
IoQueue objects to this common global data, and may require
synchronization across all event callbacks to the Driver level.
Many device drivers may associate most of their per device
object data on the context memory for the Device object. This
may point to common registers, data, and I/O lists, for
example. IT such a driver has multiple IoQueues (such as a
read and a write queue), they may point to the device object’s
context memory 1n order to synchronize device level data.
Such a driver 1n this case may require synchronization to the
Device level, even for event callbacks occurring on the
IoQueues.

A dnver designed for highly parallel processing may
attempt to only access information stored 1n the context of
cach separate IoQueue. In this case 1t may desire individual
locks on the IoQueue’s to allow processing to proceed 1n
parallel. This relationship between the driver frameworks
objects, and the associated device driver context memory,
implies an object hierarchy 300. This hierarchy implies a
similar hierarchy i which locks “protect” objects under-
neath. In order to support this hierarchical structuring of the
driver’s data, the Driver Frameworks can provide the follow-
ing device driver locking models that follow this hierarchy.

At 510, a Per Driver model can be provided. Synchroniza-
tion occurs by the driver frameworks across the whole device
driver, and 1ts frameworks objects. If a driver manages mul-
tiple devices, or multiple queues on a single device, the syn-
chronization of event callbacks may utilize the Driver objects
presentation lock. This 1s useful for drivers written or ported
that use a lot of global data. Depending on the dispatch model

10

15

20

25

30

35

40

45

50

55

60

65

10

and code paths, performance with this type of synchroniza-
tion may be acceptable for certain types of simple drivers and
devices.

At 520, a per device model can be employed. This 1s a
useiul model for a device driver that supports multiple
devices. The driver frameworks can synchronize event call-
backs for the Device object and below (IoQueue object) with
the device object’s presentation lock. The device driver 1s
expected to store per device state 1n the per device context, so
that proper synchronization of access can occur. A driver
written to use per device locking should be caretul of the use
of global data and data stored in the driver context. Child
IoQueue objects event callbacks can be synchronized to their
parent device’s presentation lock.

At 530, a per queue model can be provided. This model
allows a device that has multiple queues to operate 1n parallel.
A sernial port1s a good example 1n that 1t has a read and a write
queue. Per queue synchromization allows a device driver to
operate each queue 1n parallel 11 its data structures and hard-
ware 1s organized 1n such manner, aided by the per queue
context memory. The driver synchronizes at the device or
driver level when access to common structures 1s required.

At 540, a no synchronization model can be selected. The
entire burden of synchronization 1s on the driver. In the case of
a device driver using the Frameworks, it also synchronizes
with the driver frameworks event callbacks. The driver frame-
works provide API’s that allow the driver to synchronize with
the frameworks objects event callbacks by manually (e.g.,
writing code to manage synchronization) allowing 1t to
acquire and release the per object instance presentation locks.
A device driver 1s also free to allocate lock objects on 1ts own
and manually synchronize from within event callbacks from
the frameworks. In this case, multiple presentation events
may occur in parallel, but the device driver synchronizes their
elfects on the device driver’s data structures.

It 1s noted that the hierarchical locking model 500 can be
provided and/or configured in various forms. For example,
instead of providing a queue or queues, the queue can be an
object or objects under Device, and provided as a per object
lock. In addition, other implementations allow an arbitrary

number of “levels”, such as if a Queue had other objects
beneath 1t.

FIG. 6 1illustrates other locking considerations 600 1n
accordance with an aspect of the present invention. At 610,
locking between objects 1s considered and processed. In one
aspect, the driver frameworks also export functions to allow a
driver to manually acquire and release an object istances
presentation locks. These are utilized by a device drivers
worker threads, DPC’s, or callbacks from lower level drivers
that need to synchronize with event callbacks from a frame-
works object. These functions are also utilized if the driver
has configured the frameworks to not automatically acquire
an objects presentation lock on event callbacks, so that the
driver may have full control.

In order to avoid deadlocks, the driver frameworks can
implement an explicitlock hierarchy and sequence that speci-
fies the order locks must be acquired in. This hierarchy 1s the
hierarchy utilized by the Frameworks when automatic lock-
ing 1s configured by the driver, so that the device driver and
the frameworks can co-ordinate. At 620, a lock verifier checks
against this hierarchy if 1t 1s enabled. A device driver that
desires to utilize 1ts own hierarchy should thus allocate and
use its own spinlock and FAST_MUTEX objects, for

example.

US 7,406,698 B2

11

The ordering of the frameworks lock hierarchy can be as
follows:

Driver Lock->Device Lock->Queue Lock

This implies that a thread can acquire a Device Lock while
holding the Driver Lock, and can acquire a Queue Lock while
holding a Driver or Device Lock. It a lock higher on the level
1s desired, the lower lock 1s released first, otherwise a dead-
lock will occur.

The Dniver Frameworks can implement the Lock Verifier
630 internally to detect object hierarchy lock violations at
runtime. Each object 1s assigned a level in this hierarchy, and
allocation order numbers are assigned for its imternal locks,
and 1ts presentation locks. The frameworks can verily calls to
acquire and release these locks as events tlow between the
frameworks and the device driver. If a lock verification failure
occurs, the Driver Frameworks can breakpoint into a debug-
ger or other component, if desired.

At 630, automatic child object locking 1s considered. Gen-
erally, the driver frameworks encourage a hierarchical struc-
ture to the device driver’s instance data structures utilizing the
device driver context memory that can be associated with the
frameworks managed objects. This data can be protected by
previously described locking models. One aspect of distrib-
uting the driver’s data between these objects 1s how to syn- 4
chronize the access to data structures that may be accessed by
“child” objects lower 1n the hierarchy.

This can be resolved by selecting a locking level at the
object that 1s shared. In the case of a Device object, wherein
data 1s accessed by one or more of 1ts child IoQueue objects, 5,
the Device locking level may be selected. In this configura-
tion, any event callbacks raised on the Device or any of the
child IoQueue objects acquire the Device’s presentation lock.

In this manner, event callbacks on the Device and the
IoQueue’s are synchronized, and event callback handlers for ;5
the Device or any of the child IoQueue’s may access and
modity this data.

In order to support more parallel processing 1n a driver in
which most requests may be serviced at the IoQueue, the
IoQueue locking level 1s available that will generally only 4,
acquire the presentation lock of the IoQueue instance 1n
which the event callback 1s being mvoked. Even 1n a per
IoQueue locking model, common configuration data may be
available 1n the Device context which needs to be accessed. If
this configuration data 1s mostly read only, this sharing 1s 45
considered satfe. But, 1f Device events can cause this infor-
mation to be re-configured, the Device event callback handler
facilitates that no IoQueues are concurrently accessing 1ts
context information.

In order to accommodate this synchromization, the Driver sq
frameworks can lock child objects by default when a parent
object’s presentation lock 1s acquired. This facilitates that
chuld objects event handlers are not accessing the structure.
This structure 1s based on the parent objects controlling con-
figuration and data changes at the parent object, and child 55
objects “looking at” information 1n a read-only or thread safe
manner. Automatic locking operates on the Driver, and
Device objects. In the case of the Driver, all its child Devices
are generally locked, including each Device objects child
IoQueue’s. In the case of the Device, the child IoQueues for ¢
that Device object are locked. This behavior 1s present when
DixLockingDevice, or DixLockingQueue 1s selected, for
example.

This behavior can also occur for DixLockingDriver, since
in effect a single lock 1s shared across the whole driver, even 65
though the frameworks 1n this case does not have to explicitly
lock any child objects. If this 1s undesirable, the configura-

10

15

12

tions DixLockingNNonHierarchicalDevice, and DixLocking-
NonHierarchicalQueue configure Device or Queue level
locking without child object locking behavior. In these cases,
the device driver 1s responsible for manually locking 1ts child
objects as required using locking API’s, for example.

FIG. 7 depicts threading models 710 and processing con-
siderations 720 in accordance with an aspect of the present
invention. Independent of dispatch and driver presentation
synchronization, there 1s a threading model 710. The thread-
ing model 710 basically answers the question, “does the
driver expect to block 1n an objects event callback handler?”
In a device driver stack, 1t 1s only under caretully controlled
conditions that a driver can block a request thread. But a
sequential threaded programming model allows for easy
understanding of a driver if Driver or Device level synchro-
nization 1s used. Thus, to support an easy to program envi-
ronment option for driver designers, the driver frameworks
provide for a thread synchronous dispatch and request model
in addition to an asynchronous “Ifree threading” model that
does not allow threads to block in an object’s event callback
handler.

The threading model 710 generally comes into play when
the Driver Frameworks dispatch a request or event to the
device driver on one of the callback interfaces. If the device
driver expects to be able to block the thread to wait for some
event, 1t 1s called a synchronous threading model 730, and 1f
the driver adheres to a rule to not block a thread 1n a dispatch
callback from the frameworks, this can be an asynchronous or
“free threading” model 740.

For a Synchronous Threading model 730 (Allows Block-
ing), the device driver has a potentially block-able thread
context on event callbacks from the frameworks on requests
and events. This mimmizes the complexity of a state machine
that 1s maintained for simple drivers. This model may with a
performance cost in the operating system. This 1s due to the
fact that the frameworks allocates system work items and
utilizes system threads to dispatch requests and events into
the driver. The latency and overhead of queuing this request to
a worker thread, context switching to 1t, and then calling into
the driver 1s more than the asynchronous threading model 740
in which the I/O package can utilize an arbitrary thread con-
text to dispatch requests and events. The common case in
most driver requests and events presented to the frameworks
1s arbitrary thread context, so it 1s likely this overhead will be
per request.

Performance of a driver using this model 730 will likely be
more dependent on the frequency of I/O requests and
responses irom the hardware (interrupts, DPC’s, etc.) than on
actual transter bandwidth. This 1s likely because the overhead
1s 1n dispatching each request, as opposed to the actual time to
transfer data, which utilizes the same data transfer mecha-
nisms as the free threading model. Thus, devices with inire-
quent requests and/or large sized requests can be reasonably
served with this threading model. Synchronous threading
does not imply that single threaded Driver level locking 1s
used. A synchronous threading model with Device or Queue
level locking can allocate multiple threads 1n order to dispatch
requests and events 1nto the driver concurrently.

Even though synchronous threading guarantees thread
context on event callbacks, 1t generally does not guarantee a
specific thread, such as the thread that originated the request.
It also generally does not guarantee that the same thread will
be used for all event callbacks, allowing the frameworks to
utilize thread pools for efliciency. Synchronous threading
generally utilizes PASSIVE level locks such as FAST_MU-
TEX’s for presentation locks. Certain frameworks objects
may still have DISPATCH level synchronized event call-

US 7,406,698 B2

13

backs, such as I/O cancellation. These event callbacks cannot
block, and synchronization with these callbacks occur by
manually acquiring and releasing a spinlock version of the
objects presentation lock.

Asynchronous or free threading models 740 generally
result 1n the highest performance for the device, and the
system. This model desires that the driver not block in an
event callback handler from a driver frameworks object. All
event callback handlers should process the event, possibly
updating an internal driver state machine, and return from the
event callback handler without blocking the current thread for
any length of time other than normal spinlock style synchro-
nization waits. This model 740 has the highest performance
since 1t allows the driver frameworks to dispatch event call-
backs into the device driver from an arbitrary context that 1s
directed into the frameworks internally from the driver inter-
faces.

Since synchronization operates across any thread context,
including DPC handlers, a spinlock can be used for the pre-
sentation lock, and thus event callbacks occur from DIS-
PATCH level. In free threaded mode, certain frameworks
objects have PASSIVE level events, mostly due to constraints
of Plug and Play, and Power Management subsystems 1n the
operating system model. These events are documented as
synchronized utilizing the proper passive level locks from
driver worker threads. PASSIVE level event callback han-
dlers utilize the spinlock based presentation locks to manu-
ally synchronize with DISPATCH level events on the same
object.

At 720, request processing 1s considered and can include
Request Presentation Serialization at 750. Independent of
locking and threading, a device driver processes a series of
requests to service I/O from the I/O system. These 1/O
requests are presented by the Driver Frameworks by an asso-
ciated I/O Package utilizing an IoQueue object. The IoQueue
object raises 1ts DrvIoStart event callback when a request 1s
ready from the I/O system. A driver may utilize the IoQueue
presentation lock to serialize the execution of DrvIoStart, but
when 1t returns from DrvIloStart (or manually releases the
IoQueues presentation lock 1 driver managed locking),
DrvloStart can be called again for a new request even 11 the
previous request has not yet completed.

FIG. 8 1s a flow diagram 1llustrating thread interface pro-
cessing 1n accordance with an aspect of the present invention.
While, for purposes of simplicity of explanation, the meth-
odology 1s shown and described as a series of acts, 1t 1s to be
understood and appreciated that the present invention 1s not
limited by the order of acts, as some acts may, 1n accordance
with the present mvention, occur in different orders and/or
concurrently with other acts from that shown and described
herein. For example, those skilled 1n the art will understand
and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such as
in a state diagram. Moreover, not all 1llustrated acts may be
required to implement a methodology 1n accordance with the
present invention.

Proceeding to 810, an object adapted with one or more
locks. As noted above, this can include such aspects as inter-
nal object state locks, presentation locks, and/or other type
locks. At 820, the object 1s present to a driver or module via a
framework component that acts as an intermediate layer
between a system such as an operating system and a module
such as a device driver, for example. At 830, object locks are
employed for internal state management of the driver or
lower-end module. At 840, presentation locks are provided
for event serialization between systems. Such locks enable
one or more threads in one system from being affected or

10

15

20

25

30

35

40

45

50

55

60

65

14

impacted from one or more threads 1n another system. At 850,
the adapter and associated locks are employed to facilitate
interactions between a highly threaded system such as an
operating system and a less threaded system such as a drniver.

With reference to FIG. 9, an exemplary environment 910
for implementing various aspects of the imnvention includes a
computer 912. The computer 912 includes a processing unit
914, a system memory 916, and a system bus 918. The system
bus 918 couples system components including, but not lim-
ited to, the system memory 916 to the processing umt 914.
The processing unit 914 can be any of various available
processors. Dual microprocessors and other multiprocessor
architectures also can be employed as the processing unit 914.
The system bus 918 can be any of several types of bus
structure(s) including the memory bus or memory controller,
a peripheral bus or external bus, and/or a local bus using any

variety of available bus architectures including, but not lim-
ited to, 16-bit bus, Industrial Standard Architecture (ISA),
Micro-Channel Architecture (MSA), Extended ISA (EISA),
Intelligent Drive Electronics (IDE), VESA Local Bus (VLB),
Peripheral Component Interconnect (PCI), Universal Serial
Bus (USB), Advanced Graphics Port (AGP), Personal Com-
puter Memory Card International Association bus (PCM-
CIA), and Small Computer Systems Interface (SCSI).

The system memory 916 includes volatile memory 920 and
nonvolatile memory 922. The basic nput/output system
(BIOS), containing the basic routines to transier information
between elements within the computer 912, such as during
start-up, 1s stored in nonvolatile memory 922. By way of
illustration, and not limitation, nonvolatile memory 922 can
include read only memory (ROM), programmable ROM
(PROM), electrically programmable ROM (EPROM), elec-
trically erasable ROM (EEPROM), or tlash memory. Volatile
memory 920 includes random access memory (RAM), which
acts as external cache memory. By way of 1llustration and not
limitation, RAM 1s available 1n many forms such as synchro-
nous RAM (SRAM), dynamic RAM (DRAM), synchronous
DRAM (SDRAM), double data rate SDRAM (DDR
SDRAM), enhanced SDRAM (ESDRAM), Synchlink
DRAM (SLDRAM), and direct Rambus RAM (DRRAM).

Computer 912 also includes removable/non-removable,
volatile/non-volatile computer storage media. FIG. 9 1llus-
trates, for example a disk storage 924. Disk storage 924
includes, but 1s not limited to, devices like a magnetic disk
drive, floppy disk drive, tape drive, Jaz drive, Zip drive,
[.S-100 drive, flash memory card, or memory stick. In addi-
tion, disk storage 924 can include storage media separately or
in combination with other storage media including, but not
limited to, an optical disk drive such as a compact disk ROM
device (CD-ROM), CD recordable drive (CD-R Drive), CD
rewritable drive (CD-RW Drive) or a digital versatile disk
ROM drive (DVD-ROM). To facilitate connection of the disk
storage devices 924 to the system bus 918, a removable or
non-removable interface 1s typically used such as interface
926.

It 1s to be appreciated that FIG. 9 describes soitware that
acts as an intermediary between users and the basic computer
resources described in suitable operating environment 910.
Such software includes an operating system 928. Operating
system 928, which can be stored on disk storage 924, acts to
control and allocate resources of the computer system 912.
System applications 930 take advantage of the management
of resources by operating system 928 through program mod-
ules 932 and program data 934 stored either in system
memory 916 or on disk storage 924. It1s to be appreciated that
the present invention can be implemented with various oper-
ating systems or combinations of operating systems.

US 7,406,698 B2

15

A user enters commands or information into the computer
912 through input device(s) 936. Input devices 936 include,
but are not limited to, a pointing device such as a mouse,
trackball, stylus, touch pad, keyboard, microphone, joystick,
game pad, satellite dish, scanner, TV tuner card, digital cam-
era, digital video camera, web camera, and the like. These and
other input devices connect to the processing unit 914 through
the system bus 918 via interface port(s) 938. Interface port(s)
938 include, for example, a serial port, a parallel port, a game
port, and a universal serial bus (USB). Output device(s) 940
use some of the same type of ports as mput device(s) 936.
Thus, for example, a USB port may be used to provide input
to computer 912, and to output information from computer
912 to an output device 940. Output adapter 942 1s provided
to 1llustrate that there are some output devices 940 like moni-
tors, speakers, and printers, among other output devices 940,
that require special adapters. The output adapters 942
include, by way of illustration and not limitation, video and
sound cards that provide a means of connection between the
output device 940 and the system bus 918. It should be noted
that other devices and/or systems of devices provide both
input and output capabilities such as remote computer(s) 944.

Computer 912 can operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer(s) 944. The remote computer(s) 944
can be a personal computer, a server, a router, a network PC,
a workstation, a microprocessor based appliance, a peer
device or other common network node and the like, and
typically includes many or all of the elements described rela-
tive to computer 912. For purposes of brevity, only a memory
storage device 946 1s 1llustrated with remote computer(s) 944.
Remote computer(s) 944 1s logically connected to computer
912 through a network interface 948 and then physically
connected via communication connection 950. Network
interface 948 encompasses communication networks such as
local-area networks (LAN) and wide-area networks (WAN).
LAN technologies include Fiber Distributed Data Interface
(FDDI), Copper Distributed Data Interface (CDDI), Ether-
net/IEEE 1102.3, Token Ring/IEEE 1102.5 and the like.
WAN technologles include, but are not limited to, point-to-
point links, circuit switching networks like Integrated Ser-
VICES Digital Networks (ISDN) and variations thereon, packet
switching networks, and Digital Subscriber Lines (DSL).

Communication connection(s) 950 refers to the hardware/
soltware employed to connect the network interface 948 to
the bus 918. While communication connection 950 1s shown
for 1llustrative clarity inside computer 912, 1t can also be
external to computer 912. The hardware/software necessary
for connection to the network interface 948 includes, for
exemplary purposes only, internal and external technologies
such as, modems including regular telephone grade modems,
cable modems and DSL modems, ISDN adapters, and Ether-
net cards.

FIG. 10 1s a schematic block diagram of a sample-comput-
ing environment 1000 with which the present invention can
interact. The system 1000 includes one or more client(s)
1010. The client(s) 1010 can be hardware and/or software
(e.g., threads, processes, computing devices). The system
1000 also includes one or more server(s) The server(s) 1030
can also be hardware and/or software (e.g., threads, pro-
cesses, computing devices). The servers 1030 can house
threads to perform transformations by employing the present
invention, for example. One possible communication
between a client 1010 and a server 1030 may be 1n the form of
a data packet adapted to be transmitted between two or more
computer processes. The system 1000 includes a communi-
cation framework 10350 that can be employed to facilitate

10

15

20

25

30

35

40

45

50

55

60

65

16

communications between the client(s) 1010 and the server(s)
1030. The client(s) 1010 are operably connected to one or
more client data store(s) 1060 that can be employed to store
information local to the client(s) 1010. Similarly, the server(s)
1030 are operably connected to one or more server data
store(s) 1040 that can be employed to store information local
to the servers 1030.

What has been described above includes examples of the
present invention. It 1s, of course, not possible to describe
every concervable combination of components or methodolo-
gies for purposes of describing the present invention, but one
of ordinary skill 1n the art may recognize that many further
combinations and permutations of the present invention are
possible. Accordingly, the present invention 1s intended to
embrace all such alterations, modifications and variations that
tall within the spirit and scope of the appended claims. Fur-
thermore, to the extent that the term “includes™ 1s used i1n
cither the detailed description or the claims, such term 1s
intended to be inclusive in a manner similar to the term
“comprising” as “comprising” 1s interpreted when employed
as a transitional word 1n a claim.

What 1s claimed 1s:

1. A computer storage medium having stored thereon a
driver management system executable by a processor com-
prising:

a driver framework component (DFC) that 1s separate from

a driver, the DFC comprising;:

a presentation component that selectively exposes adapter
objects to the driver 1n a multi-threaded environment, the
adapter objects synchronize interactions between the
driver and the multi-threaded environment according to
a hierarchical locking model selected by the driver at
configuration time, the hierarchical locking model
determines a primary synchronization object level at
which locks are applied during synchronization, the
available synchronization object levels include at least
one of a driver level, a device level, or a queue level.

2. The driver management system of claim 1, further com-
prising an operating system kernel that operates or performs
in a multi-threaded software environment.

3. The driver management system of claim 2, the driver
operates 1n a less-threaded software environment than the
operating system kernel.

4. The driver management system of claim 1, at least one of
the adapter objects includes internal state data and one or
more sets of locks for managing interactions between the
driver and the DFC.

5. The driver management system of claim 4, the at least
one adapter object includes an 1nternal object state lock that
provides synchronization for modifications to the internal
state data.

6. The driver management system of claim 5, the internal
object state lock 1s acquired and released for short time inter-
vals in response to an event from a system that modifies the at
least one adapter object, or an API call from a software
module or driver.

7. The driver management system of claim 5, the DFC
automatically optimizes the sharing of internal object state
locks between 1ts internal I/O paths.

8. The driver management system of claim 4, the at least
one adapter object includes a presentation lock that 1is
acquired when events are presented through event handler
callbacks into a less threaded software module.

9. The driver management system of claim 8, when the
event handler callback returns, the presentation lock 1s auto-
matically released.

US 7,406,698 B2

17

10. The driver management system of claim 1, at least one
adapter object employs a series of reference counts, request
deferrals, or other programming components to facilitate
object lifetime and event exposure to a less threaded software
module.

11. The driver management system of claim 1, the adapter
objects are employed for request dispatch, locking, or syn-
chronization.

12. The driver management system of claim 1, the DFC
automatically manages synchronization and race conditions
that occur 1n a driver environment.

13. The driver management system of claim 12, the DFC
provides a flexible configuration model 1n which a driver
designer can select an amount of synchronization desired
depending on device requirements or performance goals.

14. The driver management system of claim 1, the driver
registers a set of callback functions to the adapter objects
during mitialization of the driver.

15. The driver management system of claim 1, the DFC
raises events that occur such as Delayed Procedure Calls
(DPC’s), I/O cancellation events, plug and play events, or
power management events.

16. The driver management system of claim 1, at least one
adapter object 1s associated with at least one of a request
object, a driver object, a device object, and a queue object.

10

15

20

18

17. The driver management system of claim 16, at least one
ol the objects 1s owned or derived from at least one other
object.

18. The driver management system of claim 1, at least one
adapter object including at least one of a spinlock, a shared

lock, and a FAST MUTEX.

19. The driver management system of claim 1, at least one
adapter object allows the driver to specily an optional context

memory allocation to be associated with the adapter object,
the driver stores its primary data structure in the context
memory to facilitate interaction with the data structure
according to the DFC’s hierarchical locking model.

20. The driver management system of claim 1, the hierar-
chical locking model includes a non-synchronization model
that places the entire burden of synchronization on the driver.

21. The drniver management system of claim 1, further
comprising at least one of a synchronous and an asynchro-
nous threading model.

22. The driver management system of claim 1, further
comprising at least one of a lock for inter-object communi-
cations, a lock verifier, a lock organizer, and an automatic
child-locking component.

	Front Page
	Drawings
	Specification
	Claims

