US007406694B2
12y United States Patent (10) Patent No.: US 7.406,694 B2
Sen 45) Date of Patent: Jul. 29, 2008
(54) METHOD AND SYSTEM FOR TRACKING 5,802,590 A * 9/1998 Dravesceeeeeeeueueennnnn 711/164
KERNEL RESOURCE USAGE 5,870,763 A 2/1999 Lomet
5,875,330 A 2/1999 Gofti
(75) Inventor: Ranjan K. Sen, North Bethesda, MD 2,933,838 A 8/1999 Lomet
(US) 5,946,698 A 8/1999 Lomet
RE36.,462 E 12/1999 Chang et al.
(73) Assignee: Microsoft Corporation, Redmond, WA g:gig:;gg i 3/%883 gif;a‘;f;ﬁl'
(US) 6067550 A 5/2000 Lomet
| | o | 6,151,607 A 11/2000 Lomet
(*) Notice: Subject to any disclaimer, the term of this 6.163.855 A 12/2000 Shrivastava et al.
patent 1s extended or adjusted under 35 6,178,529 Bl 1/2001 Short et al.
U.S.C. 154(b) by 531 days. 6,182,086 Bl 1/2001 Lomet et al.
6,216,212 Bl 4/2001 Challenger et al.
(21) Appl. No.: 10/600,977 6,243,825 Bl 6/2001 Gamache et al.
6,256,712 Bl 7/2001 Challenger et al.
(22) Filed: Jun. 20, 2003 6,360,331 B2 3/2002 Vert et al.
6,401,120 Bl 6/2002 Gamache et al.
(65) Prior Publication Data 6,449,734 Bl 9/2002 Shrivastava et al.
6,453,426 Bl 9/2002 Gamache et al.
US 2004/0261081 Al Dec. 23, 2004 6,490,594 B1 12/2002 ILomet
6,507,875 Bl 1/2003 Mellen-Garnett et al.
(51) Int. Cl. 7,028.298 Bl1* 4/2006 Foote ..ccvvvvrvvvvnnvennn.n.. 718/104
GO6F 9/54 (2006.01) 2002/0059425 Al 5/2002 Belfiore et al.
GO6E 9/00 (2006.01) 2006/0095919 Al1* 5/2006 Shiomietal. 718/104
(52) US.CL .., 719/313; 718/104 * cited by examiner
(58) Field of Classification Search 719/313;

B Primary Examiner—Meng-A1 An
7187104105 Assistant Examiner—Abdou K Seye

See application file for complete search history. (74) Attorney, Agent, or Firm—Marshall, Gerstein & Borun

(56) References Cited LLP
U.S. PATENT DOCUMENTS (57) ABSTRACT
4,718,008 A 1/1988 Ch‘mg et al. A method and computer system for tracking kernel resource
4,730,249 A 3/1988 O’Quun, II et al. . g
usage 1s disclosed that tracks kernel resources allocated to

4,742,447 A 5/1988 Duvall et al. :

.. user processes called from the user level of the operating
5,414,812 A 5/1995 Filip et al. : :
5463775 A 10/1995 DeWitt of al system. A tag of the user processes 1s generated, which allows
5 485 400 A 1/1996 Gupta et al. | a way to identify the user processes and associate allocated
5j49138 19 A 2/1996 Fatzinger et al. kernel resources to the user process. As a result, the user
5572.672 A 11/1996 Dewitt et al. processes can be charged for kernel resources.
5,638,539 A 6/1997 Goti
5,748,980 A 5/1998 Lipe et al. 9 Claims, 7 Drawing Sheets

200'7*

USER
PROCESS

206

USER LEVEL 202

KERNEL LEVEL 204 Il

ExAllocatePoolWithTag
(pool tagging} 210 | | ™., ‘

KERNEL
PROCESS

208

DRIVER

KERNEL RESOURCES 212 |

[Taczie
|

TABLE 218

| USAGE POLICY 218

US 7,406,694 B2

Sheet 1 of 7

Jul. 29, 2008

U.S. Patent

o 00l L Ol
g ol Y1Va ﬂ:ﬁza
o V8 ASNON AYH90Yd NOILYOITddY | ONIL¥¥3do
43LNdWNOD 961 41N
I10N3Y
f@// ,,....._.._.. ..,....._........__.u
« GGl * TR L T

MYOMLIN Y3V 3AIM V== ---- N T . e iy R P
om_‘/ ﬁ = om_‘J 0Pl m
1L} - v.1VYQ |
2yl | | 3OVHEIIN 39V443LNI 39Y443INI AYS90Yd "
NGLIN 10dNI ASOWIN TOANON | | ASOININ “TOANON "
MOMLIN V3ay ¥001 V1 eI} TTEYAONIY 378YAONIH-NON "
m 09} 2 m
m SNE WILSAS m
_ SYINYIdS m :
L6} m "
) 39Y443LNI "
d31Nld " CRELREIER "
" 1d1N0 0| “

4

- S . O By e ahip il R e AR AR O A EEE S I TR Y e ke e e

AJOW3IN W31SAS

ll"'lll'll:lll'iil'lIllllllllI.l.l.llI_II_II_.I_I_ll_l.i.'.II.I.I.'lllll.l.lIlll-ll-lll'lt'-l-l.:‘llI"lIII--

U.S. Patent Jul. 29, 2008 Sheet 2 of 7 US 7,406,694 B2

2001

USER
PROCESS

206

USER LEVEL 202

KERNEL LEVEL 204

(pool tagging) 210

I ExAllocatePoolWithTag I

KERNEL
PROCESS

208

DRIVER

KERNEL RESOURCES 212

TAG 214 g

TABLE 216

USAGE POLICY 218

FIG. 2

U.S. Patent Jul. 29, 2008 Sheet 3 of 7 US 7.406,694 B2

300
304 306 v/-
TAG VALUE FOR KERNEL PROCESS
INCLUDING DRIVER ID 308

FIG. 3A

302
/_

TAG VALUE FOR USER PROCESS
INCLUDING RESOURCE TYPE 310

USER PROCESS ID 314

312

FIG. 3B

US 7,406,694 B2

Sheet 4 of 7

Jul. 29, 2008

U.S. Patent

S3TANVH
Adv3ddHl

S3TANVH {dD

A3dlvOO 11V

S3104dN0S3d
1ANY3INA 4O ddAL

00V

oowu\t

¥ Ol4

d34sSN S31Ad

d3SN S3.1A4

d3SN S31A4d

S30HNOS3d
13N 3A
dd1lvO0TIVv

140} 4

al SS300¥d ¥3sn
JdAL IDHNOSIY ONIANTONI -

SS300dHd J3SN JOd JN'TVA OVL

dl SS300Ud TaNAHIX ONIANTONI
SS3D0Hd TINYIN HO4 ANTVA OVL

dl SS300¥d d3SN

JddA 1L 30HNOSIY ONIANTONI
SS300Hd 43SN JO4 AN 1IVA DVL

SOVL

40 %

U.S. Patent Jul. 29, 2008 Sheet 5 of 7 US 7,406,694 B2

/—- 500

502 506

004

Intermediate
function of the process
NSINg a worker threag

A process requests

YES |Find link(s) between
the worker thread
and the process

kernel pool
resources

identify the
requesting process
from the link(s)

Generate a tag
for the process

522
512
Generate a tag value No Call from
for the user process kernel?
524
Save the tag value with ves 514 216
the type of kemnel .

resources allocated Iin Generate a tag value Séari\:’ee:r;g t;:gt: ea ',Ll] :t mg:da
the 1st word of the tag for the kernel process of the tag

526

Save a user process ID In 518
the 2nd word of the tag
Set the MSB of tag to "0"

528 590

Set the MSB of the tag to "1” m

FIG. 5

U.S. Patent Jul. 29, 2008 Sheet 6 of 7 US 7.406,694 B2

600
Y

Select a tag
606
Save the selected tag
to the hash table

Identify the amount of kemel

resources allocated to a process
indicated by the selected tag

608

Save an association of

the amount of kernel-
resources with the tag

610 612

No Yes
More tag(s)?

Process
from user
level?

No

614
|dentify the type of kemel
resources allocated to the

USEr process

618

Save an association of the

tvype of kernel resources
allocated with the tag

FIG. 6

U.S. Patent Jul. 29, 2008 Sheet 7 of 7 US 7,406,694 B2

700
704 /—

Search hash table to identify the
amount of kernel resources used
by each process

702

Read usage
policy

Amount of

resource usage over
threshold?

8

Yes 70
Take action according
to the usage policy

710

Abort NO
process?

YES 712
714
6.7

US 7,406,694 B2

1

METHOD AND SYSTEM FOR TRACKING
KERNEL RESOURCE USAGE

FIELD OF THE INVENTION

The present mvention relates generally to computer sys-
tems. More particularly, the present invention relates to a

method and computer system for tracking kernel resource
usage.

BACKGROUND OF THE INVENTION

Operating systems (“OSs”) are generally divided 1nto two
levels of operations, specifically a user level and a kernel
level. To distinguish the processes of the user level and the
kernel level, a process called from the user level will be
referred to as a ““user process,” and a process called from the
kernel level will be referred as a “kernel process.” A user
process generally relates to a user-related process, such as
editing a document using an editor (e.g., Microsoit Word®),
while a kernel process relates to an OS-related process, such
as a dniver. Both the kernel process and the user process
periodically request kernel resources, such as kernel pool
memory or kernel pool resource. The current Windows®
operating system provides a way to tag a driver that has been
allocated kernel resources. The tag information can then be
used to track kernel resource usage between different kernel
processes. Moreover, in the Windows® operating system,
although the Windows Performance, Logging, and Task Man-
ager services track resource usage from a user process, these
services do not provide any information about the usage of the
kernel pool resources by the user processes. This 1s so due to
the non-availability of mechanisms to gather information
about user process usage of the kernel pool resources.

SUMMARY OF THE INVENTION

The kernel resource tracking system disclosed herein
addresses the absence of tracking user process usage of the
kernel resources.

In embodiments of the present invention, a tag relating to a
user process allocated with kernel resources 1s generated that
identifies the allocated resources. With the use of tags for user
processes, valuable information relating to the usage of ker-
nel resources 1s maintained. Resource management can be
improved based on such information.

More particularly, the present mvention 1s directed to a
method and computer system for tracking kernel resource
usage that includes a step of a tag being generated to 1dentify
kernel resources allocated to a user process. The tag 1s flagged
as a user process called from the user level to distinguish
between a kernel process request and a user process request.
A user process identifier 1s also included for the tag to 1dentify
the user process. The user process 1dentifier associates allo-
cated kernel resources with the user process.

Additional aspects of the invention are made apparent by
the following detailed description of illustrative embodi-
ments that proceeds with reference to the accompanying fig-
ures.

BRIEF DESCRIPTION OF THE DRAWINGS

While the appended claims set forth the features of the
present invention with particularity, the invention and its
advantages are best understood from the following detailed
description taken in conjunction with the accompanying
drawings, of which:

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 11s a block diagram depicting an exemplary computer
system for carrying out an embodiment of the invention;

FIG. 2 1s a high level schematic diagram depicting com-
puter modules for carrying out an embodiment of the inven-
tion;

FIG. 3A 15 a block diagram depicting an exemplary data
structure for a tag of a kernel process according to an embodi-
ment of the present invention;

FIG. 3B 1s a block diagram depicting an exemplary data
structure for a tag of a user process according to an embodi-
ment of the present invention;

FIG. 4 1s a block diagram depicting an exemplary data
structure of the table shown in FIG. 2;

FIG. S1s a flowchart summarizing a set of steps for tracking,
kernel resource usage according to one embodiment of the
present invention;

FIG. 6 15 a flowchart summarizing a set of steps for gener-
ating a hash table according to one embodiment of the present
invention; and

FIG. 7 1s a flowchart summarizing a set of steps for man-
aging the kernel resource usage according to one embodiment
of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

In embodiments of the present invention, a tag relating to a
user process allocated with kernel resources 1s generated to
identify the kernel resources allocated to the user process.
The tag 1s tlagged as a process either from the kernel level or
user level. In addition, an 1dentifier saved to the tag associates
the allocated kemnel resources with the process. The present
invention provides a way to track processes from the kernel
level and the user level.

Turning to the drawings, wherein like reference numerals
refer to like elements, the present invention 1s 1llustrated as
being implemented 1n a suitable computing environment. The
following description 1s based on embodiments of the mnven-
tion and should not be taken as limiting the invention with
regard to alternative embodiments that are not explicitly
described herein.

In the description that follows, the present mvention 1s
described with reference to acts and symbolic representations
ol operations that are performed by one or more computing
devices, unless indicated otherwise. As such, 1t will be under-
stood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of the computing device of
clectrical signals representing data in a structured form. This
mamipulation transforms the data or maintains them at loca-
tions 1n the memory system of the computing device, which
reconfigures or otherwise alters the operation of the device in
a manner well understood by those skilled in the art. The data
structures, where data are maintained, are physical locations
of the memory that have particular properties defined by the
format of the data. However, while the mvention 1s being
described 1n the foregoing context, 1t 1s not meant to be
limiting as those of skill 1n the art will appreciate that various
of the acts and operations described hereinafter may also be
implemented 1n hardware.

The present invention allows the user processes using ker-
nel resources to be tracked. FIG. 1 illustratively depicts an
example of a suitable operating environment 100 for carrying
out tracking functionality of kernel resources in accordance
with the present invention. The operating environment 100 1s
only one example of a suitable operating environment and 1s
not intended to suggest any limitation as to the scope of use or
functionality of the invention. Other well known computing

US 7,406,694 B2

3

systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not limited
to, personal computers, server computers, laptop/portable
computing devices, hand-held computing devices, multipro-
cessor systems, microprocessor-based systems, network PCs,
mimicomputers, mainirame computers, distributed comput-
ing environments that include any of the above systems or
devices, and the like.

The invention 1s described 1n the general context of a set of
steps and processes carried out by computer-executable
instructions, such as program modules, being executed by a
computer. Generally, program modules include routines, pro-
grams, objects, components, data structures, etc. that perform
particular tasks or implement particular abstract data types.
Though the exemplary embodiment 1s described with refer-
ence to locally executed processes on a single computer sys-
tem, the invention 1s potentially incorporated within network
nodes operating in distributed computing environments
where tasks are performed by remote processing devices that
are linked through a communications network. In a distrib-
uted computing environment, program modules are generally
located 1n both local and remote computer storage media
including memory storage devices.

With continued reference to FIG. 1, an exemplary system
for implementing the mvention includes a general purpose
computing device i the form of a computer 110. Compo-
nents of computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus
121 that couples various system components including the
system memory to the processing unit 120. The system bus
121 may be any of several types of bus structures including a
memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus also known as
Mezzanine bus.

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
of information such as computer readable 1nstructions, data
structures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, FEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
computer 110. Communication media typically embodies
computer readable instructions, data structures, program
modules or other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. The term “modulated data sig-
nal” means a signal that has one or more of its characteristics
set or changed 1n such a manner as to encode 1nformation 1n
the signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,

10

15

20

25

30

35

40

45

50

55

60

65

4

RF, infrared and other wireless media. Combinations of any
of the above should also be included within the scope of
computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during start-
up, 1s sometimes stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 140
that reads from or writes to non-removable, nonvolatile mag-
netic media, a magnetic disk drive 151 that reads from or
writes to a removable, nonvolatile magnetic disk 152, and an
optical disk drive 155 that reads from or writes to a remov-
able, nonvolatile optical disk 156 such as a CD ROM or other
optical media. Other removable/non-removable, volatile/
nonvolatile computer storage media that can be used in the
exemplary operating environment include, but are not limited

to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 1s typically
connected to the system bus 121 through a non-removable
memory 1nterface such as iterface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and 1llustrated 1n FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 1s 1llustrated as storing operating
system 144, application programs 145, other program mod-
ules 146, and program data 147. Note that these components
can either be the same as or different from operating system
134, application programs 135, other program modules 136,
and program data 137. Operating system 144, application
programs 145, other program modules 146, and program data
147 are given different numbers here to illustrate that, at a
minimum, they are different copies. A user may enter com-
mands and information into the computer 20 through input
devices such as a keyboard 162 and pointing device 161,
commonly referred to as a mouse, trackball or touch pad.
Other input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing
unmit 120 through a user input intertace 160 that 1s coupled to
the system bus, but may be connected by other interface and
bus structures, such as a parallel port, game port or a universal
serial bus (USB). A monitor 191 or other type of display
device may also be connected to the system bus 121 via an
interface, such as a video interface 190. In addition to the
monitor, computers may also include other peripheral output
devices such as speakers 197 and printer 196, which may be
connected through a output peripheral interface 190.

The computer 110 potentially operates in a networked
environment using logical connections to one or more remote
computers, such as a remote computer 180. The remote com-
puter 180 may be a personal computer, a server, a router, a
network PC, a peer device or other common network node,

US 7,406,694 B2

S

and typically includes many or all of the elements described
above relative to the computer 110, although only a memory
storage device 181 has been illustrated in FIG. 1. The logical
connections depicted 1n FIG. 1 include a local area network
(LAN) 171 and awide areanetwork (WAN) 173, but may also
include other networks. Such networking environments are
commonplace in offices, enterprise-wide computer networks,
intranets and the Internet.

When used in a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used in a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over the
WAN 173, such as the Internet. The modem 172, which may
be 1nternal or external, may be connected to the system bus
121 via the user mput interface 160, or other approprate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device 181.
It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications
link between the computers may be used.

FI1G. 2 illustratively depicts an exemplary system of com-
puter modules, indicated generally at 200, for carrying out the
present invention 1n a Windows® operating system environ-
ment. It should be noted that the present invention contem-
plates implementations with other computer operating sys-
tems, such as Unix, Linux, and MacOS®. Although only the
Windows® operating system implementation 1s used as an
example to describe the present invention, one skilled 1n the
art would appreciate alternate embodiments with implemen-
tations 1n other operating systems.

The Windows® operating system 1s divided 1nto two levels
of operations, specifically a user level 202 and a kernel level
204. As an example, only two processes are shown, specifi-
cally auser process 206 and a kernel process 208, but there are
generally multiple processes running 1n each of the levels at
any given time. The user process 206, such as a user level
application program intertace (“API”), 1s called from the user
level 202, while the kernel process 208, such as a driver, 1s
called from the kernel level. In the Windows® operating
system, a kernel function “ExAllocatePoolWithTag” 210 1s
called to allocate kernel resources 212 of a specified type,
such as kernel pool memory. The function 210 returns a
pointer to the allocated block. In particular, the “ExAllocate-
PoolWithTag” function 210 generates a tag 214 that includes
information relating to the requesting process and the allo-
cated kernel resources. The tag 214 helps to keep track of the
kernel resource allocation and the processes using the allo-
cated kernel resources. The tags can then be stored 1n a table
216, such as a hash table, to account for kernel resource
usages. Such information 1s useful for building improved
resource management by implementing, for example, a usage
policy 218 of the kernel resources.

Since the “ExAllocatePoolWithTag” function 210 already
generates existing tags for drivers, the function and the exist-
ing tag are modified to implement the present invention. It
should be noted that the “ExAllocatePoolWithTag™ function
210 1s used only as an example, and other functions, depend-
ing on the specific operating system or network system, can
also be used and modified in accordance with embodiments
of the present invention. As a result, the above-described
computer module system 200 1s exemplary. As those skilled
in the art will readily appreciate, the present invention,
enabling a programmer to track kernel resource usage, can be

10

15

20

25

30

35

40

45

50

55

60

65

6

incorporated 1nto a variety of system components and mod-
ules. Thus, the present invention 1s not limited to any particu-
lar computer system or environment shown.

Turning to FIGS. 3A and 3B, an exemplary data structure
for the tag 214 of a kernel process and a user process 1s
respectively shown and indicated at 300 and 302. In this
example, a particular type of information about the process,
specifically the process identifier, 1s included with the tag.
However, other types of information, such as an application
name or a user identifier, can also be included. For example,
rather than the process allocated with the kernel resources
being 1dentified with the tag, a login user, a group of users, or
an account of the user using the process allocated with the
kernel resources can be tagged 1nstead. Any information that
helps 1n 1dentifying the account to be charged can be included
with the tag. In other words, the present invention can be
implemented to keep account of any consumer of the resource
to help control and manage 1ts usage. As another example,
when a user of resource usage 1s being tracked or charged, the
tag can include the name of the user. Thus, the present inven-
tion 1s not limited to the shown embodiment of 1dentifying the
process, because other information are contemplated and
readily appreciated by one skilled 1n the art. Thus, depending
on the type of information desired, other implementations are
within the scope of the present mnvention.

In the present example, since two types (e.g., a kernel
process request and a user process request) of tag 214 are now
generated by the “ExAllocatePoolWithTag” tunction 210, a
most significant bit (“MSB”’) 304, which 1s generally the first
or leftmost bit, of the tag 1s used to distinguish between the
kernel process and the user process. In this example, the MSB
304 1s set to a “0” bit to indicate a kernel process, and con-
versely a “1” bit 1s set to indicate a user process. However, as
1s well known 1n the art, the MSB 304 of a kernel process can
also be set to a “1” bit, while the MSB of a user process 1s set
to a “0” bit. Furthermore, there are other alternative 1mple-
mentations to flag the tag as a kernel process or a user process,
including placing such tags in respective dedicated data struc-
tures or locations, which are also readily appreciated by one
skilled 1n the art.

As shown 1n FIG. 3A, the kernel process tag 300 includes
only a first word 306. In the first word 306 of the tag 300, a tag
value for the kernel process 308 that includes a driver 1denti-
fier, which runs 1n a kernel process, 1s saved after the MSB
304. The tag value charges the kernel process with the allo-
cated kernel resources, while the driver identifier helps to
identify the kernel process requesting the allocated kernel
resources. From a mapping of the tag to the driver identifier,
the 1dentification of the kernel process can be easily obtained.
This data structure of the kernel process tag 300 1s similar to
the existing tag, except for the MSB 304 being set to indicate
the tag as a request from a kernel process. Other implemen-
tations, such as saving a kernel process identifier to the tag
value, are also possible, but to implement the present inven-
tion with minimum modification of the current configurations
of the Windows® operating system, the kernel process tag
preferably remains similar to the existing tag.

Turning now to the data structure of the user process tag
302 shown 1n FIG. 3B, the tag 214 1s extended to include a
second word 312. In this embodiment, following the MSB
304, a tag value for the user process 310 1s saved 1n the first
word 306 that includes the type of kernel resources allocated
(e.g., GDI handles, File objects, Thread objects, etc.) to the
user process requesting the kernel resources. Specifically, the
type of kernel resources allocated 1s encoded 1n the tag value.
Similar to the kernel process tag, the tag value 1s used to
charge the user process with the allocated kernel resources,

US 7,406,694 B2

7

while the kernel resource type encoded 1n the tag value 1den-
tifies the type of kernel resources that was allocated to the user
process. Next, using the extended second word 312 of the tag
302, a user process 1dentifier 314 1s saved to 1dentily the user
process. As shown, the present data structure requires only
slight modification to the existing tag, making it either one or
two word(s) in length depending upon whether the tag per-
tains to a kernel or user process. This makes the mvention
casy to incorporate and be backward compatible with alegacy
tagging mechanism. It 1s apparent that mimimum modifica-
tion to any related functions of the existing tagging data
structure 1n the Windows® operating system 1s needed to
accommodate the data structure shown. For other operating
systems, the data structure may need either to be bult alto-
gether. One skilled 1n the art would readily appreciate that the
preferred data structure can be altered, depending on the
operating system or the configuration of the network. Thus,
the data structure 1s not limited to FIGS. 3A and 3B, and other
implementations are within the scope of the present mven-
tion.

Tags pertaiming to user and kernel processes are compiled
into a hash table. In determining resource usage, a search 1s
made 1n this table. Such a search uses process 1dentification as
a key. The tags associated with an entry that matches the key
tell about the type of resources consumed by the process.
Alternately, a search based on a tag that represents a resource
will provide information about the consumers that have con-
sumed the resource. The tags storing information relating to
the kernel resource usage can now be searched to generate a
table, such as the hash table, with specified search terms, such
as a specific user process 1dentifier or a kernel process 1den-
tifier. An exemplary data structure of a hash table 1s shown in
FIG. 4 and indicated generally at 400. In this example, a hash
table 1s used to facilitate efficient searches for tags associated
with particular user processes. Furthermore, a hash table can
be set up to search by kernel resource allocation or type.
Using specified tagged information from the tag, such as an
amount of resources allocated, a type of resource (e.g., File
objects), or the user process 1dentifier 314, as a key, the usage
information relating to each key 1s generated as a value 1n the
hash table. Since a second word has been added to the tag,
searching for a tag will now require processing two tag words
(e.g., the first word and the second word) instead of one tag
word. Either one or two word(s) can be used to generate a
hash table for indexing resource usage information by a user
or kernel process. As a result, a search for resource consump-
tion or type by either the user or kernel process can be made.
Based on such searches, valuable resource consumption
information can be gathered. The mformation can then be
used for control and management of the kernel resource
usage, which helps 1in providing a more reliable and robust
operating environment for all processes.

In the exemplary table shown, the hash table includes three
columns of information, specifically columns for saving the
tags 402, the amount of the kernel resources allocated in bytes
to the process of the tag 404, and the type of kernel resources
allocated to the process 406. Using information from the hash
table, the usage of the kernel resources can be easily tracked
back to the processes allocated with the resources. As a result,
the usage kernel resources can be managed and maintained.
The table 1s shown as an example 1n the form of a hash table,
but other tables can also be used and implemented for search-
ing the tags. It should be understood that other table imple-
mentations are contemplated and will be readily appreciated
by one skilled 1n the art in view of the present disclosure.

Turning now to FIG. 3, a tflowchart summarizing a set of
steps for tracking kernel resource usage according to an

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment of the present invention 1s shown and indicated
generally at 500. The steps summarized herein below repre-
sent an exemplary implementation with the data structure
shown 1n FIGS. 3A and 3B. Moreover, in the Windows®
operating system implementation, the “ExAllocatePool With-
Tag” function 210 1s modified to perform the steps summa-
rized i the tlow chart. However, the steps shown can be
modified and altered for other various implementations, and
one skilled in the art would appreciate these alternative meth-
ods 1n view of the disclosure contained herein.

The method 1s mitiated by a request from a process for
kernel resources during step 502. In a particular embodiment
in the Windows® operating system, the process that initiates
the “ExAllocatePoolWithTag” function 210 1s traced to 1den-
tify the process requesting the kernel resources. Generally,
the process that initiated the function 210 directly relates to
the request for kernel resources. In other words, the process
that initiated function 210 1s the actual process that 1s request-
ing kernel resources, and thus 1t should be charged for the
allocated kernel resources. However, in some cases although
the request 1s generated from a user process, the request 1s
passed on to underlying kernel processes. In this case, a
worker thread 1s used by the kernel processes. Instead, an
intermediate function (e.g., the kernel process) that actually
called the “ExAllocatePool WithTag” function 210 1s traced,
rather than the actual user process that requested the kernel
resources. As a result, the request to the function 210 1ndi-
rectly relates to the process that actually requested the kernel
resources. In order to trace back to the user process, a refer-
ence to the user process along a chain of the worker threads 1s
maintained to correctly charge the consuming user process.

To account for the worker thread situation described, step
504 determines whether the request 1s passed from an nter-
mediate Tunction using a worker thread. If a worker thread 1s
used, step 506 finds the link(s) between the worker thread and
the process. At step 308, the requesting process 1s 1dentified
from the links found at step 506. In other words, by going
through the link(s), the identity of the process that initially
requested the kernel resources can be determined. On the
other hand, 11 no worker thread 1s determined from step 504,
the process then directly relates to the request.

Once the process that 1s related to the request 1s 1dentified,
step 510 generates a tag to charge the process that requested
the kernel resources. Since both the kernel process and the
user process are tracked in the present invention, step 512
determines whether the call 1s from a kernel process. In other
words, at step 512, 1t 1s determined whether the process
requesting kernel resources 1s a kernel process from the ker-
nel level or a user process from the user level. If the process 1s
from the kernel level, step 514 generates a tag value for the
kernel process with a driver identification, which 1s saved to
the first word of the tag at step 516. A value of *“0” 1s also set
at a most significant bit (“MSB”) of the tag at step 518 to
indicate a kernel process, and the process ends at step 520. In
this particular embodiment, the kernel process tag has only a
single word.

The user process, on the other hand, has two words 1n the
tag. In the case of the user process, it would be determined that
the call 1s not from the kernel level at step 512. Inresponse, a
tag value, which includes the type of kernel resources allo-
cated, of the user process will be generated at step 522. The
tag value with the type of kernel resources allocated 1s saved
in the first word of the tag at step 524, and at step 526, a user
process 1dentifier 1s saved 1n the second word of the tag. At
step 528, the MSB of the tag 1s set to a value o1 “1” to indicate
that the requesting process 1s a user process. The process ends
at step 320.

US 7,406,694 B2

9

Turning now to FIG. 6, a tlowchart summarizing a set of
steps for generating an exemplary hash table 1s shown and
indicated generally at 600. From the tag(s) generated 1n FIG.
5, the process starts by selecting a tag at step 602. It should be
noted that the hash table can be concurrently generated with
the tags. In other words, once a tag 1s generated, the tag can be
automatically saved to a hash table with the tracking infor-
mation associated with the process of the tag. As the tags are
being generated, they can be added to the hash table. Simi-
larly, 1f the kernel resources have been deallocated, the tags
can be deleted from the hash table. As a result, the hash table
can be dynamically updated with usage changes of the kernel
resources. Moreover, other information can be included or
excluded in the hash table. These variations are readily appre-
ciated by the one skilled 1n the art, and thus they are within the
scope of the present invention.

In the embodiment shown, once a tag 1s selected at 602, 1t
1s saved to a hash table at 604. Step 606 then 1dentifies the
amount of kernel resources allocated to the process indicated
by the selected tag, and an association between the amount of
kernel resources allocated 1s saved with the tag or process at
step 608. Since the user process tag contains more 1nforma-
tion about the process than the kernel process tag, step 610
determines whether the process i1s from the user process.
According to the data structure shown 1n FIGS. 3A and 3B,
this information can be easily obtained from the selected tag
by referring to the MSB of the tag. Specifically, a value ot 1™
in the MSB 1ndicates a user process. If, however, the MSB
indicates a value of “°0,” the process relating to the selected tag
1s not a user process and step 612 determines next whether
there are more tag(s) in the system. It so, the process reloops
to step 602 to select a next tag in the system, and the process
1s repeated until there are no more tags or all the tags have
been added to the hash table. The process will then end at this
point at step 614.

I, at step 610, the process 1s from the user level, step 616
identifies the type of kernel resources allocated to the user
process, which 1s indicated by the tag value. From the infor-
mation 1dentified at step 616, an association between the type
of kernel resources allocated and the tag or user process 1s
saved to the hash table at step 618. The process continues to
step 612 to determine whether there are any more available
tags. I so, another tag 1s selected at 602. Otherwise, the
process ends at step 614.

FIG. 7 shows a flowchart summarizing a set of steps for
managing the kernel resource usage, which 1s indicated gen-
crally at 700. As an example, the process shown 1n FIG. 7 uses
the information collected 1n the hash table generated in FIG.
6. However, similar to other implementations of the hash
tables, other processes for managing the kernel usage can be
implemented and are readily appreciated by one skilled 1n the
art. The process starts by reading a usage policy that, for
example, includes information relating to allowable threshold
limits 1n usage of the process or the type of kernel resources
allocated. Moreover, any specific actions in cases when the
allowable thresholds are exceeded can also be included with
the usage policy. The various designs of the usage policy are
readily appreciated by one skilled 1n the art.

In the current embodiment shown, the process starts by
reading the usage policy at step 702. Once the necessary
information has been gathered from the usage policy, the hash
table 1s searched to identily the amount of the kernel
resources used by each process at step 704. It 1s then deter-
mined, at step 706, whether there 1s an amount of kernel
resource usage that exceeds the threshold limits defined 1n the
usage policy. If not, the process loops to step 704 to search the
hash table again.

10

15

20

25

30

35

40

45

50

55

60

65

10

If, however, the hash table does indicate an amount of
resource usage that exceeds the threshold limit defined 1n the
usage policy at step 706, proper action according to the usage
policy will be taken to correct such usage of the kernel
resources at step 708. These actions include, for example,
notification to the users or deallocation of the kernel
resources. Step 710 further determines whether the process
using the kernel resources should be aborted according to the
usage policy. If the process does not need to be aborted at step
710, the process again reloops to step 704 to search the hash
table. If the process should be aborted at step 710, 1t 1s aborted
at step 712, and the hash table will be updated to retlect the
change 1n the kernel usage at step 714. Specifically, the tag of
the aborted process will be deleted from the hash table. Once
the hash table 1s updated at step 714, the process loops to step
704 to search the hash table to repeat the process.

It will be appreciated by those skilled 1n the art that a new
and useful method and system has been described for tracking
kernel resource usage. In view of the many possible environ-
ments in which the principles of this invention may be applied
and the flexibility of desigming and carrying out soiftware
utilities and tools, 1t should be recognized that the embodi-
ments described herein are meant to be illustrative and should
not be taken as limiting the scope of the mvention. Those
skilled 1n the art to which the present invention applies will
appreciate that the illustrated embodiments can be modified
in arrangement and detail without departing from the spirit of
the invention. Therefore, the invention as described herein
contemplates all such embodiments as may come within the
scope of the following claims and equivalents thereof.

What 1s claimed 1s:

1. A method for tracking kernel resource usage comprising;:
generating a tag to charge a process allocated with kernel
resources wherein generating a tag further comprises:

determining whether a request for kernel resources 1s
passed from an intermediate function using a worker
thread;
finding at least one link between the worker thread and
the process; and,
identifying the process that originated the request
according to the found link between the worker thread
and the process;
determining whether the process 1s a kernel process;
determiming whether the process 1s a user process;

flagging the tag with a kernel flag to indicate whether the
process has been determined to be a kernel process, the
flagging further comprising;
generating a tag value to 1dentily kernel resources allo-
cated to a user process;
saving a type ol kernel resources allocated to the tag;
and,
saving a user process 1dentifier to the tag to identify the
process;
flagging the tag with a user flag to indicate whether the
process has been determined to be a user process based
upon the determination step wherein the tag value and
the type of kernel resources are saved 1n a first word of
the tag, and the user process identifier 1s saved 1n a
second word of the tag;
determinming whether the process 1s a first predefined pro-
cess or a second predefined process;
saving an 1dentifier to the tag to identily whether the pro-
cess 1s a first predefined process or a second predefined
process based upon the determination step;
determining whether the process has used more kernel
usage than a threshold; and

US 7,406,694 B2

11

if the process kernel usage 1s above a threshold, aborting

the process.

2. The method of claim 1 wherein flagging the tag further
comprises the steps of:

generating a tag value to identify the kernel resources allo-

cated to a kernel process; and,

saving a driver identification to the tag value.

3. The method of claim 2 wherein the tag value with the
driver 1dentification 1s saved 1n a first word of the tag.

4. The method of claim 1 wherein flagging the tag further
COmprises:

generating a tag value to identity kernel resources allocated

to a user process;

saving the tag value to a first word of the tag; and,

saving a user process identifier to identily the process to a

second word of the tag.

5. A computer storage medium having computer-execut-
able 1instructions to be executed by a processor for performing
a method for tracking kernel resource usage comprising:

generating a tag to charge a process allocated with kernel

resources wherein generating a tag further comprises:
determining whether a request for kernel resources is
passed from an intermediate function using a worker
thread:
finding at least one link between the worker thread and
the process; and,
identifying the process that originated the request
according to the found link between the worker thread
and the process;
determining whether the process 1s a kernel process;
determining whether the process 1s a user process;
flagging the tag with a kernel flag to indicate whether the
process has been determined to be a kernel process, the
flagging further comprising:

generating a tag value to 1dentily kernel resources allo-

cated to a user process;

saving a type of kernel resources allocated to the tag;

and,

10

15

20

25

30

35

12

saving a user process identifier to the tag to identity the
process;

flagging the tag with a user flag to indicate whether the

process has been determined to be a user process based
upon the determination step wherein the tag value and
the type of kernel resources are saved 1n a first word of
the tag, and the user process identifier 1s saved 1n a
second word of the tag;

determining whether the process 1s a first predefined pro-

cess or a second predefined process;
saving an 1dentifier to the tag to identily whether the pro-
cess 1s a first predefined process or a second predefined
process based upon the determination step;

determiming whether the process has used more kernel
usage than a threshold; and

11 the process kernel usage 1s above a threshold, aborting,

the process.

6. The computer storage medium of claim 5, wherein flag-
ging the tag further comprises the steps of:

generating a tag value to identily the kernel resources allo-

cated to a kernel process; and saving a driver 1dentifica-
tion to the tag value.

7. The computer storage medium of claim 6, wherein the
tag value with the driver identification 1s saved 1n a first word
of the tag.

8. The computer storage medium of claim 7, wherein tlag-
ging the tag further comprises of:

generating a tag value to identily kernel resources allocated

to a user process;

saving the tag value to a first word of the tag; and

saving a user process 1dentifier to identily the process to a

second word of the tag.

9. The computer storage medium of claim 5, further com-
prising:

saving a process 1dentifier to 1dentity the process allocated

with the kernel resources; and

saving a type ol kernel resources allocated to the process.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

