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SPECULATIVE INSTRUCTION LOAD
CONTROL

TECHNICAL FIELD OF THE INVENTION

The present invention 1s concerned with memory address-
ing and more particularly with the validation of memory

addresses for speculative load operations.

BACKGROUND OF THE INVENTION 10

FI1G. 1 1llustrates a conceptual block diagram of a PRIOR
ART a processor with a typical memory architecture. In par-
ticular, FIG. 1 shows a MMU (Memory Management Unit) 12
which provides the interface between memory and a proces- 15
sor 10. The memory 1s shown below the horizontal dotted line
XX as, for example, comprising a cache 14, a main memory
16 and secondary memory 18. Also, on the diagram there are
two vertical arrows 20, 22. The vertical arrow 22 points
upwards and indicates that as one moves up the memory 20
hierarchy, the access speeds of the respective memories
increases. That 1s, the CPU is able to access the cache unit 14
the quickest (i1.e. with the least delay). This 1s normally the
case because each of these memories 1s typically constructed
from different electronic components. For example, cache 35
memory 14 1s typically SRAM (Static Random Access
Memory) memory, main memory 16 1s typically DRAM (Dy-
namic) memory and secondary memory 18 1s usually pro-
vided by disc storage.

The purpose of such a memory 1s to optimise the execution 3¢
of aprogram to be run on the processor 10. The system will try
to organise 1tself, using for example well-known LRU (Least
Recently Used) replacement algorithms, so that the code and
data to be accessed most frequently 1s stored 1in the memory
areas having faster access speeds. The code or data used most 35
often will be stored 1n the cache unit, while the code or data to
be accessed least often (or perhaps not at all) 1s stored in
secondary memory 18.

At least one purpose of the MMU 12 1s to translate from
virtual addresses 1ssued by the processor 10 into physical 49
addresses which correspond to actual memory locations of
data or code stored in one of the physical memory areas.
Virtual addressing advantageously allows a logical contigu-
ous address space to be created for the processor, but each
logical or virtual memory allocation 1s actually represented 45
physically by particular physical memory addresses, which
need not be contiguous.

FI1G. 2 1llustrates a conceptual block diagram of a PRIOR
ART mapping of contiguous virtual addresses to non-con-
tiguous physical addresses within a general system employ- 50
ing virtual addressing. FIG. 2 shows a virtual memory 2
having a number of logical contiguous memory addresses
running from address 0 to the address 2~ where n is the
number of bits used. For example 1n a 32-bit virtual address-
ing system, the size of virtual memory can be 4 GB (i.e. 2°°). 55
The virtual memory locations need to point to actual physical
memory locations where physical data or code, to be
accessed, 1s stored. The dotted vertical line YY shows the
virtual addressing system on the left hand side 1n which each
virtual address corresponds to an actual physical memory 60
address shown on the right hand side of the dotted line YY.

FI1G. 2 shows for example, that the physical address space
comprises main memory 16 and secondary memory 18. FIG.

2 also shows that virtual addresses can be referred to 1n a
contiguous manner, whereas the actual physical locations to 65
be accessed are non-contiguous and can also be found in
different physical devices of the physical memory. Therefore,

2

in a virtual addressing system, the MMU 12 1s able to map
virtual addresses 1nto physical addresses and to maintain a
database for the storage of such mappings.

A technique often used 1n computing systems of this type 1s
“paging’”’, 1n which the physical memory 1s divided nto fixed
s1zed blocks known as pages. Although the virtual memory 1s
also divided 1nto pages which are mapped to corresponding
physical page addresses, 1t 1s the selection of the page size of
the physical address which 1s important to the designer of the
system as will be explained later.

FIG. 3 illustrates a PRIOR ART example of mapping a
virtual page address to a physical page address. FIG. 3 should
be referred to in combination with FIG. 1 1n that the processor
10 1ssues a virtual address 30 which 1s translated by the MMU
12 nto a physical address 32. For example, a 32-bit virtual
address 30 1s used which comprises a VPN (Virtual Page
Number) portion 34 and a PO (Page Offset) portion 36. The
PO 36 1s merely an index into the identified page for selecting
a particular memory location and in the example 1s shown as
taking bits 0 to 11 of the virtual address. The VPN takes up the
reminder of the 32-bit address by taking bits 12 to 31. The
MMU 12 has circuitry for translating the VPN portion 34 of
the virtual address into a PPN (Physical Page Number) por-
tion 39 of the physical address. Typically, the PO portion 38 of
the physical address 32 1s not translated and retains the same
value as the PO portion 36 of the virtual address 30.

The physical address 32 1s shown as having bits 0 to k
where k=31. The number of PPN’s (and hence the size of k)
will depend on the size of the selected page. For a small page
size of 4 Kb there are potentially 1024 PPN’s (or physical
page addresses to choose from) 1n a 4 GB system (1.e. where
n=32). In this case, k=31 since 20 bits are needed to represent
1024 PPN’s (i.e. 2°”=1024). However, if a large page size of
256 MB 1s chosen, then there are potentially only 16 PPN’s 1n
such a system. In this case, k=15 since only 4 bits are needed
to represent 16 PPN’s.

FIG. 4 1llustrates a PRIOR ART page mapping structure of
a TLB (Translation Look-aside Bufler) 40. The basic struc-
ture of TLB 40 15 used by the MMU 12 for mapping the VPN
34 1nto the PPN 39. It should be appreciated that 11 the page
s1ze of the physical memory 1s selected to be small, there will
be a larger number of PPN’s than if the page size were chosen
to be large. Therelore, the selection of a page size 1s a trade-
off depending on what 1s required from the system and the
designer’s requirements.

The translation look-aside buifer can be implemented
using a small area of associative memory within a processor.
A data structure for achieving this 1s a page-table as shown in
FIG. 4.

The translations can be too large to store efficiently on the
processor. Instead, 1t 1s preferable to store only a few elements
of the translation 1n the TLB so that the processor can access
the TLB quickly. It 1s desirable that the TLB 1s not too big and
does not have too many entries so that precious processing
overhead 1s not spent searching through a large number of
entries.

Speculative load operations are the same as normal load
operations, except speculative loads can be executed out of
sequence and will return the same data as normal loads except
that when a normal load would cause an exception to be
raised, a speculative load will instead return an invalid num-
ber.

The unpleasant property of speculative loads 1s that effec-
tively they can be considered as an mstruction that can gen-
crate a read from anywhere in the address space. This 1s
problematic, because either 1) there 1s no device or physical
memory mapped at that address resulting 1n a bus error or 11)
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a device or memory area that 1s mapped 1s read sensitive so
that the speculative load will destroy the device state. Either
of these scenarios 1s potentially disastrous.

One solution uses a valid bit 33 to overcome this problem,
in that when this bit was set speculative loads from this page
address always returned a zero. If a small page size (for
example 8 KB) 1s chosen then for a 64-entry TLB only 512
KB of physical memory will be mapped. Thus, potentially 1n
a 4 GB virtual address space there will be many areas of the
physical memory which are not mapped and therefore many
TLB misses. A TLB miss 1s termed a “page fault” and will be
serviced 1n the normal way.

Therefore, many modern systems prefer large page sizes in
that there are only a limited number of PPN’s to be mapped
and therefore the number of TLB entries 1s reduced along
with the processing overhead needed to access the corre-
sponding entry. However, this approach has serious disadvan-
tages for big page sizes both for use 1n a small real-time
operating system and a large multitasking operating system,
for example Linux.

In the case of a small real-time operating system, 1t 1s
highly desirable to avoid the overhead of having to service
page faults, which means one wants to use big pages. How-
ever, consider a 16 MB RAM, 11 the system uses a page size
larger than 16 MB, the system loses its fine grain control and
everything above 16 MB will be a hole, where speculative
loads could cause a problem because there 1s no RAM there to
read from. This disadvantage become even more apparent for
a RAM size, which 1s not a power of 2, for example 112 MB.

In the case of a large multitasking operating system such as
Linux, the problem 1s essentially the same. That 1s, the kernel
of the operating system 1n this case likes to see all of the RAM
without having to take page faults. So ideally all of RAM 1s
mapped at a high virtual address page with a single TLB entry
which 1s fixed (1.e. 1t will never be replaced). However, again
the same disadvantage 1s that for a large page size 1t will not
be able to achieve the finer grain control needed to identify
whether a speculative load 1s valid.

SUMMARY OF THE INVENTION

To address the above-discussed deficiencies of the prior art,
it 1s an aim of the present invention to provide a method and
system for validating speculative load operations while over-
coming the problems of large page sizes.

According to a first aspect of the present invention there 1s
provided a computer system having a memory map for
addressing a plurality of selectively available memory
mapped devices, and a memory access system for accessing,
said memory mapped devices, when available, the memory
access system having an input for receiving a memory
address, means for defining a plurality of valid memory
regions covering a memory space within which there exists at
least one of said available memory mapped devices and
means for checking whether the received memory address
lies 1n at least one of the defined memory regions, whereby 1f
it does, the address 1s validated for access, and it 1t does not,
an error 1s returned.

According to another aspect of the present invention there
1s provided a method for validating a memory address 1n a
computer system having a memory map for addressing a
plurality of selectively available memory mapped devices,
and a memory access system for accessing said memory
mapped devices, when available, the method comprising:
defining a plurality of valid memory regions covering a
memory space within which there exists at least one of said
available memory mapped devices; receiving said memory

10

15

20

25

30

35

40

45

50

55

60

65

4

address; and checking whether the recetved memory address
lies within at least one of the defined memory regions,
whereby 11 1t does, the address 1s validated for access, and if 1t
does not, an error 1s returned.

According to yet another aspect of the present invention
there 1s provided a computer system with a processor oper-
able to 1ssue memory access requests to a memory address
space divided into memory pages of a fixed page size for
addressing memory mapped devices at least one of which
occupies a memory space less than said page size, the com-
puter system comprising: filtering means for i1dentifying
which of said memory access requests correspond to a pre-
determined type of load operation; anda control unit compris-
ing: an iput for receiving said memory access requests;
means for defining a plurality of valid memory regions cov-
ering a memory space within which there exists at least one of
said available memory mapped devices; and means for check-
ing that each memory address of the recerved requests lies 1n
at least one of the defined memory regions, whereby 1f 1t does,
the address 1s validated for access, and 11 1t does not, an error
1s returned.

Betfore undertaking the DETAILED DESCRIPTION OF
THE INVENTION below, 1t may be advantageous to set forth
definitions of certain words and phrases used throughout this
patent document: the terms “include’ and “comprise,” as well
as derivatives thereof, mean inclusion without limitation; the
term “‘or,” 1s inclusive, meaning and/or; the phrase “selec-
tively available” 1s used in relation to devices that are memory
mapped but may suitably be physically present or absent; the
phrases “associated with” and *““associated therewith,” as well
as denivatives thereol, may mean to include, be included
within, interconnect with, contain, be contained within, con-
nect to or with, couple to or with, be communicable with,
cooperate with, interleave, juxtapose, be proximate to, be
bound to or with, have, have a property of, or the like; and the
terms “circuit” and “circuitry” may be used interchangeably
and mean any device or part thereod that controls at least one
operation, such a device may be implemented 1n hardware,
firmware or software, or some combination of at least two of
the same. Definitions for certain words and phrases are pro-
vided throughout this patent document, those of ordinary skall
in the art should understand that in many, i1 not most
instances, such definitions apply to prior, as well as future
uses of such defined words and phrases.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention and to
show how the same may be carried into effect, reference will
now be made by way of example to the accompanying draw-
ings, 1n which like reference numerals represent like parts,
and 1n which:

FIG. 1 illustrates a conceptual block diagram of a PRIOR
ART processor arrangement for interacting with memory;

FIG. 2 1llustrates a conceptual block diagram of a PRIOR
ART mapping of contiguous virtual addresses to non-con-
tiguous physical addresses;

FIG. 3 illustrates a PRIOR ART example of mapping a
virtual page address to a physical page address;

FIG. 4 1llustrates a PRIOR ART page mapping structure of
a translation look-aside bufter;

FIG. 5 illustrates the structure of the memory management
unit according to an embodiment of the present invention;

FIG. 6 illustrates a flow diagram for dealing with memory
access requests for mstructions according to an embodiment
of the present invention;
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FIG. 7 illustrates a flow diagram for dealing with memory
access requests for data according to an embodiment of the

present invention; and

FI1G. 8 1llustrates filtered speculative load addresses and a
speculative load control unit for validating the addresses
according to an embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

FIGS. 5 through 8, discussed below, and the various
embodiments used to describe the principles of the present
invention in this patent document are by way of illustration
only and should not be construed 1n any way to limit the scope
of the mvention. Those skilled 1n the art will understand that
the principles of the present invention may be implemented in
any suitably arranged computer system.

FI1G. 5 illustrates a MMU 12 according to an embodiment
of the present invention within the dotted lines. The MMU
comprises two TLB’s (Translation Look-aside Butfer), an
Instruction TLB 52 (ITLB) and a Unified TLB 356 (UTLB),
cach having a corresponding cache tag RAM 30, 54. The
I'TLB 52 1s a small (8-entry TLB) which performs instruction
address translations 1n parallel with 1ts associated instruction
cache tag RAM 50. The UTLB 56 1s a larger (64-entry) TLB
which performs data address translations, and when required

also performs mstruction address translations, when there 1s
an I'TLB miss. The UTLB 56 also has a corresponding data

cache tag RAM 54. The cache units 14 (FIG. 1) which will be
accessed by the MMU are virtually indexed but physically
tagged, and the cache tag RAM lookup happens 1n parallel

with the TLB lookup.

According to a preferred embodiment of the present inven-
tion the TLB will perform mapping from virtual to physical

addresses using one of the following page sizes 8 KB, 4 MB
and 256 MB.

In order to operate the MMU 12, various control registers

are defined and reserved in memory. A PSW (Processor Sta-
tus Word) register defines a TLB_ENABLE bit for enabling

the address translation mechanism, 1.e. when TLB_ ENABLE
1s set to 1. Some of the other registers are broadly defined 1n

Table 1 below.

TABL

(L.

1

Control Registers

Access

Name Offset  (U/S) Comment

TLB__INDEX D000 RO/RW Index of the TLB entry
pointed to by
TLB__ENTRYHI and TLB
ENTRYLO.

TLB_ENTRYHI DOOS RO/RW Upper 32 bits of the current
TLB entry.

TLB_ENTRYLO DO10 RO/RW Lower 32 bits of the current
TLB entry.

TLB__PTBASE  dO1% RO/RW Base address of current page
table.

TLB__ASID d020 RO/RW Contains 8-bit identifier for
the current
Process.

TLB_EXCAUSE dO02¥ RO/RW Cause of the TLB related
exception.

TLB_CONTROL d030 RO/RW Control bits for TLB.

TLB__REPLACE dO3%8 RO/RW Replacement pointer.

SCU__ BASEO d040 RO/RW Base address of speculative
load region.

SCU__ LIMITO d048 RO/RW Limit address of speculative

load region.
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TABLE 1-continued

Control Registers

Access

Name Offset  (U/S) Comment

SCU__BASE1 d050 RO/RW Base address of speculative
load region.

SCU__LIMIT1 d05% RO/RW Limit address of speculative
load region.

SCU__ BASE?2 d060 RO/RW Base address of speculative
load region.

SCU__LIMIT2 d068 RO/RW Limit address of speculative
load region.

SCU__BASE3 TBD RO/RW Base address of speculative
load region.

SCU__ LIMIT3 TBD RO/RW Limuit address of speculative

load region.

The MMU 12 raises an exception to the processor when
some sort of fault or violation 1s encountered. The reason for
the exception 1s updated 1n the TLB_CAUSE control register
of the MMU. That 1s, the possible exceptions that can be
raised by the MMU are:

NO_MAPPING—The UTLB 56 does not have a mapping

for the virtual address. That 1s, the requested page 1s not
in either the ITLB 52 or the UTLB 356.

PROT_VIOLATION—The permissions for access to this

page have been violated.

WRITE_TO_CLEAN—A page that was clean 1s being

written to.

MULTI_MAPPING—There were multiple hits in the
UTLB 56. The software managing the TLB should

ensure that this does not happen.
FIG. 6 1llustrates a flow diagram describing the procedure
for instruction access requests according to an embodiment of
the present invention. At step S60 an instruct access request 1s

received from the processor 10 by the MMU 12. At step S62,

a check 1s done on the PSW register to see whether the
translation look-aside butier mechanisms have been enabled.
If not, then the virtual address becomes the physical address
at step S64 and the physical address 1n the cache 14 is then
accessed at step S82. If the check at step S62 15 that the TLB’s
are enabled then at step S66 the I'TLB 52 1s first checked for
a hit (1.e. 1f there exists an virtual-to-physical address map-
ping for the requested instruction). If there 1s no hit at the
ITLB 52, then at step S68 the UTLB 56 1s checked for a hat.
If there 1s also not a hit 1n the UTLB, then at step S78 a
NO_MAPPING exception 1s raised. If either, the ITLB or
UTLB are hit then a check at step S70 1s performed to see
whether there are multiple hits. If yes, a MULTI_MAPPING
exception 1s raised at step S80. If no, then a further check 1s
performed at step S72 as to whether there 1s a protection
violation. If yes, a PROT_VIOLATION exception 1s raised at
step S76. If no, the virtual address 1s translated into the cor-
responding physical address (obtained from the mapping in
either the I'TLB or the UTLB) at step S74 and finally the
relevant physical address containing the requested instruction
1s accessed 1n the cache unit 14 at step S82.

In a preferred embodiment of the present invention,
instruction accesses are always cached. This can be seen 1n
that the tflow diagram always ends 1n the final step S82 of
retrieving the cached instruction access requests. Also,
istruction access requests take priority over data access

requests to the UTLB 56.

FIG. 7 1llustrates a flow diagram describing the procedure
for data accesses which includes reading and writing data
according to an embodiment of the present invention. There 1s
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a portion of the total virtual address space which 1s reserved
for the control registers at step S92. For all other virtual
addresses, the data access requests are checked at step S94 to
see whether the translation circuitry in the MMU 1s enabled.
If no, then physical addressing 1s used and the relevant physi-
cal address 1s accessed. It should be noted that step S118
describes accessing an uncached address and therefore the
MMU will access either the main memory 16 or the second-
ary memory 18.

If the translation circuitry 1s enabled then the UTLB 56 1s
checked for a hit (1.e. whether there 1s a virtual-to-physical
address mapping for the requested data). It should be noted
that the ITLB does not need to be checked in the case of data
access requests, since the ITLB only contains translations of
instruction addresses. As 1 FIG. 6, the same exceptions can
be raised, 1.e. a NO_MAPPING exception at step S102, a
MULTI_MAPPING exception at step S104 or a PROT_VIO-
LATION exception at step S108. If no exceptions are raised
then at step S110 a check 1s done to see what type of data
access 1s requested, 1.e. etther a read or write request. I 1t 1s a
read data access request then go directly to the check at S116
to see whether the address 1s cached. On the other hand for a
write data access request, a check 1s performed at step S112 as
to whether the page 1s clean. If yes, a WRITE_TO_CLEAN
exception 1s raised at step S114. If no, then the check at step
S116 1s performed to see whether the address 1s cached. If the
data access request 1s not cached, then the MMU 12 will need
to access either the main memory 16 or the secondary
memory 18. If the access request 1s cached and there are no
exceptions then at step S120 the virtual address of the data
access request 1s translated into the corresponding physical
address (from the UTLB). Finally, at step S122 the cache unit
14 1s accessed at the relevant physical address containing the
requested data.

Speculative Loads

For a normal load operation, for example consider the line
of code:

LOADx2020,

which 1nstructs that data stored at the physical address that
corresponds to the virtual address 2020 should be loaded and
assigned to the variable x. For example, the MMU will
attempt to translate the virtual address 2020 into a physical

address 8100.

If the address to be loaded 1s mnvalid, for example a
NO_MAPPING exception 1s raised in the MMU because the
relevant TLB does not contain a mapping of this physical
address, then any subsequent code 1s killed and the processor
will not continue executing the code until the exception has
been removed and the physical address to be loaded becomes
valid.

A no mapping exception could be raised because the page
s1ze 15 too small and the TLB did not have the capacity to store
that particular mapping.

However, a speculative load operation offers an improve-
ment 1n that speculative loads are defined as returning the
same data as normal loads except that when a normal load
would cause an exception to be raised, a speculative load will
instead return an invalid number. According to a preferred
embodiment of the present invention, when an address to be
loaded 1s mvalid the number zero 1s returned indicating an
exception has been raised. Moreover, for a speculative load
although the condition that caused the exception 1s not
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executed, the code continues thereby increasing the overall
eificiency of the system. This 1s illustrated by the line of code:

LOAD.Sx2020,

in which although the address may be invalid, the number
zero 1s returned to the compiler or software programmer to
recognize this but the subsequent code 1s continued.

Consider the following simple piece of code which might
exist 1n a pipelined processing environment:

[fa*b>3
X =1
else

X=Y

At the compilation level, the pseudo-code might look
something like:

t=a*b
cond =t>3
if cond is TRUE

STOREx=1
else

LOAD y

NOP

NOP

STORE X =y

The “IF/ELSE” statement 1n the example above 1s common
wherein the code sequence will branch depending on whether
a particular condition 1s met (1 RUE) or not met (FALSE). If
the condition 1s TRUE (1.e. the result of the multiplication of
the two numbers represented by vaniables a and b) and the
result 1s greater than 3 then the value 1 is stored mto the
address represented by variable x. However, 11 the condition 1s
FALSE then the code branches to the ELSE statement and the
value stored at the address of the variable y 1s stored into the
address represented by the varniable x. It 1s necessary to {irst
LOAD the value represented in the v variable address before
storing this value into the x variable. Even if there exists in the
TLB a valid mapping for the y variable, for the normal load
operation there 1s a period of latency between the 1ssuance of
the LOAD operation 1itself and actually recerving the result
(completion) of the LOAD operation. This 1s represented by
the two NOP (No operation) mstructions described above.

The efficiency of executing this code sequence can be
improved 1n that the LOAD operation can be replaced with a
speculative load operation LOAD.S wherein the y variable to
be loaded 1s pretfetched and executed out of order as shown
below.

LOAD.S y
t=a*b
cond=t>3
x=cond?1:y
STORE X=Y

Owing to the speculative nature of the load operation
LOAD.S 1t can be executed out of order so that the potential
storage operation STORE x=y i1s not delayed, because the
value represented by y has already been speculatively loaded
a few cycles earlier. The penultimate line 1s just shorthand for
expressing that 11 the condition 1s TRUE (1.e. that the product



US 7,406,581 B2

9

of a and b 1s greater than 3) then x=1 otherwise x=y. The
IF/ELSE branch 1s removed and the code does not need to
branch since these values are at hand for the compiler (1.e. the
value at the address represented the variable y has been
loaded).

As described before, the known methods for validating
speculative loads are disadvantageous when a large page size
1s selected 1n that the extra address space, covered by the large
page size, over and above the RAM or device to be mapped 1s
unknown to the system and potentially problematic for specu-
lative loads.

Therefore, a speculative load control unit SCU 202 accord-
ing to a preferred embodiment of the present invention 1s able
to solve these problems by performing a check to see if the
requested speculative load address 1s valid. It the speculative
load address 1s valid then the requested memory address to be
loaded 1s fetched from memory 14,16. Alternatively, 11 the
speculative address 1s not valid then, as 1s the case with
invalidated speculative loads describes above, a number 1s
returned (for example zero) indicating that the address 1s not
valid.

The advantage of the SCU 1s that one can map a large page
(for example 256 MB) on top of a physical RAM or device
and the extra address space 1s filtered ofl by the SCU, which
1s not seen by the memory system.

FIG. 8 1llustrates block 200 that represents functionality for
prefetching instructions or data memory access requests.
From a conceptual viewpoint, the block 200 1s downstream of
the functionality of the TLB’s of the MMU and 1s also down-
stream of the cache 14. That 1s, block 200 already assumes
that virtual memory requests 1ssued by the processor 10 have
been translated into physical addresses by the MMU 12 so
that either the ITLB 52 or UTLB 56 of the MMU can be used
to obtain the physical memory requests corresponding to
instructions or data respectively as shown in FIGS. 6 and 7
respectively. In an alternative embodiment, the processor
does not use virtual addressing, in which case physical
memory address requests are 1ssued.

The physical memory addresses are then compared by the
cache umt 14 to see whether they reside in the cache, 1.e.
cache hit. If they do reside 1n the cache unit, then there 1s no
need to mmvoke the speculative control unit 202 since the
memory addresses 1n the cache 14 are assumed to be valid as
will be explained below.

As mentioned, the unfortunate property of speculative
loads 1s that the compiler or programmer often has little or no
control as to which memory addresses these type of mstruc-
tions generate. That 1s, the memory address of speculative
loads are often random and therefore 1t 1s necessary to have a
mechanism, which prevents speculative loads from accessing,
sensitive memory arecas. Examples of such sensitive areas
may be peripheral devices that should not be accessed and/or
areas which are read sensitive so that any load from such an
arca would change 1ts state. The speculative load control unit
1s able to overcome these problems by checking the memory
addresses of speculative loads before they access particular
memory locations.

Also, these sensitive areas ol memory are uncacheable
memory addresses in that they should not and cannot be
cached 1n the cache unit 14. Therefore, a distinction should be
drawn between memory addresses which are uncacheable
and cache misses. Cache misses are for memory addresses
which are cacheable, but are not currently stored 1n the cache
14. That 1s, the cache has a finite number of entries and
typically stores the most recent memory addresses.

FIG. 8 illustrates that the block 200 then prefetches the
cache miss addresses and sends them respectively via the
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branches 206qa to the SCU 202 and 2065 to memory 16, 18.
The cache miss addresses may either be addresses that are
cacheable, but that are not currently stored in the cache 14 or
addresses that are uncacheable. Although the lines 2064 and
2065 are shown to branch 1n parallel in FIG. 8, it should be
appreciated that whereas preparatory steps can be taken to
load the requested address from memory 16, 18; the actual
memory address 1s not loaded until 1t has been validated by
the SCU 202. If the address 1s found to be 1nvalid by the SCU
202, then the requested access to memory 16, 18 1s aborted

along the horizontal line 208 and also a zero 1s returned along
the vertical line 208 to block 200.

The SCU 202 recerves the cache miss addresses along lines
2064 and a prefetch bit along line 204 1s set 1f the requested
memory address corresponds to a speculative load. The SCU
has a plurality of defined memory regions and checks whether
the memory addresses lie within at least one of the valid
memory regions. In this manner, the SCU prevents the system
from searching for memory requests to devices that are not
mapped. IT the requested memory addresses does not lie
within one of the defined regions that then memory address 1s
invalid and the abort signals along lines 208 are 1ssued.

In summary, there are various scenarios that may exist:
1. A Speculative Load to a Cached Address

This occurs for memory address currently stored in the
cache, and hence which are cacheable. If the requested
address 1s 1n the cache 14, then the corresponding data 1s
returned immediately. This 1s the critical path. The SCU 1snot
consulted 1n this case, because the fact that the address 1s 1n
the cache implies that 1t has already passed the SCU test . That
1s, when the address was first brought into the cache, it would
have been checked by the SCU 1f 1t was accessed specula-
tively for the first time, or alternatively 1t was accessed with a
normal load the first time (1n which case the SCU 1s 1gnored).

2. A Speculative Load to a Non-Cached Address

This may occur when either the memory address of a
speculative load 1s uncacheable or 1t it 1s cacheable but not
currently stored in the cache. If the requested address 1s not 1n
the cache, then the SCU 1s consulted for a speculative load. IT
the SCU validates the memory address to speculate from.,
then the address 1s sent out to the bus, and the machine waits
for the data to come back from memory. This 1s not on the
critical path, because the time period for retrieving the data 1s
much larger in terms of processor cycles. Alternatively, 11 the
SCU {inds that the address 1s not valid for speculation then a
zero 1s returned. It should be noted that the zero just indicates
that the speculative load 1s not valid, but the cache 1s not filled
with a zero.

3. A Normal Load to a Cached Address.

Normal loads are filtered out by the block 200 and com-
pletely 1gnore the SCU.

4. A Normal Load to a Non-Cached Address.
These always 1gnore the SCU.

According to a preferred embodiment of the present mven-
tion, the SCU 202 supports four memory regions which are
cach defined 1n physical address space by registers containing
a base and a limit physical address. It should be appreciated
that the system designer could for example decide to have
more or less memory regions depending on the system, for
example which peripheral devices should be accessed. For

example, each region 1s configured using the control registers
SCU BASEx and SCU LIMITx shown below intables 2 and

3.
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TABLE 2

SCU__BASE, bit fields

Access
Name Bit(s) (U/S) RESET Comment
ZERO [12:0] RO/RO 0x0 These bits are always
ZEro
BASE [31:13] RO/RO Ox1 Bits [31:13] of the
base of this region
TABLE 3
SCU__LIMIT, bit fields
Access
Name Bit(s) (U/S) RESET Comment
ZERO [12:0] RO/RO 0x0 These bits are always
ZETro
BASE [31:13] RO/RO 0x0 Bits [31:12] of the

limit of this region

A region may be disabled by setting the base to be larger
than the limit. According to one embodiment of the present
invention, the regions are not prioritised and so overlapping
regions are illegal and will have undefined results.

During compilation the code sequence to be executed iden-
tifies all speculative load operations, which are then
prefetched and sent to the SCU unit as explained. In more
detail, the memory addresses are sent along line 2064 along
with a prefetch bit along lines 204 to the SCU 202.

The speculative load addresses received by the SCU 202
are then each compared to the addresses stored 1n the relevant
base and limit control registers, which define the valid
memory regions. In this way, the SCU 1s able to offer finer
grain control for large page sizes and validate the addresses of
the speculative loads.

According to a preferred embodiment of the present imnven-
tion the following prefetches to retrieve data from memory
should be discarded:

A prefetch to an uncached page.

A prefetch to a page which does not have read permission.
A prefetch that misses the TLB when the PFT_NO_MAP-

PING_EN bit 1s not set in the processor status word
PSW. That 1s, when this bit 1s not set, this indicates that
prefetches which would cause a NO-MAPPING excep-
tion are discarded. On the other hand, when this bit 1s set
this indicates that prefetches can cause NO_MAPPING
exceptions.

A prefetch to a memory address of a speculative load that
misses the cache and does not fall into one of the valid
regions 1n the SCU 202.

According to an embodiment of the present invention,

speculative loads are handled in the following way:

For speculative loads that would cause PROT_VIOLA-
TION exceptions, return “0” 1if the SPE-
CLOAD_TRAP _EN bit in the PSW 1s clear. If however,
this bit 1s set then speculative loads will cause PROT _
VIOLATION exceptions.

Speculative loads that miss the TLB’s will cause a NO, ,
MAPPING exception if the SPECLOAD_O_MAPPIN-
(G_EN bit 1s set in the PSW. If however, this bit 1s clear
then speculative loads that miss the TLB’s will return
“0” without causing an exception.

NO_MAPPING exceptions are handled differently for

speculative loads than for normal loads. If a speculative
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load 1s to an address for which there 1s no mapping the
handler creates a temporary (4 k) page with NA/NA
permissions. That 1s, the created page cannot be read
from or written to. The prefetched instructions bundle 1s
then re-1ssued and a “zero” 1s returned. FI1G. 8 1llustrates
this through the “speculative abort” signal, which 1ndi-
cates that the prefetched speculative load and 1ts associ-
ated 1nstruction bundle will need to be re-1ssued at a later
stage. According to an embodiment of the present appli-
cation, 1t 1s necessary to ensure that any temporary page
entries are removed from the UTLB when new map-
pings are created.

Speculative loads that miss the cache are validated by the
SCU 202 and 1f 1t does not fall into one of the memory
regions defined by the SCU then a “0” 1s returned.

It should be appreciated that although 1t was described 1n a
particular embodiment that one of the purposes of the TLB’s
within the MMU 1s to translate from a virtual address to a
physical address, the present invention does not need to per-
form such a translation 11 the computer system uses physical
addressing only.

It should be appreciated that although the term “circuitry”
was used throughout the description, this term 1s intended to
cover soltware. For example, the actual translation circuitry
in the MMU could be implemented purely on a software level.

It should be appreciated that FIG. 8 was only a conceptual
view of the functionality for the SCU 202, which could for
example be located within the MMU itself 12 or elsewhere 1n
the system.

It should be appreciated that devices are handled 1n the
same way as RAM. So 1n a small real-time operating system
the devices will be mapped with a large page, and 1n a large
operating system they will more likely be faulted 1n, although
they could be mapped with a large page.

Also, according to a preferred embodiment the number of
regions defined 1n the SCU should be greater than or equal to
the regions of RAM to be mapped. In an alternative embodi-
ment, the compiler can be 1nstructed not to use speculative
loads for the instructions accessing the RAM.

It should also be understood that the UTLB and ITLB of the
described embodiments are non-limiting and the present
invention could be applied equally well to an MMU having a
dedicated DTLB (Data Translation Look-aside Buiffer) as
well. Also, 1t should be appreciated that the register configu-
ration 1s flexible. It 1s intended that the present invention
encompass such changes and modifications as fall within the
scope of the appended claims.

What 1s claimed 1s:

1. A computer system having:

a physical processor operable to issue memory access

requests to a memory address space;

a memory map for addressing a plurality of selectively
available memory mapped devices, using a page for each
memory map device;

translation circuitry for translating wvirtual memory
addresses 1into physical memory addresses, wherein the
memory map 1s divided into virtual pages mapped to
corresponding physical addresses, the pages having a
page size greater than the memory space occupied by at
least one of said memory mapped devices; and

a memory access system for accessing said memory
mapped devices when available, the memory access sys-
tem having:

an input for receiving a physical memory address from said
physical processor;

means for defiming a plurality of valid memory regions
covering a memory space within which there exists at
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least one of said available memory mapped devices;
means for checking whether the received physical
memory address lies 1 at least one of the defined
memory regions, whereby if 1t does, the address 1s vali-
dated for access, and 1t 1t does not, an error 1s returned;

a prefetching unit for identitying received physical
memory addresses corresponding to speculative load
operations directed to the at least one memory mapped
device occupying memory space smaller than the page
size; and

means for checking whether the received physical memory
address of one of said speculative load operations lies 1n
at least one of the defined memory regions, whereby 11 1t
does, the address 1s validated for access, and 1f 1t does
not, an error 1s returned.

2. The computer system of claim 1, wherein the virtual

pages are of a fixed page size.

3. The computer system of claim 1, wherein 1f the received
memory address does not lie within one of the defined
memory regions then a zero 1s returned and the memory
access to that memory address 1s aborted.

4. The computer system of claim 1, wherein each valid
memory region 1s defined as a range of physical memory
addresses between base and limit memory addresses.

5. The computer system of claim 1, wherein four valid
memory regions are defined.

6. The computer system of claim 1, comprising a {irst
translation look-aside bulfer for translating memory
addresses corresponding to mstructions, and a second trans-
lation look-aside buffer for translating memory addresses
corresponding to both mnstructions and data.

7. A method for validating a memory address 1n a computer
system having;

a memory map for addressing a plurality of selectively
available memory mapped devices using a page for each
memory map device;

translation circuitry for ftranslating virtual memory
addresses 1nto physical memory addresses, wherein the
memory map 1s divided into virtual pages mapped to
corresponding physical addresses, said page size being
greater than the memory space occupied by at least one
of said memory mapped devices; and

a memory access system for accessing said memory
mapped devices when available, the method compris-
ng:

defining a plurality of valid memory regions covering a
memory space within which there exists at least one of
said available memory mapped devices;

receiving a physical memory address;

determining whether said physical memory address corre-
sponds to a speculative load operation directed to the at
least one memory mapped device occupying memory
space smaller than the page size; and

checking whether the received physical memory address of
one of said speculative load operations lies within at
least one of the defined memory regions, whereby 11 1t
does, the address 1s validated for access, and 1t 1t does

not, an error 1s returned.

8. A computer system comprising: a physical processor
operable to 1ssue memory access requests to a memory
address space;

translation circuitry for ftranslating wvirtual memory
addresses mto physical memory addresses, wherein a
memory map 1s divided into virtual pages mapped to
corresponding physical addresses, using a page for each
memory mapped device, the pages having a page size
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greater than the memory space occupied by at least one
of said memory mapped devices; and

filtering means for i1dentifying which of said memory
access requests correspond to a speculative load opera-
tion directed to the at least one memory mapped device
occupying memory space smaller than the page size; and

a control unit comprising:

an mput for receving said memory access requests from
said physical processor;

means for defiming a plurality of valid memory regions
covering a memory space within which there exists at
least one of said available memory mapped devices; and

means for checking that each physical memory address of
the received requests lies 1n at least one of the defined
memory regions, whereby if 1t does, the address 1s vali-
dated for access, and 1f 1t does not, an error 1s returned.

9. A computer system having a memory map useable to

address a plurality of selectively available memory mapped
devices, using a page for each memory map device;

a physical processor operable to issue memory access
requests to a memory address space;

translation circuitry for translating wvirtual memory
addresses 1into physical memory addresses, wherein the
memory map 1s divided into a virtual pages mapped to
corresponding physical addresses, the pages having a
page size greater than the memory space occupied by at
least one of said memory mapped devices; and

a memory access system for accessing said memory
mapped devices when available, the memory access sys-
tem having:

an input for receiving a physical memory address from said
physical processor;

circuitry adapted to define a plurality of valid memory
regions covering a memory space within which there
exists at least one of said available memory mapped
devices:

circuitry adapted to check whether the recerved physical
memory address of a speculative load operation directed
to the at least one memory mapped device occupying
memory space smaller than the page size lies 1n at least
one of the defined memory regions, whereby if it does,
the address 1s validated for access, and 11 1t does not, an
error 1s returned; and

circuitry adapted to indicate to the checking circuitry
whether the received physical memory address 1s for
said speculative load operation.

10. A computer system having:

a physical processor operable to issue memory access
requests to a memory address space;

a memory map useable to address a plurality of selectively
available memory mapped devices, using a page for each
memory map device;

translation circuitry for translating virtual memory
addresses into physical memory addresses, wherein the
memory map 1s divided into a virtual pages mapped to
corresponding physical addresses, the pages having a
page size greater than the memory space occupied by at
least one of said memory mapped devices; and

a memory access system for accessing said memory
mapped devices when available, the memory access sys-
tem having:

an input for receiving a physical memory address from said
physical processor;

circuitry adapted to define a plurality of valid memory
regions covering a memory space within which there
exists at least one of said available memory mapped
devices:
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circuitry adapted to check whether the received physical
memory address of a speculative load operation directed
to the at least one memory mapped device occupying
memory space smaller than the page size lies 1n at least
one of the defined memory regions, whereby 11 1t does,
the address 1s validated for access, and 11 it does not, an
error 1s returned; and

circuitry adapted to ensure that the checking circuitry only
checks the physical memory address if 1t 1s for said
speculative load operation.

11. A computer system having a memory map useable to

address a plurality of selectively available memory mapped
devices;

a physical processor operable to 1ssue memory access
requests to a memory address space;

translation circuitry for ftranslating wvirtual memory
addresses 1into physical memory addresses, wherein the
memory map 1s divided into a virtual pages mapped to
corresponding physical addresses using a page for each
memory map device, the pages having a page size
greater than the memory space occupied by at least one
of said memory mapped devices; and

a memory access system lor accessing said memory
mapped devices when available, the memory access sys-
tem having:

an input for recerving a physical memory address from said
physical processor;

a cache configured to hold data entries;

circuitry adapted to identity a cache miss when the
received physical memory address does not correspond
to any of the data entries 1n the cache;

circuitry adapted to define a plurality of valid memory
regions covering a memory space within which there
exists at least one of said available memory mapped
devices;

a prefetching unit for identifying recerved physical
memory addresses corresponding to speculative load
operations directed to the at least one memory mapped
device occupying memory space smaller than the page
s1ze; and

circuitry adapted to check whether the receirved physical
memory address of one of said speculative load opera-
tions lies 1n at least one of the defined memory regions
for a cache miss, whereby 11 1t does, the address 1s
validated for access, and 1f it does not, an error 1s
returned.

12. A computer system having a memory map useable to

address a plurality of selectively available memory mapped
devices;

a physical processor operable to 1ssue memory access
requests to a memory address space;

translation circuitry for ftranslating wvirtual memory
addresses 1nto physical memory addresses, wherein the
memory map 1s divided 1nto a virtual pages mapped to
corresponding physical addresses, using a page for each
memory map device, the pages having a page size
greater than the memory space occupied by at least one
of said memory mapped devices; and
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a memory access system for accessing said memory
mapped devices, when available, the memory access
system having:

an mput for recerving a physical memory address from said
physical processor;

circuitry adapted to define a plurality of valid memory
regions covering a memory space within which there
exists at least one of said available memory mapped
devices:

a prefetching umit for identifying received physical
memory addresses corresponding to speculative load
operations directed to the at least one memory mapped
device occupying memory space smaller than the page
s1ze; and

circuitry adapted to check whether the received physical
memory address of one of said speculative load opera-
tions lies 1n at least one of the defined memory regions,
whereby 11 1t does, the address 1s validated for access,
and 11 1t does not, the memory address 1s 1nvalid and the
memory access 1s aborted.

13. A computer system having a memory map useable to

address a plurality of selectively available memory mapped
devices;

a physical processor operable to issue memory access
requests to a memory address space;

translation circuitry for translating wvirtual memory
addresses into physical memory addresses, wherein the
memory map 1s divided into a virtual pages mapped to
corresponding physical addresses, using a page for each
memory map device, the pages having a page size
greater than the memory space occupied by at least one
of said memory mapped devices; and

a memory access system for accessing said memory
mapped devices when available, the memory access sys-
tem having:

an input for receiving a physical memory address from said
physical processor;

a cache configured to hold data entries;

circuitry adapted to i1dentify a cache miss when the
received physical memory address does not correspond
to any of the data entries in the cache;

circuitry adapted to define a plurality of valid physical
memory regions covering a memory space within which
there exists at least one of said available memory
mapped devices;

circuitry adapted to check whether the recerved physical
memory address of a speculative load operation lies 1n at
least one of the defined memory regions for a cache
miss, whereby if 1t does, the address 1s validated for
access, and 11 1t does not, the memory address 1s mnvalid
and the memory access 1s aborted;

circuitry adapted to indicate to the checking circuitry
whether the received physical memory address 1s for
said speculative load operation directed to the at least
one memory mapped device occupying memory space
smaller than the page size; and

circuitry adapted to ensure that the checking circuitry only
checks the physical memory address if i1t 1s for said
speculative load operation.
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