US007404006B1
a2 United States Patent (10) Patent No.: US 7.404,006 B1
Slaughter et al. 45) Date of Patent: Jul. 22, 2008
(54) PUBLISHING A NETWORK ADDRESS IN A 5,761,421 A 6/1998 van Hoff et al.
COMPUTER NETWORK 5,764,982 A 6/1998 Madduri
5,790,553 A 8/1998 Deaton, Jr. et al.
(75) Inventors: Gregory L. Slaughter, Palo Alto, CA gﬂgggﬂgi i l?? iggg IBSfeld ettalf
. ,. : raun et al.
E:UASﬁJTSl;(’maS £ Saulpaugh, San Jose, 5918,017 A 6/1999 Attanasio et al.
5,920,566 A 7/1999 Hendel et al.
. _ _ 5,928,326 A 7/1999 Boudou et al.
(73) Assignee: Symaqtec Operating Corporation, 5.033.422 A /1999 Kusano of al
Cupertino, CA (US) 5,987,521 A * 11/1999 Arrowood etal. 709/239
6,012,096 A 1/2000 Link et al.
(*) Notice: Subject to any disclaimer, the term of this 6,016,478 A 1/2000 Zhang et al.
patent 1s extended or adjusted under 35 6,041,359 A * 3/2000 Birdwellcceeveene..... 709/238
U.S.C. 154(b) by 831 days.
(b) by A (Continued)
(21) Appl. No.: 10/403,564 OTHER PUBLICATIONS
(22) Filed: Mar. 31, 2003 U.S. Appl. No. 10/403,261, filed Mar. 31, 2003.
Related U.S. Application Data (Continued)
(63) Continuation-in-part of application No. 10/326,683, Primary Examiner—John Follansbee
fled on Dec. 20. 2007 Assistant Examiner—Saket K Daftuar
j (74) Attorney, Agent, or Firm—Moser IP Law Group
(51) Int.CL
GO6F 15/173 (2006.01) (57) ABSTRACT
(52) US. C710 9/204709/205 ;ggggg’ ;83;3(1)%" ;83@?2’ A system and method for publishing a network address on a
709/227f 709/228f 709/239f 709/245f 709/246f computer network. A first node 1 a plurality of nodes may
f f f f f initiate a publish operation to publish a first instance of the
370/232; 370/254; 33770(;/235268’_33770532398’_337705’ 49026 network address. Initiating the publish operation may com-
_ _ _ ’ ’ prise the first node sending a publish message to one or more
(58) Field of ‘Cla‘smﬁcatlon Search = 709/238 other nodes in the plurality of nodes. The publish message
See application file for complete search history. may be propagated from at least a subset of the nodes that
(56) References Cited receive. the publish message from th§ ﬁrgt node to still 0’[;161'
nodes 1n the plurality of nodes, which in turn may further

U.S. PATENT DOCUMENTS

propagate the publish message. Fach node that recerves the

4,354,229 A 10/1982
5,581,543 A 12/1996
5,600,669 A 2/1997
5,613,012 A * 3/1997

5,684961 A * 11/1997

Davis et al.

Natarajan
Bertin et al.

Hofttman et al.
Cidon et al.

Node 110A

............ 382/115
................ 709/243

Peer-to-peer
Network

Node 110E

publish message from another node may create routing infor-
mation useable to route messages to the first instance of the
network address on the first node.

20 Claims, 80 Drawing Sheets

Node 110D

US 7,404,006 B1

Page 2
U.S. PATENT DOCUMENTS 2004/0064511 Al* 4/2004 Abdel-Aziz et al. 709/206
2004/0064512 Al 4/2004 Arora et al.
6,049,823 A 4/2000 Hwang 2004/0064568 Al* 4/2004 Aroraetal. 709/228
6,088,336 A 7/2000 Tosey 2004/0064693 Al* 4/2004 Pablaetal. 713/168
6,091,724 A 7/2000 Chandraetal. 370/390 2004/0088347 Al* 5/2004 Yeageretal. 709/202
6,105,065 A 82000 Raoetal. 709/224 2004/0088348 Al* 5/2004 Yeageretal. 709/202
6,144,992 A~ 11/2000 Turpin et al. 2004/0088369 Al* 5/2004 Yeageretal. 709/217
6,148,383 A 11/2000 Micka et al. 2004/0088646 Al 5/2004 Yeager et al.
6,167,432 A 12/2000 Jang 2004/0098447 Al 5/2004 Verbeke et al.
6,173,374 B1* 1/2001 Heil etal. 711/148 27004/0122903 Al 6/2004 Saulpaugh et al.
6,185,618 B~ 2/2001 Brabson 2004/0133640 Al* 7/2004 Yeageretal. 709/204
6,189,079 B1* 2/2001 Mickaetal. 711/162 7004/0148326 Al 7/2004 Nadgir et al.
6,219,710 B1 ~ 4/2001 Gray et al. 2004/0162871 A1 8/2004 Pabla et al.
6,272,380 B1* 82001 McLaughlinetal. 700/82 2004/0172399 Al* 9/2004 Saffreoovvveveeeeeei..l 707/100
6,275,888 B1 8/2001 Portertield 2004/0218528 Al* 11/2004 Shipmancc........... 370/232
6,304,980 Bl 10/2001 Beardsley et al. 2004/0246911 Al1* 12/2004 Bonsmaetal. 370/254
6,314,491 Bl 1172001 Freerksen et al. 2004/0259531 Al* 12/2004 Wood etal. 455/412.1
6,317,438 B1 11/2001 Trebes, Jr. 2005/0044144 Al* 2/2005 Malik et al. ...ecevn........ 709/205
6,343,067 Bl /2002 Drottar et al. 2005/0180356 Al* 8/2005 Gilliesetal. 370/329
6,415,280 B1 7/2002 Farber et al.
6,434,638 Bl 82002 Deshpande OTHER PURI ICATIONS
6,553,031 B1* 4/2003 Nakamuraetal. 370/392
6,578,085 B1* 6/2003 Khalil et al. 709/241 U.S. Appl. No. 10/403,557, filed Mar. 31, 2003.
6,584,075 B1* 6/2003 Guptaetal. 370/256 U.S. Appl. No. 10/403,562, filed Mar. 31, 2003.
6,591,306 B1* 7/2003 Redlichccooveevnnnnn... 709/245 U.S. Appl. No. 10/403,919, filed Mar. 31, 2003.
6,611,872 B1* 82003 McCanne 709/238 A. Rowstron and P. Druschel. “Pastry: Scalable, distributed object
6,631,449 B1 10/2003 Borrill location and routing for large-scale peer-to-peer systems.” In Proc.
6,636,886 B1* 10/2003 Katiyaretal. 709/203 IFIP/ACM Middleware 2001, Heidelberg, Germany, Nov. 2001.
6,643,650 Bl 11/2003 Slaughter et al. Zhao, et al “Tapestry: An Infrastructure for Fault-tolerant Wide-area
6,667,957 B1 12/2003 Corson et al. Location and Routing” UCB Tech. Report UCB/CSD-01-1141. Apr.
6,690,659 B1* 2/2004 Ahmedetal. 370/328 2001.
6,748,381 BI 6/2004 Chao et al. Stoica, et al “Chord: A Scalable Peer-to-peer Lookup Service for
6,801,534 B1* 10/2004 Arrowood et al. 370/400 Internet Applications,” ACMSIGCOMM 2001, San Diego, CA, Aug.
6,839,769 B2 1/2005 Needham et al. 2001, pp. 149-160.
6,850,987 Bl 2/2005 McCanne et al. Manku, et al, “Symphony: Distributed Hashing in a Small World”
6,857,026 B1* 2/2005 Cain ...oooovvveveeeeeeaenn. 709/239 Published in USITS, 2003.
6,871,235 Bl 3/2005 Cain Kubiatowicz, et al “OceanStore: An Architecture for GGlobal-scale
6,996,084 B2* 2/2006 Troxeletal. 370/338 Persistent Storage” Proceedings of ACM ASPLOS, Nov. 2000.
7,016,978 B2* 3/2006 Maliketal. ..ooven......... 709/246 Adya, et al; “FARSITE: Federated, Available, and Reliable Storage
7,028,099 B2* 4/2006 Troxeletal,oo......... 709/239 for an Incompletely Trusted Environment™; Proceedings of the 5™
7,197,035 B2* 3/2007 ASANO ..eeeeveeeeeeeeeaannnns 370/392 OSDI, Dec. 2002.
2002/0065919 Al 5/2002 Taylor et al. Garces-Erice, et al; “Hierarchical Peer-to-Peer Systems,” In the Spe-
2002/0103998 Al 8/2002 DeBruine cial 1ssue of the Parallel Processing Letters (PPL), Dec. 2003, vol.
2002/0114341 Al 8/2002 Sutherland et al. 13, No. 4.
2002/0143855 Al 10/2002 Traversat et al. “Large Scale Peer-to-Peer Experiments with Virtual Private Commu-
2002/0147771 Al 10/2002 Traversat et al. nity (VPC) Framework,” Iwao, et al., CIA 2002, LNAI 2446, pp.
2002/0147815 Al 10/2002 Tormasov et al. 66-81, 2002.
2002/0184311 Al 12/2002 Traversat et al. “BestPeer: A Self-Configurable Peer-to-Peer System,” Ng, et al,
2003/0041141 Al 2/2003 Abdelaziz et al. Department of Computer Science, National University of Singapore,
2003/0055898 Al* 3/2003 Yeageretal. 709/205 pp. 1-21, 2002.
2003/0076830 Al* 4/2003 ASANO .coeeeeeeeeeeeeeeennn.s 370/392 Traversat, et al, “Project JXTA Virtual Network”, Feb. 05, 2002,
2003/0182428 Al* 9/2003 Lietal. .oovoervveeevennn... 709/227 http://www.jxta.org/docs/TX TAprotocols.pdf.
2004/0044727 Al* 3/2004 Abdelaziz et al. 709/203
2004/0044908 Al* 3/2004 Markhametal. 713/201 * cited by examiner

U.S. Patent Jul. 22, 2008 Sheet 1 of 80 US 7,404,006 B1

Peer-to-peer
Network
100

Node 110A

Node 110C

LR

'''''''

Node 110E Node 110D

FIG. 1

U.S. Patent Jul. 22, 2008 Sheet 2 of 80 US 7,404,006 B1

Node 11

-

Client application

software
128
Processor ~ Topology ana
120 ROUtlng (T&R)
Iaygr software
130
Lower level
network software
131
Memory
122 ‘
Storage
124

Network Connection 126 FIGG. 2

U.S. Patent Jul. 22, 2008 Sheet 3 of 80 US 7,404,006 B1

Topology and Routing (T&R) layer software
130

Builder
132

Router

Data

Structures
136

US 7.404,006 B1

Sheet 4 of 80

Jul. 22, 2008

U.S. Patent

v Ol

%‘s

/\

NN
DL SOPON . 40

ANSERWAY,
Ao

\A\/

\\/

s‘.s‘.s‘.a‘t

KK

P4P.P4P.P4P

A/‘ﬂi‘ih‘dﬁ
Yavava¥

oy

’ [N [

AVEERRRVAVARRR VAV,
0 30
WA K
'4 .bﬂ. 4.‘
A

avi

/\/\

/\

o)

"
VaVa

YAV

AVA

/N/
\/

4»1‘%

0¥l
USSIN HUl

US 7,404,006 B1

Sheet 5 of 80

Jul. 22, 2008

U.S. Patent

oSl
Ble(
ddyy

G Old

yal
Jopeay

JoAe7 Y91

96l
JopesH

{Ul']

851
JapesH
JJodsuel |

U.S. Patent Jul. 22, 2008 Sheet 6 of 80 US 7,404,006 B1

OO O W
OO O O W
O O @ O O W
O O O 0O 0 0 Y
OO O O O
OO O o O
OO O U

FIG. 6

U.S. Patent Jul. 22, 2008 Sheet 7 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 8 of 80 US 7,404,006 B1

O O O QW

O QW P O
O O—~ey O

O Oy O 20,
O o L O O

O O O O
O w0 O W

FIG. 8

U.S. Patent Jul. 22, 2008 Sheet 9 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 10 of 80 US 7,404,006 B1

OO O U
OO O W

FIG. 10

U.S. Patent Jul. 22, 2008 Sheet 11 of 80 US 7,404,006 B1

(@)
(O~ =X O ()

C{ Y b

FIG. 11

U.S. Patent Jul. 22, 2008 Sheet 12 of 80 US 7,404,006 B1

(O @)
) LU

AR @
S et
»

FIG. 12

U.S. Patent Jul. 22, 2008 Sheet 13 of 80 US 7,404,006 B1

FIG. 13

U.S. Patent Jul. 22, 2008 Sheet 14 of 80 US 7,404,006 B1

FIG. 14

U.S. Patent Jul. 22, 2008 Sheet 15 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 16 of 80 US 7,404,006 B1

/
/
/
\
\
/ \
/ \
/ \

/

. .

\ \

/ \ \
/ \ \
/
. b Z .
\ \
‘\ \
\ \

FIG. 16

U.S. Patent Jul. 22, 2008 Sheet 17 of 80 US 7,404,006 B1

. . . / .

/ / /
\ / / 4
\ / / /
\
o \ \ \
/ \ \ \
/ \ \ \
. . . . , .
/ \
/ \
/
\ \
/ \ \
/ \ \

FIG. 17

U.S. Patent Jul. 22, 2008 Sheet 18 of 80 US 7,404,006 B1

FIG. 18

U.S. Patent Jul. 22, 2008 Sheet 19 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 20 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 21 of 80 US 7,404,006 B1

O O w O
O O O W W

OO O OO O U
OO O O O O

O O U O
OO L W

FIG. 21

U.S. Patent Jul. 22, 2008 Sheet 22 of 80 US 7,404,006 B1

OO0 0O OO0
OO0 0 QOO0

O O OO
OO OO

FIG. 22

U.S. Patent Jul. 22, 2008 Sheet 23 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 24 of 80 US 7,404,006 B1

Aol O
O O O O

FIG. 24

U.S. Patent Jul. 22, 2008 Sheet 25 of 80 US 7,404,006 B1

FIG. 25

U.S. Patent Jul. 22, 2008 Sheet 26 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 27 of 80 US 7,404,006 B1

FIG. 27

U.S. Patent Jul. 22, 2008 Sheet 28 of 80 US 7,404,006 B1

FIG. 28

U.S. Patent Jul. 22, 2008 Sheet 29 of 80 US 7,404,006 B1

0 (0
e O

»
sheReRe

FIG. 29

U.S. Patent Jul. 22, 2008 Sheet 30 of 80 US 7,404,006 B1

\
\
\
\
\

FIG. 30

U.S. Patent Jul. 22, 2008 Sheet 31 of 80 US 7,404,006 B1

/
’
) \
\
/ \
/
\
\
\

FIG. 31

U.S. Patent Jul. 22, 2008 Sheet 32 of 80 US 7,404,006 B1

/ \

/ \
; \
, \
\
/
\ \

\ \

\ \

FIG. 32

U.S. Patent Jul. 22, 2008 Sheet 33 of 80 US 7,404,006 B1

FIG. 33

U.S. Patent Jul. 22, 2008 Sheet 34 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 35 of 80 US 7,404,006 B1

FIG. 35

U.S. Patent Jul. 22, 2008 Sheet 36 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 37 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 38 of 80 US 7,404,006 B1

FIG. 38

Receiver
@ = .

0 :

US 7,404,006 B1

Sheet 39 of 80

Jul. 22, 2008

U.S. Patent

6¢ Old

|
]
D
|

9Uoen 9al]

T

¢0t

D

00¢
9pou Aq paulejulew Uolew.oju|

S99J]

€ 0} $8]0J |20

10¢

O "Old
$33J) Jay)o

US 7,404,006 B1

dewysey

Sheet 40 of 80
\

dewysey dewysey dewysey
® S9OUEB)SUl 8|0y saJue)sul 8|0y $92UB)SUI 3|0Y
—
-
X &iing Ajind &Hing Ajin4 ¢Ming Ajn4
. dewysey s3|0J S]0WdY $){Ul| MOPEYS Pl
1s1| Aese sobp3 . feLse syur

g Ajing

¢ °3l]

dewysey $3|0J (B30T

U.S. Patent

U.S. Patent Jul. 22, 2008 Sheet 41 of 80 US 7,404,006 B1

cache

replacement ink

failure

recovery complete
or
got on all trees
(node Initialization)

tree (and cache replacement

from cache / publish received
or

local access

FIG. 41

U.S. Patent Jul. 22, 2008 Sheet 42 of 80 US 7,404,006 B1

O O W O
O O OO QW

OO O 0 O QW
OO O 000 O

O O W

O W
<—> FIG. 42

U.S. Patent Jul. 22, 2008 Sheet 43 of 80 US 7,404,006 B1

O O L O
O 0 O O O

OO O o O O
OO O O OO O

O O O O O W
OO L O W
O L O QW

FIG. 43

U.S. Patent Jul. 22, 2008 Sheet 44 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 45 of 80 US 7,404,006 B1

O L O O
O O O L W

O O O o O O
O OO O O O

O O O W W
OO O Y

FIG. 45

U.S. Patent Jul. 22, 2008 Sheet 46 of 80 US 7,404,006 B1

O L W
O O w U

OO O WO O
O O O W o o

O O O W
O W o O

AN L N N
NIV

FIG. 46

U.S. Patent Jul. 22, 2008 Sheet 47 of 80 US 7,404,006 B1

O O LW O
O O O O

OO W W
OOy Y)

O O L &

e O—
o o

FIG. 47

U.S. Patent Jul. 22, 2008 Sheet 48 of 80 US 7,404,006 B1

O O U
O W L W K

Oy QL &
Oy Q0 & D & Q)

o L
Y Q SVERYY

-,

FIG. 48

U.S. Patent Jul. 22, 2008 Sheet 49 of 80 US 7,404,006 B1

SNERDERD
X L L K
Q&
AVERVORRVIERYY
X LD

g,

FIG. 49

U.S. Patent Jul. 22, 2008 Sheet 50 of 80 US 7,404,006 B1

Sender Receiver

Send

Reply

Reply

Reply

Last Reply

FIG. 50

U.S. Patent Jul. 22, 2008 Sheet 51 of 80 US 7,404,006 B1

O O W O
O L O W

OO O OO W
O Q C — == O O
= 6000

O O L O W
O O O W

FIG. 51

U.S. Patent Jul. 22, 2008 Sheet 52 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 53 of 80 US 7,404,006 B1

Receiver Node
321C

O O U
O Oy O W

Receiver Node
321B

O O O O W

Recelver Node
321A

O O = O O
—0 O O O O

O O O O O
OO O O

FIG. 53

U.S. Patent Jul. 22, 2008 Sheet 54 of 80 US 7,404,006 B1

Receiver Node
321C
_ Reply
Receiver Node
321B
Reply Receiver Node
OO O—0—0 O O
Reply
=0 O O O O

Sender Node

SO O O 0O O
O O W O

FIG. 54

U.S. Patent Jul. 22, 2008 Sheet 55 of 80 US 7,404,006 B1

Receiver Node
321C

O O ¢ W

50 30 o

O O —0O-C70 O
=0 O O O O

Sender Node

SO O OO W
O O O W

FIG. 85

U.S. Patent Jul. 22, 2008 Sheet 56 of 80 US 7,404,006 B1

Receiver Node
321C

O O L) W

50 A0 o

OO o/ O OO

- Reply Recelver Node
O O O—0—=C 0O O
Reply

— 5 O O O O
Sender Node

OO 0 O QW
OO O O

FIG. 56

U.S. Patent Jul. 22, 2008 Sheet 57 of 80 US 7,404,006 B1

Receiver Node
321C

O L U

~ o dD o

Receiver Node
OO 5O OO
Reply Receiver Node
Reply

7321A<—> <_>
=0 O O O O

o O OO O
O L L O

FIG. 67

U.S. Patent Jul. 22, 2008 Sheet 58 of 80 US 7,404,006 B1

Receiver Node
321C

O O L L

Reply

Receiver Node
321B
Reply Receiver Node
321A

O O o) O O

Reply

=0 O O O O

Sender Node

O OO O O
OO O O

FIG. 58

U.S. Patent Jul. 22, 2008 Sheet 59 of 80 US 7,404,006 B1

Receiver Node
321C

)

O O 0/ OO O

O O =070 O
o= 00 OO0

Sender Node

O O O O O
OO O O

FIG. 59

U.S. Patent Jul. 22, 2008 Sheet 60 of S0 US 7,404,006 B1

Recelver Node
321C

SO OIS,
/ Reply

oXeoNe flole
O O (EO=C
"0 0 0 O C

O O o/ OO O
0—0—--0 O O
O OO O
OO0 OO

U.S. Patent Jul. 22, 2008 Sheet 61 of 80 US 7,404,006 B1

Receiver Node
321C

O O O

5o dD o

O O o/ OO O

Reply Receiver Node
O O C=0=00 O O
S

/ Reply
= O O O U
Sender Node

320 <:> <_> Q <::> <_>

¢9 Old

9|01 SAISN|OX3

WM 0Lt SPON

SOOI OIRS

W L
O @ L W
O~ 0~
OGO
O OO W

US 7,404,006 B1

Sheet 62 of 80

Jul. 22, 2008

U.S. Patent

£9 Old

8ouejsul
9]0J BAISN|OXS _
M OEE SPON

US 7,404,006 B1

) @

—
o
-~
3 -
\&
~—
W
W
7 O
v o
—
—
2-..,..
g |
p
'
—

3|04 8y}
_ buisenbal abessawl
O O O

U.S. Patent

US 7,404,006 B1

v9 Ol ‘ ‘ p ‘
D2EOI®

L
S
&
.4
&
'
>
W
— H H
o
—
—
2_-.;
o\
—
-
.

L) O LU
o OO @

aouejsul
3|04 BAISN[OX8

HIM LEE SPON

U.S. Patent

G9 Old

US 7,404,006 B1

—
&
=
Pa ®>_®O®W_
&
~
5
i U3
72 E
e
=
=
~
e~ _
R
=
p

v 9pON Buipuag

U.S. Patent

eey
SHUI| UO PUsS

[X%7
;JoA008) 0)

PoeN

47

SO A

$9)N0J }95)

)47
PJEMIO

(547
Apeal 8)noY

(547
S9suU0dsal $$920.4

(%47
sobessoW 8)N0J JOA0IDI puss

q apoN buIneIay

157
9)N0J JOACODY

18)N0OH

18pfing

US 7,404,006 B1

Sheet 66 of 80

Jul. 22, 2008

U.S. Patent

U.S. Patent Jul. 22, 2008 Sheet 67 of 80 US 7,404,006 B1

US 7,404,006 B1

Sheet 68 of 80

Jul. 22, 2008

U.S. Patent

U.S. Patent Jul. 22, 2008 Sheet 69 of S0 US 7,404,006 B1

/
/
/
/
473

466

US 7,404,006 B1

Sheet 70 of 80

Jul. 22, 2008

U.S. Patent

US 7,404,006 B1

Sheet 71 of 80

Jul. 22, 2008

U.S. Patent

U.S. Patent Jul. 22, 2008 Sheet 72 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 73 of 80 US 7,404,006 B1

U.S. Patent Jul. 22, 2008 Sheet 74 of 80 US 7,404,006 B1

US 7,404,006 B1

Sheet 75 of 80

Jul. 22, 2008

U.S. Patent

US 7,404,006 B1

Sheet 76 of 80

Jul. 22, 2008

U.S. Patent

9/ 9ld e ‘ g ‘
9 ‘

=
2 L. Old SoIoY
M_., sowi | pling

PaAIgoay .
F e (e oot g (O
= 00| N4
o yeoalyd pajle4 JON
- S9)N0OY plingay S9jn0y

ON auo(]
Duiplingay
9)NoY
BN 1S1X3 SRINOY . ng findsamoy .

- PJEMIOA
= Al[E90T m\,__wm_%_xm_
= paianlisq aloub|
= Apeal|y
L O
7 bunnoy ccm _w_oo._

aNURUOD 5100 . .

9AISN|9X]
5 9|0y
—
&
8] papuadsng puss
» Buinoy Ajeoo SAISNOX3 aoue]su|
E I9NIIRQ w_moo._ -8UQ
Joub| puag
pawnsuon) 1.uo(] (€007
DS paWwINsuo)

Al|e207
JaAlleQ

BS\

Buinoy{ anunuon

U.S. Patent

US 7,404,006 B1

Sheet 78 of 80

Jul. 22, 2008

U.S. Patent

8. Ol

(8 ®pON) Jepiing (V ®PON) J8pjing
abessaw Aide. aAey jou SAOWS. 0}
3]N0Y deaig ‘b 1M PUSS 2)BIIpU| “C abpa JaA0 S3)N0J Yim

$39|0J aulualag 9

bswi

abpa 8sI9Aal anowal abpa anows. 9lN0Y A9Y puss pue
pue sajno. Jyealg ‘g pUB SN0 Yealg °g S9]N0J Aal djeald) 0/

13)n0J Yoy yui Buiwoosul Jos "qy

Hsw 9)N0Y A3y a)eal) ey

pasne? jey) abessaw Aidas ou qul| Burwiooul
pue ui| Buiwosul 10§ JUNOJDY °G dn o007 "q/
a]eoIpul) }sanbay
9)N0Y Mealg ¢
. 9|0AD
S0 303180 ' pasned jey) puag ‘|
(8 SPON) J83noYy (V ©poN) Jajnoy

19p|ing

Hsw
2]N0Y AS¥ pUSS pue
S9]N0J A3J 8)ealn) o/

1anoJ
wod} yuip buiwoosul j89) "q/

Mul| Bulwoosul
dn 3007 'q,

JENl0)Y

6/ 9lId

US 7,404,006 B1

Sheet 79 of 80

Jul. 22, 2008

U.S. Patent

(g ®poON) Jepjing

abessauwl
N0y Mealg ‘v

() 9bessawl
pue yul| buiwosus
8)edIpul) }sanbay

2)NoY deaig ‘¢

alnol a9|k)s 1099120 ‘2

(g apoN) 181n0Y

(v ®@poN) Jep|ing

A|daJ aAey jou
M PUDS 9]E0IPU} G

abpa 1oA0 $81N0.
a|e)s anoway 9

Ajdal ou
10} JUNOJJY ‘G

2)no.
alels buisn puag ‘|

(V PON) J81n0oy

US 7,404,006 B1

Sheet 80 of 80

Jul. 22, 2008

U.S. Patent

08 Old

Ay wieay X} Wieay

AoA0D8) paloallp
/ Buiuoiued-un SOJElUl V¥ 9PON '€ O
asned 0} pappe
.O \ v 9PON

D Q C\meN k[
o

JOAO Sa)e) A 9PON ¥ BPON (puUas Ul Juij mau
INEY Yo=Y }sanbal sapn|oxa) uoljiued pjo ul
|ELLION Alen0Da1 pajoallp Sapou ||e 0} <A ‘XY ‘XQ>
pJemiO ‘¥ Bsw juaAs uoliuedun

Spuas X SPON ‘2

US 7,404,006 B1

1

PUBLISHING A NETWORK ADDRESS IN A
COMPUTER NETWORK

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 10/326,683, titled “Role-Based Message

Addressing for a Computer Network™, filed Dec. 20, 2002.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates to computer networks and, more
particularly, to a system and method for publishing a network
address 1n a computer network.

2. Description of the Related Art

Distributed computing has become increasingly popular as
computer networks have proliferated. A wide variety of net-
work protocols and network routing techniques are in use
today. One protocol in widespread use 1s the Transmission
Control Protocol/Internet Protocol (TCP/IP), used for Inter-
net communication. TCP/IP 1s based on a model that assumes
a large number of independent networks are connected
together by gateways called routers. The collection of inter-
connected IP networks 1s umiformly addressed by an IP-ad-
dress. The routing used to provide network independent
addressing 1s transparent to client and target software. All a
client needs to know to send a message to a target 1s that
target’s IP address. TCP enforces an ordered delivery of mes-
sages. The concept of a message response with data 1s not
directly supported by TCP, but imstead 1s provided by the
application layer.

Another network protocol in widespread use 1s the User
Datagram Protocol (UDP). No reliable connections are estab-
lished 1n the UDP protocol, and thus no guarantees of mes-
sage delivery are made. UDP also does not enforce an ordered
delivery of messages. Like the TCP protocol, the concept of a
message response 1s not directly supported by UDP, but
instead 1s provided by the application layer.

One type of networking 1s referred to as peer-to-peer or
P2P networking. Peer-to-peer networking has seen rapid
growth. As used herein, a peer-to-peer network 1s generally
used to describe a decentralized network of peer nodes where
cach node may have similar capabilities and/or responsibili-
ties. Participating peer nodes 1 a P2P network may commu-
nicate directly with each other. Work may be done and infor-
mation may be shared through interaction between the peers.
In addition, 1n a P2P network, a given peer node may be
equally capable of serving as eirther a client or a server for
another peer node.

A peer-to-peer network may be created to fulfill some
specific need, or 1t may be created as a general-purpose net-
work. Some P2P networks are created to deliver one type of
service and thus typically run one application. For example,
Napster was created to enable users to share music files. Other
P2P networks are intended as general purpose networks
which may support a large variety of applications. Any of
various kinds of distributed applications may execute on a
P2P network. Exemplary peer-to-peer applications include
file sharing, messaging applications, distributed information
storage, distributed processing, etc.

SUMMARY

Various embodiments of a system and method for publish-
ing a network address on a computer network are disclosed.
As used herein, publishing a network address may comprise
performing a process that enables one or more nodes 1n the
network to send messages to the network address.

10

15

20

25

30

35

40

45

50

55

60

65

2

According to one embodiment, a plurality of nodes may be
coupled to each other to form a peer-to-peer network. Cou-
pling the plurality of nodes to each other may comprise cre-
ating a plurality of links. Each link may comprise a virtual
communication channel between two nodes. Each node may
have links to only a subset of the other nodes in the peer-to-
peer network.

A first node 1n the plurality of nodes may 1nitiate a publish
operation to publish a first instance of the network address.
Initiating the publish operation may comprise the first node
sending a publish message to one or more other nodes in the
plurality of nodes. Each node that receives the publish mes-
sage from the first node may create routing information use-
able to route messages to the first instance of the network
address on the first node.

The publish message may be propagated from at least a
subset of the nodes that receive the publish message from the
first node to still other nodes 1n the plurality of nodes, which
in turn may further propagate the publish message. Each node
that recerves the publish message from another node may
create routing information useable to route messages to the
first 1nstance of the network address on the first node.

In one embodiment, a second node which already has
routing information useable to route messages to a second
instance of the network address on a third node may recerve
the publish message which originates from the first node. In
response, the second node may create additional routing
information useable to route messages to the first instance of
the network address on the first node. The second node may
be operable to utilize 1ts routing information to route a mes-
sage addressed to the network address to both the first
instance of the network address on the first node and the
second 1nstance of the network address on the third node.

In one embodiment, 1n creating routing information, each
node that receives the publish message originating from the
first node may create information regarding a tree corre-
sponding to the network address. For example, the first node
may send the publish message to a second node via a first link.
The second node may be operable to create information rep-
resenting a first edge of the tree 1n response to recerving the
publish message. The first edge may represent a route toward
the first instance of the network address, where the first edge
1s mapped to the first link. The second node may then be
operable to route messages to the first instance of the network
address by forwarding the messages via the first link.

The publish method may allow multiple nodes to each have
an 1stance of a single network address (also referred to as a
role). Also, multiple mstances of a network address may be
published simultaneously from wvarious nodes. In one
embodiment, exclusive instances of a network address may
also be supported. The publish method may also allow pub-
lishing a network address in the presence of node or link
failure.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the invention can be obtained
when the following detailed description 1s considered in con-
junction with the following drawings, 1n which:

FIG. 1 illustrates a diagram of one embodiment of a peer-
to-peer network 100;

FIG. 2 1illustrates one embodiment of a node 110 1n the
peer-to-peer network 100;

FIG. 3 illustrates one embodiment of topology and routing,
(T&R) layer software;

FIG. 4 illustrates an exemplary link mesh 140 for a set of
nodes 110:

US 7,404,006 B1

3

FIG. § illustrates a data structure for sending a message;

FIGS. 6-11 1llustrate a process of publishing a new role;

FIGS. 12-20 1illustrate a process ol publishing a second
instance of the role;

FIGS. 21-27 illustrate a situation on which simultaneous
non-exclusive publish operations are performed for two
instances of a role;

FIGS. 28-37 illustrate a process of publishing a role on a
network 1n which a node has failed;

FI1G. 38 1llustrates client application software that acts as a
SNOOPEr;

FI1G. 39 illustrates information 300 maintained by a node,
including information 301 pertaining to local roles for all
trees and tree cache information or routing information 302;

FIG. 40 illustrates tree representation according to one
embodiment;

FI1G. 41 1llustrates a state machine showing state changes
relating to a “fully built” status;

FIGS. 42-49 1llustrate a tree building process when a group
of nodes joins a network and a tree spanning the nodes 1s built;

FI1G. 50 1llustrates an exemplary session;

FI1G. 51 1llustrates an exemplary network 1n which a mes-
sage 1s sent from a sender node to a receiver node;

FI1G. 52 illustrates a reply being sent by the recetver node
over the same path by which the message arrived;

FIG. 53 illustrates an example 1in which a message 1s sent
from a sender node to multiple recerver nodes;

FI1G. 54 1llustrates each of the receiver nodes replying to the
message received;

FIGS. 55-61 1llustrate a technique for sending aggregated
responses from the recetver nodes back to the sender node;

FIG. 62 1llustrates a network including a node with an
exclusive instance of a role;

FI1G. 63 illustrates the route of a message sent from a node
331 to a node 330, where the node 331 requests to add an
instance of the role assigned to node 330;

FIG. 64 1llustrates route changes and a new owner for an
exclusive role 1instance;

FI1G. 635 1llustrates a process to perform route recovery;

FIG. 66 illustrates an exemplary network and illustrates
routes to two 1nstances of a role;

FIG. 67 1llustrates the network after a node has failed;

FIGS. 68-72 1llustrate an exemplary route recovery;

FIGS. 73-76 1illustrate an exemplary network in which a
cycle 1s detected and broken;

FI1G. 77 1llustrates logic for forwarding a message;

FI1G. 78 1llustrates one embodiment of breaking a route to
{ix a cycle;

FIG. 79 1llustrates one embodiment of breaking a stale
route; and

FI1G. 80 1llustrates one embodiment of a recovery operation
initiated 1n response to a new link added which causes a
network to become un-partitioned.

While the invention 1s susceptible to various modifications
and alternative forms, specific embodiments thereol are
shown by way of example 1n the drawings and are described
in detail. It should be understood, however, that the drawings
and detailed description thereto are not intended to limit the
invention to the particular form disclosed, but on the contrary,
the mtention 1s to cover all modifications, equivalents and
alternatives falling within the spirit and scope of the present
invention as defined by the appended claims.

DETAILED DESCRIPTION

FI1G. 1 1llustrates a diagram of one embodiment of a peer-
to-peer network 100. The peer-to-peer network 100 includes

10

15

20

25

30

35

40

45

50

55

60

65

4

nodes (e.g., computer systems) 110A-110E, although 1n vari-
ous embodiments any number of nodes may be present. It 1s
noted that throughout this disclosure, drawing features 1den-
tified by the same reference number followed by a letter (e.g.,
nodes 110A-110F) may be collectively referred to by that
reference number alone (e.g., nodes 110) where appropriate.

As shown, nodes 110A-110E may be coupled through a
network 102. In various embodiments, the network 102 may
include any type of network or combination of networks. For
example, the network 102 may include any type or combina-
tion of local area network (LAN), a wide area network
(WAN), an Intranet, the Internet, etc. Example local area
networks include Ethernet networks and Token Ring net-
works. Also, each node 110 may be coupled to the network
102 using any type of wired or wireless connection mediums.
For example, wired mediums may include: a modem con-
nected to plain old telephone service (POTS), Ethernet, fiber
channel, etc. Wireless connection mediums may include a
satellite link, a modem link through a cellular service, a
wireless link such as Wi-F1™, a wireless connection using a
wireless communication protocol such as IEEE 802.11 (wire-
less Ethernet), Bluetooth, etc.

The peer-to-peer network 100 may comprise a decentral-
1zed network of nodes 110 where each node may have similar
capabilities and/or responsibilities. As described below, each
node 110 may communicate directly with at least a subset of
the other nodes 110. Messages may be propagated through
the network 100 1n a decentralized manner. For example, in
one embodiment each node 110 in the network 100 may
cifectively act as a message router.

Referring now to FIG. 2, a diagram of one embodiment of
a node 110 in the peer-to-peer network 100 1s illustrated.
Generally speaking, node 110 may include any of various
hardware and software components. In the illustrated
embodiment, node 110 includes a processor 120 coupled to a
memory 122, which 1s 1n turn coupled to a storage 124. Node
110 may also include a network connection 126 through
which the node 110 couples to the network 102.

The processor 120 may be configured to execute instruc-
tions and to operate on data stored within memory 122. In one
embodiment, processor 120 may operate 1n conjunction with
memory 122 1n a paged mode, such that frequently used pages
of memory may be paged 1n and out of memory 122 from
storage 124 according to conventional techniques. It 1s noted
that processor 120 1s representative of any type of processor.
For example, 1n one embodiment, processor 120 may be
compatible with the x86 architecture, while in another
embodiment processor 120 may be compatible with the
SPARC™ family of processors.

Memory 122 may be configured to store instructions and/
or data. In one embodiment, memory 122 may include one or
more forms of random access memory (RAM) such as
dynamic RAM (DRAM) or synchronous DRAM (SDRAM).
However, 1n other embodiments, memory 122 may include
any other type of memory instead or 1n addition.

Storage 124 may be configured to store instructions and/or
data, e.g., may be configured to persistently store instructions
and/or data. In one embodiment, storage 124 may include
non-volatile memory, such as magnetic media, e.g., one or
more hard drives, or optical storage. In one embodiment,
storage 124 may include a mass storage device or system. For
example, 1n one embodiment, storage 124 may be 1mple-
mented as one or more hard disks configured independently
or as a disk storage system. In one embodiment, the disk
storage system may be an example of a redundant array of
inexpensive disks (RAID) system. In an alternative embodi-
ment, the disk storage system may be a disk array, or Just a

US 7,404,006 B1

S

Bunch Of Disks (JBOD), (used to refer to disks that are not
configured according to RAID). In yet other embodiments,
storage 124 may include tape drives, optical storage devices
or RAM disks, for example.

Network connection 126 may include any type of hardware
tor coupling the node 110 to the network 102, e¢.g., depending
on the type of node 110 and type of network 102. As shown 1n
FIG. 2, memory 122 may store lower level network software
131. The lower level network software 131 (also referred to as
link layer software) may be executable by processor 120 to
interact with or control the network connection 126, e.g., to
send and receive data via the network connection 126. The
lower level network software 131 may also be responsible for
discovering or setting up communication links from the node
110 to other nodes. Memory 122 may also store topology and
routing (T&R) layer software 130 which utilizes the lower
level network software 131. Memory 122 may also store
client application software 128 which utilizes the T&R layer
software 130.

The T&R layer software 130 may be executable by proces-
sor 120 to create and manage data structures allowing client
application soitware 128 to communicate with other nodes
110 on the peer-to-peer network 100, e.g., to communicate
with other client application software 128 executing on other
nodes 110. The client application software 128 may utilize
the T&R layer software 130 to send messages to other nodes
110. Similarly, the T&R layer software 130 may pass mes-
sages recerved from other nodes 110 to the client application
software 128, e.g., messages which originate from client
application software 128 executing on other nodes 110. The
T&R layer software 130 may also be mvolved 1n forwarding
messages routed through the local node 110, where the mes-
sages originate from another node 110 and are addressed to
another node 110 1n the network 100. Functions performed by
the T&R layer software 130 are described 1n detail below.

In one embodiment, nodes 110 may be organized into
multiple realms. As used herein, a realm refers to a concept
used to organize the network 100 1nto sections of nodes that
communicate with each other 1n a low-latency, reliable man-
ner and/or physically reside in the same geographic region.
For any givennode 110, links may be built from the node to 1ts
near neighbors as well as to remote neighbors. As used herein,
a near neighbor 1s a node that resides 1n the same realm as the
reference node, and a remote neighbor 1s anode that resides in
a different realm than the reference node. In one embodiment,
the T&R layer software 130 may be operable to utilize realm
information to restrict send operations to the local realm. This
may be usetul, for example, to avoid the overhead of a WAN
transier. An application programming interface (API) for
sending a message may allow the client application software
128 to specity whether or how to restrict the send operation 1n
this manner.

In various embodiments, the peer-to-peer network 100
may be utilized to perform any of various kinds of applica-
tions. As one example, client application software 128 may
execute to perform distributed data storage such that data 1s
distributed across various nodes 110 1n the peer-to-peer net-
work 100. However, 1n various embodiments any of various
kinds of client application software 128 may utilize the T&R
layer software 130 to send and receirve messages for any
desired purpose.

As shownin FIG. 3, in one embodiment the functionality of
the T&R layer software 130 may be modularized 1nto builder
functionality and router functionality. For example, a builder
component or engine 132 may be responsible for creating and
managing data structures or routing information 136 repre-
senting topology of the peer-to-peer network 100. A router

10

15

20

25

30

35

40

45

50

55

60

65

6

component or message routing engine 134 may utilize the
data structures or routing information 136 to send or forward
messages to other nodes 110 1n the network 100. The builder
132 and router 134 may interface with each other as neces-
sary. For example, as described below, 1n the event of a
network failure which invalidates existing routing informa-
tion, the router 134 may request the builder 132 to recover or
rebuild routing mmformation 136 so that the router 134 can
send or forward a message using a different route.

In one embodiment, as each node 110 joins the peer-to-
peer network 100, the node may establish links 142 with at
least a subset of other nodes 110 1n the network 100. As used
herein, a link 142 comprises a virtual communication channel
or connection between two nodes 110. The lower level net-
work software 131 may be responsible for performing a node
discovery process and creating links with other nodes as a
node comes online i the network 110. (The lower level
network software 131 may include a link layer which invokes
a node discovery layer and then builds virtual node-to-node
communication channels or links to the discovered nodes.)
The resulting set of connected nodes 1s referred to herein as a
link mesh 140. FIG. 4 1llustrates an exemplary link mesh 140
for a set of nodes 110. Each hexagon represents a node 110,
and each line represents a link 142 between two nodes 110.

According to one embodiment, the T&R layer software
130 may provide client application software 128 with a tree-
based view of the underlying link mesh as a means of
exchanging messages between nodes 110. As used herein, a
tree may comprise an undirected, acyclic, and connected
sub-graph of the underlying link mesh 140. Each vertex in a
tree may be a node 110. Each connection between nodes 110
in a tree 1s referred to herein as an edge. Thus, each tree
elfectively comprises a subset of the link mesh.

As described below, a portion of the T&R layer software,
¢.g., builder 132, executing on the nodes 110 may be operable
to create tree data structures based on the link mesh 140.
Multiple trees may be created based on the link mesh 140.
Client application software 128 may utilize the trees to send
messages to other nodes 110. For example, client application
soltware 128 executing on a node 110A may invoke router
134 onnode 110A through an application programming inter-
face (API). Router 134 may send the client’s message to
another node 110B. Router 134 executing on node 110B may
forward the message to another node 110C, and so on, until
the message arrives at 1ts destination node 110X. At each
node, the message may be forwarded according to routes
based on a tree created by builder 132 on the respective node.
For example, a route may specily a tree edge over which to
send the message. Thus, at each node the message may be sent
over one of the tree edges, which may be mapped to one of the
node’s links, 1.e., the virtual communication channel used to
actually send the message.

Router 134 executing on destination node 110X may notity
client application software 128 executing on node 110X of
the recerved message, and client application software 128
may process the message accordingly. As described below,
the T&R layer software may also handle one or more
responses returned by the client application software 128 at
node 110X to the client application software 128 at sender
node 110A. These responses may include a variable amount
of application data.

Using trees as a basis for sending messages between nodes
may be advantageous in several ways. As described below,
cach tree may have one or more nodes that may be addressed
by a “role”. Each message may be addressed to a particular
role on a particular tree. Thus, when the message 1s sent to the
role associated with the tree, only nodes attached to the speci-

US 7,404,006 B1

7

fied tree (or a subset of nodes attached to the specified tree)
see the message, e.g., as opposed to all nodes on the link mesh
seeing the message. The T&R layer may also be able to detect
and discard duplicate messages automatically. Also, an
ordered delivery of messages may be enforced based on the
position of the sender node and recerver node(s) on the tree.

In one embodiment, the concept ol a message response
may be directly supported by the T&R layer. As described
above, the concept of a response including data 1s not directly
supported by protocols such as UDP or TCP, but instead must
be provided by the application layer. Thus, application pro-
grammers for a client application that utilizes the T&R layer
may be relieved from the burden of implementing a separate
response protocol. In other words, the concept of a message
response including data may be integrated 1 a “sender to
receiver back to sender” protocol provided by the T&R layer.
As described below, 1n one embodiment each message sent
may have a variable number of responses.

To send a message, client application software 128 may
create a data structure that contains an application header 152
and application data 150. The client application software may
then request the T&R layer software 130 to send the message
(including the application header 152 and application data
150) to client application soitware executing on another node
110. It 1s noted that both instances of the client application
soltware may utilize a common tree.

Before mvoking the lower level network software 131 to
send the message to the destination node 110, the T&R layer
software 130 at the sender node 110 may create its own data
structure 1including a T&R layer header 154 and the message
received from the client application. Similarly, a link layer
and transport layer may build their own data structure includ-
ing their own respective headers, as shown 1 FIG. 5. On the
receiving end of the message transier, each protocol layer
(e.g., transport, link, and T&R) may un-wrap 1ts own message
from 1ts header, until finally the client application software at
the destination node receives 1ts message.

Role-Based Addressing,

Most message-based protocols require some addressing
scheme to name a destination endpoint as the target of a
message. IP-based protocols for example, use an IP address to
name a node on a network.

According to one embodiment of the T&R layer, message
addressing 1s based on the concept of a “role”. As used herein,
a role may refer to a location-independent address for a com-
puter network. A location-independent address may comprise
information usable to address a message without specitying
where the message recipient i1s located 1n the network, e.g.,
without specilying a particular node 1n the network.

The T&R layer may include an interface allowing client
application software to create a role on one or more nodes on
a tree (more specifically, the client application software may
create an instance of the role on each of the one or more
nodes). Each node on which an instance of the role 1s created
1s said to have the role or host the role (or host an instance of
the role). In one embodiment, each role may be identified
using a string, ¢.g., the name of the role. In other embodi-
ments, roles may be identified 1n other ways, e.g., using
integers.

Thus, a complete network address for sending a message
may comprise information identifying a tree and a role on the
tree. For example, 1n one embodiment the tree may be 1den-
tified using a tree ID, such as a 128-bit Universally Unique 1D
(UUID), and a role may be 1dentified using a vaniable length
string. (Universally Unique IDs or UUIDs may be allocated
based on known art which ensures that the UUIDs are unique.

10

15

20

25

30

35

40

45

50

55

60

65

8

Any node may allocate a UUID without having to communi-
cate with another node, which may be advantageous in terms
of efficiency.)

In another embodiment, a network address for sending a
message may also mclude information 1dentifying a portion
of client application soitware to receive the message. For
example, the network address may also include information
identifying a protocol ID associated with a client application
that utilizes the T& R layer. Multiple protocols may utilize the
same tree. Thus, each message may be sent on a particular tree
and, more particularly, to a particular set of nodes on the tree,
1.¢., the nodes having the specified role. As the message
arrives to each node on the specified tree and having the
specified role, the protocol ID may be used to determine
which protocol on the node or which portion of client appli-
cation software receives the message. In another embodiment
there may not be multiple protocols, or a message may be sent
without specifying a particular protocol ID. If no protocol 1D
1s specified, the message may be delivered to all protocols
bound to the tree.

Any semantic meaning associated with a role may be done
so by the client application and not by the T&R layer. For
example, roles such as “owner” or “instrumentation-man-
ager’ may appear to the T&R layer as just two different
strings that each designate a separate target on a tree for
message transiers. The T&R layer may treat client applica-
tion messages simply as a set of bytes.

Sending messages to roles mstead of directly to nodes may
have a number of advantages. For example, a given role may
be assigned to any tree vertex (node), and the role may move
from node to node dynamically. Also, a single role may be
assigned to multiple tree nodes. Thus, a message addressed to
the role may reach each of the nodes which have the role.

Role-based addressing may also allow distributed software
to run 1n a peer-to-peer manner. Nodes do not need to keep
track of global state, such as knowing which other nodes are
present on the network or which roles are bound to which
nodes. A node may simply accomplish an operation by rout-
ing a message to a particular role, without needing to know
which particular node or nodes have the role.

A role which 1s restricted to a single node 1s referred to
herein as an exclusive role. A role which 1s associated with
multiple nodes 1s referred to herein as a non-exclusive or
shared role. (It 1s noted that a non-exclusive role may be
associated with a single node.) Each instance of a shared role
may have an associated role mnstance 1D, such as a 128-bit
UUID.

Each node may maintain a list of role instances which are
associated with that node for each tree, 1.e., a list of local role
instances hosted by that node. The node may also maintain
routing information that allows messages to be routed from
the node to remote 1instances of the role, 1.e., role instances
associated with or hosted by other nodes. For example, the
routing information may define one or more edges for the
node. Each edge may be mapped to one of the node’s link
and may be used to route a message to one or more remote
instances of a role. Each link may support many mapped tree
edges. Thus, at each node along the message path from a
sender node to the target node(s), the node may deliver the
message to a local instance of the role (af there 1s one) and may
forward the message to other role instances using the respec-
tive edge or edges.

In one embodiment, at each node, the routing information
for a given role may include information directly specitying
how to route a message to every instance of the role. For
example, for each node, the node may have an edge associated
with each instance of the role, where each edge points to

US 7,404,006 B1

9

another node to which or via which the message can be sent to
the respective role instance. The role name and the nstance
ID for the respective instance of the role may be associated
with each edge, allowing the edges to be disambiguated for
shared roles.

In another embodiment, the routing information at one or
more nodes may include information directly specitying how
to route a message to only a subset of the role instances. Thus,
if there are N 1nstances of the role, a given node may have
knowledge of less than N 1instances of the role. As one
example, a first node may have knowledge of only a single
instance of the role. For example, the first node may have an
edge associated with a particular istance of the role, such
that messages addressed to the role are routed to a second
node to which the edge points. The second node may 1n turn
have two or more edges, each associated with different role
instances, such that messages addressed to the role and
received from the first node are forwarded by the second node
to multiple nodes, and continuing in this manner until each
instance of the role receives the message.

The embodiment 1n which nodes can have routing infor-
mation regarding only a subset of the role instances may allow
nodes to leverage each other’s knowledge. Thus, routing data
may be localized, 1.e., the routing data does not have to be
published to every node on the tree. This may increase effi-
ciency of the system. Allowing nodes to leverage each other’s
routing information may also enable recovery operations to
operate more elficiently to rebuild routing information after a
link failure.

One example of a technique for allowing a given node to
maintain routing information for less than all N instances of a
role 1s to utilize scoped roles. In a system employing scoped
roles, each node that does not host an 1nstance of the role must
know how to reach only one node that has the role (1f there 1s
one). Each node that does host an 1nstance of the role must be
able to eventually reach all other nodes that host an 1nstance
of the role.

Client applications may utilize an API to manage roles in
various ways. For example, 1n one embodiment client appli-
cations may be able to perform the following tasks related to
roles:

add or publish a role (binds an address to a node and tree

and publishes the address)

remove a role (unbinds the respective address from the

node and tree and un-publishes the address)

re-point a role (adjusts edges to point towards new role

owner, 1.¢., another node)

request arole (sends a message to the current role, request-

ing to become that role)

grant a role (issues a response to a requesting node 1ndi-

cating that a role request 1s granted, either with or with-
out the old role owner giving up the role)

Publishing a Role

Client application software may create or publish arole (by
requesting the T&R layer to publish the role) 1n order to
establish an address on a tree. The client application software
may also remove or un-publish the role to remove the address.
In one embodiment, creation (publication) and removal (un-
publication) of roles may also be initiated by the T&R layer.
The process of publishing a role instance may cause a series
of edges to be created from a set of potential sender nodes to
the target node on which the role 1nstance 1s published.

In one embodiment, publishing a role 1nstance 1s accom-
plished by broadcasting publish messages from the publish-
ing node to other nodes. In one embodiment, the publish
message may be broadcast using a particular broadcast scope
as described below. At each node that receives the publish

10

15

20

25

30

35

40

45

50

55

60

65

10

message, an edge may be created that maps upon the link over
which the publish message was received (or an existing edge
may be updated with information to indicate that the edge 1s
also usable to route messages toward the new role instance).
The result 1s a series of edges distributed over a set of nodes,
cach edge pointing toward the role instance that was pub-
lished. Un-publishing a role may cause existing edges to the
role to be removed.

Each node that recerves the publish message may forward
the publish message to one or more other nodes, e.g., accord-
ing to the broadcasting scope used. In one embodiment, a
node which receives the publish message and already hosts
another mstance of the role may not continue forwarding the
received publish message for the new instance. This may
allow the type of routing data localization described above.

i

T'he publish message may include a message 1D (e.g., a
UUID) that uniquely 1dentifies the respective publish opera-
tion. This enables the publish message to be distinguished
from any other message being sent. Each node that receives
the publish message may stop forwarding the publish mes-
sage 11 the node has already received the publish message (as
identified by i1ts message 1D).

As noted above, 1n one embodiment the publish message
(as well as other types of messages) may be broadcast using a
particular broadcast scope. For example, a “broadcast on all
links™, a “broadcast on tree”, or a ““broadcast on role routes”
type ol broadcast may be performed. The type of broadcast
may determine what links are chosen at any given node to
continue forwarding the message. For the broadcast on all
links type, the message may be sent on all links from each
node that receives the message. For the broadcast on tree type,
the message may be sent on all links that correspond to
existing edges of the tree (1.e., edges that were created by
previous publish operations). For the broadcast on role routes
type, the message may be sent on all links that correspond to
edges pointing to previously published instances of the role.

In the case of a broadcast on tree operation, 11 the tree 1s not
“fully built” (described below) at the local node, the message
1s forwarded over all links from that node. (This does not
alfect how further nodes forward the message.) Sumilarly, 1n
the case of a broadcast on role routes operation, 11 the role 1s
not tully built (described below), and 11 the tree 1s fully built,
then the broadcast reverts temporarlly to broadcast on tree. IT
the role 1s not fully built, and the tree 1s also not fully built, the
broadcast reverts temporarily to broadcast on all links.

In one embodiment, the information that 1s broadcast for a
Publish operation (or an Un-publish operation) may include:

tree ID—a unique 1D (DUID) of the tree in which the role
instance 1s added (or removed)

role name—a string name of the role added (or removed)

instance ID—a unique 1D (DUID) of the particular role
instance added (or removed)

exclusive—a Boolean value indicating whether or not the
new role 1instance should be treated as an exclusive (i.e.,
the only) 1nstance of the role

publish—a Boolean value; 1f True then perform a Publish
operation; 11 False then perform an Un-publish operation

protocol ID—an ID (int) value identitying the application
protocol (e.g., client of the T&R layer) that caused the
tree to be created

FIGS. 6-11 1llustrate the process of publishing a new role
(1indicated by the node with the solid circle). Each solid arrow
indicates an edge pointing toward the role. (The edges pointin
the direction of the links on which the publish messages were
received.) FIGS. 12-20 1llustrate the process of publishing a
second 1nstance of the role at the node indicated with the

US 7,404,006 B1

11

patterned circle. Each dashed arrow indicates an edge point-
ing toward the second instance of the role.

FIGS. 21-27 illustrate a situation on which simultaneous
non-exclusive publish operations are performed for two
instances of a role.

As noted above, a role instance may be designated as
exclusive when 1t 1s the only 1nstance of the role. Publishing
a role 1nstance as an exclusive 1stance of the role may cause
any existing edges to other instances of the same role to be
removed or overwritten. In the event that a simultaneous
publish of role istances 1s attempted where each 1nstance 1s
intended to be exclusive, the instance IDs of the role instances
may be used to ensure that only one role instance 1s actually
recognized. For example, the role with the largest (or small-
est) instance 1D value may win.

An un-publish operation for an exclusive role instance may
cause all edges to the role to be removed on all nodes. An
un-publish exclusive operation may be performed even when
there 1s no local role 1nstance to remove.

It 1s possible that one or more nodes 1n a network may fail.
FIGS. 28-37 illustrate the process of publishing a role on a
network 1 which a node has failed.

When nodes or links fail, affected tree edges (i.e., those
edges mapped to the broken link or links) become broken and
need to be repaired. In one embodiment, trees may be allowed
to remain with broken edges 1n an incomplete state such that
not all routes to all roles have been determined at every node.
Each tree may be repaired or recovered independently at the
time the tree 1s next needed by a send operation. The recovery
operation may result in not finding some roles 11 a node with
arole no longer exists. Therefore, the T&R layer may employ
a timeout mechanism to terminate the recovery operation 1f
necessary. Tree recovery 1s described 1n detail below.

In one embodiment, 1t may also be the case that temporary
cycles existnatree. The T&R layer may be operable to detect
cycles and fix them with no loss of messages or message
ordering. Detecting and breaking cycles 1s described 1n detail
below.

As described above, a message addressed to a role or vir-
tual network address may be sent to a set of physical nodes
attached to a single tree by utilizing a series of edges. The
physical location of the role or virtual network address may
advantageously be re-mapped. As noted above, roles may
dynamically move from one node to another node. The T&R
layer may move or re-assign a role from one node to another
node when structed to do so by the client application soft-
ware. For example, 1n one embodiment, the message response
mechanism provided by the T&R layer may include an option
allowing a message recerver node (the current role owner) to
give up the role to a node which sends a request role message.
Thus, the role may move from the message receiver to the
message sender. The message recerver node may also grant
the role to the message sender node without giving up the role,
so that the two nodes each have an instance of the role.

When the role 1s granted without give-up, the sender node
may publish a new instance of the role. In one embodiment,
moving the role from the message receiver node to the mes-
sage sender node (1.e., when the recerver node gives up the
role) may be accomplished by first un-publishing the role
from the receiwver node and then publishing the role at the
sender node. In a more efficient embodiment however, edges
on allected nodes may simply be re-pointed toward the sender
node, eliminating the need to un-publish the role and re-
publish the role at the new location. In this re-pointing opera-
tion, edge updates may be localized to just those nodes along,
the message path from the sender node (new role holder) to
the recerver node (previous role holder).

10

15

20

25

30

35

40

45

50

55

60

65

12

Routing

As described above, client applications and the T&R layer
may view the peer-to-peer network 100 as a set of trees, each
with a set of assigned roles. Routing may occur from a sender
to a role within the context of a single tree. Fach node 110 1n
the peer-to-peer network 100 may act as a message router.

As described above, messages may be routed by associat-
ing a series ol edges with a role. At each node along the
message path, an edge (or multiple edges) at that node serves
to point towards the target node (or nodes) that has the desired
role. Some nodes that route messages may also be a message
destination. Other nodes may act solely as a router, never
assuming a role. Messages may continue to be routed until all
role 1instances have been reached.

Trees and Tree I1Ds

As noted above, each tree may have an associated 1D which
identifies the tree. For example, in one embodiment, a tree 1D
may comprise a unique 128-bit UUID. The tree ID may be
valid for all network nodes. In one embodiment, the T&R
layer may accept the tree 1Ds from client application software
as a means for naming the trees. In another embodiment, the
T&R layer may be responsible for creating the tree IDs.

The T&R layer software may associate edges with each
tree ID. As described above, each edge may be mapped onto
an underlying link. This mapping may give each edge a direc-
tion away from the local node and towards another node. For
cach edge, one or more roles that are found 1n the direction of
the edge may be associated with the edge.

Routing Table Management

The T&R layer software on each node may maintain rout-
ing information. For example, for each particular tree for
which the node has routing data, the node may have informa-
tion specitying roles on the tree to which the node has routes.
For each of these roles, instances of the role may be mapped
to edges, as described above.

In one embodiment, the routing information may include
routing entries stored 1n one or more routing tables. In various
embodiments, the routing entries may be structured 1n any of
various ways and may comprise information of varying levels
of granularity. For example, in one embodiment each routing
entry may be associated with a particular role and a particular
tree and may specily one or more edges that point toward
instances of the role.

According to one embodiment, two routing tables may be
used to hold routing entries. The first routing table 1s referred
to herein as the primary routing table. The primary routing
table may be stored in the memory 122 of the node. The
second routing table 1s referred to herein as the secondary
routing table. The secondary routing table may be stored in
the storage 124 of the node. In one embodiment, the routing
entries 1 both the primary routing table and the secondary
routing table may be the same. In another embodiment, the
primary routing table may be used to store the most recently
used routing entries, and the secondary routing table may be
used to store other routing entries. Routing entries may be
swapped 1n and out of the primary routing table from the
secondary routing table as necessary, similar to the manner 1n
which data 1s swapped 1n and out of a memory cache. In
another embodiment, there may be only one routing table.

In one embodiment, information regarding local role
instances for the node may not be maintained 1n the routing
table(s). The information regarding local role imnstances may
be maintained as long as a node 1s up. If a node fails, routing
information for remote roles may be rebuilt when the node
comes back up.

As the number of nodes 110 1n the network 100 increases,
one or more of the nodes 110 may run out of memory 122 and

US 7,404,006 B1

13

may also possibly run out of storage 124 so that all edges to all
roles throughout the network cannot be maintained on the
local node. In one embodiment, this problem may be solved
by enabling the T&R layer to remove least recently used
routing entries irom the routing table as necessary. For
example, for a routing table stored 1n the memory 122, 1f an
out-of-memory situation occurs or 1s near for the memory
122, or 11 a routing table reaches a maximum size, then the
routing entry that was least recently used may be removed
from the routing table, e.g., so that a new routing entry can be
added 1n 1ts place. Similarly, for a routing table stored 1n the
storage 124, 11 an out-of-storage situation occurs or 1s near for
the storage 124, or 1f the routing table reaches a maximum
s1ze, then the routing entry that was least recently used may be
removed from the routing table. This may allow new routing
entries to be added to the routing tables as necessary.

If at a later time the node ever needs a routing entry that was
replaced in the table, the routing entry may be re-created. For
example, 1f the routing entry corresponded to a first tree and
the node needs to forward a message addressed to arole on the
first tree, then the first tree may be rebuilt, or information
regarding the first tree may be re-acquired.

Fully-Built Roles and Trees

As used herein, a role 1s said to be fully built on any given
node when edges leading to all instances of the role on all
other nodes have been created for that node or when the node
has suificient edges so that a message addressed to the role
eventually reaches all instances of the role when sent 1n the
manner described above. For example, a role on a given node
may be fully built when the node has sufficient edges to
neighbor nodes such that a message sent to the role using
those edges 1s ensured to reach all instances of the role,
provided that the neighbor nodes each ensure that they are
tully built before forwarding the message.

In one embodiment roles may be “scoped”, meaning that a
node that does not have a role must know how to get to only
one node that has the role (1f there 1s one). Nodes that do have
the role must be able to eventually reach all other nodes with
that role.

In one embodiment a role 1s considered fully built once one
of the following conditions has been met:

The local node does not have the role and has a route to at

least one instance of the role

The local node does have the role and has a route to an

instance of the role, and that instance has indicated 1n a
recovery response that 1t 1s already fully built

A recovery operation has been initiated and has timed out

A tree 1s said to be tully built on any given node 11 all of the
tree’s roles are fully built on that node. It 1s noted that 1n some
situations a tree may be marked fully built, while a role
associated with the tree 1s marked not fully built. This may
occur when a new role 1s published. The role may be initial-
1zed to not fully built, while the tree 1s mnitialized to tully built.
A tree may be marked as not fully built only 1f one of its roles
has gone from fully built to not fully built. Once each of a
tree’s not fully built roles has been rebuilt (and marked fully
built) the tree may be again marked as fully built.

In one embodiment, when a new node joins the link mesh,
the node may need to gain access to trees. This may be
accomplished by using a simple request/response protocol
that yields the set of known tree IDs. The new node may then
create 1ts own edges to point towards existing roles on the tree.
Once this process 1s accomplished, each tree and each of 1ts
roles may be marked as tully-built for the new node.

When a link fails at anode, all roles that have edges over the
failed link may be marked as not fully built for the node. As
noted above, a recovery operation may be performed when

10

15

20

25

30

35

40

45

50

55

60

65

14

necessary to send or forward a message to one of the roles that
previously was pointed to by an edge over the failed link.

Sess10ns

Because each role may be shared by different nodes, a
message sent to a single role may be delivered to many nodes
that 1n turn send one or more responses or replies back to the
sending node. In one embodiment, the T&R layer may utilize
a session mechanism to support this one-to-many reply
model. The session mechanism may facilitate the automatic
routing ol responses back to the original sending node.

According to one embodiment of the session mechanism, a
long-lived state information element referred to herein as a
“breadcrumb” may be stored at each node along the message
path. The breadcrumb (state information) may point back via
a link towards the original message sender. An 1nitial bread-
crumb may be created 1n response to each send operation. The
initial breadcrumb may indicate that the original sender 1s on
the current node, e.g., may indicate this via a null link. As the
message 1s forwarded on to other nodes, a new breadcrumb
may be created on each receiving node, where the bread-
crumb points back over the link by which the message was
1ust recerved.

As a result, a trail of breadcrumbs may compose a route
from the target recerver node back to the original sender node
and passing through all the intermediary forwarding nodes.
When the receiver node responds to the message, the incom-
ing link specified in the breadcrumb may be used to route the
response back to the sender. Stmilarly, each of the forwarding
nodes may use the links specified in their respective bread-
crumbs to route the response back to the sender node.

In one embodiment, breadcrumb elements may remain
active until a response 1s marked as “last reply.” When all last
replies from all recervers of the message have been received
over a link, the breadcrumb element at the local node may be
deleted, thus preventing any more replies. Thus, the session
may be created when the send operation 1s initiated and ended
when all “last reply” responses have been processed. Each
response, whether 1t as a “last reply” response or not, may be
propagated to the sender as 1t 1s generated and may not be held
by nodes along the message delivery chain.

In one embodiment, an alternative means of ending the
session using aggregated replies may also or may alterna-
tively be provided. According to the aggregated reply model,
all responses may be held at a given node until all “last reply”™
responses have arrived at the node from target destinations to
which the node forwarded the original message. Aggregated
replies work by consolidating each individual response into a
single response that 1s matched with the send that was previ-
ously 1ssued. As the send operation fans out to more nodes,
responses are returned (using the breadcrumb elements). The
responses may be consolidated at each forwarding node. Not
until the consolidated response 1s completely built (with all
individual responses included) 1s the single consolidated
reply passed back towards the original sender.

If a send has been i1ssued, and then a link fails at a node
along the message delivery chain, the T&R layer software at
the node where the link failed may automatically generate a
response, referred to as a null reply, that indicates the failed
link. This null reply may be treated like all other responses,
working in both aggregated and non-aggregated sessions. IT
the sender recerves no null replies, the sender knows that 1t has
received all the responses from the various recervers once the
last reply comes back. However, 11 a null reply comes back,
the sender knows 1t has not recerved all replies, and thus may
re-send the message.

Also, 11 no role instance can be reached then the T&R layer
soltware may return a role not found message to the sender.

US 7,404,006 B1

15

Thus, the sender may receive either a role not found response
or one or more responses with the last one indicated, which in
the absence of a null reply indicates that all responses have
been received. These features may enable the sender to send
messages without utilizing or depending on a timeout mecha-
nism.

In various embodiments, the T&R layer software may
determine that no role could be reached using any of various
techniques. For example, the router on a given node may
experience the role not found condition when it can no longer
reach any role instances. When this occurs, a role not found
message may be returned to the node that forwarded the
message. However, the role not found message may not be
forwarded back any further unless that node receives a role
not found message from all links over which the node for-
warded the message. For example, if node A forwards a
message to nodes B and C, and node B returns a role not found
message to node A, and node C returns a response other than
a role not found message, then the role not found message
sent {from node B to node A may be 1gnored. Thus, for arole
not found message to get all the way back to the sender, all
nodes that recerved the message must have been unsuccessiul
in attempting to reach the role.

In one embodiment, the T&R layer software may also or
may alternatively support a one-way send model in which
replies to a message are not allowed, and thus sessions are not
utilized. For example, one-way send operations may be usetul
for broadcasting information that does not warrant a reply.
Breadcrumb elements may not be created when a one-way
send operation 1s performed.

Listeners

In one embodiment, the T&R layer may support listener
ports through which client application software at a given
node can listen for messages. A listener port may connect one
or more listening clients with one or more trees that are bound
to the listener port. Client application software can listen to all
messages sent on a tree, even those not addressed to the local
node. Client application soitware that listens to all messages
(regardless of role) 1s referred to herein as a snooper. FI1G. 38
illustrates the snooper concept.

Client applications may utilize application listener ports to
receive information from the T&R layer. For example,
through application listener ports, client applications may be
notified of messages received from senders, responses to
messages (replies from receivers), and events fired. A listener
port 1s somewhat similar to the concept of a socket. Client
soltware listeners may be added to and removed from a lis-
tener port. Also, the listener port may be opened and closed as
desired. Each listener port may implement an interface to
accept events generated by the T&R layer, messages, and
responses to messages.

Each listening client may supply the T&R layer software
with a set of callback methods or functions. These callback
methods or functions may be invoked by the T&R layer
soltware when a message or response 1s delivered over the
local node or when a message delivery cannot be accom-
plished. A listener method may also be called to announce the
routing of a tree through a node. At each ivocation, the
listening method may be passed a parameter specilying either
a message being sent or a response being returned. As
described below, a listening client may perform any of vari-
ous actions 1n response {0 a message or response.

Message and Response Structure

In various embodiments, a message and a response may be
structured or implemented 1n any of various ways and may
include any of various kinds of information. In one embodi-
ment, each message includes the following information:

10

15

20

25

30

35

40

45

50

55

60

65

16

Tree ID (128-bit UUID)

Role Name (Variable length string)

Protocol ID (integer)

Control Booleans (Series of True/False flags to augment
sending behavior)

Message Body (Variable length array of bytes)

In one embodiment, each response includes the following
information:
Role Name (Variable length string)
Role Instance ID (128-bit UUID)
Role Re-pointing Booleans (Series of True/False flags to
control role re-pointing behavior)
Last Reply Boolean
Null Response Boolean (returned when links fail and other
error conditions occur)
Tree Building
As described above, the T&R layer may perform a tree
building process. There are many situations 1n which a tree
building process may be performed. For example, tree build-
ing may be pertormed when:
adding new nodes to a network
publishing routes to a new instance of a role
unpublishing routes to a removed instance of a role
recovering routes to one or more mstances of a role

re-pointing a route to a role instance that has moved to
another node

breaking a route that causes a cycle

removing a stale route to a role instance on a node that has

failed

In various embodiments, any of various techmques may be
utilized to build trees. In one embodiment, trees may be built
using local state and messages recerved from neighboring
nodes. In one embodiment, instead of using a tree building
algorithm that avoids cycles, cycles may instead be detected
and broken. This may be more efficient than avoiding cycles.
In one embodiment, trees may not be immediately repaired
when a link fails. If there are a large number of trees, itmay be
too 1nellicient to repair all the trees. Instead, each tree may be
repaired as needed, e.g., when a message send operation
requires 1it.

A tree cache mechanism may be utilized to support more
trees than can fit into memory at one time. Each node may
maintain 1ts own tree cache, e.g., a primary or secondary
routing table such as described above. The tree cache may
include a list of known trees. The tree cache may be managed
using a “least recently used” replacement policy as described
above. In one embodiment, the tree cache may be configured
to utilize a “no replacement™ policy 1f desired, so that the size
of the tree cache 1s unbounded. A “tree built” event may be
fired to all listeners when a tree 1s added to a tree cache.

As shown 1n FIG. 39, each node may maintain information
300 related to the T&R layer. The information 300 may
include information 301 pertaining to local roles for all trees,
1.€., all roles which exist on that particular node. The infor-
mation 300 may also include tree cache information or rout-
ing information 302, as described above. Each of the smaller
rectangles 1llustrated within the tree cache 302 in FI1G. 39 may
represent a tree.

In various embodiments, trees may be represented using
any of various types of data structures. FI1G. 40 illustrates tree
representation according to one embodiment. This tree rep-
resentation makes 1t easy to get all links towards all instances
of a role. It 1s also easy to get all links to perform a broadcast
operation on a tree. It 1s also easy to update the tree represen-
tation 1n the event of a link failure (described below). Accord-
ing to the tree representation shown in FIG. 40, local roles

US 7,404,006 B1

17

may be maintained at all times while the local node 1s up.
Routes to remote role instances, however, can be rebuilt.

As described above, the T&R layer may utilize the concept
of “tully built” roles and “fully built” trees. FIG. 41 1llustrates
a state machine showing state changes for the fully built
status. As shown, when a new node joins the network and gets
on all trees (all fully built trees), each of the trees and all 1ts
roles may be marked as fully built. Also, once a recovery
operation completes for building routes to a particular role,
the role 1s marked as fully built. FIG. 41 also illustrates that
when a link fails, all roles that have routes over the failed link
(and the trees with which the roles are associated) are marked
as not fully built. Also, 1n some situations when breaking
routes or reversing routes, roles may be marked as not fully
built. Changes 1n the fully built status of roles and trees are
discussed 1n more detail below.

Broadcast Operations

In one embodiment, broadcast operations may be per-
formed at various times during the tree building process.
Several types of broadcast operations may be performed,
including a broadcast on all links, a broadcast on a given tree,
or a broadcast on all role routes.

For the broadcast on all links operation, an 1nitial node may
send a message on each of its links, 1dentifying the message
with a unique message ID. Each recerving node may then
recursively send the message on each of its links. In one
embodiment, each recetving node may be allowed to modity
the message. Recetving nodes may maintain a hashmap
keyed by message ID so that messages can be dropped to
climinate cycles. The message 1s thus effectively sent to all
nodes 1n a tree fashion. One exemplary use of the broadcast on
all links operation 1s to send a “Got trees?” message, 1.€., a
message sent during the process of a node getting on all trees
at node startup time.

The broadcast on tree operation may be performed simi-
larly to the broadcast on all links operation, except a specific
tree 1s specified. Each time a node forwards the message, the
specified tree 1s used, provided that the tree 1s fully built for
that node. If the tree 1s not fully built for that node, then the
message may be sent on all of the node’s links. Cycles may be
climinated similarly as for the broadcast on all links opera-
tion.

The broadcast on role routes operation may be performed
similarly to the broadcast on all links operation, except a
specific role on a specific tree 1s specified. Fach receiving
node may forward the message on all the links that corre-
spond to routes to the specified role, provided that the role 1s
tully built for that node. If the role 1s not fully built for that
node, then the message may be sent on all of the node’s links.
Cycles may be eliminated similarly as for the broadcast on all
links operation. One exemplary use of the broadcast on role
routes operation 1s to recover routes to the role. Another
exemplary use 1s to publish an mstance of a role.

Getting on All Trees

When a node joins a network, the network may already
have trees unless the network 1s new. In one embodiment, the
tollowing process may be performed for a node to get on all
trees. First, the node may broadcast a “Got trees?” message
using the broadcast on all links operation described above. IT
no response 1s received within a given timeout interval, then
the process may be done (since there are no trees). FIGS.
42-49 1illustrate an exemplary tree building process when a
group ol nodes joins a network, and a tree spanning the nodes
1s built. It i1t 1s determined that there are trees and the node 1s
not on all trees, then the node may request all trees from each
neighbor. If not on all trees, each neighbor may in turn request
all trees from its neighbors 1n a recursive manner. Cycles may

10

15

20

25

30

35

40

45

50

55

60

65

18

occur, but only one request to each neighbor 1s performed.
Once a node 1s on all trees, the node may supply all the trees
to each requesting neighbor. A receiver of trees may receive
some trees from each neighbor to avoid getting all trees over
one link.

Routing

As described above, 1n one embodiment of the T&R layer,
a message routing engine 134 may manage the routing of
messages. The message routing engine on a particular node
may be mvoked by a client application using an application
programming interface (API) or may be imnvoked 1n response
to receiving a message via a link.

Client applications which recerve a message from a sender
may reply to the message with one or more responses. The
response(s) may be routed back to the sender over the same
route that was used to send the message. The API for sending
a response may include parameters specitying the ID of the
message being responded to, the response (e.g., an array of
bytes and size of the array), as well as parameters specifying
various options.

In one embodiment, the concept of a session may be uti-
lized to allow a message sender to recerve multiple responses
to a message. A “last reply” Boolean value (e.g., a value
included in the response header or a parameter passed when
sending a response) may be set to True when the last response
to the message 1s sent. FIG. 50 illustrates an exemplary ses-
sion. As shown, a sender sends a message to a receiver. The
receiver sends four response messages back to the sender. In
the fourth response message, “last reply” 1s indicated.

The message routing API may also allow a sender to send
a message to only one role instance. The send process may be
complete once a first role instance receives the message. (The
session may continue until the last reply from that instance.)

In one embodiment, the T&R layer may support aggregate
responses such that the sender receives a single response
message which mcludes all responses from all receivers. The
client application listener on the sender may not be invoked
until all responses have been received. Thus, the client appli-
cation may synchronize with multiple responses.

In another embodiment, the sender may receive each
response as a separate response message. In one embodiment,
the T&R layer may support one-way messaging so that
responses by recetvers of a message are not allowed. In one
embodiment, each message may be handled using the mes-
saging technique desired by the sender, e.g., aggregated
responses, separate responses, or no responses.

In one embodiment, responses may flow back to the mes-
sage sender over the original path by which the message was
received. FIG. 51 1llustrates an exemplary network in which a
message 1s sent ifrom a sender node 320 to a receiver node 321.
For example, the message may be addressed to a role on the
receiver node 321. The path of the message 1s 1llustrated. As
shown in FIG. 52, areply sent by the receiver node 321 1s sent
over the same path.

FIG. 53 1llustrates an example 1n which a message 1s sent
from a sender node 320 to multiple receiver nodes 321A,
321B, and 321C. For example, each receiver node may have
an nstance of a particular role to which the message 1s
addressed. As indicated 1n FIG. 54, each receiver node may
reply to the message recerved. FIGS. 55-61 illustrate a tech-
nique according to one embodiment for sending the responses
from the receiver nodes back to the sender node 321. As
illustrated 1n this example, the responses are aggregated as
described above so that the sender node 321 receives all
responses 1n a single response message. In another embodi-
ment the sender node 321 may receive three separate response
messages (or more than three 1f one or more of the receiver

US 7,404,006 B1

19

nodes sends multiple responses). However, aggregating the
responses may help to conserve network bandwidth.

As noted above, the API for sending a response may
include parameters specifying various options or other infor-
mation related to the response. For example, the receiver of
the message may send the response with a parameter to give
up arole and/or grant a role to the sender, e.g., 1n response to
a request for the role sent by the sender. Valid combinations
may include:

Grant role=True; Give up role=False (Grants permission
for the sender to create an instance of the role. The
receiver retains an instance of the role also so that the
role 1s shared.)

Grant role=True; Give up role=True (Grants permission for
the sender to create an 1nstance of the role. The recerv-
er’s istance of the role 1s removed so that the sender has
an exclusive instance of the role. Thus, the role effec-
tively moves from the receiver to the sender.)

Grant role=False; Give up role=False (Recerver retains the
role and the sender 1s not allowed to create an 1nstance of
the role.)

As another example, the response may be sent with a “last
reply” parameter indicating that the response 1s the last reply
to the message, as described above. Any given recipient of the
original message may set the “last reply” parameter to True
only once.

In one embodiment the T&R layer may change the “last
reply” parameter 1n some situations. For example, 1t “last
reply” 1s set to True, a node forwarding the response along the
route may change “last reply” to False 1f the node has an
outstanding link on which it has not yet recerved a response
with “lastreply” set to True or 11 the node has not yet received
a response from a local client (a client application on that
node which recerved the original message from the sender)
with “last reply” set to True. This ensures that the sender
receives only one response with the “last reply” parameter set
to True, even though multiple responses may originally be
sent from receivers of the message with the “last reply”
parameter set to True. In another embodiment, the sender may
always receive response messages having the original “last
reply”” parameter values set by the respective recipients, and
the sender may keep track of which recipients 1t has recerved
a last reply from and which it has not.

As noted above, when a recipient node with a role instance
1ssues a reply with a “give up role” parameter set to True, the
role 1mstance may move to the sender node. In one embodi-
ment, this may be accomplished by performing an un-publish
operation to remove the role instance from the recipient node,
tollowed by a publish operation to add the role instance to the
sender node. However, 1n another embodiment a more effi-
cient technique of moving the role instance to the sender node
may be utilized. The more eflicient technique 1s based on the
observation that only routes maintained by nodes along the
path of reply (which 1s the same as the path over which the
original message was sent) need to change. Thus, each time
after the reply with the “give up role”=True parameter 1s
torwarded by a node, the route on that node may be re-pointed
to point in the direction 1n which the reply was forwarded.
Thus, the next time that node receives a message addressed to
the role, the message may be routed 1n the direction of the
node which now has the exclusive mstance of the role (1.¢., in
the direction of the original sender node which requested the
role).

FI1G. 62 illustrates a network including a node 330 with an
exclusive mstance of a role. Routes to the role instance are
illustrated by the arrows. FIG. 63 illustrates the route of a
message sent from anode 331 to the node 330 (route indicated

5

10

15

20

25

30

35

40

45

50

55

60

65

20

by bold arrows), where the node 331 requests to add an
instance of the role. The node 330 may send a response
message back to the node 331 with the “give up role” param-
eter set to True. As described above, nodes along the path of
reply may change their routes to point i the direction in
which the response message 1s forwarded. FIG. 64 illustrates
the route changes (1llustrated by the bold arrows) and the new
owner of the exclusive role instance.

Events

In various embodiments, any of various kinds events may
be generated by the T&R layer 1n response to certain situa-
tions. Client applications may be notified of particular events
through application listener ports. The following describes
some exemplary events which the T&R layer may utilize.

Tree Built event—indicates that a tree has been constructed
or a tree object has been instantiated. The Tree Built event
may mclude information identifying the protocol (e.g., client
of the T&R layer) that caused the tree to be created. Thus,
applications may learn about new trees by receiving Tree
Built events. As described below, 1n one embodiment an
application may create a snooper 1n response to a Tree Built
event.

Role Not Found event—indicates that a message was not
delivered to any instance of the role to which 1t was addressed.

Snooping

As shown 1n FIG. 38, in one embodiment the T&R layer
may allow client software to act as a snooper. A snooper may
intercept messages sent from a sender to a recerver and may
intercept any responses sent from the receiver to the sender.
The snooper client may be located on any node between (and
including) the sender node and receiver node. In various
embodiments, the snooper may be able to take any of various
actions 1n response to itercepting a message or response
message. For example, the snooper may simply allow the
message or response to continue on 1ts way unaifected. The
snooper may also alter the contents of the message or
response 1f desired, or may replace the message or response
with a completely different message or response. Response
messages may be appended or replaced. The snooper may
also consume or suspend the message or response 11 desired.
The snooper may resume suspended messages or responses at
a later time. The snooper may also store the message or
response data before allowing the message or response to
continue or may perform any of various other actions on the
message or response data.

The snooper may also be able to get information regarding
the message or response message. For example, 1n one
embodiment the message or response message may have an
associated message information object having methods such
as:

IsSuspended()—indicates whether the message 1s sus-

pended

IsReplySuspended(}—indicates whether a reply to the

message 1s suspended

1sLocalReplyPending()—indicates whether a local reply

to the message 1s pending

arcRemoteRepliesPending()—indicates whether any

remote replies to the message are pending,

getTreelD(}—gets the ID of the tree to which the message

1s addressed

getlD()—gets the message 1D

getRole()—gets the role to which the message 1s addressed

getData()—gets the message data

Each recetver ol a message, e.g., the intended client recipi-
ent or a snooper, may receive information regarding where the
message currently 1s in the message path. For example, 1n one
embodiment each recerver may recerve an Endpoint Boolean

US 7,404,006 B1

21

and a HasRole Boolean. An Endpoint value of True indicates
that the local node 1s an endpoint for the message (no more
roles to reach). An Endpoint value of False indicates that the
local node 1s somewhere 1n the middle of the delivery chain.
In this case, the recerver may be a snooper. The HasRole
Boolean indicates to the recerver whether the local node has
an 1nstance of the role to which the message 1s addressed.

It 1s noted that an Endpoint Boolean may also be used
during the routing of replies back to the original sender of a
message. The Endpoint Boolean for a reply 1s False until the
reply reaches the sender.

Tracking Message Status

The T&R layer may track or record various types of infor-
mation related to sending messages. For example, the mes-
sage routing engine may track or record information indicat-
ng:

messages seen (recerved via a link)

messages sent (sent via a link)

messages waiting for a recovery operation to be performed
for a tree

messages waiting for replies
suspended messages and replies

A message record may be created when a message 1s sent or
when a message 1s received. The message record may be used
to track the incoming link for the message and/or the outgoing,
links for the message. The message record may also be used
to track outstanding replies for the message. In one embodi-
ment, the T&R layer may be operable to perform a sweeping,
operation to clean up or discard old message records. The
time period at which sweeping operations are performed may
be configurable.

Failure and Recovery Operations

The T&R layer may be operable to perform recovery
operations 1n response to a link failure, e.g., a condition 1n
which messages cannot be sent over a link 1n the link mesh.
For example, routes that use the failed link may be recovered
so that messages can be sent to their destinations using dif-
terent links. This section describes recovery operations which
may be performed according to one embodiment.

In one embodiment, trees may not be immediately rebuilt
at link failure time. To process the link failure, the following
may be performed:

For every edge mapped to the failed link do the following:
For every role instance on the edge do the following:
1. Invalidate the role instance
2. Mark the role as not fully built
3. Mark the role’s tree as not fully built

For all send operations over the failed link, the T&R layer
may return a null reply which indicates the link failure to the
sender. This may be performed when the router has forwarded
a send request over the failing link and the last reply over that
link has not yet been received.

The actual recovery of a route which utilized the failed link
may be performed later when required by a send operation. At
any node along the message delivery chain, the role to which
the message 1s addressed may not be fully built. It so, the
message routing engine may call a method, e.g., recover-
Route(), to rebuild routes to the role. The ID of the message
being sent may be passed to the recoverRoute() method. After
the routes have been recovered (rebuilt) a method, e.g., rou-
teReady(), may be called to notily the message routing
engine. The ID of the message may be passed to the rou-
teReady() method to indicate that the message routing engine
may resume routing the message using the recovered routes.
This process 1s illustrated 1n FIG. 65.

10

15

20

25

30

35

40

45

50

55

60

65

22

Recovery Algorithm

In various embodiments, any desired algorithm may be
employed to recover or rebuild routes to role instances. This
algorithm may be performed in response to the message rout-
ing engine requesting the routes to be recovered, e.g., by
calling a recoverRoute() method as described above.

According to one embodiment of the route recovery algo-
rithm, the following may be performed. The node at which the
recovery process 1s begun may begin by broadcasting a recov-
ery request using the broadcast on role routes type of broad-
cast, as described above. As described above, since the role
may not be fully built on this node, the recovery request may
initially be sent over all links corresponding to the tree. Each
node which receives the recovery request may forward the
recovery request on all the links used 1n routes to instances of
the role, provided that the role 1s fully built for that node. If the
role 1s not fully built for that node, then the recovery request
may be forwarded as in broadcast on tree or broadcast on all
links (1f the tree 1s not fully built) operation.

Thus, the recovery requests may be forwarded through the
node network until they arrive at nodes that have instances of
the role. When a recovery request, arrives at a node that has an
instance of the role, the node may return a recovery response.
The recovery response may be returned 1n the direction from
which the recovery request came, 1.e., using the link by which
the recovery request arrived. If a node that receives a recovery
response does not already have a route to the role instance that
generated the recovery response, the node may update 1ts
routing table to indicate a route to the role instance that points
in the direction from which the recovery response came.

The node may also propagate the recovery response back
via a link by which the node recerved a recovery request, so
that eachrecovery response from each role instance continues
to be propagated back until reaching the original node that
initiated the recovery request broadcast.

Thus, for each role 1nstance, routes may effectively be built
backwards from the node that has the role mstance to the
original node that mitiated the recovery request broadcast.
Once the routes have been built, this original node may for-
ward the message being sent over the routes, as described
above.

In one embodiment, a recovery request may not be for-
warded further after reaching a node that has an 1nstance of
the role being recovered. As described above, 1n one embodi-
ment 1t 1s not necessary that each node have routing informa-
tion for all instances of a role.

FIG. 66 illustrates an exemplary node network and 1llus-
trates routes to two 1nstances of a role, one of which 1s on node
462 and the other on node 482. Routes to the node 462
instance of the role are denoted by solid arrows, and routes to
the node 482 instance of the role are denoted by dashed
arrows. FI1G. 67 illustrates the node network after node 468
has failed (and thus all links to node 468 have failed).

Suppose that node 480 attempts to send a message to each
instance of the role. Thus, the message may be routed to node
4’75, as indicated by the route arrows from node 480. How-
ever, the role 1s not fully built at node 475. As described
above, the role may have been marked as not tully built 1n
response to the failed links. Thus, the route recovery algo-
rithm may be initiated. As shown in FIG. 68 and described
above, node 475 may broadcast a recovery request on all

links. The broadcast on each link 1s denoted by the wide
arrows.

As shown 1 FIG. 69, nodes that receive the recovery
requests from node 475 may forward the recovery requests.
(To simplity the diagram, not all forwarded recovery requests
are 1llustrated.) As shown, node 474 may forward the recov-

US 7,404,006 B1

23

ery request over all of 1ts links (except the link from which 1t
received the recovery request) because the role 1s not fully
built at node 474. However, the role 1s fully built at node 469
and 476. Thus, nodes 469 and 476 may forward the recovery
request only over links used 1n routes to instances of the role.

When node 462 (which has an instance of the role) recerves
the recovery request from node 469, node 462 may respond
by returning a recovery response to node 469, as described
above. The recovery response 1s indicated i FIG. 70 by the
curved arrow from node 462 to node 469. Similarly, node 482
(which also has an istance of the role) may return a recovery
response to node 476, indicated by the curved arrow from
node 482 to node 476. As shown in FIG. 71, nodes 469 and
4’76 may forward the recovery responses originating from the
respective role instances to node 475, since nodes 469 and
4’76 received their recovery requests from node 475.

As described above, node 475 may update its routing table
to 1ndicate a route to the role instance at node 462 which
points to node 469. Similarly, node 475 may update its routing,
table to indicate a route to the role instance at node 482 which
points to node 476. FI1G. 72 1llustrates the resulting recovered
routes to the respective role mstances. Once the routes have
been recovered, node 475 may forward the message recerved
from node 480 using the recovered routes.

In one embodiment, a recovery request such as described
above may include the following information:

tree ID—a unique ID 1dentitying the tree on which routes

are being recovered

role name—a string specilying the name of the role to

which routes are being recovered

exclude list—a list of role instance 1Ds identifying role

instances to which routes already exist

Routes to role instances 1n the exclude list do not need to be
recovered. Thus, 11 a node having an 1instance of the role 1s on
the exclude list, then the node may not return a recovery
response when the node receives a recovery request.

In one embodiment, a recovery response such as described
above may include the following information:

tree ID—a unique ID 1dentitying the tree on which routes

are being recovered

role name—a string specilying the name of the role to

which routes are being recovered

role instance ID—a unique 1D 1dentifying the role instance

which generated the recovery response

exclusive—a Boolean value indicating whether the role

instance 1s exclusive

protocol ID—an ID 1dentifying the protocol (e.g., client of

the T&R layer) that caused the tree to be created

It 1s possible that a link may fail while the recovery algo-
rithm described above 1s being performed. A node having an
instance of the role receives the recovery request via a path
over which the recovery response will be sent back. If any link
on this path fails, then the recovery response may not be
received. Thus, when a link fails on a node, the node may
return a link failure response for any pending recovery
request. When the node that imitiated the recovery request
receives the link failure response, the node may re-issue the
recovery request.

Detecting and Breaking Cycles

As noted above, 1n one embodiment routes created accord-
ing to the methods described above may result in a cycle when
a message 1s propagated. In one embodiment, cycles may be
detected, and routes may be changed to avoid or break the
cycles. It may be more efficient to detect and break cycles than
to avoid the creation of routes with cycles.

FIGS. 73-76 illustrate an example in which a cycle 1s
detected and broken. As shown in FI1G. 73, node 475 may send

10

15

20

25

30

35

40

45

50

55

60

65

24

a message to the role associated with nodes 462 and 482. The
message may be sent along the links from node 475 to nodes
469 and 476. FIG. 74 illustrates the propagation of the mes-
sage from node 469 to 462 and from node 476 to nodes 470
and 482. FIG. 75 illustrates one further step of propagation,
where acycle 1s detected atnode 463. In response to detecting
the cycle, edges between node 463 and node 470 may be
broken, and routes may be reversed as shown 1n FIG. 76 and
described below.

Routes for each role instance on the edge to be broken may
be reversed. Routes for other roles may be invalidated or
marked not fully built but not reversed. The routes may be
reversed by pointing them in the direction of the incoming
link by which the message was received. The reversal process
may be continued 1n a backward manner toward the node
which sent the message via the incoming link. Once arriving
at a node that has other routes on other edges for instances of
the same role, the role may be 1nvalidated (marked not fully
built) at thatnode, and the algorithm may be terminated. Also,
if the incoming link 1s null at a node (e.g., the original sender
of the message) then the role may be 1nvalidated at the node,
and the algorithm may be terminated.

Exemplary APIs

This section describes exemplary application program-
ming intertaces (APIs) which client application software may
utilize to interface with the T&R layer software. It 1s noted
that these APIs are exemplary only and the method details
given relate to one particular embodiment. Although the APIs
and associated data types are presented as implemented 1n the
Java programming language, various other language bindings
are contemplated.

Messaging:

Send—Transfers a message to one or more recipients on
the tree

Reply (send back a response)—Responds to a received
message

Message Listening Functions:

Create Listener Port

Get Listener Port

Remove Listener Port

Open Listener Port

Close Listener Port

Message Listening Callbacks:

Message Received (from a send operation)

Response Received (from a reply operation)

Role Not Found (from a send operation)

Role Management Functions:

Check Role

Add Role

Remove Role

Message Snooping Functions:

Suspend message

Resume message

Consume message

Reply (Response) Snooping Functions:

Suspend reply

Resume reply

Consume reply

Instrumentation Functions:

Get list of nodes on a tree

Messaging

Send—This function passes an array of bytes from sender

to all nodes holding the specified role. Inputs to this function
include:

TreelD (A 128-bit UUID): This identifier may have been
obtained from a name service, or could be hard-coded as
awell-known ID. This ID may be used to find the respec-

US 7,404,006 B1

25

tive tree mformation using a hashmap. If the tree is
unknown, the tree 1s added to the list of trees 1n one or
more routing tables (e.g., a primary and/or secondary
routing table).

Protocol ID (int): An optional parameter 1dentifying a cli-
ent application protocol to which to deliver the message.
It 1s used by the T&R layer to find the correct listener
port when a message or response arrives at anode. Inone
embodiment this may be a null Integer object. If so, the
TreelD may be used to find the correct listener port.

Role (java.lang.String): This 1dentifier names an abstract
address on the tree. The address may map to a single
instance, or to multiple 1mstances. A role with exactly
one mstance 1s known as an exclusive role. A role that
may have more than one 1nstance is called a shared role.

Role Instance 1D (128-bit UUID): An ID denoting a spe-
cific role 1nstance (node) as the destination.

One Instance Flag (boolean): Indicates that the message

should only be delivered to a single mnstance of a role.
The message will be delivered to the one instance only.
The role instance ID parameter may be used to designate
a specific mstance. If not supplied, the T&R layer may
select an mstance (depending on the setting of the Ran-

dom Flag and Nearest Flag).

Random Flag (boolean): Only valid with the one instance
option. Indicates that the T&R layer should pick a node
at random.

Nearest Flag (boolean): Only valid with the one instance
option. Indicates that the T&R layer should pick a node
closest to the sending node 1n terms of latency.

One Response Flag (boolean): Indicates that all responses
to this message be aggregated 1nto a single reply. Reply
operations copy responses from recerver back to original
sender. By default, each reply contains one response and
cach reply 1s delivered as 1t arrives to the sender.

One Way Flag (boolean): Indicates that the per-node book-
keeping used to route responses back to the sender
should not be done. In effect, this prevents the use of
reply on this message.

Local Realm Flag (boolean): Indicates whether or not the
message should be delivered to only those nodes within
the same realm as the sending node.

Ignore Exclusive Local Flag (Boolean): Indicates whether
or not to deliver the message to a local exclusive instance
of the role, or to 1ignore that instance. This option 1s used
by exclusive role handshake logic that guarantees that
only one node 1s awarded the right to publish an exclu-
stve role. The exclusive role handshake logic 1s encap-
sulated as a high level protocol that sends and receives
special handshake messages.

Body of Message (byte| |): A variable length array of bytes
to be copied from sender to all receivers (role instances).

Reply—This function sends a response back to the original
sender. Inputs to this function 1include:

MessagelD (128-bit UUID): The ID 1s a large number that

umquely identifies amessage. The message 1D 1s created
during the sending process.

Body of Response (byte[]): A vanable length array of
bytes to be copied from receiver of message 1dentified by
message 1D.

Granted Role Name (String): Allows granting or give up
operation to operate on a role other than the original
message’s target role.

Grant Role Flag (boolean): Indicates that the recerver 1s
granting 1ts role to the sender.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

Giving Up Role Flag (boolean): Indicates that the receiver
1s giving up its role. That 1s the replying node will no
longer hold the role.

Last Reply Flag (boolean): Indicates that this reply 1s the
last one from this node. Any subsequent replies are not
allowed. A last reply signals that per-node bookkeeping
to route responses back to a sender 1s no longer needed
(at the local node).

The following combinations of grant role and give up role
flags are valid: T/T, T/F, F/x. The T/T combination grants the
role to the sender and also gives up 1ts own local role. This
combination 1s used to move an exclusive role. The 'T/F com-
bination grants the role, but does not give the role up. This
combination 1s used to distribute shared roles. The F/x com-
bination 1s used to indicate that a request role was denied. In
this case, the give up Boolean 1s 1gnored.

Message Listening

Listener ports serve as a callback registration point for
those applications wishing to receive messages and replies to
sent messages. Bach port 1s associated with a protocol ID and
can be bound to one or more trees and includes a list of
listeners that are invoked in response to messages and replies
arriving at a node. Ports are created with no listeners and
without a binding to any tree. Note that i1t 1s only important to
bind a port to a tree 11 a send 1s done which does not specily a
protocol ID, since such a send 1s delivered to the ports explic-
itly bound to the tree. Port listeners can augment the routing
process by giving the following routing direction to the tree
layer (on a per message or reply response basis):

Consume the message or response

Continue processing the message or response

Suspend processing of the message or response

A port 1s “named” with a protocol ID. A single port can
listen to multiple trees (and all trees for sends that specify the
protocol ID). A typical sequence of operations 1s:

Create new or {ind existing ListenerPort

Open port

Add listener

Bind tree to port

unBind tree from port

Remove listener

Close port

Additional callbacks for events such as role not found and tree
built (through local node) are also supported.

CreateListenerPort—This function creates a new port 1n
the closed state. Each listening port 1s associated with a pro-
tocol ID that names the type of port. Inputs to this function
include:

ProtocollD (int): The ID number uniquely identifies a lis-
tening port. The protocol ID space 1s not monitored by
the T&R layer. Applications divide up the range of avail-
able IDs.

GetListenerPort—This function returns the listening port
that 1s associated with a specific protocol ID. Inputs to this
function include:

ProtocollD (int): The ID number uniquely 1dentifies a lis-
tening port. The protocol ID space 1s not monitored by
the T&R layer. Applications divide up the range of avail-
able 1Ds.

GetListenerPort—This function returns the listening port
that 1s bound to a specific tree ID. Note that there may not be
any listening ports bound to a tree, as binding a protocol to a
tree 1s only done when a protocol does a send without speci-
tying the protocol ID. Inputs to this function include:

TreelD (128-bit UUID): A tree may be bound to exactly
one listening port. This ID names the bound tree.

US 7,404,006 B1

27

RemovelListenerPort—This function closes and deacti-
vates the listening port associated with a specific protocol ID.
Inputs to this function include:

ProtocollD (int): The ID number uniquely 1dentifies a lis-
tening port. The protocol ID space 1s not momtored by
the T&R layer. Applications divide up the range of avail-
able IDs.

OpenPort—This function activates the listening port asso-

ciated with a specific protocol ID.

ClosePort—This function deactivates the listening port
associated with a specific protocol ID.

AddTree—This function binds the listening port to the
specified tree. This 1s only used by protocols that do a send
without specifying a protocol ID. Inputs to this function
include:

TreelD (128-bit UUID): This i1dentifier may have been

obtained from a name service, or could be hard-coded as
a well-known ID.
Removelree—This function unbinds the listening port

from the specified tree. Inputs to this function include:
TreelD. (128-bit UUID): This identifier may have been

obtained from a name service, or could be hard-coded as
a well-known ID.

AddListener—This function registers the message call-
back interface. Inputs to this function include:

Listener (public interface Listener)—This interface con-
tains a list of methods called when messages arrive at the
port.

Removelistener—This function unregisters the message
callback interface with the T&R layer. Inputs to this function
include:

Listener (public interface Listener)—This interface con-
tains a list of methods called when messages arrive at the
port.

Message Listeming Callbacks

The following callback functions are registered with the
listening port.

MessageRecerved—This function 1s invoked by the T&R
layer when a message arrives at the listening port. Inputs to
this function include:

TreelD (A 128-bit UUID): The 1dentifier of the tree bound

to the port.

Role (java.lang.String): This 1dentifier names an abstract
address on the tree to which the message was sent.

MessagelD (128-bit UUID): The message 1D 1s a large
number that uniquely 1dentifies a message. The message
ID 1s created during the sending process.

Body of Message (byte[]): A variable length array of bytes
to be copied from sender to all receivers (role instances).

Has Role Flag (boolean): It true, indicates that the receiver
1s a receiver and not a snooper.

End Point (boolean): If true, Indicates that the local node 1s
the last receiver.

MessageReplied—This function 1s invoked by the T&R
layer when a response to a sent message arrives at the listen-
ing port. Inputs to this function include;

TreelD. (A 128-bit UUID): The identifier of the tree bound

to the port.

MessagelD (128-bit UUID): The message 1D 1s a large
number that uniquely 1dentifies a message. The message
ID 1s created during the sending process.

Response (class DlspReplyMessage): This object con-
tains:

Role Name (java.lang.String)

Role Instance ID (128-bit UUID) Umque ID for an
instance (receiver) of a role

Granted (Boolean): If true, role was granted to sender

10

15

20

25

30

35

40

45

50

55

60

65

28

Gave Up (Boolean): I true, role was given away by
receiver to sender

Exclusive (Boolean): If true, role 1s exclusive, not shared

Last Reply (Boolean): If true, this response 1s the last
from this replying receiver

Null Reply (Boolean): IT true, this response indicates
that a link failed in transit. The sender can retry send-
ing the message 1n order to reach all role instances.

Has Role Flag (boolean): If true, indicates that the
receiver 1s a receiver and not a snooper.

End Point (boolean): If true, Indicates that the local node
1s the last receiver, 1.e., the original sender.
RoleNotFound—This function 1s invoked by the T&R

layer when a message could not be delivered to any role

instance. Inputs to this function include:
TreelD. (A 128-bit UUID): The identifier of the tree bound
to the port.
Role (java.lang.String): This 1dentifier names an abstract
address on the tree to which the message was sent.
TreeBuilt—This function 1s invoked by the T&R layer
when a tree 1s routed through the local node. Tree built events
are used for:
Protocols to learn about new trees this way (Note: tree
could have been swapped out of routing table)
Protocols may use this mechanism to create snoopers,
though there 1s no requirement for protocols to have
SNOOPETS.

Inputs to this function include:

TreelD (A 128-bit UUID): The identifier of the new tree.
Note that this tree 1s not bound to any port yet. (See
AddTree)

Role Management

The following functions operate on roles assigned to the

local node. Functions to operate on a single role and bulk
(many trees/many roles) versions are supported. The bulk
functions may be useful when a node 1s booting, and needs to
re-publish many roles (even on possibly different trees).

AddRole—This function publishes a role. Inputs to this

function include:

TreelD (128-bit UUID): This identifier uniquely identifies

the particular tree this role 1s to be added on the local
node.

Role (java.lang.String): This identifier 1s the name of the
role added on this tree on the local node. Subsequently,
the local node will recerve messages sent to this role on
this tree.

Role Instance 1D (128-bit UUID): This ID 1s the unique
instance ID of this role. If null 1s specified, a new unique
1D 1s allocated.

Publish How Far (int): Indicates the maximum scope that
this role should be published
(0)—Do not publish.

(1)—Publish only as far as neighbor nodes on the link
mesh.

(2)—Publish only so far as nodes within the local realm.

(3)—Publish throughout the cloud.

Allow Search (boolean): Indicates that the caller 1s certain
this 1s the first instance of this particular role added 1n the
cloud, and that 1t 1s OK to build the tree using search.

Exclusive (boolean): Indicates that this 1s an exclusive role
(only on this node).

RemoveRole—This function unpublishes a role, thus
destroying all edges (routes) to the local node. Inputs to this
function include:

TreelD (128-bit UUID): This identifier uniquely 1dentifies

the particular tree from which to remove the role.

US 7,404,006 B1

29

Role (java.lang.String): This 1dentifier 1s the name of the
role to be removed on this tree on the local node. Sub-
sequently, the local node will no longer recetve mes-
sages sent to this role on this tree.

AddRoles—This function allows multiple roles on varied
trees to be published 1n an efficient manner. The AddRoles
function 1s passed only an array of role records. Each role
record contains the arguments for an AddRole function mvo-
cation. Note that these are independent AddRole invocations,
and do not have to be for the same tree.

RemoveRoles—This function 1s a bulk version of the
RemoveRole function. The RemoveRoles function 1s passed
only an array of role records. Each role record contains the
arguments for a RemoveRole function invocation. Note that
these are independent RemoveRole invocations, and do not
have to be for the same tree.

Instrumentation

The instrumentation functions return information about
trees and the local node.

Contains’Tree—This function gets whether the local node
contains a routing tree.

GetLocalRoles—This function gets all the roles that the
local node has for the specified tree.

GetNeighborNodes—This function gets all the neighbors
of the local node on the specified tree.

GetRemoteNodes—This function gets all neighbor and
remote (non-neighbor) nodes on the specified tree.

GetTreeNodes—This function gets all the nodes on the
specified tree. Each node specifies 1ts neighbors. Each
returned 1tem contains a node ID and 1ts neighbor 1Ds.

GetTrees—This function gets the IDs of all trees that the
local node knows about.

Router 134

The following sections describe internal mechanisms and
data structures used to route messages according to one
embodiment. It 1s noted that the particular internal mecha-
nisms and data structures are intended to be exemplary only.
In various embodiments, message routing such as described
above may be implemented 1n any of various ways.
Incoming and Outgoing Interfaces
In one embodiment the router 134 may export and imple-
ment a public T&R layer application programming interface
(API), as well as an internal API. The router 134 may be
invoked using this collection of APIs whenever:

A node starts or stops

A public API function 1s mnvoked

A message arrives over a link

A response arrives over a link

A tree has been repaired by the builder

A circular or stale route has been broken by the builder

A new link has been added to the local node

A link has gone down

A background timer has expired

In response to being invoked through these public and
internal APIs, the router 134 either satisfies the request locally
or uses the link layer and/or builder 132 to invoke other nodes
that may 1n turn satisty the request locally or use another
remote node 1nstead.

In one embodiment, the router relies upon the following
components (using their APIs) to satisty requests and main-
tain its internal state:

Link Layer—Utilized 1n sending and recerving messages

or replies, and to listen for link state changes

Builder—To lookup and build/rebuild routes to roles,
break circular or stale routes, lookup trees, manage
roles, and track outstanding messages on edges mapped

to links

10

15

20

25

30

35

40

45

50

55

60

65

30

Logger—To log tracing information to a file as a means of
debugging the tree layer

Timer—To create a timer for managing background activ-

1ty
Data Structures
The router 134 may utilize data structures to contain tem-

porary state accumulated during the processing of messages
or responses. For example, this state may be held to support

replies.
Records

The router 134 may use a data structure called a record to
hold state associated with some 1n-progress activity. Each
record 1s 1dentified, e.g., with a unique 128-bit number that 1s
generated by the router.

A message record may be used to hold all local knowledge

regarding an in-progress send including:

Its outstanding replies, 11 not a one-way send. This infor-
mation 1s divided into local and remote. A Boolean 1s
suificient to indicate that the local last reply has
occurred, while a list of links 1s necessary to handle the
remote case. See the reply discussion for more details on
last reply processing.

Candidate links (ones which will be used to send the mes-
sage)

The number of links on which this message was already
sent

The link used to receive the message. If the message was
created locally, this information 1s null

Collection of aggregated responses, 1 message was sent
with the aggregation option ‘oneResponse’ set to true

Any generated role not found information (in the form of a
reply)

Parameters used to mvoke send API (including message

body 1n the form of a byte array)

A link record may be used to track a single instance of a

message being sent over exactly one link. The record includes

the link on which the message was sent and a reference to the

message record.

Maps

The router 134 may use a data structure called a map to
store keyed data. The key may be associated with the data
when the data is inserted 1n the map. The key may then be used
to lookup that same data. In one embodiment the router 134
uses a number of maps to perform functions such as:

Track the state of messages
Associate protocols with listener ports
Track set of known listener ports

A sent messages map may be used to track each instance of
a message sent over a link. For example, 11 the message 1s to
be sent on two links, a link record may be created (that
references the message record) and inserted twice mto this
map. As replies return to the sending node, the link records
may be removed until all are removed.

A seen messages map may be used to hold a message
record of each message seen (processed) by the router. A
message record may be created and inserted in this map
whenever a new message 1s to be sent from the local node.

An 1n progress route map may be used to hold message
records, each denoting a message that requires a route to be
recovered. The message record may be inserted 1n the map
just before the router calls the builder, requesting that a route
be re-built. The message record may be removed from the
map by the router when the builder completes the recovery
process.

US 7,404,006 B1

31

A pending reply map may be used to hold message records
inserted whenever a message 1s created or one 1s recerved off
a link. The message record may be deleted when the last
remaining reply arrives.

A suspended messages map may be used to hold message
records that track listeners processing received messages.
Just before the listener 1s invoked, the message record may be
inserted. The record may be removed from the map as the
result of a resume send API function invocation or when
instructed to do so (via a special return value) by the listener’s
callback routine.

A suspended replies map may be used to hold message
records that track listeners processing received replies. Just
betore the listener 1s mvoked, the message record may be
inserted. The record may be removed from the map as the
result of a resume reply API function mmvocation or when
instructed to do so (via a special return value) by the listener’s
callback routine.

A protocol map may hold listener ports. Each port may be
associated (keyed) with a protocol ID. The router 134 may use
this map to find the appropriate listener port to handle mes-
sages and responses.

Send Parameter Object

This object may be used to hold the set of send parameters
associated with a particular message record. This object may
encapsulate the router’s message header and the sender’s
parameters (including sender’s data). In a Java implementa-
tion, this object may be serialized into an array of bytes before
being sent over a link. On the remote side of the link, the
object may be rebuilt from the serialized array of bytes. As
another example, 1n one embodiment the object may be sent
as a SOAP message.

Similarly, a Reply Parameter object may be used to hold the
set of reply parameters associated with a particular message
record. This object may encapsulate the router’s reply header
and the reply parameters (including response data). In a Java
implementation, this object may be serialized into an array of
bytes belore being sent over a link. On the remote side of the
link, the object may be rebuilt from the serialized array of
bytes.

Sending a Message

The process of sending a message may begin by validating
the sender’s invocation parameters. The tree ID and role name
are veriflied to be non-null. If the ‘onelnstance’ option 1s true,
the ‘oneResponse’ option 1s set to false. If the ‘one-way’
option 1s set to true while at least one of the ‘onelnstance’ or
‘oneResponse’ options are true, an error condition may be
raised and the message may not be sent.

If the parameters are validated, the set of send parameters
may be packaged together in a common send parameter
object, which 1s then stored 1n a new message record.

If the ‘one-way’ option 1s false, the message record may be
stored 1nto the pending replies map. The message record may
then be stored 1n the seen messages map. The router may then
forward the message. If the forward logic returns without
raising an error condition (e.g., an exception in a Java imple-
mentation), the message record ID may be returned to the
calling software.

Forwarding a Message

The forward logic 1n the router 134 1s the logic that moves
existing messages (not reply responses) to listeners on the
local node and to remote nodes. FIG. 77 1illustrates the for-
ward logic state machine. The forward logic may be lever-
aged by other router logic that:

Sends a new message

Sends a message that was waiting for a route to be built
Sends a just recerved message

Resumes a suspended message

The forward logic may begin by requesting the builder 132
to lookup local information about the tree and role 1n use. I

10

15

20

25

30

35

40

45

50

55

60

65

32

this 1s a new tree on the local node, a new entry in the tree
cache may be allocated. The information returned regarding
the role may specily whether or not the role on the specified
tree has been added on the local node and whether or not the
role 1s exclusive.

If the local node has published the role and the ‘oneln-
stance’ option 1s true, the forward logic does not need any
additional remote routes. If this 1s not the case, routes from the
local node to remote nodes that have published the role on the
tree may be looked up. If the send parameter ‘rolelD’ 1s
non-null, information about just a specific role instance may
be looked up.

IT a set of candidate links 1s found, the set may be stored 1n
the candidate links field of the message record. Otherwise, a
tree recovery operation may be required. A tree recovery
operation may be required 1f the role 1s not fully built.

Next, the link layer’s link interface may be queried as to all
the link destinations. If any of the original sends were 1nvoked
with the local realm option, these links leading to nodes
outside of the local realm may be removed from the candidate
list.

If the role on the specified tree 1s already fully built, the
router may need to raise a role not found error condition. The
error condition 1s raised if the message has never been deliv-
ered (specified by delivery status field 1n the send parameter
object) to any nodes and the local node also does not have the
role.

I1 the role 1s not fully built and a recovery operation has not
already been started, the router 134 may request the builder
132 to recover routes to the role. The message record may
then be stored 1n the 1n-progress routes map until the builder’s
recovery operation completes. At that time, the forward logic
1s re-activated and the process repeats 1tsell. In one embodi-
ment the process may be repeated for at most one more time.

I the role 1s fully built and a recovery operation has already
completed, the message has never been delivered, and the
local node does not have the role, a role not found error
condition may be raised.

If error conditions have been raised, the forward logic may
be terminated, and control may be passed back to the invoking
logic (e.g., send message logic).

Otherwise, 11 the local node has the role, the message may
be given to the local listener’s recerve interface. If the listen-
er’s receive callback does not suspend or consume the mes-
sage, the forward logic may then begin sending the message
to remote nodes using the candidate links stored 1n the mes-
sage record. I the remote send operation was successiul, the
forward logic exits. Otherwise, one of two situations has
arisen:

A stale route has been detected. This means that the set of

candidate links returned 1s actually empty. The router
may invoke the builder’s break route interface to remove

the route that led to this “dead end.”

A candidate link has gone down. During the actual link
sending process a link failed, so a null reply 1s generated
and sent back towards the original sender, indicating that
a re-send might be 1n order.

Sending to Remote Nodes

For each candidate link over which to send the message to
a remote node (excluding the link the message was recerved
over) the following may be performed:
Create a link record
Put link record 1n sent messages map
Remove link from candidate list
Add link to list of sent links in the message record
Notity builder of an active message over an edge mapped to
a link
Send message on link, catching any failure conditions (ex-
ceptions).

US 7,404,006 B1

33

This logic may then return either an error indication or the
actual number of messages sent over the links. This number
matches the complete set of links 1n the message record sent
links list. Error conditions caught here may cause the link
record to be removed from the sent messages map.

If the one instance option 1s used, this process may be

performed only once. The choice of which link to choose can
either be:

The first candidate link (default)

A random link (one mstance option).
The nearest link (nearest instance option). For example, the

nearest may be determined based on current latency
measurements or hop count or a combination of these.

New Routes Built Behind Path of Routing

It 1s possible that after a node A has routed a message to
another node B, building initiated on node B can cause new
routes to be added onnode A. In one embodiment, a technique
may be employed to allow node A to forward the message on
the new route.

In this situation, since node A will be waiting for replies
from node B (perhaps not directly), this situation 1s 1solated to
the time while node A 1s waiting for replies. Two internal
interfaces 1n the builder allow the router to mark this time
interval:

Waiting For Replies—This interface 1s passed the tree 1D,
role name, and message 1D, allowing the builder to keep
track that the router has pending replies for the particular
send 1dentified by message 1D to a specific role on a

specific tree.

Done Waitting For Replies—This interface 1s passed the
same tree 1D, role name, and message 1D, canceling the
Waiting For Replies call.

Whenever the builder adds a new route for a role, the
builder may call the following internal interface 1n the router:

New Route—This interface is passed the message 1D and
the new link.

If the router 1s doing a multi-instance send, the router may
then simply send the same message that 1s pending replies
(indicated by message 1D) on the newly added route (indi-
cated by link), and may update data structures to indicate that
a reply 1s now pending on that link also. However, 11 the router

1s doing a single-instance send, the new link may simply be
added to the list of candidate links.

Role Not Found Error

A role not found condition can be detected on any node
along the sending message path (e.g., when the tree 1s marked
tully built yet no edges exist for the desired role). When this
condition 1s detected, a special role not found reply may be
generated and routed back to the original sender. When the
role not found reply reaches the original sending node only, a
role not found event may pushed to the sending application.

Invoking the Recerver

The router may use the protocol map to find the proper
listener associated with the specified tree. If no listener 1s
found, the invocation procedure may be terminated. Other-
wise, before mmvoking the listener’s receive interface, the
router may check to see 1f the local node 1s an endpoint along,
the message route. This information may be passed to the
receiver. The delivery status 1n the send parameter object may
be set to true, indicating that the message has been delivered
to at least one listening node. The message record may then be
stored 1n the suspended messages map, until 1t 1s resumed.
The listener’s recerve interface may then be invoked. After the
listener returns control to the router, the return value may be
checked for one of three values:

CONTINUE_MESSAGE
SUSPEND_MESSAGE
CONSUME_MESSAGE

10

15

20

25

30

35

40

45

50

55

60

65

34

Continuing the message causes the router to resume the
message along the route. Suspending the message leaves the
message 1n the suspended message map, awaiting a future
resume or consumption operation. Consuming a message
removes the message on the local node so thatit can no longer
be forwarded or have replies 1ssued to it.

Replying to a Message

The process of replying to a message may begin by vali-
dating iput parameters, in particular, the message ID that
names the message for which a response should be generated.
The message ID may be used to lookup the message record 1n
the pending replies map. A failure to find the message record
can occur for the following reasons:

The message has already been replied to with the last reply
Boolean set to true.

The message 1s a one-way send, and therefore, 1ts message
record 1s not in the pending replies map

An 1mvalid (unknown) message 1D was specified.

I1 the message record 1s not located, an error condition may
be raised and control may be returned back to the caller.
Otherwise, information about the role used 1n the message for
which the reply 1s being 1ssued may be looked up. If the role
1s exclusive, a possible error condition may be checked. That
1s, 11 the exclusive role 1s being granted, the giveUp Boolean
must also be set to true. The last reply Boolean may also be
checked. If true, some additional processing 1s required. If
this 1s a last reply, the number of outstanding replies 1s dec-
remented. If this 1s a local last reply, the message record
Boolean indicating such 1s set to true. Otherwise, a remote
link 1s removed from the sent links list in the message record.
Finally, 1f no more outstanding replies are expected (local or
remote), the message record may be removed from the pend-
ing replies map. Otherwise, the last reply Boolean may be
tlipped to false to indicate that some other replies are still
expected from either the local node or from remote nodes.

If this reply 1s actually the specially generated role not
found reply, some additional processing 1s necessary. A role
not found reply for this message may or may not have been
seen already. When a role not found 1s first detected (no
previous 1nstances seen), the router may check to see if 1t has
already processed a good reply (a reply other than role not
found). If so, the role not found reply may be discarded.
Otherwise, the router may check to see 1 more replies are
expected, which may in fact be good replies. It so, the reply
parameter object for the role not found reply may be stored
away 1n the message record for future role not found process-
ing. A future good reply may cause this previously recerved
role not found reply to be discarded. Finally, 1 no more
replies are expected, the role not found reply 1s valid and may
be returned to the original sender.

The reply logic may locate which role (original or one
named 1n ‘grantedRoleName’ parameter) 1s to be controlled
by the role manipulation booleans. The role manipulation
parameters may be false and false, which conveys to the
router that the role should not be granted or given up. For all
other values of the role manipulation Booleans, the specific
role’s instance ID 1s required. The router may use the builder
to get the role’s instance ID. If the role 1s not being given up,
a new 1nstance may be created (shared role). I the giveUp
Boolean 1s true, the router may instruct the builder to remove
the role from the node on the specified tree.

A reply parameter object may then be created by utilizing
the send parameter object in the message record and adding in
the reply parameters. The reply parameters may be clustered
together 1nto a response data structure that includes the
response data. The reply parameter object may be used to
accumulate multiple responses at a node. The ‘oneResponse’
aggregated reply option may be checked and processed. If

US 7,404,006 B1

35

this 1s not the absolute last reply expected at this node, the set
of responses may be appended to a message record list of
responses.

If this 1s a role not found to a ‘onelnstance’ message, some
special post processing may be mvoked. See discussion

below on single instance role not found reply processing.

If wairting for more replies to arrive, or the ‘onelnstance’
post processing has re-sent the message, the reply logic may
exit. Otherwise, 11 the local node 1s the original sending node,
the proper listener’s reply interface may be invoked. If not,
the router may find the incoming link (used to receive the
original message) and use this link to send the reply parameter
object back towards the original sender.

Single Instance Role Not Found Reply Processing

As noted above, when a reply to a single instance send
arrives at a node, some additional processing may be per-
formed. I1 there are more candidates to try, the message may
bere-sent by invoking the forward logic again. As the forward
logic sends messages, links are moved from the candidate list
to the sent list. If the candidate list 1s empty when this role not
found reply was processed, the role not found reply 1s passed
on towards the original sender. Since the previously used link
was removed from the candidate list by the forward logic, the
next forward of the same message will pick another link to use
tor the re-try send.

Thus, all possible instances may be tried until one can be
reached.

Receiving Messages Over a Link

When a routed message arrives at another node, the link
layer on that node may mvoke the T&R layer’s receive han-
dling logic. This logic may include logic common to both sent
message processing and reply processing.

Common Message Processing

The received message may first be decoded from an array
of bytes back into a send or reply parameter object. In one
embodiment a Java implementation may be arranged so that
both send and reply objects sub-class a common message
object. This common message object may include a reply
Boolean that 1s true 1f the message 1s a reply and false 1f 1t 1s
a sent message. This object may also include the message and
tree IDs common to both sends and replies.

Before dispatching to more specific processing, the com-
mon logic may check to see 11 this node has received a sent
message already. Replies do not require the same checking,
because multiple replies to the same message can and do
arrive at nodes. If a sent message arrives at a node twice
however, the tree has a circular route. The check for circular-
ity 1s accomplished by searching the seen messages map.,
looking for a message with the same ID. If the node has not
already received the sent message, the message 1s added to the
seen message map. If a duplicate message has arrived, the
router may call the builder’s break route interface to remove
the edge mapped to the link on which this message just
arrived. I the message 1s not a duplicate, the router may
request the builder to find the tree with the tree ID 1n the sent
message or reply. Once the tree 1s located the router may
dispatch logic specific to sent messages or replies to mes-
sages, passing the tree as a parameter.

Sent Message Processing

If the reply Boolean 1s false (indicating that the message 1s
a sent message), the send-specific logic 1s invoked. A new
message record maybe created to track this new message. IT
the message 1s not a one-way message, the message record
may be mserted into the pending replies map. The common
forward logic may then be invoked, after which control
returns back to the link layer.

5

10

15

20

25

30

35

40

45

50

55

60

65

36

Reply Processing

I1 the reply Boolean 1s true (indicating that the message 1s
a reply message), the reply-specific logic 1s mvoked. The
reply logic may use the message 1D to lookup the message
record that should be 1n the pending replies map. If the mes-
sage record 1s not found, the reply may be discarded. This can
happen 11 a reply took longer than a periodic sweep time
assigned to a background sweeper task. Once the message
record is located, the last reply Boolean may be checked in the
reply parameter object. IT it 1s true, additional last reply pro-
cessing may be invoked. This processing may be the same
regardless of whether the reply was 1ssued locally (this node)
or whether the reply was received over a link.

The router may next determine whether this reply has
arrived at the original sending node. The original sending
node will have a null value 1n the incoming link field of the
message record. A Boolean 1n the reply parameter object may
be set to true to 1ndicate the arrival back where the send was
issued. ITthe reply has arrived at 1ts endpoint, some additional
role processing may be required.

At reply endpoint nodes only, any roles that have been
granted to the sender by the replying node must be assumed.
Atall nodes along the reply path (middle(s) and the endpoint),
any role routes that point towards a removed role on the
replying node may be removed or re-pointed.

Therouter may also perform a check for aggregation. If this
1s a ‘oneResponse’ send, the common (to local replies) aggre-
gated reply processing may be executed. Also, common to
local reply processing 1s the check for a role not found reply
to a single instance send. These two checks may cause the
reply to stall at this node until all outstanding replies have
arrived or a single istance send does not result 1n a role not
found reply. Finally, the reply listener may be invoked.

Invoking the Reply Listener

When 1mvoking the reply listener, the router may use the
protocol map to find the proper listener associated with the
specified tree. I no listener 1s found, the mvocation procedure
may be terminated. If this 1s a role not found reply, the router
may ensure 1t 1s delivered to the original sending node only. I
this 1s a null reply due to a break route procedure, the router
may skip delivery. A break route procedure may be used to
climinate circularity 1in a tree. This procedure may be per-
formed transparently so that applications do not received null
replies when generated by a break route procedure.

The message record may then stored in the suspended
replies map until it 1s resumed. The listener’s reply interface
may then be invoked. After the listener returns control to the
router, the return value may be checked for one of three
values:

CONTINUE_MESSAG.
SUSPEND_MESSAGE
CONSUME_MESSAGE

Continuing a reply causes the router to resume the reply’s
journey along the route back towards the original sender.
Suspending the message leaves 1t 1n the suspended message
map, awaiting a future resume or consumption operation.
Consuming a reply removes it on the local node so that 1t can
no longer be resumed.

Breaking a Stale or Circular Route

When the router 134 detects a stale or circular route, the
builder 132 may be invoked on the node that first detected the
problem (Builder B). Builder B eventually sends a special
message back over the link 1n question. When Builder A (the
builder 132 on the remote end of the link from builder B)
receives the special message, Builder A may mvoke a special
router interface that generates a null reply.

(L]

US 7,404,006 B1

37

Null Replies

Null replies may be generated when a link goes down or
when a circular or stale route has been broken. The null reply
may be generated to account for all of the outstanding replies
expected by a sending node. A reply may be marked null by
setting a Boolean 1n the reply parameter object to true.

Original senders only recetve null replies that were gener-
ated because of a link down. The original sender may then
re-1ssue the send on the repaired tree. Stale routes and circular
routes, on the other hand, may be hidden from the sender and
treated as operations iternal to the router/builder. These null
replies do not retlect the nature of ensuring that all replies
have been received.

When the application performs a resend, the application
may take appropnate standard sateguards to ensure idempo-
tency—e.g., identily the request with a unique ID, keep a map
indexed by that 1D of replies recently sent. When a request
comes for a retry, it has the same ID, and the response may
simply be looked up rather than re-performing the operation.

Link Down Processing

The link layer may alert the T&R layer of mactive (down)
links by pushing an event to the link’s listener callback. The
T&R layer’s link down handler may subsequently be
invoked. The T&R layer may firstremove its listener from the
link. Next, the T&R layer may look up the set of outstandin
replies over that link. The set of affected replies may be added
to during the send process and subtracted from after areply 1s
received. For each outstanding reply, a null reply may be
1ssued. Finally, the link may be removed from the set of active
links used by the T&R layer and placed on a special transi-
tional list of links to indicate that this link has gone down.

Stopping a Node

When a node 1s taken down voluntarily, the link layer may
close down all active links to other nodes. The T&R layer’s
link down processing logic may then be invoked to send any
needed null replies to other nodes.

Snooping Functions

Snooping messages 1s the process of examining in-route
sends or replies. A snooping listener can consume (stop),
suspend, or continue the routing of the send or reply towards
its ultimate destination. Messages or replies currently being
examined by a snooping listener have already been placed 1n
the suspended state. The suspended send or reply may be
resumed by either continuing the routing (triggered by special
return value from listener), or by using the resume APIs.

When a snooping listener consumes a message, the T&R
layer looks up that message in the suspended message map,
and 11 found, removes 1t. No other processing 1s required.
Similarly, when a snooping listener consumes a reply, the
T&R layer looks up that message 1n the suspended replies
map, and if found, removes 1t. No other processing 1s
required.

When a snooping listener resumes a message, the T&R
layer looks up that message in the suspended message map.,
and 1f found, removes 1t. Then, the common forward logic 1s
used to continue the message routing. Similarly, when a
snooping listener resumes a reply, the T&R layer looks up that
message 1n the suspended replies map, and 1f found, removes
it. Then, the common reply logic 1s used to continue the reply
routing.

Builder 132

The following sections describe internal mechanisms and
data structures used to build and manage trees according to
one embodiment. It 1s noted that the particular internal
mechanisms and data structures are intended to be exemplary
only. In various embodiments, routing data may be built and
managed 1n any of various ways.

10

15

20

25

30

35

40

45

50

55

60

65

38

The builder 132 may be mvoked 1n various circumstances,
such as when performing the following;:
Publishing routes to a new instance of a role
Un-publishing routes to a removed instance of a role
Recovering routes to mstance(s) of a role
Re-pointing a route to a role 1nstance that has moved to
another node
Breaking a route that causes a cycle
Removing a stale route to a role instance on a node that has
failed
Rebuilding to reach more instances of arole after anetwork
partition has been healed
When the router needs a set of routes (the links mapped by
edges) to remote roles
Data Structures
The builder 132 builds and maintains routes for the router
134. According to one embodiment, these routes may be
represented and managed using data structures referred to
herein as tree layer objects. On each node, the local instance
of the builder may perform a distributed protocol which
mampulates its local tree layer objects to manage these
routes.
Tree Object
According to one embodiment, for every tree that the local
node maintains routing information, there 1s a Tree object.
List of Local Edges of the Tree
Each Tree object may maintain a list of Edge objects, each
of which correspond to an edge of that tree on the local node.
Routes to Remote Roles on the Tree
Each Tree object may also have a hash map (hashed by role
name) containing each Role Route object, which has local
routing information for a role on the tree.
Local Roles on the Tree
Each Tree object may also have a hash map (hashed by role

name) containing each Local Role object, which contains
information about each role that the local node has on the tree.

Role Route Object

For every role that the local node has a route to on a
particular tree, there 1s a Role Route object.

Role Route Instances

Each Role Route object may have a hash map (hashed by

unmque ID of role instance) holding each Role Route Instance
object.

Role Route Instance Object

Each Role Route Instance object has the route for a specific
instance of a role.

Route Specified by an Edge

That route 1s specified by a reference to the particular Edge
object whose corresponding edge on the tree 1s 1n the direc-
tion towards that particular instance of the role.

Edge Object

For each edge on a tree, there 1s an Edge object.

Shadow Link Object for that Edge Object

Each Edge object has a reference to a Shadow Link object.

Tree that Contains this Edge

Each Edge object has a reference to the particular tree on
which it represents an edge.

Role Route Instances Going Over this Edge

Each Edge object also has a list containing all the Role
Route Instance objects for all the role instances (for one or
more roles) that are over this edge.

Shadow Link Object

For every neighbor node 1n the link mesh, there 1s a Link
object, managed by the Link/Discovery layer, which the T&R
layer uses to send and recerve messages to/from that neighbor
node. Corresponding to every Link object, the T&R layer

US 7,404,006 B1

39

maintains a Shadow Link object. The T&R layer may use
Shadow Link objects to keep from polluting the Link Layer
with T&R-specific code.

Going from Link Object to Corresponding Shadow Link
Object
A hash map (hashed by Link object) may be used to look up

the Shadow Link object that corresponds to a particular Link
object.

Going from Shadow Link Object to Corresponding Link
Object

Each Shadow Link object has a reference to its correspond-
ing Link object.

List of all Edges Over Corresponding Link

Each Shadow Link object has a list of all the Edge objects
for each tree that has an edge over the Link corresponding to
that Shadow Link.

Local Role Object

Each local role 1s specified by a role record including the
tollowing parameters specified when a role was added using

the addRole API function:

Tree ID (Duid)—Unique ID of the tree.
Role Name (String)—Name of the role.

Instance ID (Duid }—Unique ID of this instance of the role.

Exclusive (Boolean)—True 11 this role 1s exclusive.
Tree Cache Object

In one embodiment, each local node has a Tree Cache
object that acts as arouting table such as described above. The
Tree Cache object may maintain a cache of Tree objects. The
s1ze ol the cache may be specified at start-up time and may be
controlled by a local policy. Every time the T&R layer (both
router and builder) modifies or accesses the routing informa-
tion for a particular tree, the corresponding Tree object may
first looked up 1n the Tree Cache, by specitying the unique ID
of the tree.

Tree Cache Management

The Tree Cache may consider a look up of a Tree object to
be an access of that Tree object. In one embodiment, the Tree
Cache may keep track of the temporal order of accesses to the
various Tree objects, so that the cache can be managed with a
least recently used (LRU) policy such as described above. If
a unique ID for a tree not currently 1n the cache 1s specified
and the size of the cache 1s below its limit, a new Tree object
may simply be allocated and added to the Tree Cache. How-
ever, 1 the Tree Cache 1s already at 1ts limuit, the least recently
accessed Tree object may first removed from the cache before
adding the new Tree object.

Cached State can be Recomputed

If a Tree object 1s removed from the Tree Cache and later
accessed, the T&R layer may re-compute the routing infor-
mation, rebuilding the tree using the same algorithms that
would rebuild a tree after a link fails. The rebwlt Tree object

may be re-added to the Tree Cache.
Tree Cache Also Maintains L.ocal Roles

In one embodiment, 1n addition to maintaining the cache of
Tree objects, the Tree Cache may also maintain all the local
roles on each of the trees. Unlike the cache of Tree objects, the
local roles may be maintained for as long as the local node 1s
up. Therefore, when a Tree object 1s replaced from the cache,
its hash map of Local Role objects may first be stored 1n the
Tree Cache. The Tree Cache may maintain each hash map 1n
another hash map, which 1s indexed by tree ID. Thus a double
hash map, indexed by tree ID and role name, effectively
manages all local roles on anode. When a Tree object1s added
back to the Tree Cache, 1ts hash map of local Role objects 1s
initialized using the one stored 1n the Tree Cache.

5

10

15

20

25

30

35

40

45

50

55

60

65

40

Fully-Built

Both Tree and Role Route objects may have a Boolean
indicating whether the object (on the local node) 1s fully built.
This indicates whether or not the object has been built suili-
ciently to be used for routing, or whether it needs for the
builder first to perform recovery.

Maintaining Fully Built for a Role Route Object

Initialized to false—A Role Route initially has no routing,
information, so 1t must be considered not fully built,
since there could be remote instances of the role.

Set to false whenever a link fails over which one of i1ts Role
Route Instance objects has an edge—The link failure has
definitely caused it to lose a route, so the Role Route
requires building.

Set to true 1 the local node does not have a local instance of
the role, and has obtained at least one route to a remote
instance of the role—Since nodes that have the role will
rebuild until they have routes sufficient for them to reach
all other 1instances, then once a node without an instance
of the role has any route to an instance, 1t has enough
routes (just one 1s enough) to reach all other mstances.

Set to true 1t the node has a local instance of the role, and
has obtained during a recovery operation at least one
route to a remote stance of the role that currently 1s
marked fully built—Since this route allows us to reach
an instance which 1s fully built (it can reach all other
instances) then the local node 1s also fully buult.

Set to true once a recovery operation has timed out—

Enough time has elapsed for the recovery to have built
all routes necessary to reach all instances of the role.

When a node sends a message to a particular role, then
provided the network 1s not partitioned, that message will
eventually reach all nodes that have an instance of that role,
provided the router does not use the routes maintained by the
Role Route objectuntil the builder has made it fully-bwilt. The
reason 1s as follows. If a node does not have the role, then 1t
will not route the message until it either has a route to at least
one node that has the role, or until the recovery operation has
timed out due to no node having the role (role not found
condition). Once the message reaches anode with the role, the
rules for maintaining fully built on nodes with the role ensure
that all nodes with the role and fully built set can reach all
other nodes with the role.

Fully-built for a Role Route ensures that all nodes with the
role can be reached 1n the whole cloud. For a cloud located
throughout a WAN, the timeout may be relatively large. Since
it 1s also possible to do a send that 1s restricted to the local
Realm, recovery for that operation may have a much smaller
timeout. For that reason, a fully built realm Boolean may also
be maintained for each Role Route object.

Maintaining Fully Built for a Tree Object

The Tree object also has a tully-built Boolean which 1s:

Initialized to true

Set to false whenever any one of the tree object’s Role
objects 1s set to false

Set to true once all of 1ts Role objects have tully-built set to
true

The router does not use the Tree object for routing mes-
sage, since messages are routed for a particular role on a tree
(not all roles on a tree). The fully built boolean for the tree 1s
only used by the builder to determine whether 1t can use the
current edges of the trees to publish anew role onthe tree. The
only time a Tree object can have fully built set to true when
one of 1ts Role Route objects has fully built set to false 1s when
that Role Route object has just been allocated. This special
case allows the newly allocated role to publish on an existing
tree that has not been broken from any link failures.

US 7,404,006 B1

41

Obtaining Routes to all Instances of a Role

The router needs a list of links over which to send a mes-
sage 1n order to reach all instances of a role. The builder looks
up the Tree object 1n the cache, and then looks up the Role
Route object 1n the Tree object. Once the builder has per-
formed any needed recovery (1f fully built1s set to false for the
Role Route object), then the list of links that the router should
send the message on 1s simply determined by following the
reference from each Role Route Instance object to 1ts Edge
object, and then to its Shadow Link object, and finally to 1ts
Link object. Once this list of links 1s computed, 1t can be kept
in the Role Route object and only recomputed if the Role
Route object has fully built reset to false, or 1 a new Role
Route Instance 1s added.

Handling Link Failures

When a link fails, the trees that go over that link need to be
rebuilt. In one embodiment the builder does not rebuild a tree
until the tree needs to be used for a send. Otherwise, the
system could become overwhelmed repairing many trees at
once. Furthermore, many trees may not be needed until much
later. Repairing them immediately would divert system
resources from operations that currently need to be per-
formed.

Although recovery may not be performed immediately
when a link fails, all the Role objects that have aroute over the
failing link need to have fully built set to false, so that they will
be marked for recovery the next time they are used. The
following process may be performed:

1. Look up the Shadow Link object corresponding to the
Link object for the failing link.

2. For each Edge object on that Shadow Link:
For each Role Route Instance on that Edge:

1. Invalidate the Role Route Instance

11. Set Tully built Boolean to false for the correspond-

ing Role Route object.

111. Set fully-built Boolean to false for the correspond-

ing Tree object

Basic Tree Building without Search

In one embodiment, basic tree building algorithms may be
employed which do not use a search algorithm to locate a
node with an instance of a role. In another embodiment these
basic tree-building algorithms may also be enhanced with a
search algorithm to further improve performance and scaling.
The basic tree-building algorithms are described.

The basic builder algorithms build the tree by two mecha-

nisms:

Publish—When a role 1s added to a node, that role 1is
published sufficiently (not necessarily to all nodes) so
that all nodes would eventually be able to reach this
particular mstance 11 they did a send to the role.

Recovery—When anode performs a send to arole, or when
it forwards a message that another node 1mitially sent, 1f
the Role Route object 1s not fully built, a recovery opera-
tion may be performed first. The recovery request 1s sent
to a sullicient number oI nodes (again, not necessarily all
nodes), which 1n turn reply to the recovery request.

The tree 1s then built (or rebuilt) 1n the replies to the recov-

ery request.

Basic Publish Algorithm

This section describes one embodiment of a basic publish
algorithm. It 1s noted that in various embodiments, any
desired algorithm may be used to publish a role.

When a new 1nstance of arole 1s added to a tree on the local
node, the local node mitiates the forwarding of a publish
message. Among other information, the publish message
specifies:

10

15

20

25

30

35

40

45

50

55

60

65

42

Message ID (Duid)}—The unique ID of the publish mes-

sage

Tree ID (Duid)—The unique ID of the tree

Role Name (String)—The name of the role

Role Instance ID (Duid)—The unique ID of this instance

Spew Hops (int)—Inmtialized to O when message allocated

Forwarding a Publish Message

In one embodiment, the initial sending node and each node
that recerves the publish message may send the publish mes-
sage using the following rules. When applying these rules, the
incoming link 1s excluded.

Rule 1: If the node has already recerved the same publish
message (a simple hash map 1s maintained for this purpose)
the publish message 1s discarded, with no processing. This
rule eliminates many cycles and thus helps to form a tree, not
a graph 1n general. However, not all cycles may be prevented.
Cycles may be eliminated when detected by the router.

Rule 2: If the node has another instance of the same role,
the publish message 1s not forwarded any further provided
that Spew Hops 1s O, but it 1s processed. This rule prevents the
publish from being forwarded unnecessarily. If the publish
message were to be forwarded further, 1t would reach nodes
that already have a route along the same edge to this node just
reached with the role. In other words, a node only needs a
route to one of the nodes with the role down a particular edge;
it does not need a route to roles behind that node.

Rule 3: Ifthe local Role Route 1s not tully built and the local
Tree 1s also not tully built, reset Spew Hops to 3. (In other
embodiments, other values may be used.) Otherwise, 1f the
local Role Route 1s fully built and Spew Hops 1s non-zero,
decrement Spew Hops by 1. This essentially computes the
number of hops where rule 6 will apply.

Rule 4: If the local Role Route 1s fully built and Spew Hops
1s 0, the publish message 1s only forwarded on links that are
the routes to existing instances of the role. This tends to
publish towards other instances.

Rule 3: If the local Role Route 1s not fully built but the local
Tree 1s fully built and Spew Hops 1s O, the publish message 1s
torwarded along edges of the tree. This tends to publish a new
role on a tree already formed by a role previously published
that built out the tree.

Rule 6: Otherwise, the publish message 1s forwarded on all
links. This tends to search for local repairs to the tree for a few
hops.

If only Rules 1 and 6 were used, the publish request would
eventually reach all instances of the role. Using Rules 2, 3, 4,
and 5 reduces the number of nodes that must receive and
process the publish request.

Except 1n the case of Rule 1, the publish message 1s pro-
cessed by adding a Role Route Instance, with an Edge over
the Link that the publish message 1s received.

Basic Recovery Algorithm

When the router 1s sending or forwarding a message to a
role for which the local Role Route object has fully built set to
false, the builder must first perform recovery.

This section describes one embodiment of a basic recovery
algorithm. It 1s noted that in various embodiments, any
desired algorithm may be used to perform recovery.

To perform recovery, the local node may initiate the for-
warding of a recovery request message. Among other infor-
mation, the recovery request message specifies:

Message ID (Duid)—The umique ID of the recovery mes-

sage

Tree ID (Duid)—The unique ID of the tree

Role Name (String)—The name of the role

Spew Hops (int)—Inmtialized to O when message allocated

Forwarding a Recovery Request Message

US 7,404,006 B1

43

In one embodiment, the 1nitial sending node and each node
that recerves the recovery request message may forward the
recovery request message using the following rules. When
applying these rules, the incoming link 1s excluded.

Rule 1: If the node has already recerved the same recovery
request message (a simple hash map 1s maintained for this
purpose) the recovery request message 1s discarded, with no
processing. This rule helps eliminate cycles, thus forming a
tree and not a graph 1n general.

Rule 2: If the node has another instance of the same role,
the recovery message 1s not forwarded any further provided
that Spew Hops 1s O, but it 1s processed. This rule prevents the
recovery from reaching instances that need not be reached. IT
the recovery message were to be forwarded further, 1t would
cause routes to be recovered for nodes to which the current
node (1.e., the node that the recovery message just reached)
already has routes. In other words, a node only needs a route
to one of the nodes with the role down a particular edge; 1t
does not need a route to roles behind that node.

Rule 3: If the local Role Route 1s not fully built, reset Spew
Hops to 3. Otherwise, 11 the local Role Route 1s fully built and
Spew Hops 1s non-zero, decrement Spew Hops by 1. This
essentially computes the number of hops where rule 6 will
apply. (Due to this rule, Spew Hops may immediately get set
to 3 when the algorithm 1s started since the role 1s not fully
built at the node where the recovery algorithm 1s started.)

Rule 4: IT Spew Hops 1s 0 and the Role Route 1s fully built,
the recovery message 1s only forwarded on links that are the
routes to existing instances of the role. This tends to send the
recovery request towards instances of the role.

Rule 3: If Spew Hops 15 0 and the local Role Route 1s not
tully built but the local Tree 1s fully built, the recovery mes-
sage 1s forwarded along edges of the tree. This tends to
recover the role routes on a tree already formed by a role
previously published that built out the tree.

Rule 6: Otherwise, the recovery message 1s forwarded on
all Links. This tends to search for local repairs to the tree for
a few hops.

If only Rules 1 and 6 were used, the recovery request would
eventually reach all instances of the role. Using Rules 2, 3, 4,
and 5 reduces the number of nodes that must receive and
process the recovery request.

The 1nitial sending node, and each node that recetves and
processes the recovery request message (all cases except the
one 1n Rule 1) keep track of the recovery request and the Link
over which 1t was received, using a Recovery Record object.
The mitial sending node and each node that receives the
recovery request and finds tully built to be set to false for the
role considers a recovery operation to be 1n progress and starts
a timer which goes off when the recovery operation 1s finished
locally.

When a node with an istance of the role receives the
recovery message, the node sends a recover response mes-
sage, which specifies:

Message ID (Duid)—The unique ID of the recovery

request message

Tree ID (Duid)—The unique ID of the tree (Duid)

Role Name (String)—The name of the role (String)

Role Instance 1D (Duid)—The unique ID of this instance

that the responding node has

Fully-Built (Boolean)—Indicates whether the responding

node has fully-built set

The recover response message 1s forwarded back along the
path that the recovery request message came. For the purpose
of routing back the response, the Link over which the recov-
ery request was received (recorded 1n the Recovery Record) 1s
used (Recovery Record 1s looked up 1n a hash map indexed by

10

15

20

25

30

35

40

45

50

55

60

65

44

the Message 1D of the recovery response, which 1s the same as
the Message ID of the recovery request).

Except 1n the case of Rule 1, each node that recerves the
recovery response adds a Role Route Instance with an Edge
over the Link that the recover response message 1s recerved.

For the mmitial sending node and any other node that
received the recovery request and found fully built to be false,
any one of the following conditions causes 1t to terminate the
recovery algorithm and mark 1ts Role Route object with fully
built set to true:

The node recerves a recovery response message with a
route to a new 1nstance, and the local node does not have
an 1nstance of the role.

The node receives a recovery response message with a
route to a new instance, and the response 1ndicates that
the node that initially sent the response 1s fully built.

The timer expires.

Other Mechanisms of the Basic Publish and Recovery
Algorithms

Having discussed above the core of the basic publish and
recovery algorithms according to one embodiment, the fol-
lowing sections cover other mechanisms which may be uti-
lized 1n performing these algorithms.

Exclusive Roles

When two nodes attempt simultaneously to publish an
exclusive role, all nodes must reach a distributed agreement
regarding which node has the exclusive role. In one embodi-
ment this 1s handled simply by comparing instance IDs for the
(prospective) role 1nstances and letting the highest instance
ID win. Thus, the publish from the node with the highest role
instance ID will eventually reach all nodes and replace any
routes to lower-numbered mstances. It will also result 1n the
exclusive role being removed from the node that has the
lower-numbered exclusive role instance. The algorithm
works also when there are more than two nodes attempting to
publish simultaneous exclusive roles on the same tree. It 1s
also noted that publishing an exclusive role wipes out any
shared role by the same name that had been published on the
tree.

In one embodiment a handshake utility can be used to add
exclusive roles, instead of directly calling addRole(). This
utility provides a callback to the user when the exclusive role
has been successiully added, or when the exclusive role was
removed. Before attempting to add the exclusive role, it first
does a ping to the exclusive role, so that an existing holder of
the exclusive role (one that has already been notified of suc-
cess via callback on 1ts node) does not get the exclusive role
taken away from i1t when the new node attempts to get the role
using the handshake utility. Thus, 1n this case, 1f there 1s
already a node with the exclusive role, the node attempting to
get 1t will get a callback indicating it cannot get the exclusive
role.

Unpublish

An unpublish operation may be handled by the same code
that does publish. A Boolean in the Publish request message
may indicate whether the request 1s a publish or an unpublish,
and the message may be propagated using the same rules as
the publish. Instead of adding a Role Route Instance when the
Unpublish request message 1s processed on each node, the
specified Role Route Instance 1s removed.

Unpublish does have one other additional capability. In
most cases, the node that adds an instance of a local role (or
removes the local mstance of a role) does the publish (or
unpublish). However, for exclusive roles, the unpublish can
originate from any node, due to the way the publish algorithm
comes to a distributed agreement (on all nodes) regarding
which mstance wins when there 1s an attempt to publish

US 7,404,006 B1

45

exclusive roles simultaneously from two different nodes. A
node could fail holding an exclusive role, and its instance may
win over an attempt to publish an exclusive role on another
node, when some higher-level software performs recovery.
Thus, mstead an unpublish can be done first from the node
that performs recovery to clean up any routes to the old
exclusive role on the failing node.

In some cases nodes may fail without first unpublishing
their roles. This results 1n nodes having stale routes to those
roles. This may be handled by an algorithm that removes stale
routes.

Creating and Destroying Tree Edges

Many builder operations involve creating and destroying,
tree edges. For example, when a Role Route Instance object 1s
added for a route over a link, 11 there 1s not already an Edge
object created over that link, one 1s created. Since the tree
needs to be bi-directional, whenever an Edge object 1s cre-
ated, the local node sends an edge create request message over
the link (the link the edge 1s over). This message specifies
simply the tree’s umique ID. When the node on the other end
of the link receives the edge create request, 1t simply creates
the edge 11 1t does not already have one.

Since an edge may be created to ensure the tree 1s bi-
directional, some edges will not have any routes to roles over
them. However, 1f node A and node B have bi-directional
edges to each other, at least one of those nodes will have a
route to the other node. Otherwise, the edge may be removed.
The edges mutually between two nodes may be removed once
neither of the nodes has a route to the other node. The remov-
ing of the edges may be accomplished by a simple protocol
where the two nodes both agree to remove their edges after
checking with each other to make sure there are no routes. In
another situation, an edge may be removed to break a cycle. In
that case, the breaking of the edge may be forced even if there
are routes over the edge.

According to one embodiment, both the unforced and
forced cases for edge removal may be handled as follows:

If node A 1s forcing the removal of an edge (insisting
removal even 11 node B has routes over that edge), the
edge 1s removed immediately. If node A 1s not forcing
the removal, the edge 1s not yet removed.

Node A sends an edge removal request message across the
link the edge goes over (or went over 1f edge was already
removed) to node B. The message specifies: 1) a unique
ID of the message, 2) whether the removal 1s forced, and
3) the unique ID of the tree.

Node B simply removes the edge if node A forced its
removal. Otherwise, 1f the removal 1s not forced, 1f node
B does not have any routes over the edge, node B
removes the edge, and sends a response to node A 1ndi-
cating removal of the edge 1s OK. But, 11 node B does
have a route over the edge, node B does not remove the
edge, but sends a response indicating that removal of the
edge 1s not OK. The response message 1n all these cases
specifies: 1) the same message 1D as the request, 2)
whether removal of the edge 1s OK, and 3) the unique ID
of the tree.

If removal was not forced, node A removes the edge 1f the
edge removal response indicates that i1t 1s OK to remove
the edge.

Bulk Publish

An addRoles API function may allow multiple roles to be
added and published at the same time. The bulk publish
facility may allow roles to be added on different trees 1n the
same bulk request. A bulk message including multiple builder
messages may be utilized to perform a bulk publish operation.
A bulk request message for bulk publish includes multiple

5

10

15

20

25

30

35

40

45

50

55

60

65

46

independent publish messages. The code that processes bulk
requests may unroll the bulk request and call the routine that
processes publish requests for each of the publish requests in
the bulk request message.

The following changes to the publish algorithm described
above may allow a bulk publish operation to be performed:

If a bulk operation i1s being performed, a bulk request
record 1s passed. The bulk request record holds different
bulk request messages that will be sent on each link.

I1 the bulk request record 1s non-null, then instead of for-
warding a publish request message on each of the vari-
ous links, the publish request message 1s added to each
bulk request message that corresponds to a link that the
publish request would have been forwarded on had 1t not
been part of a bulk publish.

Once the bulk processing code has called the process pub-
lish request for each publish message, 1t may simply send
cach bulk request message 1n the bulk request record on the
Link that corresponds to 1t. In a recursive manner, each node
that recetves a bulk request message over a link may perform
a bulk publish operation for each publish message 1n the bulk
request message, similarly as described above. Thus, each
publish message 1n the received bulk message may be pro-
cessed and added to a bulk request message for the particular
link the individual publish message would have been for-
warded on from that node, and the bulk request messages may
be sent over the corresponding links.

Link/Node Failure During Recovery

Sometimes the recovery process 1s not complete until the
recovery timeout has occurred. In such cases, the node per-
forming recovery does not know 1t has all the routes i1t needs
to ensure 1ts routing table 1s fully built until the recovery
timeout. However, if the node forwarding a recovery request
experiences a link failure on one of the links 1t forwarded the
recovery request, the node might not have received all the
recovery responses. This problem may be handled by having
any node that experienced such a link failure send back a
recovery response indicating link failure. This response 1s
sent back all the way to the node that originated the recovery.
Each node along the way marks the role as not-fully built 11 1t
has not received a response that allows 1t to declare otherwise
that recovery 1s complete. Then, 1f the node that originated
recovery gets any recovery lailure responses during the
recovery, 1t simply re-initiates the recovery.

Ensuring Efficient Routing to all Roles 1n a Local Realm

In one embodiment the router’s send API may support
restricting the send to just the roles 1 the local realm. This
send 1s supposed to reach all instances of the role 1n the local
realm. If the publish and recovery algorithms allowed a tree to
be built with the nodes 1n any realm not all on the same
fragment of the tree, a send that 1s restricted to a local realm
might have to be routed outside of that local realm to another
realm, and then back to the original realm 1n order to reach all
instances of a role 1n the local realm. This would defeat the
purpose of having realms. A send within the local realm
should be considerably more efficient, because nodes within
the local realm should be reachable with much lower latency,
and without wasting WAN bandwidth. Therefore, the builder
may ensure that, for every tree built, nodes within the same
realm are all on the same fragment of the tree, so that any node
in a realm can send a message to any other node 1n the same
realm without leaving that realm.

Such fragments could be formed 1n the following unlikely
but possible situation: A publish or recovery request message
goes Irom a node A 1n realm R to nodes outside of realm R,
and then returns to realm R reaching a node B 1n realm R
betore the same message goes from node A to node B without

US 7,404,006 B1

47

leaving realm R. This situation 1s not likely because the path
that goes outside of realm R to go from node A to node B
should have a sigmificantly higher latency than the path that
stays 1nside realm R. However, this situation could occur for
example 11 one or more nodes on the path that stays inside the
realm are overloaded and not able to forward the messages
fast enough.

This problem may be addressed with the following solu-
tion:

In both the publish request message and the recovery
request message, a list of realms the message has left
may be maintained.

When either a recovery request message or a publish mes-
sage 1s processed, the message may be checked to deter-
mine whether 1t previously left the current realm. It so,
the unique message 1D may be kept 1n a hash map.

When either a recovery request message or a publish mes-
sage 1s received, nstead of simply dropping the message
if 1t has been recerved before (Rule 1 of basic publish and
recovery algorithms described above), 11 the message
has not yet left the current realm, the message may be
processed 1f the hash map indicates that a message that
left the current realm and came back was previously
processed.

With this mechanism 1n place, the router can easily send to
only the instances of a role 1n a local realm by excluding a
send on any link that goes to a node 1n a remote realm. Thus,
the router may simply request the list of links that are routes
to a role and may then exclude any of the links that goes to a
remote realm.

Recovery for Sends Restricted to Local Realm

When the router 1s performing a send restricted to the local
realm, 1t 1s not necessary to be able to reach all instances of the
role, just the ones in the local realm. When doing recovery for
just the local realm, the recovery algorithm may employ an
additional restriction that recovery request messages are only
torwarded over links that go to other nodes 1n the local realm.
Also, since nodes in the local realm can be reached more
quickly than nodes throughout the cloud, the recovery tim-
cout for local realm recovery should be significantly smaller.

Recovery for Single Instance Sends

When doing a single instance send, the recovery algorithm
may terminate as soon as the node 1nitiating recovery has one
route to an 1nstance of that role, whether or not that instance
1s marked fully bult.

Determining Recovery Timeout

In some cases recovery 1s not done until the recovery tim-
cout has happened. The recovery timeout may be based upon
a maximum reasonable time for a recovery request message
to reach each instance of the role being recovered and come
back 1n the form of a recovery response along the same path.

According to one embodiment, 1n order to compute such a
timeout the following computations may be performed:

Average round-trip ping times along each link are main-
tained and updated on a regular basis.

For both publish request messages and recovery response
messages, a running total of round-trip times 1s main-
tained 1n the message. That 1s, the running total 1s incre-
mented by the current average round-trip time of the link
over which the message 1s about to be sent.

Each node maintains two lists of the N most recent total
times for publish and recovery messages. List A 1s for
messages that never crossed realm boundaries, and list B
1s Tor messages that did cross realm boundaries.

For local Realm recovery, the recovery timeout may be

computed as the maximum value 1n List A multiplied by a
multiplication factor (e.g., 3). For full recovery (to reach

10

15

20

25

30

35

40

45

50

55

60

65

48

instances throughout the cloud), the recovery timeout may be
computed as the maximum value 1n List B multiplied by a
multiplication factor (e.g., 3).

Motivations for this algorithm for computing recovery
times 1nclude the following:

The computation 1s based upon real times for messages to

be sent over the various links.

Using a suiliciently large history allows the algorithm to be
conservative, by being based upon the worst time 1n
multiple mstances.

By having the history be just the most recent N messages
processed, the system adjusts as performance changes.
The timeout becomes larger if ping times increase tem-
porarily. However, the timeouts don’t stay unfavorable
forever 1f they temporarily become large.

The multiplication factor attempts to account for the fact
that the recovery operation involves more local node
computation than a simple ping does.

In other embodiments, any of various other algorithms may
be used to compute timeouts. In one embodiment, a local hop
time may be computed as a running weighted average of local
ping times. In one embodiment, each ping atfects 10% of the
next computed local hop time and the previous local hop time
affects 90% of the next computed local hop time. The ping
rate may be configurable. In one embodiment, pings may be
performed once per minute. The local hop time may be pig-
gybacked on every builder message.

A global hop time may be computed based on the local hop
times. In one embodiment, the piggybacked local hop time
alfects 10% of the next computed global hop time, and the
previous global hop time affects 90% of the next computed
global hop time.

Timeouts may be computed as a function of the maximum
number of expected total remaining hops and the global hop
time.

Loss of Link Connecting to Another Realm

In one embodiment the link layer software may use the
node IDs of nodes 1n a realm to establish an ordering. For a
certain target valency number, N, each node may form links
with the N nodes that have the smallest node IDs larger then
their node ID. Within a realm, 2 hops should be sufficient to
perform local repair around a failure. Thus, the Spew Hops
setting o1 3 1n the basic publish/recovery algorithms should be
more than suificient.

However, the link layer may form links that connectrealms
differently, and only a few nodes within a realm may connect
two realms together. To address this problem, when a role
route becomes not fully built due to loss of a link connecting
to another realm, the role route 1s marked so that the publish/
recovery algorithms keep Spew Hops set to infinite until the
message leaves the realm.

Restricted Publish

In one embodiment the addRole() API function may allow
the user to restrict the extent that a role 1s published according
to:

No Publish

Publish only as far as the most immediate neighbor

Publish only within the local Realm

Publish unrestricted

Other Builder Operations

As noted above, trees are built primarily via the Publish and
Recovery algorithms. The following sections discuss other
builder operations.

Repointing a Route When a Role Moves

When anode grants and gives up arole mn areply to arouted
message, the router may nitiate the re-pointing of the role
back to the node that will ultimately recerve the reply granting

US 7,404,006 B1

49

the role given up. Re-pointing 1s considerably more efficient
than having the node that gives up the role 1nitiate an unpub-

1sh operation, followed by having the node that gets the role
initiate a publish operation. With re-pointing, only the nodes
on the way from the replying node to the recerving node need
to change their routes.

On every node that forwards the reply, the router may
simply call an mternal API function, repomtRole(), in the
builder, supplying:

The Tree ID (Duid)—The unique ID of the tree

Role Name (String)—The name of the role
Instance ID (Dwid)—The unique instance of the role being,
given up

Exclusive (Boolean)—Whether the role 1s exclusive

Link—The link that the router sent the reply

The builder may simply remove any Role Route Instance
that the local node had to the specified role instance and create
a new Role Route Instance as specified pointing along the
Link supplied.

When nodes fail along the path of the re-pointed role, the
node that sent the request will not receive the reply granting,
the role. However, the node will recerve a null reply that 1t can
use as an 1ndication of the need to recover the role that was
granted and lost.

Handling Cycles

The tree building algorithms described above do not guar-
antee that the routes have no cycles. The presence of cycles in
the routing tables has no effect on the routing of messages
because the router detects cycles of individual messages sent
and discards extraneous messages. The prevention of cycles
would require a very complex distributed building algorithm
that would likely impact performance. Moreover, typical use
of the T&R layer algorithms should not often result in cycles.

When the router detects that a message has cycled, the
router may call an internal breakRoute() API function of the
builder, speciiying:

Tree ID (Duid)}—The unique 1D of the tree the router was

routing a message that cycled

Role Name (String)—The name of the role that the mes-
sage was being routed to

Link (Link)—The link over which the extraneous message
came that caused the cycle

Message ID (Duid)—The unique ID of the message the
router was routing that cycled

Dead End (Boolean)—False 1n the case of handling cycles.
When true, this Boolean allows the breakroute() code to
be used to remove stale routes.

FI1G. 78 illustrates one embodiment of how the router and
the builder handle breaking a route to fix a cycle. As shown,
the following steps may be performed:

Step 1: Node A’s router sends amessage to node B, causing

the cycle.

Step 2: Node B’s router receives the message and detects
that receipt of that message causes a cycle.

Step 3: Node B’s router calls node B’s builder’s break-
route() method.

Step 4: Node B’s builder sends a break route request pro-
tocol message to node A’s builder (sent over the link
specified by node B’s router), and this break route
request message specifies the imnformation supplied by
node B’s router ('Tree 1D, Role Name, Message 1D).

Step 5: Node A’s builder calls node A’s router’s routeBro-
kenReply() method so that node A’s router can process
this case as though the last reply to the request that came
over the link to node A has been received. (This 1s done
since node A’s router 1s waiting for replies from node
B’s router for the message 1t sent).

5

10

15

20

25

30

35

40

45

50

55

60

65

50

Step 6: Node A’s builder determines a list of roles that have
routes over the edge of the tree from node A to node B.

Step 7: Node A’s builder generates reverse routes for each
of the roles determined 1n step 6. (Step 7 1s described 1n
detail below.)

Step 8: Node A’s builder removes all the role route
instances that go over the edge from node A to node B.
All roles besides the one that the router was sending the
message that caused the cycle are marked as not fully
built.

Step 9: Node A’s builder removes the edge from node A to
node B. The removal of the edge 1s forced so that node B
1s Torced to remove its corresponding edge. This causes
node B to remove any role route instances that go over
the edge from node B to node A, marking the corre-
sponding roles routes as not fully built.

Step 7 above creates reversed routes opposite to the direc-
tion that the message that cycled ran. This step tends to
prevent a cycle from being re-formed over the edge just
broken. In one embodiment the creation of reverse
routes (step 7) may be performed as follows:

Step 7a: Node A’s builder creates a reverse route protocol
message specitying: Tree ID, List of Role Names (from
Step 6), Message 1D of the router message that cycled.

Step 7b: Node A’s builder calls node A’s router specifying
the Message ID of the router message that cycled to get the
incoming link over which the router message was received.

Step 7c: If the incoming link determined 1n Step 7b 1s non
null, dummy role route instances are created (a new 1nstance
ID 1s used) over this incoming link for each role 1n the list of
roles to create a reverse route, and the reverse route message
1s sent over the mncoming link.

Step 7d: The node that recerves the reverse route message
loops to Step 7b to process it.

Reverse routes are created back to the node that sent the
cycling message, allowing the role that was mvolved 1n the
cycle to remain fully built on all the nodes that were 1n the
cycle. Some of these routes may not be necessary. It so, they
may be removed as stale routes (see below).

A mechanism that prevents nodes 1n a realm R from being
on different fragments of a given tree 1s discussed above. The
mechanism creates a cycle that will eventually need to be
broken. It 1s important not to break that cycle 1n such a way
that realm R becomes fragmented on the tree. In order to
ensure this, the router may perform the following:

For each message that the router sends, the router keeps
track in the message of the list of realms that the message
has left (not to be confused with a similar list kept 1n
publish and recovery response messages).

If amessage 1s found to have once left the current realm, 1ts
message 1D 1s placed in a hash map.

I1 the router recerves amessage that cycles and the message
never left the current realm and 1ts message ID 1s on the
hash map, do not perform break route processing. Sim-
ply discard the extraneous message that caused the cycle
and send back a null reply.

Although avoiding breaking the cycle causes the cycle to
persist, eventually the right node 1n the cycle will receive the
message and break the route. Also, due to the fact that latency
within a realm 1s significantly lower than outside a realm, the
cycle 1s more likely to occur so that 1t 1s favorable to break the
route.

Removing Stale Routes

When nodes fail while holding roles, other nodes may have
stale routes to those roles. The router detects a stale route
when it recetves a message being routed to a role, and 1t does
not have any route (even after invoking the builder if neces-

US 7,404,006 B1

51

sary) to the role, except over the link that the router received
the message. When the router detects a stale route, the router
calls an 1nternal breakRoute() API function of the builder,
speciiying:

Tree ID (Duid)—The unique 1D of the tree the router was
routing a message that cycled

Role Name (String)—The name of the role that the mes-
sage was being routed to

Link (Link)—The link over which the extraneous message
came that caused the cycle

Message 1D (Duid)—The unique ID of the message the
router was routing that cycled

Dead End (Boolean)—True 1s specified to indicate
removal of stale routes. (False would be specified to
remove cycles, as noted above.)

FI1G. 79 1llustrates one embodiment of how the router and
the builder handle breaking a stale route. As shown, the fol-
lowing steps may be performed to remove a stale route:

Step 1: Node A’s router sends a message to node B over a
stale route to node B.

Step 2: Node B’s router detects the stale route.

Step 3: Node B’s router calls node B’s builder’s break-
Route() method.

Step 4: Node B’s router sends a break route request proto-
col message to node A’s router (sent over the link speci-
fied by node B’s router), and this break route request
message specifies the information supplied by node B’s
router (Tree ID, Role Name, Message ID) and indicates
the break route request message 1s for stale route
removal (not handling cycles).

Step 5: Node A’s builder calls node A’s router’s routeBro-
kenReply() method, so that node A’s router can process
this case as though the last reply to the request that came
over the link to node A has been recerved. (This 1s done
since node A’s router 1s waiting for replies from node
B’s router for the message 1t sent).

Step 6: For the role specified 1n the break route request,
node B’s builder removes all role route instances for that
role over the edge of the tree from node A to node B
(Tfully built 1s not changed for the role). The edge 1s only
removed 1f 1t has no more routes. The removal 1s not
forced.

Handling Network Partitioning,

In some cases the network of nodes may become parti-
tioned. As used herein, a network 1s partitioned if there are at
least two nodes 1n the network, node A and node B, such that
there 1s no sequence of links starting from node A and con-
necting eventually to node B. In this situation the network has
essentially become separated into two (or more) groups of
nodes where nodes 1n one group cannot communicate with
nodes 1n another group. Partition boundaries do not necessar-
i1ly coincide with realm boundaries. However, two different
realms may be more likely to become partitioned than two
sections within a single realm.

After becoming partitioned the network may later become
un-partitioned, 1.e., the partitioning problem may become
corrected. The network may become un-partitioned when a
network link 1s added or repaired. In one embodiment the
system may employ a method for determining when the net-
work has become un-partitioned, 1.e., for determining that
partitioning of the network has been repaired. It 1s a neces-
sary, but not suificient, condition for a link to have been added
or repaired for a network to become un-partitioned. Thus,
logic for determining whether the network has become un-
partitioned may execute in response to a link being added.

If the system determines that the network has become
un-partitioned, the system may cause at least a subset of

10

15

20

25

30

35

40

45

50

55

60

65

52

nodes 1n the network to perform recovery operations to retlect
the repair of the partitioning. Before the network 1s un-parti-
tioned, a role route of a particular tree may be marked fully
built on a node 1n one of the partitions, meaning that no
recovery 1s needed at that local node 1n order to eventually
route to all instances of that particular role (at least the
instances that are reachable 1n the current partition). How-
ever, alter the network 1s un-partitioned, there may be new
role instances that are now reachable on nodes that were
previously 1naccessible. Thus, when the network becomes
un-partitioned (or partially unpartitioned), trees may need to
be rebuilt on various nodes so that routes are built to the new
role 1instances that are now reachable.

Suppose a node X (with node ID Dx) inrealm Rx detects an
un-partition caused by adding a link L and that this link L
connects node X tonode Y (with node ID Dy) on the opposite
end of Link L. When such an un-partition occurs, node X may
1ssue an un-partition event, specified by <Dx, Rx, Dy> to all
nodes that node X canreach. The node X may send a message
specifying the event <Dx, Rx, Dy> to all nodes except for
nodes now reachable over the newly added link.

Each node that recetves an un-partition event message may
maintain a list of such un-partition events. The order of each
node’s list 1s not particularly important. However, maintain-
ing an order may allow each node to keep track of which
un-partition events have been handled for any particular role.
Thus, each node may maintain a numbered list of the un-
partition events in the order they are recerved. For each role of
a tree, the local node may also keep track of the highest
numbered un-partition event (in the list) for which recovery
has been performed.

IT a send operation 1s to be performed to send a message to
a particular role, then even 11 the role 1s currently marked fully
built, the T&R layer may check to determine whether there
are new un-partition events added to the list since the last time
a recovery operation was performed for the role. I so, a
recovery operation may be performed for each such un-par-
tition event.

FIG. 80 illustrates how a Node A may perform recovery for
arole, according to one embodiment. In this example, Node X
sent the partition event message <Dx, Rx, Dy> to all nodes 1n
its old partition 1n response to determining that the link 1llus-
trated between Node X and Node Y caused the network to
become un-partitioned, as shown 1n steps 1 and 2. Node A
stored this partition event along with others. Node A then
determines that 1t needs to mnitiate a recovery operation to for
a role which has not yet been recovered up to this particular
partition event.

As shown 1n step 3, to perform recovery that 1s made
possible by the un-partition identified by <Dx, Rx, Dy>, a
directed recovery variation of the tree recovery algorithm
may be utilized in which Node A sends a tree recovery mes-
sage directly to node X. As shown 1n step 4, the directed
recovery request may be sent from Node X to Node Y. The
normal recovery algorithm as described above may then take
over ifrom NodeY. Thus, 1n one embodiment the routing of the
directed recovery request may be performed as follows:

Step 1: ITf Rx 1s a remote realm, the directed recovery
request message 1s first routed towards the exclusive role
on the realm tree (see below) whose role name 1s 1den-
tified by the string representation of the Realm whose ID
1s Rx. Each time the directed recovery request message
1s received, 11 the receiving node 1s already 1n the desti-
nation realm (realm with ID Rx), Step 2 of the routing 1s
started.

US 7,404,006 B1

53

Step 2: Once 1n the destination realm, the recovery request
message 1s routed to an “N” role on the node tree (see
below) whose Tree ID 15 Dx.

When node X recerves the directed recovery request, node

X forwards the request message across the link that caused the
un-partition (the link that goes to node Y). Once the directed
recovery request reaches node Y, the normal recovery algo-
rithm may resume so that the recovery request message 1s
routed to instances of the role on the opposite side of the (o0ld)
partition. The tree may then be rebuilt when nodes process the
reply (or replies) to the directed recovery request message as
the reply 1s forwarded back, 1n the same manner as described
above with reference to the recovery algorithm.

The above description refers to a realm tree and a node tree.
These are referred to herein as utility trees, 1.e., trees which
allow the T&R layer to perform various functions (such as
handling network un-partitioning).

A node tree 1s a tree that allows any node to send a message
to all nodes that can be currently reached. The tree may be
identified by a well-known ID, D, which all nodes 1n the entire
network know about. The tree may have a shared role named
“N”’, where each node 1n the network adds a local instance of
the shared role “N”.

In some cases a per-node tree may also be useful. A per-
node tree for a given node 1n a given realm may enable
messages to be optimally routed to the node within the realm.
The per-node tree may have the following characteristics:

The tree ID 1s the node ID of the node that this tree 1s for.

The node that this tree 1s for adds an exclusive “N” role to
that tree.

When the “N” role 1s added, it 1s only published within the
local realm.

A realm tree 1s a tree that allows any node to route a
message to a node 1n any particular realm. This allows local
realm routing (perhaps using the per-node trees) once the
message has been routed to the realm. The realm tree may
have a well-known Tree ID.

Detecting Un-Partitioning

In various embodiments the system may use any technique
or algorithm to determine that the network has become un-
partitioned. This section describes one exemplary algorithm
that may be used for this purpose.

A partition-coloring algorithm may operate to ensure that
when partitions occur, the nodes 1n each partition get a dii-
ferent value referred to herein as a color. Thus, when a link 1s
added, 1t can easily be determined if a possible un-partition-
ing has occurred, by comparing colors on both sides of the
link.

The “color” may be a logical color or value, represented by
a unique ID that 1s created on a node when 1t has a failure of
a link. The use of unique IDs ensures that partitions are
uniquely colored. Along with the color 1D C, the node may
also reads 1ts Lamport Logical Clock, obtaining some value,
L. Then, the pair <C, L> may be sent to all nodes 1n the local
partition.

When each node 1s booted the node may have an undefined
partition color. A node with an undefined color may simply
accept any proposed new color <C, L>. However, a node that
already has some color, <C0, LO> may only accept the pro-
posednew colori1f LO<L, orif LO==L, and CO<C. Even if a set
of nodes 1s being partitioned from the rest of the network 1n
multiple places (1.e., multiple nodes are losing links at about
the same time), this partition-coloring algorithm causes the
nodes 1n the partition to converge on the same color eventu-
ally.

Assuming the above-described partition-coloring algo-
rithm 1s utilized, an un-partition caused when a link 1s added

10

15

20

25

30

35

40

45

50

55

60

65

54

can be detected as follows. If either of the nodes on the ends
of a link has an undefined color or if both nodes have the same
color, there has not been an un-partition. (For example, anode
may have simply booted or re-booted). Otherwise, 11 the two
nodes have different colors, an un-partition has been detected.

Once an un-partition has been discovered, the winning
color (based upon partition coloring) may be propagated so
that all nodes 1n the new partition converge to the same color.

Since a network may have been partitioned into more
pieces than two, this partition may later join with another
partition when another un-partition occurs.

Node failures may be manifested as link failures on their
neighbor nodes. Thus, the basic partition-coloring algorithm
described above may run on each neighbor node when a node
fails. In one embodiment an assumption may be made that
nodes 1n a local subnet remain fully connected and do not
become partitioned. If this assumption 1s made, then the par-
tition-coloring algorithm only needs to be run when links
spanmng subnets are lost. Also, detection and handling of
un-partitioning only needs to run when a link spanning sub-
nets 1s added. This assumption may decrease the overhead of
partition/un-partition handling.

Support for Layers Above the T&R Layer

Layers above the T&R layer may need to be able to detect
when a partition has occurred, e.g., to restrict access to a data
object. For example, a strongly coherent distributed file sys-
tem may not allow a node on the side of a losing partition (a
side with less than a majority quorum of persistent replicas of
the object) to do writes, and may not even allow reads (de-
pending upon how strict the coherency). Even with a loose
coherency distributed file system, 1t may be useful to detect
when a partition or an un-partition occurs, in order to perform
conflict resolution.

To support such higher layers, 1t may be useful to have an
interface which allows listeners to receive events for parti-
tions and un-partitions:

When a partition may have occurred—This event can be
posted when the node changes color via the partition-
coloring algorithm.

When an un-partition occurs—This event can be posted
when the system detects that a link has been added that
un-partitions the network.

Data Storage Application

In various embodiments, the system described above may
be utilized to perform any of various kinds of applications. As
one example, the system may be utilized to perform distrib-
uted data storage such that data 1s distributed across various
nodes 110 1n the peer-to-peer network 100. However, 1n vari-
ous embodiments any of various kinds of client application
soltware 128 may utilize the T&R layer software 130 to send
and receive messages for any desired purpose according to
the methods described above.

It 1s noted that various embodiments may further include
receiving, sending or storing instructions and/or data imple-
mented 1 accordance with the foregoing description upon a
carrier medium. Generally speaking, a carrier medium may
include storage media or memory media such as magnetic or
optical media, e.g., disk or CD-ROM, volatile or non-volatile
media such as RAM (e.g. SDRAM, DDR SDRAM,
RDRAM, SRAM, etc.), ROM, etc. as well as transmission
media or signals such as electrical, electromagnetic, or digital
signals, conveyed via a communication medium such as net-
work and/or a wireless link.

Although the embodiments above have been described 1n
considerable detail, numerous variations and modifications

will become apparent to those skilled in the art once the above

US 7,404,006 B1
56

the second peer node sending the first message to a peer
node 1n the first path via a first link specified by the first
routing mformation stored on the second peer node 1n

3

disclosure 1s fully appreciated. It 1s intended that the follow-
ing claims be mterpreted to embrace all such variations and
modifications.

What 1s claimed 1s:

order to route the first message to the first instance of the

1. A method comprising: 5 first network address; and
a first peer node 1 a peer-to-peer (P2P) network that the second peer node sending the first message to a peer
includes a plurality ol peer nodes creating a first instance node 1n the second path via a second link specified by the
of a first network address, wherein creating the first second routing information stored on the second peer
instance of the first network address comprises the first node 1n order to route the first message to the second
peer node mitiating propagation of a first publish mes- 10 instance of the first network address, wherein the second
sage, wherein each respective peer node of a first subset link 1s different than the first link.
of peer nodes 1n the P2P network receives the first pub- 4. The method of claim 1,
lish message via a respective link and stores respective wherein the first routing information stored by the second
first routing 1information 1n response to the first publish peer node 1n response to the first publish message rep-
message, wherein the respective first routing informa- 15 resents a first edge of a tree associated with the first
tion stored by each respective peer node of the first network address wherein the first edge of the tree is
subset of peer nodes specifies that messages addressed mapped to the link by which the second peer node
to the first network address should be routed from the received the first publish message;
respective peer node to the first mstance of the first wherein the second routing information stored by the sec-
network address via the link by which the respective 20 ond peer node in response to the second publish message
peer node recerved the first publish message, wherein represents a second edge of the tree associated with the
the first subset of peer nodes 1ncludes a second peer first network address, wherein the second edge of the
node; tree 1s mapped to the link by which the second peer node
a third peer node 1 the P2P network creating a second received the second publish message.
instance of the first network address, wherein creating 25 5. The method of claim 1,
the second instance of the first network address com- wherein each of the plurahty of peer nodes 1n the P2P
prises the third peer node initiating propagation of a network 1s operable to route messages;
second publish message, wherein each respective peer wherein the first message 1s routed to the first instance of
node of a second subset of peer nodes 1n the P2P network the first network address on the first peer node and the
receives the second publish message viaarespective link 30 second 1nstance of the first network address on the third
and stores respective second routing information 1n peer node by routing the first message 1n a peer-to-peer
response to the second publish message, wherein the manner without using centralized router nodes.
respective second routing information stored by each 6. The method of claim 1,
respective peer node of the second subset of peer nodes wherein the first peer node has links to a subset of the other
specifies that messages addressed to the first network 35 peer nodes 1n the P2P network;
address should be routed from the respective peer node wherein the first peer node mitiating propagation of the
to the second instance of the first network address via the first publish message comprises the first peer node send-
link by which the respective peer node received the ing the first publish message to each peer node to which
second publish message, wherein the second subset of the first peer node has a link.
peer nodes 1includes the second peer node; and 40 7. The method of claim 1,
the second peer node sending a first message addressed to wherein the peer nodes of the first subset of peer nodes
the first network address; receiving the first publish message and storing respec-
wherein the first message 1s delivered to the first instance of tive first routing information in response to the first
the first network address on the first peer node by routing publish message comprises:
the first message from the second peer node to the first 45 a fourth peer node recerving the first publish message via a
peer node via a first path consisting of one or more of the first link and storing routing information on the fourth
peer nodes 1n the first subset of peer nodes, wherein each peer node specitying that messages addressed to the first
respective peer node in the first path routes the first network address should be routed from the fourth peer
message toward the first peer node via the link specified node to the first instance of the first network address via
by the respective first routing information stored on the 50 the first link;
respective peer node; the fourth peer node propagating the first publish message
wherein the first message 1s delivered to the second to a fifth peer node via a second link; and
instance of the first network address on the third peer the fifth peer node storing routing information on the fifth
node by routing the first message from the second peer peer node specifying that messages addressed to the first
node to the third peer node via a second path consisting 55 network address should be routed from the fifth peer
of one or more of the peer nodes 1n the second subset of node to the first instance of the first network address via
peer nodes, wherein each respective peer node 1n the the second link.
second path routes the first message toward the third 8. The method of claim 1,
peer node via the link specified by the respective second wherein the respective first routing information stored by
routing information stored on the respective peer node. 60 cach respective peer node of the first subset of peer
2. The method of claim 1, nodes directly specifies a link by which the respective
wherein the first publish message 1s propagated through the peer node should route messages to the first instance of
P2P network concurrently with the second publish mes- the first network address but does not directly specily
sage. that the first instance of the first network address 1s
3. The method of claim 1, 65 associated with the first peer node.

wherein the second peer node sending the first message
CoOmprises:

9. A computer-readable storage medium storing program

instructions executable to implement a method comprising:

US 7,404,006 B1

S7

a first peer node 1n a peer-to-peer (P2P) network that
includes a plurality of peer nodes creating a first instance
of a first network address, wherein creating the first
instance of the first network address comprises the first
peer node mitiating propagation of a first publish mes-
sage, wherein each respective peer node of a first subset
of peer nodes 1n the P2P network receives the first pub-
lish message via a respective link and stores respective
first routing information in response to the first publish
message, wherein the respective first routing informa-
tion stored by each respective peer node of the first
subset of peer nodes specifies that messages addressed
to the first network address should be routed from the
respective peer node to the first instance of the first
network address via the link by which the respective
peer node recerved the first publish message, wherein
the first subset of peer nodes 1ncludes a second peer
node; operation to publish a first instance of a first net-
work address:

a third peer node i the P2P network creating a second
instance of the first network address, wherein creating
the second instance of the first network address com-
prises the third peer node initiating propagation of a
second publish message, wherein each respective peer
node of a second subset of peer nodes 1n the P2P network
receives the second publish message via arespective link
and stores respective second routing information 1n
response to the second publish message, wherein the
respective second routing information stored by each
respective peer node of the second subset of peer nodes
specifies that messages addressed to the first network
address should be routed from the respective peer node
to the second instance of the first network address via the
link by which the respective peer node received the
second publish message, wherein the second subset of
peer nodes includes the second peer node; and operation
to publish a second 1nstance of the first network address;
the second peer node sending a first message addressed
to the first network address:

wherein the first message 1s delivered to the first instance of
the first network address on the first peer node by routing,
the first message from the second peer node to the first
peer node via a first path consisting of one or more of the
peer nodes 1n the first subset of peer nodes, wherein each
respective peer node 1n the first path routes the first
message toward the first peer node via the link specified
by the respective first routing information stored on the
respective peer node;

wherein the first message 1s delivered to the second
instance of the first network address on the third peer
node by routing the first message from the second peer
node to the third peer node via a second path consisting
of one or more of the peer nodes 1n the second subset of
peer nodes, wherein each respective peer node 1n the
second path routes the first message toward the third
peer node via the link specified by the respective second
routing information stored on the respective peer node.

10. The computer-readable storage medium of claim 9,
wherein the second peer node sending the first message com-
prises the second peer node sending the first message to a peer
node 1n the first path via a first link specified by the first
routing information stored on the second peer node in order to
route the first, message to the first instance of the first network
address and sending the first message to a peer node 1n the
second path via a second link specified by the second routing
information stored on the second peer node in order to route

10

15

20

25

30

35

40

45

50

55

60

65

58

the first message to the second instance of the first network
address, wherein the second link 1s different than the first link.

11. The computer-storage medium of claim 9, wherein the
first routing information stored by the second peer node 1n
response to the first publish message represents a first edge of
a tree associated with the first network address, wherein the
first edge of the tree 1s mapped to the link by which the second
peer node recerved the first publish message; wherein the
second routing information stored by the second peer node 1n
response to the second publish message represents a second
edge of the tree associated with the first network address,
wherein the second edge of the tree 1s mapped to the link by
which the second peer node recerved the second publish mes-
sage.

12. The computer-readable storage medium of claim 9,
wherein the first message 1s routed to the first instance of the
first network address on the first peer node and the second
instance of the first network address on the third peer node by
routing the first message 1 a peer-to-peer manner without
using centralized router nodes.

13. The computer-readable storage medium of claim 9,
wherein the first peer node has links to a subset of the other
peer nodes 1n the P2P network; wherein the first peer node
initiating propagation of the first publish message comprises
the first peer node sending the first publish message to each
peer node to which the first peer node has a link.

14. The computer-readable storage medium of claim 9,
wherein the peer nodes of the first subset of peer nodes receiv-
ing the first publish message and storing respective first rout-
ing information 1n response to the first publish message com-
prises: a fourth peer node recerving the first publish message
via a {irst link and storing routing information on the fourth
peer node specilying that messages addressed to the first
network address should be routed from the fourth peer node to
the first instance of the first network address via the first link;
the fourth peer node propagating the first publish message to
a fifth peer node via a second link; and the fifth peer node
storing routing information on the fifth peer node specitying
that messages addressed to the first network address should be
routed from the fifth peer node to the first instance of the first
network address via the second link.

15. The computer-readable memory medium of claim 9,

wherein the respective first routing information stored by
cach respective peer node of the first subset of peer
nodes directly specifies a link by which the respective
peer node should route messages to the first instance of
the first network address but does not directly specily
that the first instance of the first network address 1s
associated with the first peer node.

16. A system comprising:

a plurality of peer nodes that communicate to form a peer-
to-peer (P2P) network;

wherein the peer nodes include memory that stores pro-
gram 1nstructions executable to implement:

a first peer node 1n the plurality of nodes creating a first
instance of a first network address, wherein creating the
first instance of the first network address comprises the
first peer node 1nitiating propagation of a first publish
message, wherein each respective peer node of a first
subset of peer nodes 1n the P2P network recetves the first
publish message via a respective link and stores respec-
tive first routing information in response to the first
publish message, wherein the respective first routing
information stored by each respective peer node of the
first subset of peer nodes specifies that messages
addressed to the first network address should be routed
from the respective peer node to the first instance of the

US 7,404,006 B1

59

firstnetwork address via the link by which the respective
peer node received the first publish message, wherein
the first subset of peer nodes 1ncludes a second peer
node;

a third peer node 1n the plurality of nodes creating a second
instance of the first network address, wherein creating
the second instance of the first network address com-
prises the third peer node initiating propagation of a
second publish message, wherein each respective peer
node of a second subset of peer nodes 1n the P2P network
receives the second publish message via arespective link
and stores respective second routing information 1n
response to the second publish message, wherein the
respective second routing information stored by each
respective peer node of the second subset of peer nodes
specifies that messages addressed to the first network
address should be routed from the respective peer node
to the second instance of the first network address via the
link by which the respective peer node received the
second publish message, wherein the second subset of
peer nodes includes the second peer node; and

the second peer node sending a first message addressed to
the first network address;

wherein the first message 1s delivered to the first instance of
the first network address on the first peer node by routing
the first message from the second peer node to the first
peer node via a first path consisting of one or more of the
peer nodes 1n the first subset of peer nodes, wherein each
respective peer node in the first path routes the first
message toward the first peer node via the link specified
by the respective first routing information stored on the
respective peer node;

wherein the first message 1s delivered to the second
instance of the first network address on the third peer
node by routing the first message from the second peer
node to the third peer node via a second path consisting
of one or more of the peer nodes 1n the second subset of
peer nodes, wherein each respective peer node 1n the

5

10

15

20

25

30

35

60

second path routes the first message toward the third
peer node via the link specified by the respective second
routing information stored on the respective peer node.

17. The system of claim 16,

wherein the second peer node sending the first message
comprises the second peer node sending the first mes-
sage to a peer node 1 the first path via a first link
specified by the first routing information stored on the
second peer node 1n order to route the first message to the
first instance of the first network address and sending the
first message to a peer node 1n the second path via a
second link specified by the second routing information
stored on the second peer node 1n order to route the first
message to the second instance of the first network
address, wherein the second link 1s different than the first
link.

18. The system of claim 16,

wherein the first message 1s routed to the first instance of
the first network address on the first peer node and the
second 1nstance of the first network address on the third
peer node by routing the first message 1n a peer-to-peer
manner without using centralized router nodes.

19. The system of claim 16,

wherein the first peer node has links to a subset of the other
peer nodes 1n the P2P network;

wherein the first peer node 1nitiating propagation of the
first publish message comprises the first peer node send-
ing the first publish message to each peer node to which
the first peer node has a link.

20. The system of claim 16,

wherein the respective first routing information stored by
cach respective peer node of the first subset of peer
nodes directly specifies a link by which the respective
peer node should route messages to the first instance of
the first network address but does not directly specily
that the first instance of the first network address 1s
associated with the first peer node.

¥ ¥ H ¥ H

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,404,006 Bl Page 1 of 1
APPLICATION NO. : 10/403564

DATED : July 22, 2008

INVENTOR(S) . Gregory L. Slaughter et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In column 56, line 16 delete “network address wherein the first” and insert
-- network address, wherein the first --, therefor.

Signed and Sealed this

Second Day of December, 2008

hguo-

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

