12 United States Patent
Sathaye

US007395416B1

US 7,395,416 B1
Jul. 1, 2008

(10) Patent No.:
45) Date of Patent:

(54) COMPUTER PROCESSING SYSTEM
EMPLOYING AN INSTRUCTION REORDER
BUFFER

(75) Inventor: Sumedh W. Sathaye, Cary, NC (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by 114 days.

(21) Appl. No.: 11/531,042

(22) Filed: Sep. 12, 2006
(51) Int.CL
GO6F 9/30 (2006.01)
(52) US.CL ... 712/218;°712/43;7712/229
(58) Field of Classification Search 712/43,

712/218, 229
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,112,019 A * 8/2000 Chamdanietal. 712/214
6,311,261 B1* 10/2001 Chamdanietal. 712/23
7,155,600 B2* 12/2006 Burkyetal. 712/229
2005/0050303 Al1* 3/2005 Rosneretal. 712/218
2005/0071613 Al1* 3/2005 DeSylvaetal. 712/227
OTHER PUBLICATIONS

Definition of “host system™ from Wikipedia.org, accessed Mar. 16,
2008.*

pid r%%%%%%@ﬁﬁﬁﬁﬂ
I RN IR NN NN SIS
I e R A n S| s SIS S s]S S
s | OO0SNNNNNE--------—-- | DATA
INSTRUCTION MANAGEMENT| | OO NN NNNSNEN&------ -~ MEMCRY 1
COPY OF AND STATEMACHNES | 1 T &
TRACE A I ' DOSNSSSSNENNENDE
X TR _ =L SENEENNEERENE
fice |\ NN
0 o g TR S X N IR A = =
%t % %ﬁ-gfg.; ’:%& N N Q%T\HR\%&W“ \%\;% %%
& ~OJ0SSEE
" COPY OF O0SNNENSNENE
TRACE B nsTReToN HaveavenT] | DO SESNNENNNEN
A STATEMACHRES [+ OO SNENEEE-—--—--—————1 -{ DATA
p A WEEEEEEEEEEEE@ ------ = MEMORY 2
B W Tn T [[[S S]] s S S S [S]s
CORE B O HEEBEENECHEBEEEE
NEXT-TRACE PREDICTION

Definition of “computer” from Wikipedia.org, accessed Mar. 16,
2008.*

Gurindar S. Sohi, Instruction Issue Logic for High-Performance,
Interruptible, Multiple Functional Unit, Pipelined Computers, IEEE
Transactions on Computers, vol. 39, Mar. 1990, pp. 349-359.

[.eenstra et al., A 1.8-GHz Instruction Window Buffer for an Out-of
Order Microprocessor Core, IEEE Journal of Solid-State Circuits,
Vo. 36, No. 11, Nov. 2001, pp. 1628-1635.

* cited by examiner

Primary Examiner—Richard Ellis
(74) Attorney, Agent, or Firm—Cantor Colburn LLP; Alison
D. Mortinger

(57) ABSTRACT

A method and a system for operating a plurality of processors
that each includes an execution pipeline for processing
dependence chains, the method comprising: configuring the
plurality of processors to execute the dependence chains on
execution pipelines; implementing a Super Re-Order Butfer
(SuperROB) 1in which received instructions are re-ordered
alter out-of-order execution when at least one of the plurality
of processors 1s 1n an Instruction Level Parallelism (ILP)
mode and at least one of the plurality of processors has a
Thread Level Parallelism (TLP) core; detecting an imbalance
in a dispatch of instructions of a first dependence chain com-
pared to a dispatch of instructions of a second dependence
chain with respect to dependence chain priority; determining
a source of the imbalance; and activating the ILP mode when
the source of the imbalance has been determined.

18 Claims, 12 Drawing Sheets

NEXT-TRACE PREDICTION

)

CORE A

Z)%

%1%

%1%
Z\%

HiN[EIE|Nn

N - DATA
MENORY 1

#\ B 21 %17
w2 Z) %)
A0
A A
2%z %)%

g

-0000000+

%
%
%

¥

NEEEE
NENEEEF

CEERLEEFETTN

")
-

o]
-

#Zl%|
A

Z %)
%17

NEEEEN

%

[,

U OO OO0

N

—

N

]
Yo
9777

N
3

ﬁ
oE-

o
% S

Z
]
%

NOT AYAILABLE IN TLP)

RNRRRNNY

-

%%

.
a0

R Izlzlzlz

DR

IR
PN

RN

ey

")
Ny

R

I.'l. = H:‘.M:‘-\Hb'n R-k\'\.
.

-1
1t
1
AT
e

%099

K O
F
[

|}| T I{I

e
%%
QAP B e

[l

mlzlzlzlvlzlzlzlzlzlZ
TRACEE Enmlz|zlzlzlzlzlzlzlzl %

OO0 BEBEBRBe———-—--—---1 | DATA
R I Y T T [t [[]]] vENoRY 2|
Wninlzzlzlzlzlz]
EnlnlzlzlzlzizzElzlzlz]z]z
LORE B el |m 7|zl zl ezl Zl sl z] %] %] 2
NEXT-TRACE PREDICTICN COHEREMCE
FABRIC

!

US 7,395,416 B1

U.S. Patent

LOAD
STRU TIONS

IIIlIl.ll._lF

AH HH H.

H D

S S-—,
—1

o AL UL

T\O

NST

FIG. T

US 7,395,416 B1

Sheet 2 of 12

Jul. 1, 2008

U.S. Patent

A¥A N\ 7\ N\ \

I.II-...__...

LOAD
INSTRUCTIONS

FlG. 2

U.S. Patent Jul. 1, 2008 Sheet 3 of 12 US 7,395,416 B1

Z
w

7
0ADS

ST

LT
AN

W/ZZZZ

STORE

FlG. 5

U.S. Patent Jul. 1, 2008 Sheet 4 of 12 US 7,395,416 B1

TLP CHIP

40

TLP & ILP CHIP

47

44
I | ||||||

US 7,395,416 B1

G Ol
: 0000000000000
E LT BT 0
g E IIIIIII %zmzzmmzzmmm m..TD_u_H_D_u_H_.
W - g NININININININI.
S LR R R R R T] 2 oo
.

U.S. Patent

US 7,395,416 B1

Sheet 6 of 12

Jul. 1, 2008

U.S. Patent

%ﬂ@ﬂﬂﬂﬂﬂﬂ%ﬂ%
 NONN =~ ——————- @Hﬂﬂﬂﬂmmﬂ
D -00000g
. NININININININ NN
0L~ NSNS NSNS
H|S[E
a\\\x , ,/ﬂ//ﬂ/ﬁﬁ/wf _
00 7 Nmo%@%m
/ W\ | ///,,,, ,,,,,/Mf _,,,,M ,,,,,/M,,
Z AR w WW
M.UIZ&!H!W% I
NISISINININININININININ
OOOOOC
[ASONIN = ——————— NSNS
L -0OO0ooOl
7 sIn[s|S|SIS|S|S)S]
00000 DOC
N[S|S]
7
o9

9 ol

NN

AV

N

/

v

JLIL
NN
NN
N
NN

ﬂﬂ

-
f E
—
.

DDDDDF

et ST EEEE

|

OWAN

NI

Q9

—
an
m /.)l
'
Th o Oliav
n INBBHO) NOLLOIAT4d I0VHL-LXN
0 i e o [T 300
2G| Z|a)z Z|Z1Z1ZInne
A A H L m
| ANONIN === ———- g) o A o o | O
. VIV P — -oooooooog mYHHHHBLEE
m A) 9 IOVYL
2 &m&m&&&&&&mmn
> TN
& g 7 T O o e
1 e E ST “ ““ “ \““
P Trire SRENEaameEzaanan
- z @ @ @ z @ _u _H_l." A T I T A LT VI T I T T
= NININININININIE v IOYY]
- NININININININIEn m
[T AHONAN [~ === ——~ NINISINININININININ NN
TV — ooooooonon rHHHEUHUL=E
NININININININININIS|HINE
NININININININISININIEI.
NINININIEIN. V 3400

NOILOI0Hdd J0vdL-LXAN

U.S. Patent

U.S. Patent Jul. 1, 2008 Sheet 8 of 12 US 7,395,416 B1

—h-
_-..

DATA
MEMORY 1

DATA
MEMORY 2

AN
A E S
/////////////
7////////////
7/////////////
G|
| 00

I I
o S |
I : I N i
l% I% A
0 ! 7 zlzl 10
o8 e a2 aa' &
a8 aal—4 oa.m
'AVA;V'A W ;VAVA';'A
oooop— | ool
aaamzz///////////// ZIZI1ZI|Z1Z |21 &
vlzlglzlelzlz)| s V/
;;;/;;;
05800000 £ —00055000
/'/ //// /////PA Q)
Cooooooe-—emoponoel |
0000 —
S a1 /22222244117 | —— n
A AR — !
Y ED ST = .| (O
1| [A D= O
= 1182 1 |25|| 7
=2 [|£=
[= \\\\\\\\\\\ ==\ U
=0 |32 I =2|| 0 =
3 Q/ 2~ = L1 8
|

TRACE A

NSANENSNNNNNNNNNNSN

NEXT-TRACE PREDICTION

TRACE B

COPY
COPY

VAV I AV A A
AV Iy a4
a1 v i ras
TS
GG EAPaAZdrEN
GREGasasraeN
44'4’4’4‘
AN AV VYA
AZvasusean
LA AEEAZEN
AT
I BEAEEEN
A AV LA
YAvYavat
AV IV Y AN
YAV A AN

R“E

J J 1

\\

NEANNAENENNNNNNNNN
ER“RWR\EQERNR“E\

\uaunum\na

SANRNSENSNSNSNANNNSNS
H\Eh“h“ﬂ\

NNSSNSENSSNNNNNNNNS

US 7,395,416 B1

Sheet 9 of 12

Jul. 1, 2008

U.S. Patent

S
I_
=
-,

o -
1
-

o 9l
N N BN
N N BN

07314 304108 N N BN
INO NI SSTHAQY N IlI.I.n“n.n
JHL NI ¥1¥a SATOH 7 T ,,,,,mfw

NOILONYLSNI OIS Y —= — TR

AT

SNOLLONHLSNI NENE —

A9 030NA0Yd SINTYA Al
INA0Yd S e
- “.- -~ YIS

T

m./_o:%%mz TTTTTT

Ad QINNSNOD SANTVA — TTTTTT
115E0EN

1150EEE

115EEEN

JWYN QLT LHOYY SHIFANN AYLNT 430NA0¥d
O 13941 AGIN/938 J0HNOS AYINA ¥3d
G119 9¥74 SNLYLS

1IN0ILNO WNLIY FWOILNO AILI3XT)
S41Voldddd d1di1-¢ HONVYd

U.S. Patent

REGISTER FILE

[CACHE FETCH DECODE SSH
ue
1

NN
M
NNNN

//
/
//
/

NN
=
ANNAN

|
/|
/|

superROB

AN
NN

AN

—~
==
NN
=

AN

]

NN

Jul. 1, 2008 Sheet 10 of 12

. I

- -

<L <L

- -

- -
L1l D) Lt e
— e —)
_—D L1l _) L1l
- - - -
> - -,
La | <1

F
A

CODE SSUE

CACHE FETCH ﬂ

US 7,395,416 B1

FIG. 10

REGISTER FILE

U.S. Patent

REGISTER FILE

NEXT-TRACE PREDICTION

Jul. 1, 2008 Sheet 11 of 12

Ll Ll

i i

- -

s s

- -

- -
Ll) Ll P
— /D — /)
& & & &
= 2 I = 2

J

Ll Ll

))

D <

78, 8.

Ll Ll

2 2

- -

- D

Ll Ll

- -

= ;

- -

— —

Ll Ll

L L

E

|/

‘

AAV VI A4V VYL
AVY Y AAL VYV VY A,

AHEEEHHHEEE'
ﬂﬂﬂﬂﬂ!ﬂﬂﬁ?!

‘

@
ﬁ

NNNSSANNNNSSAENN
ANNNSAREANNNNNSAN
SEENNNNSAANNNNNAS
SENNNNSSERNNNAS
SENNNNNSANN
ANNNNNN

ENNN

INENNNN
‘nhhhﬂﬂ

‘ER\\LH
NNNNSSAENN
“lk“\\\hk‘
INSEENNNNSNEEN
NNEANNNNNAENS

TRACE B

-
nﬂzzgm
T
pEE A
Ty

US 7,395,416 B1

FIG. 1

US 7,395,416 B1

Sheet 12 of 12

Jul. 1, 2008

U.S. Patent

FHIVIQ

JHIVIA

NNENS)

11NOX3

<l ol

1531

—
NPENAL

110X

3100940

o —

HJ1 44l
d ANIT-LXIN

=
"
a

IIIIIIIIIII‘

AAL
B
“
HEEEEEEEEEEEEN

N

N

_

B

HE
HEEEEEEEEEEN

HEEEEEEEEEEN

FHIVII QAVHS

v ANIT-LXAN
1SN 100940 HJL44 |ml|_

ENIEREIRE

NOILIIA3dd NIT=LXAN ¢

US 7,395,416 Bl

1

COMPUTER PROCESSING SYSTEM
EMPLOYING AN INSTRUCTION REORDER
BUFFER

GOVERNMENT INTEREST 5

This invention was made with Government support under

contract No.: NBCH3039004 awarded by Detfense Advanced
Research Projects Agency (DARPA). The government has
certain rights 1n this mvention. 10

TRADEMARKS

IBM® 1s a registered trademark of International Business
Machines Corporation, Armonk, N.Y., U.S.A. Other names 15
used herein may be registered trademarks, trademarks or
product names of International Business Machines Corpora-
tion or other companies.

BACKGROUND OF THE INVENTION 0

1. Field of the Invention

This invention relates to employing an instruction reorder
butfer, and particularly to a technique that takes at least two
processors that are optimized to execute dependence chains, ,5
and co-locate the processors with a superstructure called
SuperROB (Super Re-Order Builer).

2. Description of Background

Many processors designed today are optimized for execu-
tion of tight dependence chains. A dependence chain 1s a 3
sequence of mstructions 1n a program in which a temporally
sequential instruction 1s data-dependent on a temporally pre-
vious instruction. Examples of key data dependence paths
that processors optimize are: load-compare-branch, load-
load, load-compute, and compute-compute latencies. 35
Examples of such processors are: the PPE (Power Processing
Element) core on the Sony-Toshiba-IBM Broadband Engine,
the IBM Power3 core, [tanium cores from Intel®, and almost
all of the modern cores implementing z/Architecture tech-
nologies. 40

Current research in processor technology and computer
architecture 1s motivated primarily by the desire for greater
performance. Greater performance may be achieved by
increasing parallelism in execution. There are two kinds of
parallelism 1n typical program workloads. These are Instruc- 45
tion Level Parallelism (ILP) and Thread Level Parallelism
(TLP). Some modern computer processors are specifically
designed to capture ILP in programs (for example, IBM
Powerd & 5, Intel Pentium), while multiprocessor systems
are designed to capture TLP across threads or processes. sg
Processor cores that are optimized to execute dependence
chains are often also expected to execute ILP workloads. ILP
workloads have more than one concurrent dependence chain,
and overlapped execution of the chains 1s typically possible,
provided the ILP between the chains has been exposed and 55
exploited by the machine.

The evolution of microprocessor design has led to proces-
sors with higher clock frequencies to improve single-tread
performance. These processors exploit ILP to speed up
single-threaded applications. ILP attempts to increase perfor- 60
mance by determining, at run time, instructions that can be
executed in parallel. The trade-off 1s that ILP extraction
requires highly complex microprocessors that consume a sig-
nificant amount of power.

Thus, i1t 1s well known that different processor technologies 65
utilize the ILP and TLP workloads differently to achieve
greater processor performance. However, 1in existing ILP and

2

TLP system architectures it 1s difficult to optimize the pro-
cessor for both high-throughput TLP-oriented and ILP-or1-
ented applications. It 1s very cumbersome to map ILP appli-
cations on one or more TLP cores. Thus, alternative processor
architectures are necessary for providing ILP extraction on
demand, for allowing global communication, for allowing
elficient ILP exposition, extraction, and exploitation, and for
elliciently operating across a plurality of TLP cores.

[,

SUMMARY OF THE INVENTION

The shortcomings of the prior art are overcome and addi-
tional advantages are provided through the provision of a
method for operating a plurality of processors that each
includes an execution pipeline for processing dependence
chains, the method comprising: configuring the plurality of
processors to execute the dependence chains on execution
pipelines; implementing a Super Re-Order Buller (Super-
ROB) 1in which recerved mstructions are re-ordered for out-
of-order execution when at least one of the plurality of pro-
cessors 1s 1n an Instruction Level Parallelism (ILP) mode and
at least one of the plurality of processors has a Thread Level
Parallelism (TLP) core; detecting an imbalance 1n a dispatch
of instructions of a first dependence chain compared to a
dispatch of instructions of a second dependence chain with
respect to dependence chain priority; determining a source of
the imbalance; and activating the ILP mode when the source
of the imbalance has been determined.

The shortcomings of the prior art are overcome and addi-
tional advantages are provided through the provision of a
system for operating a plurality of processors that each
includes an execution pipeline for processing dependence
chains, the system comprising: a network; and a host system
in communication with the network, the host system includ-
ing software to implement a method comprising: configuring
the plurality of processors to execute the dependence chains
on execution pipelines; implementing a Super Re-Order
Butiler (SuperROB) 1n which received instructions are re-
ordered for out-of-order execution when at least one of the
plurality of processors 1s in an Instruction Level Parallelism
(ILP) mode and at least one of the plurality of processors has
a Thread Level Parallelism (TLP) core; detecting an imbal-
ance 1n a dispatch of istructions of a first dependence chain
compared to a dispatch of instructions of a second depen-
dence chain with respect to dependence chain priority; deter-
mining a source of the imbalance; and activating the ILP
mode when the source of the imbalance has been determined.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described 1n detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with advantages and features,
refer to the description and the drawings.

TECHNICAL EFFECTS

As a result of the summarized mvention, technically we
have achieved a solution that takes at least two processors that
are optimized to execute dependence chains, and co-locate

the processors with a superstructure called SuperROB (Super
Re-Order Buifer).

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter, which 1s regarded as the invention, 1s
particularly pointed out and distinctly claimed 1n the claims at
the conclusion of the specification. The foregoing and other

US 7,395,416 Bl

3

objects, features, and advantages of the invention are apparent
from the following detailed description taken 1n conjunction
with the accompanying drawings 1n which:

FIG. 1 1illustrates one example of an Instruction Level
Parallelism (ILP) workload;

FI1G. 2 1llustrates one example of a Thread Level Parallel-
ism (TLP) workload;

FIG. 3 illustrates one example of a Single Instruction,
Multiple Data (SIMD) vector workload;

FI1G. 4 illustrates one example of a TLP chip and a TLP &
ILP Chip including a SuperROB;

FIG. 5 illustrates one example of an 1n-order core for the
TLP workload:

FIG. 6 illustrates one example of a Super Re-Order Butler
(SuperROB);

FI1G. 7 1llustrates one example of a SuperROB operated 1n
the TL.P workload mode:

FI1G. 8 illustrates one example of a SuperROB operated in
the IL.P workload mode;

FIG. 9 1llustrates one example of a SuperROB per entry
diagram;

FI1G. 10 1llustrates one example of a manner in which two
cores are connected to each other by a SuperROB structure;

FIG. 11 illustrates one example of a SuperROB 1n ILP
mode having an Ifetch working with a single trace cache line;
and

FI1G. 12 1llustrates one example of a SuperROB shown as a
series ol queues.

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the exemplary embodiments 1s a superstruc-
ture called SuperROB (Super Re-Order Buftler) that operates
across a plurality of TLP cores. Another aspect of the exem-
plary embodiments 1s a method of mapping ILP applications
on a TLP core by providing for ILP extraction on demand.

For a long time, the secret to more performance was to
execute more mstructions per cycle, otherwise known as ILP,
or decreasing the etlective latency of instructions. To execute
more instructions each cycle, more functional units (e.g.,
integer, floating point, load/store units, etc.) had to be added.
In order to more consistently execute multiple instructions, a
processing paradigm called out-of-order processing (OOP)
may be used. FIG. 1 illustrates one example of an ILP work-
load using such processing paradigm.

In FIG. 1, there are three semi-independent chains of
dependences that contain load instructions. Key data depen-
dence paths that the processor optimizes are compute-coms-
pute latencies. Furthermore, high-accuracy branch prediction
1s usually a necessary condition to improve the performance
ol high-ILP workloads. In order to achieve high execution
performance 1n a program area having high mstruction-level
parallelism, the processor contains large computational
resources. On the contrary, 1n a program area having low
instruction-level parallelism, even a processor containing
small computational resources can achieve suilicient perfor-
mance.

Furthermore, concerning FI1G. 1, the ILP program contains
multiple chains of instructions such that the instructions in
cach chain are clearly data dependent upon each other, but the
chains themselves are mostly data-independent of each other.
As shown, there are three data-dependence chains in the
program, and the first 10 and the third 14 chains of depen-
dences are dependent on the last operation in the middle 12
chain. Chain 10, 1n turn, dependent on the chain on the last
operation 1n the rightmost chain, chain 14. Across the three
chains 10, 12, 14, there 1s opportunity to overlap the execution

10

15

20

25

30

35

40

45

50

55

60

65

4

ol computation instructions with that of other computation
instructions, and execution of long-latency memory accesses
with other that of computations. It 1s usually necessary to
provide highly accurate branch prediction hardware so as to
be able to continue the supply of non-speculative instructions
to the main pipeline. This nature of ILP programs can be
exploited by processor hardware, which allows multiple-is-
sue of data-independent instructions. Examples of processor
hardware that falls 1n this category are: IBM Powerd and
Power3 processors, AMD Opteron processor, and Intel Pen-
tium4 processor.

FIG. 2 illustrates one example of a TLP workload. In FIG.
2, there 1s one semi-independent chain of dependence that
contains load mstructions. The key data dependence path that
the processor optimizes 1s a compute-compute latency. TLP 1s
the parallelism inherent 1n an application that runs multiple
threads at once. This type of parallelism 1s found largely in
applications written for commercial servers, such as data-
bases. By running many threads at once, these applications
are able to tolerate the high amounts of I/O and memory
system latency their workloads can 1ncur. As a result, while
one thread 1s delayed waiting for a memory or disk access,
other threads can do useful work 1n order to keep the proces-
sor running efficiently.

Furthermore, concerning FI1G. 2, the program 1n the center
of the figure 1s a pure data-dependence chain 16. Each instruc-
tion 1n the program 1s data-dependent on the immediately
previous 1instruction. Thus, the execution of an instruction
cannot begin until the result datum or the outcome of the
previous instruction 1s available. The hardware complexity of
processor hardware with multiple, independent 1nstruction
1ssue hardware capability proves to be unnecessary burden
when executing a data-dependence chain program. In addi-
tion, thread-level parallelism 1n a multiprocessor architecture
considerably depends on how elficient parallel algorithms
are, as well as how efficient a multiprocessor architecture
itsell 1s. Scalability of the parallel algorithms 1s a significant
characteristic since running large algorithms in the multipro-
cessor architecture 1s essential.

FIG. 3 illustrates a SIMD workload. In computing, SIMD
(Single Instruction, Multiple Data) 1s a set of operations for
eiliciently handling large quantities of data in parallel, as1n a
vector processor or array processor. First popularized in
large-scale supercomputers (as opposed to MIMD parallel-
ization), smaller-scale SIMD operations have now become
widespread in personal computer hardware. Today the term 1s
associated almost entirely with these smaller units. An advan-
tage 1s that SIMD systems typically include only those
instructions that can be applied to all of the data 1n one
operation. In other words, if the SIMD system works by
loading up eight data points at once, the “add” operation
being applied to the data occurs to all eight values at the same
time. Although the same 1s true for any superscalar processor
design, the level of parallelism 1n a SIMD system 1s typically
much higher.

SIMD architectures are essential in the parallel world of
computers. The ability of the SIMD to manipulate large vec-
tors and matrices in minimal time has created a phenomenal
demand of these architectures. The power behind this type of
architecture can be realized when the number of processor
clements 1s equivalent to the size of the vector. In this situa-
tion, component-wise addition and multiplication of vector
clements can be done simultaneously. Even when the size of
the vector 1s larger than the number of processor elements

available, the speedup 1s immense. There are two types of
SIMD architectures. The first 1s the True SIMD and the sec-

ond 1s the Pipelined SIMD.

US 7,395,416 Bl

S

Furthermore, concerning FIG. 3, the program 1s a data-
parallel program, and i1s shown 1n the rnghtmost program
representation. The 1nstructions 1n a data-parallel program
operate on data structures that are vectors, rather than scalars.
Data-parallel programs can be either of the ILP nature, or may
be a data-dependence chain.

The exemplary embodiments of the present invention pro-
vide a mechanism to “morph™ a computer processor complex,
cach element of which 1s designed and optimized to perform
work of one kind, 1into a complex, which can, with relatively
high efficiency, perform another kind of work. In doing so, the
processor complex transforms itself, on demand, into a single
processing structure. Each pair of cores on the TLP chip 1s
connected with each other using a SuperROB (super- instruc-
tion re-order builer). The concept of SuperROB 1s an exten-
s10n of the re-order butfer (ROB) used in modern ILP proces-
SOrS.

The SuperROB 1s shown as a queue 44 1n FIG. 4. The top
portion of FI1G. 4 1s a TLP chip 40 and the bottom portion of
FIG. 4 1s a TLP & ILP chip 42 configuration. The basic 1dea
1s that when presented with an ILP program, the two cores
transform themselves into behaving as one. Therelore,
istructions are supplied to the two cores by means of the
SuperROB and the state of each instruction 1s captured 1n a
single entry in the SuperROB. Also, the architected state of
the program 1s captured in the register file of one of the two
cores. The SuperROB thus 1s a mechanism of global commu-
nication ol program values, and a mechanism to expose,
explore, and exploit the instruction-level parallelism inherent
in an ILP program. The plurality of cores supplied for the
purposes of TLP are combined in an innovative fashion to also
target ILP programs.

FI1G. § 1llustrates an in-order core for TLP workloads. FIG.
5 depicts an 1instruction memory 50, mstruction data 52,
stored data 54, “data memory” data 36, and a data memory 58.
In FIG. 5, there are several semi-independent chains of
dependences that contain load instructions. Key data depen-
dence paths that the processor optimizes are compute-coms-
pute, load-to-use, and compare-to-branch latencies. Further-
more, the 1m-order processor comprises multiple execution
pipelines, there 1s no register renaming in the processor pipe-
line, and no mechanism to enforce orderly completion of
instructions to maintain sanctity of architectural state. Thus,
the 1nstructions are not 1ssued out of order.

The out-of-order instruction processing i OOP necessi-
tates a mechanism to store the instructions in the original
program order. I a temporally later instruction causes an
exception before a temporally earlier instruction, then the
exception must be withheld from recognition until the tem-
porally earlier istruction has completed execution and
updated the architected state as approprate. To help alleviate
this problem, a larger number of instructions are stored in
program order 1n a buifer called the re-order bufler to allow
precise exception handling. While precise exception handling,
1s the primary motivation behind having a reorder bufler, 1t
has also been used to find more instructions that are not
dependent upon each other. The size of reorder builers has
been growing in most modern commercial computer archi-
tectures with some processors able to store as many as 126
instructions in-tlight. The reason for increasing the size of the
reorder bulfer 1s that spatially related code also tends to be
temporally related 1n terms of execution (with the possible
exclusion of arrays of complex structures and linked lists).
These mstructions also have a tendency to depend upon the
outcome of prior instructions. With a CPU’s ever increasing
amount of required code, the only current way to find and
accommodate the execution of more mndependent instructions

10

15

20

25

30

35

40

45

50

55

60

65

6

has been to increase the size of the reorder bulfer. However,
using this technique has achieved a rather impressive down-
turn 1n the rate of increased performance and 1n fact has been
showing diminishing returns. It 1s now taking more and more
transistors to achieve the same rate of performance increase.
Instead of focusing intently upon uniprocessor ILP extrac-
tion, 1t 1s desired to focus on super re-order builers that may
co-locate a plurality of buil

ers within a superstructure.

FIG. 6 illustrates one example of a Super Re-Order Butfer
(SuperROB). FIG. 6 depicts a first instruction memory 60, a
first TLP core 62, a first data memory 64, a SuperROB 66, a
second 1nstruction memory 68, a second TLP core 70, and a
second data memory 72. The SuperROB architecture pro-
vides for ILP extraction on demand, 1t operates across a
plurality of TLP cores, it allows for global communication,
and 1t allows for eflicient ILP exposition, extraction, and
exploitation. FIG. 6 shows two TLP cores that are separated
by a buffer (SuperROB). The SuperROB acts as the commu-
nication mechanism between the two TLP cores. When the
processor 1s in TLP mode, then the SuperROB 1s turned off.
When the processor 1s in ILP mode, then the SuperROB 1s
turned on.

All contemporary dynamically scheduled processors sup-
port register renaming to cope with false data dependences.
One of the ways to implement register renaming 1s to use the
slots within the Reorder Bullter (ROB) as physical registers.
In such designs, the ROB 1s a large multi-ported structure that
occupies a significant portion of the die area and dissipates a
sizable fraction of the total chip power. The heavily ported
ROB 1s also likely to have a large delay that can limit the
processor clock rate. However, by utilizing a SuperROB these
delays may be minimized.

The method of using a reorder bulifer for committing (retir-
ing) mstructions 1n sequence 1n an out of order processor has
been fundamental to out of order processor design. In the case
of a complex struction set computer (CISC) architecture
complex instructions are cracked (mapped) into sequences of
primitive instructions. Nullification 1n case of an exception 1s
a problem for these instructions, because the exception may
occur late 1n the sequence of primitive instructions.

FIG. 7 illustrates one example of a SuperROB operated 1n
the TLP workload mode and FI1G. 8 1llustrates one example of
a SuperROB operated 1n the ILP workload mode. As noted
above, 1 the TLP mode, the SuperROB 1s turned off. How-
ever, 1 the ILP mode, the SuperROB 1s turned on 1n order to
facilitate instruction management. Also, recerved instructions
are recerved from at least two of the plurality of processors
from a single mput source. In other words, renaming based on
a SuperROB uses a physical register file that 1s the same size
as the architectural register file, together with a set of registers
arranged as a queue data structure. This facilitates faster
processing. Moreover, the cache may be accessed every alter-
nate fetch cycle, thus providing even greater processing per-
formance. The ICache 1s shared, and one of the cores (which
one 1s a matter of convention) places requests for the two
subsequent cache lines to fetch instructions from. “Next line
A’ 1s sent to the first core, and the ‘next-next line B’ 1s sent to
the other core. The fetch logic for each of the two cores places
their mstructions 1n the SuperROB 1n the original program
order. After that point in time, the available instructions 1n the
SuperROB could be picked up and worked on by either of the
two cores.

In FIG. 8, as instructions are 1ssued, they are assigned
entries for any results they may generate at the tail of the
SuperROB. That 1s, a place 1s reserved in the queue. Logical
order of instructions within this buifer 1s maintained so that 1f
four instructions are 1ssued, e.g., 1to 143 at once, 11s put in the

US 7,395,416 Bl

7

reorder butler first, followed by 1+1, 1+2 and 1+3. As 1nstruc-
tion execution proceeds, the assigned entry 1s ultimately filled
in by a value, representing the result of the instruction. When
entries reach the head of the SuperROB, provided they have
been filled in with their actual intended result, they are
removed, and each value 1s written to its intended architec-
tural register. If the value 1s not yet available, then 1t 1s
required for the user to wait until the value does become
available. Because instructions take variable times to execute,
and because they may be executed out of program order, 1t
may be found that the SuperROB entry at the head of the
queue 1s still waiting to be filled, while later entries are ready.
In this case, all entries behind the unfilled slot must stay in the
SuperROB until the head instruction completes its opera-
tions.

FI1G. 9 shows the structure of each entry 1n the SuperROB.
Each entry has a back or front pointer field, which 1s used by
the ROB management hardware as a circular queue of ROB
entries. That 1s followed by a set of status flags per entry,
which indicate 11 the entry 1s being worked on by a core, or 1s
available to be worked on. Next are two fields used exclu-
stvely to hold the prediction and the outcome of branch
instructions. Next 1s a series of three fields, two for source
register operands in the instruction, and one for the target
register operand. Each source register field holds the 1d or
number of the ROB entry that produced the value, which 1s
uselul 1n determining 11 the mstruction 1s ready for execution.
The target register field holds the architected register name
into which the target register value must be commaitted when
the mstruction 1s retired. The value of the operand 1s also held
along with each register field. For a store instruction which
has no target register operand, the target register value 1s used
to hold the datum to be stored in memory. More fields could
be added on a per-instruction basis, and managed as needed.

Theretfore, the processor, via the SuperROB, becomes a
pure datatlow micro-architecture, where each entry in the
SuperROB holds all the data pertaining to a single instruction
in flight. The data contained may be source register values (as
and when available), target register values (as values are
produced), memory store values (for store instructions), and
branch outcome values (predicates). The instructions are
tetched 1n program order by using a protocol followed by two
TLP front-ends, as illustrated 1n F1G. 9. One SuperROB entry
1s allocated for each decoded instruction. Also, each fetched
instruction could be from separate ICaches, Trace Cache or
other cache types. As further shown in FIG. 9, the decode
logic of each pipeline operates independently of each other.
Thus, both pipelines of cores A and B of FIG. 8 monitor the
SuperROB, and pick up the work, and do the work when work
1s available. The results of the work are written back to the
appropriate SuperROB entry.

Moreover, independently decoupled state machines oper-
ate 1 a purely datatlow fashion. In other words, a state
machine decodes instructions to rename its source operands
(to the temporally preceding SuperROB entry numbers, or
tetch values from architected registers). The state machine
also fetches values from SuperROB entries and updates the
sources of the waiting instructions. The state machine also
marks the instructions that are ready to be executed and
dispatches instructions to the execution backend. The back-
end logic updates the appropniate SuperROB entry upon
completion. As a result, there are no separate bypasses
between the two mdependent execution backends and all the
communication between the two pipelines 1s carried out via
the SuperROB.

In addition, the exemplary embodiments of the present
application are not limited to the structures in FIGS. 1-9. In

10

15

20

25

30

35

40

45

50

55

60

65

8

other words, more than two cores could be connected to
‘morph’ the processor. Also, it 1s possible to hold actual
values 1n a separate future/history file (with or without a
separate architected register file). The state machine may also
fetch instructions every alternate cycle from the Icaches or
from an Ifetch buffer. Therefore, there may be variations
based on pre-decode information that is available from the
ICaches. Also, a split of the SuperROB 1s possible. The split
may be for a register data-flow and for a memory data-tlow
(separate load/store associative lookup queue). Furthermore,
variations on the contents of SuperROB entries 1s allowed,
variations based on the basic nature of the TLP core are
allowed, and variations based on Simultaneous Multithread-
ing Processor (SMT) or not-SMT 1s allowed.

Referring to FIG. 10, a manner in which two cores, 1ndi-
vidually designed for efficient execution of data-dependence
chain code, are connected to each other by means of the
SuperROB structure. The SuperROB 1s a queue of instruc-
tions, with each entry also holding other information about
the 1nstruction. The computer system operates 1n either TLP
(thread-level parallel) mode, or ILP mode. When in TLP
mode, 1t 1s understood that the programs to be executed on the
system are data-dependence chains programs. When in ILP
mode, the programs to be executed on the system are ILP
programs. The SuperROB i1s disabled when the computer 1s in
TLP mode, and 1t 1s enabled when the computer 1s 1n ILP
mode. Change of mode could be carried out 1n a variety of
ways, for example, under explicit control of the programmer,
or under 1mplicit control of the OS or the HyperVisor, or
under pure hardware control with the processor having moni-
toring hardware that watches the amount of dependence
nature of mstructions temporally and switches the mode from
TLP to ILP or vice-versa.

Referring to FIG. 11, 1n the ILP mode, the instruction fetch
logic 1s shown working with a single trace cache line A
(prediction for which 1s supplied by one of the two cores). The
trace cache now holds a single ILP program (which 1s unified
rather than shared as in the TLP mode). Parts of the trace line
are placed 1n SuperROB by one core, and the remaining part
1s placed by the other core.

Referring to FIG. 12, the SuperROB 1s shown as a series of
queues, the previous queue feeding the next, as a physical
implementation of a logically single SuperROB structure.
This could work with a regular ICache or a trace cache.

Moreover, instructions are placed in the SuperROB, 1n
program order, by one or both the IFetch stages of logic
connected to it. Once placed 1n the SuperROB, the Decode
stages ol logic from both the cores carry out the task of
instruction decode, and update the status of instructions. The
Issue logic stages from the two cores pick up decodes mstruc-
tions, and 1ssue them to their respective execution back-ends.
One of the two register files 1s used to hold the architected
state of the program, which one, 1s decided by convention.
The other one 1s not used. When an instruction completes
execution on eitther of the Execute logic stages or the Access
logic stages, the instruction’s status 1s updated 1n the Super-
ROB. This general manner of execution continues until the
mode of the machine remains the ILP mode. It 1s to be gen-
erally understood that the ICache shown 1n the figure above
holds a single program for execution when 1n ILP mode.

The capabilities of the present mvention can be 1mple-
mented 1n software, firmware, hardware or some combination
thereof.

As one example, one or more aspects of the present mnven-
tion can be included 1n an article of manufacture (e.g., one or
more computer program products) having, for instance, com-
puter usable media. The media has embodied therein, for

US 7,395,416 Bl

9

instance, computer readable program code means for provid-
ing and facilitating the capabilities of the present invention.
The article of manufacture can be included as a part of a
computer system or sold separately.
Additionally, at least one program storage device readable
by a machine, tangibly embodying at least one program of
instructions executable by the machine to perform the capa-
bilities of the present invention can be provided.
The flow diagrams depicted herein are just examples.
There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the mvention. For instance, the steps may be per-
formed 1n a differing order, or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed 1nvention.
While the preferred embodiment to the invention has been
described, 1t will be understood that those skilled 1n the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.
What is claimed 1s:
1. A method for operating a plurality of processors that
cach includes an execution pipeline for processing depen-
dence chains, the method comprising:
configuring the plurality of processors to execute the
dependence chains on execution pipelines;

implementing a Super Re-Order Buliler (SuperROB) in
which received 1nstructions are re-ordered for out-oi-
order execution when at least one of the plurality of
processors 1s 1n an Instruction Level Parallelism (ILP)
mode and at least one of the plurality of processors has a
Thread Level Parallelism (TLP) core;

detecting an 1mbalance 1n a dispatch of instructions of a
first dependence chain compared to a dispatch of
istructions of a second dependence chain with respect
to dependence chain priority;

determining a source of the imbalance; and

activating the ILP mode when the source of the imbalance

has been determined.

2. The method of claim 1, wherein the plurality of proces-
sors are configured for load-to-use, compute-to-compute,
compute-to-compare, and load-to-compare-to-branch laten-
cies.

5

10

15

20

25

30

35

40

10

3. The method of claim 1, wherein the plurality of proces-
sors are configured for high-throughput TLP-oriented appli-
cations.

4. The method of claim 1, wherein the plurality of proces-
sors are configured for ILP extraction on demand.

5. The method of claim 1, wherein each of the plurality of
processors has a plurality of execution pipelines.

6. The method of claim 1, wherein the SuperROB operates
across a plurality of TLP cores.

7. The method of claim 1, wherein the SuperROB allows
for global communication.

8. The method of claim 1, wherein the SuperROB allows
for ILP exposition, extraction, and exploitation.

9. The method of claim 1, wherein the SuperROB 1s deac-
tivated whenever each of the plurality of processors are in
TLP mode.

10. The method of claim 1, wherein entries 1n the Super-
ROB are 1n a non-architected state.

11. The method of claim 10, wherein the entries 1n the
SuperROB are source register values, target register values,
memory store values, and branch outcome values.

12. The method of claim 10, wherein each of the entries in
the SuperROB 1s allocated for each decoded nstruction.

13. The method of claim 1, wherein each of the received
instructions are fetched from separate caches.

14. The method of claim 1, wherein each of the received
istructions 1s fetched from an instruction cache or from a
portion of a trace cache line or a normal cache line and 1s
placed into the SuperROB by one of a plurality of instruction
fetch logic elements of the plurality of processors.

15. The method of claim 1, wherein the execution pipelines
of each ofthe plurality ol processors monitors the SuperROB.

16. The method of claim 1, wherein the SuperROB 1s split
into a first region for register data-flow and a second region
for memory data-tlow.

17. The method of claim 1, wherein the SuperROB 1s split
into a {irst region for instruction fetch, a second region for
istruction decode and dispatch, and a third region for
instruction 1ssue to execution units and 1nstruction execution.

18. The method of claim 1, wherein the received instruc-
tions are received from at least two of the plurality of proces-
sors from a single 1nput source.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

