United States Patent

US007391312B2

(12) (10) Patent No.: US 7.391.312 B2
Murphy et al. 45) Date of Patent: Jun. 24, 2008
(54) METHOD AND SYSTEM FOR AN 6,629,267 B 9/2003 Glerum et al.
INCIDENTAL FEEDBACK PLATFORM 6,665,824 B1 12/2003 Ruhlen et al.
6,675,295 Bl 1/2004 Marcelais et al.
(75) Inventors: Shawn M. Murphy, Seattle, WA (US); 6,708,333 B1 ~ 3/2004 Glerum et al.
Gabriel J. Aul, Shoreline, WA (US); 6,748,554 B2* 6/2004 Jmmetal.ooll, 714/15
Hany Farag, Redmond, WA (US):; 6,785,848 Bl 82004 Glerum et al.
Kinshuman Kinshuman. Bellevue. WA 6,816,984 B1* 11/2004 Snyderetal. 714/38
(US): Corneliu L. Lupu Qammamish 6,845,470 B2* 1/2005 Austenetal. 714/38
WA (US): Gregory W. Nichols " 7,051,238 B2* 52006 Gardneretal. 714/38
| A " 7,207,047 B2* 4/2007 Subramanian et al. 714/2
Ezg;?jé %(L({JSS)S Andre k. Vachon, 7,219,266 B2* 5/2007 Glerumetal. 714/38
’ 2004/0107387 Al 6/2004 Larsson et al.
(73) Assignee: Microsoft Corporation, Redmond, WA
(US) * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Primary kxaminer—John .Tweelj Ir. .
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Marshall, Gerstein & Borun
U.S.C. 154(b) by 211 days. LLP
(21) Appl. No.: 11/112,208 (57) ABSTRACT
(22) Filed: Apr. 22, 2005 A vertical can be a series of computer-executable mnstructions
that, 1n response to an incident, collect information regardmg
635 Prior Publication Data that incident and transmait the information for analysis and
Y
US 2006/0271591 A1 Nov 30. 2006 possible helptul feedback to the user. A general purpose ver-
T tical can address types of incidents, such as crashes or hangs,
(51) Int.Cl across a variety of applications, while a custom vertical can be
GO:?B '23 00 (2006.01) written to address application-specific incidents. Verticals
(52) U.S.CI | 340/500- 714/2- 714/15- can access underlying support mechanisms through an infra-
T ’ : 714 /38" structure, which can also enable applications to request that
_ _ _ | additional data be collected by the verticals, and set other
(58) Field of Clasmgi(c):;t/t;(g;.St;aﬁc/:lzl 101115 3?;42/850;)9! preferences. Once the data 1s collected and transmitted, a
Q Lieation file f " | > T 1"1 h'j > vertical may receive feedback, that can be a request for addi-
ce application lile lor complete search history. tional information or feedback to the user. The feedback to the
(56) References Cited user can attempt to 1dentity the incident and aid the user in

U.S. PATENT DOCUMENTS
6,567,928 B1* 5/2003 Lyleetal. 714/15

recovering from 1t and avoiding 1t 1n the future.

20 Claims, 5 Drawing Sheets

SYSTEM MEMCRY

T

191
(ROM) 131 P ™,
. MONITOR
BIOS - o
H\}\
132 —— 12 190 1 ‘
RaM) M PROCESSIN = 4 o |
OPERATING L UNIT OUTPUT ~ _
SYSTEM 134 130 VIDEQ | PERIPHERAL 1
INTERFACE INTERFACE PRINTER - 196

APPLICATHON
PROGRAMS 135

ﬁ {\ F SPEAKERS |- 197

OTHER PROGRAM SYSTEM BUS
MODULES 136 } {} N

SRV

4 - LA
NON-REMOVABLE REMOVABLE USER JNPUT NETWORK 1 LOCAL AREA NETWORK
NON-VOL. MEMORY | | NON-VOL. MEMORY INTERFACE e 4
PROGRAM INTERFACE INTERFACE [INTERFACE '\ ~t meen
DATA 137 C . i . 171
140 P 150 T—m 170
,_,[:—e-:l P P —— WIDE AREA NETWORK
— N, N l]
-
YN N b T 65 | ——{ MODEM |
- . 1T hy 172 ‘\ L b
— \ — AV T3 i(v
- ‘t\@ " [0 DopooooooD 9aay 0 el —
-~ e \ DOoQOOOOaoan Qoo
- T [e e e o e o e s B o 0 oy T
-~ N N Joonooogano 0gn | 186 — KOTE
- o ‘\\ 152 156 EE_I DDDDDDD Sl I:EI"-:'J\ {:OMF’U ER
.l \ KEYBOARD 162
Ew 161 {81 oo e
OPERATING | APPLICATION | OTHER PROGRAM | PROGRAM ,i__:'
SYSTEM PROGRAMS MODULES DATA MOUSE .
144 145 146 147 —
REMOTE
f APPLICATION
100- PROGRAMS 185

a8l

US 7,391,312 B2

H3.LNdNOD
41LOWE

L

SNYHOOH
NOILLYONddY
4 LONH

191

o .
ey DRCOO0D00000

) DLDOLGLRALL0L0
o Joncon o R o 3 n 3 o] e | am s

-
o DRDOOCHICIN0
] U%ﬂﬁﬂﬂﬂﬁuﬂ L

Cl
£l
{1
i

s .

= MHOMLIN VIHY 30IM |

S

= bLL .

S Y\

=

S T I B A 0 B ANl ol LI o Yo bbby o APPSO 44 L L
AHOMLIN VY TWOOT

0

S

S

e

& L6}~ SuaAMVIS

n... -

u ity

= 961 -4 MIININ

U.S. Patent

cli

N SOVRELN
V| MHOMLIN

4OV Ad LN
TYedHdlddd
1NdinNo

ol -~

JOVAHALINI |
1NdNI- §38N |

JAZ"

WERAE
WYHOO0Hd

Y
Z51 - N

JOVAHIIN
AHOWIN TOA-NON
T71aVAONIY

Wb vl el i

LCL

 SNE WILSAS

OV 4 LN
O-=AUJIA

1!

ol
S3INAON

40V4d-41NI

AJOWIW "TOA
J1@VAOWZE-NON

NVHOONd HIHLO |

“NON

1iINN
ONISE1004d

oLl

[2IN31
55T Pol
SWVHOO U IN-LLEAS
NOILLYONiddY ONILVHEAO
.\.1._.
P
-~
-
-
in\
.\\\ ¥
-
-
FAN} L ARHE
WY HDOHd
L8
SITNAON
NWYHDOHd HEHLO
GeL SWYHD0Hd
NOILVYOI ddY
FET N3LSAS
ONILYH3dO
se7 (YY)
e
__ S01g
©TET (o)
ij
ALOWHAW WHLSAS

US 7,391,312 B2

Sheet 2 of S

Jun. 24, 2008

U.S. Patent

Z 9Inb14

0G¢ ove
sjusuodwo?) wajsAg buijelsad a109)
— —— 19Ae7] yodsuel |
ge L€C
uo1}28||09) Ble(wajsAsqng ananp
0ce
alnjonliselu]
A A A X i
4%+
Y B . Y I
S0 GlLe cLe vlLc gLe LLC
S|EJILDA |EQILIBA
HM_Mm> asodind VEET ol _m%r__ﬂm> _mw_w;m>
™9 |eJausg) an|g H HSE1OD
uoneolddy
€0c¢ 10¢
uoneoddyy uofjedlddy

002

US 7,391,312 B2

Sheet 3 of 5

Jun. 24, 2008

U.S. Patent

¢ alnbi4

uolijesl|ddy 0} pajejoy uonewuoju| ; Aowaspy uonesi|ddy

10§ __/

|EDILSA WO)SN)

siz_) 1}

|leoiusA bueH

e/ !

GOt

v

I1IoUS wvysAg buneladp

vz '

|EdIUBA YSEID

£0¢

\

18]]I
uo1}dadx3 pajpueyun
WalsAg buljesad

!

£0d

uonedddy

US 7,391,312 B2

Sheet 4 of S

Jun. 24, 2008

U.S. Patent

e 2.nbi4

oSy __/

(pa

a0BdJUI Jash ¢, MOPUIA |ed1uan Ag pajsanbai uolssiwsue.) 1oy
<«——S3A ou—» >
ssalboid Aejdsiq |oAa] dog uoijew.oul 1939|109 uoljewlsojul snanbu3
szy eey 2 YA,
SaA
OC 1 m --- m
A
loineyaq jnejap
Y}Im ainjonijsedsu
S||ed |edILaA
$5920.d spue)s Jasn — AR, :
_ |
IOIABYSQ paYILUI] T MPER .
Ylm aJnjondisenju) ..,I_ngwwﬂo_ol uoinonpouul Aeldsip «-saA _MHM._”_UM_% soA " m Em_u_oc_u
S||eo |eoIud MOPUIM]SO
B |Lze A S MOp - oLy v

6Ly)

00V

=

GLy 224

LY

US 7,391,312 B2

Sheet 5 of 5

Jun. 24, 2008

U.S. Patent

qf 84nbi4

)

osy /|

13sn 1o}
asuodsal Aejdsiq

spp) °

SoA

L— ou < ¢ 8suodsay

%47

ou

pajsanbal
uoneuwlojul
[eUolIppe 103]|00

w1

SaA

;elep

|[EUC}ippE 10§
1sanba

6EY

Y

UoISSILISUB)) JO}
uoljewlojul ananbu3

cev) 1

Oou

sisAjeue 104
uollewlojul Jiusuel |

<«—SaA

ISy

ey

|lesipaA Ag pajsanba.
uoljewuoul 303||09

ey J !
N\

US 7,391,312 B2

1

METHOD AND SYSTEM FOR AN
INCIDENTAL FEEDBACK PLATFORM

FIELD OF THE INVENTION

This mvention relates generally to program incident han-
dling and, more particularly, relates to mechanisms for col-
lecting and transmitting information regarding program 1nci-
dents and providing ameliorating feedback.

BACKGROUND

All too frequently application programs experience 1nci-
dents which result 1n the loss of information, forcing users to
perform the frustrating and inetficient task of re-entering all
of the lost information into the application program. Addi-
tional medficiency 1s created by the need to restart the appli-
cation program or even the computing device itself in an
attempt to recover from the incident, or to attempt to prevent
turther incidents. Unfortunately, the vast majority of users are
111 equipped to determine why the incident occurred, and are
therefore generally powerless to prevent its reoccurrence.

The programmers of the application programs, and others
tasked with supporting the programs after their release, are
often 1n a worse position to assess the causes of various
incidents because users either cannot adequately describe the
circumstances under which those incidents occurred, or do
not even bother to report them. Consequently, many program-
mers and application support personnel are not even aware of
the majority of such incidents and, of those incidents of which
they are aware, they do not possess sulficient information
upon which to provide useful feedback. Additionally, because
many users do not bother to report such incidents, the appli-
cation support personnel often underestimate the existence of
the applications’ faults, or receive an insuificient quantity of
user reports from which to detect similarities among the inci-
dents and thereby attempt to resolve them.

To address such shortcomings, modern operating systems
have recently begun to icorporate a rudimentary incident
reporting mechamsm by which a small, pre-selected amount
of data 1s saved when an incident occurs, and then subse-
quently data 1s transmitted to a central repository which can
be accessed by programmers and other support personnel so
that they may attempt to ascertain a cause, and provide a
solution to prevent further incidents. Unfortunately, such
incident reporting mechanisms are often too general to pro-
vide useful information regarding the incidents of particular
applications. For example, an incident reporting mechanism
that detects an application incident where the application
stops responding, commonly referred to as a “hang”, may
collect data from an area of memory that the operating system
believes 1s most relevant. However, the programmers and
support personnel of that particular application may not learn
anything usetul from the saved data, and might have preferred
to save a different collection of data, which may have pro-
vided more useful information. Of course, the above assumes
that the programmers and support personnel of that particular
application would even seek to obtain the data collected by
the operating system. Generally, such information 1s reported
to the support personnel supporting the operating system, and
there may exist metficiencies of communication between the
operating system support personnel and the application sup-
port personnel.

Therefore, what 1s needed 1s a mechanism by which appli-
cation developers, programmers and support personnel can
specily which information 1s collected from their applications
in the case of particular incidents. In addition, the developers

10

15

20

25

30

35

40

45

50

55

60

65

2

and programmers should be provided with default mecha-
nisms which can collect a minimum of information to record
those incidents that may not have been foreseen by the devel-
opers and programmers of the application, or which may be
the result of an interaction between the applications of two or
more different groups of developers and programmers.

BRIEF SUMMARY OF THE INVENTION

Therefore, in one embodiment of the present invention, an
interface and support structures are provided by which appli-
cation program developers and programmers can create their
own specialized mechanisms to collect and transmit a prede-
termined set of data in the event that their application program
experiences a predefined incident that 1s relevant to their
application.

In another embodiment of the present invention, existing,
mechanisms can be provided to collect a predetermined set of
data and can utilize the same interface and support structures,
but can be directed to more universal incidents that might not
be particular to a given application program. Such existing
mechanisms can be leveraged by application program devel-
opers and programmers without the need to create their own
mechanisms, should they choose to do so.

In a further embodiment of the present invention, the infor-
mation collected after an application incident can be trans-
mitted to one or more locations for additional automated or
manual analysis.

In a still further embodiment of the present invention, the
predetermined set of data collected after an application inci-
dent can be appended to as part of an incident reporting
teedback mechanism.

In yet another embodiment of the present invention, exist-
ing mechamsms provided to collect a predetermined set of
data can be extensible so as to enable application programs to
register for the collection of additional sets of data.

In yet another embodiment of the present invention, a user
can recerve information 1n response to the transmission of the
collected information, which can include instructions or
guidelines to avoid or ameliorate the future occurrence of the
application incident.

Although the description herein focuses primarily on the
collection of information 1n the event of incidents in the
context of application programs, 1t will be appreciated that the
description 1s equally applicable to incidents in the context of
any set or sets of computer-executable instructions, including
drivers, plug-ins, modules, libraries and the like. Additional
features and advantages of the invention will be made appar-
ent from the following detailed description of illustrative
embodiments which proceeds with reference to the accom-
panying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

While the appended claims set forth the features of the
present mvention with particularnty, the invention, together
with 1ts objects and advantages, may be best understood from
the following detailed description taken 1n conjunction with
the accompanying drawings of which:

FIG. 1 1s a block diagram generally illustrating an exem-
plary computing device with which embodiments of the
present invention can be implemented;

FIG. 2 1s a layer diagram generally 1illustrating elements
contemplated by embodiments of the present invention;

FIG. 3 generally 1llustrates a layered operational flow con-
templated by embodiments of the present invention; and

US 7,391,312 B2

3

FIGS. 4a-b generally illustrates a more detailed opera-
tional flow contemplated by embodiments of the present
invention.

DETAILED DESCRIPTION

Many application programs can, for reasons that are not
immediately evident to the average user, cease to operate 1n a
proper and expected fashion. One such incident can be what
1s commonly referred to as a “hang”, where the application
program ceases to respond to user input and appears to no
longer be performing any useiul computations. Another such
incident 1s commonly referred to as a “crash™, and can involve
a sudden and unexpected termination of some or all of the
application program, and 1n some 1nstances the termination of
some or all of the operating system processes or other appli-
cation programs’ processes. Additionally, applications can
also experience incidents unique to the particular application.
For example, complex image editing applications can require
the execution of one or more components known as “plug-
ins”. Such plug-ins can themselves be the cause of one or
more 1incidents, which would be unique to those applications
that rely on the plug-in.

For more umversal incidents, a single component can be
provided for detecting that type of incident, irrespective of the
suspect application or applications, and 1n response collect-
ing a predetermined set of data to aid 1n analyzing the 1nci-
dent. Thus, a single component can detect a crash by any
application, and can collect a predetermined set of data about
that crash. Similarly, a single component can detect a hang by
any application, and can collect a predetermined set of data
about that hang. However, for incidents that may be relevant
to only a single application, a custom component, using a
standard set of interfaces and support structures, can be cre-
ated to detect those types of incidents and collect a predeter-
mined set of data appropriate for that type of incident. Addi-
tionally, both the components directed to universal incidents,
and those directed to application-specific incidents are
capable of collecting more than the predetermined set of data.
The predetermined set of data 1s a mimmum which those
components can collect, but additional data points can be
collected at the request of the application prior to any 1nci-
dent, as part of any feedback received after the predetermined
set of data has been transmitted, or at the request of another
process, either during or after the incident.

In the description that follows, the term “vertical” will be
used to refer to a component, process, or other collection of
executing or non-executing computing instructions whose
purpose 1s to respond to a particular incident or types of
incidents by collecting at least a default set of data. Verticals,
as will be described 1in detail below, can use a set of interfaces
and other support structures that can be provided by, for
example, the operating system, or other lower-level code, to
collect the data. Application developers and programmers
will also be able to use those 1interfaces and support structures
to request that existing, general purpose verticals, such as a
“crash vertical” or a “hang vertical”, collect additional data.
Alternatively, they could create their own vertical, which can
access the mterfaces and support structures to collect the sets
of data deemed 1mportant for the particular incident, or type
of incident, to which the custom vertical would be directed to.

Turning to the drawings, wherein like reference numerals
refer to like elements, the mvention 1s 1llustrated as being
implemented 1n a suitable computing environment. Although
not required, the invention will be described in the general
context of computer-executable instructions, such as program
modules, being executed by a personal computing device.

10

15

20

25

30

35

40

45

50

55

60

65

4

Generally, program modules include routines, programs,
objects, components, data structures, etc. that perform par-
ticular tasks or implement particular abstract data types.
Moreover, those skilled i the art will appreciate that the
invention may be practiced with other computing configura-
tions, including hand-held devices, multi-processor systems,
microprocessor based or programmable consumer electron-
ics, network PCs, minicomputers, mainirame computers, and

the like. The invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed computing environment,
program modules may be located 1n both local and remote
memory storage devices.

FIG. 1 1illustrates an example of a suitable computing
device 100 on which the invention may be implemented. The
computing device 100 1s only one example of a suitable
computing device and 1s not intended to suggest any limita-
tion as to the scope of use or functionality of the mvention.
Neither should the computing device 100 be interpreted as
having any dependency or requirement relating to any one or
combination of components illustrated 1n the exemplary com-
puting device 100.

With reference to FIG. 1, an exemplary system for imple-
menting the mvention includes a general purpose computing
device 100, which can include, but i1s not limited to, a pro-
cessing unit 120, a system memory 130, and a system bus 121
that couples various system components including the system
memory to the processing unit 120. The system bus 121 may
be any of several types of bus structures including a memory
bus or memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. By way of
example, and not limitation, such architectures include Indus-

try Standard Architecture (ISA) bus, Micro Channel Archi-
tecture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec-
tronics Standards Associate (VESA) local bus, and Peripheral
Component Interconnect (PCI) bus also known as Mezzanine
bus.

Computing device 100 typically includes a variety of com-
puter readable media, which can include any available media
that can be accessed by computing device 100 and includes
both volatile and nonvolatile media, removable and non-re-
movable media. By way of example, and not limitation, com-
puter readable media may comprise computer storage media
and communication media. Computer storage media includes
both volatile and nonvolatile, removable and non-removable
media implemented 1n any method or technology for storage
of mnformation such as computer readable 1nstructions, data
structures, program modules or other data. Computer storage
media includes, but 1s not limited to, RAM, ROM, FEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical disk storage, magnetic
cassettes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or any other medium which can be used
to store the desired information and which can be accessed by
the computing device 100. Communication media typically
embodies computer readable instructions, data structures,
program modules or other data 1n a modulated data signal
such as a carrier wave or other transport mechamism and
includes any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of 1ts
characteristics set or changed 1n such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared and other wireless

US 7,391,312 B2

S

media. Combinations of the any of the above should also be
included within the scope of computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as read
only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computing device 100, such as dur-
ing start-up, 1s typically stored in ROM 131. RAM 132 typi-
cally contains data and/or program modules that are imme-
diately accessible to and/or presently being operated on by
processing unit 120. By way of example, and not limitation,
FIG. 1 illustrates operating system 134, application programs
135, other program modules 136, and program data 137.

The computing device 100 may also include other remov-
able/non-removable, volatile/nonvolatile computer storage
media. By way of example only, FIG. 1 1llustrates a hard disk
drive 141 that reads from or writes to non-removable, non-
volatile magnetic media, a magnetic disk drive 151 that reads
from or writes to a removable, nonvolatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CID ROM or
other optical media. Other removable/non-removable, vola-
tile/nonvolatile computer storage media that can be used with
the exemplary computing device include, but are not limited
to, magnetic tape cassettes, flash memory cards, digital ver-
satile disks, digital video tape, solid state RAM, solid state
ROM, and the like. The hard disk drive 141 1s typically
connected to the system bus 121 through a non-removable
memory interface such as mterface 140, and magnetic disk
drive 151 and optical disk drive 155 are typically connected to
the system bus 121 by a removable memory interface, such as
interface 150.

The drives and their associated computer storage media
discussed above and illustrated 1n FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computing device 100. In FIG.
1, for example, hard disk drive 141 1s 1llustrated as storing
operating system 144, application programs 145, other pro-
gram modules 146, and program data 147. Note that these
components can either be the same as or different from oper-
ating system 134, application programs 135, other program
modules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and
program data 147 are given different numbers hereto 1llus-
trate that, at a minimum, they are different copies. A user may
enter commands and information into the computing device
100 through 1mnput devices such as a keyboard 162 and point-
ing device 161, commonly referred to as a mouse, trackball or
touch pad. Other mput devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, or the
like. These and other input devices are often connected to the
processing unit 120 through a user input interface 160 that 1s
coupled to the system bus, but may be connected by other
interface and bus structures, such as a parallel port, game port
or a universal serial bus (USB). A monitor 191 or other type of
display device 1s also connected to the system bus 121 via an
interface, such as a video interface 190. In addition to the
monitor, computing devices may also include other periph-
cral output devices such as speakers 197 and printer 196,
which may be connected through a output peripheral inter-

face 195.

The computing device 100 may operate 1n a networked
environment using logical connections to one or more remote
computers, such as a remote computing device 180. The
remote computing device 180 may be another personal com-
puter, a server, a router, a network PC, a peer device or other
common network node, and typically includes many or all of
the elements described above relative to the computing device
100, although only a memory storage device 181 has been

5

10

15

20

25

30

35

40

45

50

55

60

65

6

illustrated 1n FIG. 1. The logical connections depicted in FIG.
1 include a local area network (LAN) 171 and a wide area
network (WAN) 173, but may also include other networks.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Inter-
net.

When used 1n a LAN networking environment, the com-
puting device 100 1s connected to the LAN 171 through a
network interface or adapter 170. When used 1n a WAN net-
working environment, the computer 110 typically includes a
modem 172 or other means for establishing communications
over the WAN 173, such as the Internet. The modem 172,
which may be internal or external, may be connected to the
system bus 121 via the user mput interface 160, or other
appropriate mechanism. In a networked environment, pro-
gram modules depicted relative to the computing device 100,
or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network con-
nections shown are exemplary and other means of establish-
ing a communications link between the computers may be
used.

In the description that follows, the invention will be
described with reference to acts and symbolic representations
of operations that are performed by one or more computing
devices, unless indicated otherwise. As such, 1t will be under-
stood that such acts and operations, which are at times
referred to as being computer-executed, include the manipu-
lation by the processing unit of the computer of electrical
signals representing data 1n a structured form. This manipu-
lation transforms the data or maintains 1t at locations 1n the
memory system of the computer, which reconfigures or oth-
erwise alters the operation of the computer in a manner well
understood by those skilled 1n the art. The data structures
where data 1s maintained are physical locations of the
memory that have particular properties defined by the format
of the data. However, while the invention is being described in
the foregoing context, 1t 1s not meant to be limiting as those of
skill 1n the art will appreciate that various of the acts and
operation described hereinafter may also be implemented 1n
hardware.

Turming to FIG. 2, a layer diagram 200 1llustrates the inter-
action of some of the components contemplated by embodi-
ments of the present invention. As will be known by those
skilled 1n the art, layer diagrams, such as the one illustrated 1n
FIG. 2, are generally oriented such that higher level user
mode processes appear at the top of the diagram, while oper-
ating system or kernel mode processes appear at the bottom of
the diagram. Thus, layer diagram 200 illustrates a series of
applications at the top of the diagram, namely applications
201, 203 and 205. As previously described, while embodi-
ments of the present invention are described 1n the context of
application programs, such as applications 201, 203 and 205,
they are equally applicable to any type of computer execut-
able code, library, or process, including drivers, plug-ins,
system service threads, applets, and the like.

Applications 201, 203 and 203 can take advantage of the
abilities of lower level components and services, such as
those 1llustrated in the lower half of layer dlagram 200,
through one or more verticals, including a Crash Vertical 211,
a Hang Vertical 213, a Blue Screen Vertical 214, all eellee-
tively referred to as General Purpose Verticals 212 and a
Custom Vertical 215. For example, application 201 is 1llus-
trated 1n FI1G. 2 as being layered on top of Crash Vertical 211,
Hang Vertical 213, and Blue Screen Vertical 214. General
purpose verticals, such as the General Purpose Verticals 212
illustrated 1n FIG. 2, which comprise the Crash Vertical 211,
the Hang Vertical 213 or the Blue Screen Vertical 214, can be
made available to all applications, such as application 201 or
application 203, by default. Consequently, absent specific
instructions from an application, all applications will be able

US 7,391,312 B2

7

to take advantage ol general purpose verticals, and applica-
tion 201 1s, therefore, illustrated as being layered on top of
them.

The General Purpose Verticals 212, including the Crash
Vertical 211, the Hang Vertical 213 and the Blue Screen
Vertical 214, can perform their designated functions by
invoking one or more infrastructure 220. For example, the
infrastructure 220 can provide a convenient mechanism by
which the function of the queue subsystem 231 or the data
collection mechanisms 233 can be accessed. As will be

described 1n more detail below, the queue subsystem 231 can
manage the information that was collected by verticals and
enqueued for transmission. In addition, the queue subsystem
can also retain records of information that was previously
enqueued and subsequently transmitted, and 1t can interface
with the transport layer 240 to ensure that the enqueued
information 1s transmitted properly and in a timely manner.
Similarly, the data collection mechanisms 233 can interface
with core operating system components 250 to access the
information and data requested by verticals and return such
information and data to the vertical. The core operating sys-
tem components 250 can include the operating system regis-
try, memory manager, thread manager, shell, display sub-
systems, file system and the like, and each such component
canreceive requests from the data collection mechanisms 233
using known interfaces, and can similarly return the
requested information to the data collection mechanisms 233
using those same 1nterfaces.

As indicated above, application 201 can take advantage of
General Purpose Verticals 212 and, as such, 1s illustrated as
being layered on top of them. In fact, 1n one embodiment of
the present invention general purpose verticals can operate
without explicit instruction from an application, enabling
application developers and support personnel to derive ben-
efit from them without modifying their application or explic-
itly accounting for such general purpose verticals. For
example, as will be described 1n further detail below, 11 the
application 201 were to crash, the core operating system
components 250 would detect such a crash and could notity
the Crash Vertical 211. The Crash Vertical 211 could then
collect information regarding the crash from the application
201 or from the core operating system components 250, such
as the registry or memory manager, and then save that infor-
mation by using the infrastructure 220 to access the data
collection mechanisms 233. The Crash Vertical 211 can then
request, again via the infrastructure 220, that the queue sub-
system 231 transmit the data. If the transport layer 240
already has an active network connection, the queue sub-
system 231 can request that the collected data be transmaitted.
Alternatively, the queue subsystem 231 can enqueue the data
for subsequent transmaission.

In addition to general purpose verticals, such as the Crash
Vertical 211 or the Hang Vertical 213, custom verticals can
also be created for an incident that can be experienced by a
particular application or class of applications. Such custom
verticals would often be created by the developers or pro-
grammers of that particular application or class of applica-
tions and would be able to specily sets of data to be collected
that may be more relevant to the particular incident to which
the custom vertical 1s directed. FIG. 2 illustrates one such
custom vertical as custom vertical 213 that 1s 1llustrated as
being used by application 203. Because custom vertical 215
can be application specific, only application 203 is 1llustrated
as being layered on top of it. This 1s 1n contrast to more
general purpose verticals, such as Crash Vertical 211 or the
Hang Vertical 213, which are 1llustrated as layered under both
application 201 and application 203. A custom vertical, such
as custom vertical 215, can utilize the same infrastructure 220

10

15

20

25

30

35

40

45

50

55

60

65

8

as the General Purpose Verticals 212, as described above.
Alternatively, an application, such as application 205, can
opt-out of any reliance on general purpose verticals. Thus, as
illustrated 1n FIG. 2, application 205 need not be layered
above any verticals.

Rather than creating a custom vertical, such as custom
vertical 215, to collect specific sets of data that might be more
usetul than the default data collected by a general purpose
vertical, another alternative, contemplated by embodiments
ol the present invention, enables an application, such as appli-
cation 201 or 203, to specily additional data for a vertical to
collect. For example, an application can register for data that
a general purpose vertical, such as one of the General Purpose
Verticals 212, can collect in the event of an incident to which
that vertical 1s addressed. Such additional elements of data
can 1clude a larger segment of the application’s memory,
different locations of the application’s memory, various files
from the file system, the values of specific registers, other
application data maintained by the core operating system
components 250, and similar such information.

General purpose verticals, and custom verticals, can also
be invoked directly by an application. Such an invocation can
also be amechanism by which the application specifies one or
more additional elements of data for the verticals to collect
and transmut.

Turming to FIG. 3, a tlow of the operation of the Crash
Vertical 211, the Hang Vertical 213, and the custom vertical
215 1s 1llustrated 1n a layered perspective. An application,
such as application 203, can be executing as 1llustrated at the
top of FIG. 3. Subsequently, an incident can occur that can
either be a “fatal” incident or a “non-fatal” incident. As will be
known by those skilled 1n the art, a “fatal” incident generally
refers to an incident which renders the application program
no longer capable of operating properly. Fatal incidents can
include crashes, hangs, and other similar incidents. A non-
fatal incident, on the other hand, can be any improper or
unexpected operation on the part of the application program
that does not render the program incapable. For example, the
tailure to load a plug-n properly, display a menu, or update a
part of the screen can all be non-fatal incidents.

Because the application can continue operating aiter a
non-fatal incident, the application itself can invoke a vertical.
Thus, as 1llustrated 1n FIG. 3, the application 203 can call the
custom vertical 215, which can then collect information from
various information sources generically referred to in FIG. 3
as application memory/information related to application
301. Once collected, the vertical can transmit the information,
as 1llustrated by step 311, for further analysis.

For fatal incidents, however, because the application can be
rendered inoperable, external processes can be called upon to
detect the incident and invoke an appropriate vertical, which
can similarly be a separately executing process. For example,
as 1llustrated 1n FI1G. 3, 11 the application 203 experiences a
crash, such an incident can be detected by the operating
system unhandled exception filter 303. The unhandled excep-
tion filter, as will be known by those skilled 1n the art, 1s a
common element of many modern operating systems that 1s
invoked when an application program crashes. If the
unhandled exception filter 303 detects that the application
203 has crashed, the filter 303 can invoke the Crash Vertical
211. The Crash Vertical 211 can collect a predetermined set of
data from the application memory/information related to
application 301.

As a general purpose vertical, the Crash Vertical 211 can
collect a default set of data unless the application 203 previ-
ously registered for the collection of additional data. The
default set of data collected by a general purpose vertical can
be selected to balance the need for efficiency with the need to

collect a sufficiently broad sample of data such that a wide

US 7,391,312 B2

9

variety of potential causes can be analyzed. One exemplary
set of data collected by a Crash Vertical can comprise: (1) the
name of the faulting application, (2) the version of the faulting,
application, (3) the timestamp when the application was cre-
ated, (4), the name of the faulting module, (35) the version of °
the faulting module, (6) the timestamp when the module was
created, (7) the offset 1n bytes where the fault occurred 1n the
module, calculated by obtaining the location of the mnstruc-
tion pointer at the time of the crash and subtracting from it the 1
load address of the module where the crash occurred, and (8)
the exception code documenting the type of exception that
occurred.

If, instead of crashing, the application 203 nstead experi-
enced a hang, the operating system shell 303, or other oper-
ating system components could detect the non-responsive-
ness of the application and could invoke the Hang Vertical 213
in a manner analogous to the invocation of the Crash Vertical
211 described 1n detail above. The Hang Vertical 213 could
then similarly collect a predetermined set of data from the
application memory/information related to application 301.
As with the Crash Vertical 211, a Hang Vertical 213, being a
general purpose vertical, can collect a default set of data,
unless the application registered for more, wherein the default
set of data 1s selected to provide as much information as can
ciliciently be collected and which 1s likely to aid 1n 1dentity-
ing the cause of the hang. For example, the Hang Vertical 213
can collect the same, or very similar, set of data as the default
set of data collected by the Crash Vertical 211 described 1n
detail above.

15

20

25

30

Returning to FIG. 2, the infrastructure 220, as can be seen
from the above descriptions, provide a rich set of mechanisms
and structures through which the verticals can perform their
intended tasks, whether the verticals are general purpose ver- 35
ticals intended to handle a class of incidents, or custom ver-
ticals intended to handle application- or class-specific inci-
dents. While the precise interfaces are not relevant to the
present invention, the following description 1s provided to
illustrate an exemplary set of interfaces that 1s not intended to 40
be complete, nor limiting, but rather provides details about
exemplary mterfaces that could be made available through the
infrastructure 220, as contemplated by one embodiment of

the present invention.

45
One type of interface contemplated by one embodiment of

the present invention can be used by verticals to collect infor-
mation, create a report, and transmit the report. For example,
an 1nterface, exemplarily called “WerReportCreate™ 1n Table
1, below, can be used to cerate a report about an incident for
transmission. More specifically, the interface can create a
report object, which can be populated with all the information
about a report as required by the platform in order to complete
the reporting process.

50

10

TABL.

L1

1

WerReportCreate API

Application Program Interface (API)

HRESULT WerReportCreate(
IN PCWS'TR pwzEventName
OUT HREPORT *pReportHandle)

Parameters

Parameter Description

pwzEventName Event name. This name must be registered on the server
else the report will be 1gnored.

pReportHandle This will contain the report handle. This 1s returned as
NULL if any errors occur.

Return Values
Value Description
S 0K Success
E_INVALIDARG Invalid event name
E_ OUTOFMEMORY Out of memory

E_ PERMISSIONDENIED Cannot create report if policy controlling
WER 1s O (Error Reporting Disabled)

Another interface that can be used by verticals 1s illustrated in
Table 2, below. The mterface, exemplarily entitled “WerRe-
portSetOptions™, can be used to set report options.

TABL.

(L]

2

WerReportSetOptions API

Application Program Interface (API)

HRESULT WerReportSetOptions(
IN HREPORT ReportHandle
IN PWER__REPORT__OPTIONS pReportOptions)

Parameters

Parameter Description

hReportHandle The report handle returned from a successful call to
WerReportCreate.
pReportOptions Pointer to a populated report options structure.

Return Values
Value Description
S OK SUCCESS
E_INVALIDARG Invalid structure field or report handle.

E_ OUTOFMEMORY Out of memory

The report options can be specified 1n a predefined structure,
such as that illustrated in Table 3 below.

TABL

3

(Ll

Report Options Structure

Structure

typedef struct WER__REPORT _OPTIONS

{
DWORD dwSize;
HANDLE hProcess;
WCHAR wz VerticalName[80];
WCHAR wzApplicationPath[MAX__ PATH];

WCHAR wzApplicationName[MAX__PATH];

US 7,391,312 B2

11

TABLE 3-continued

Report Options Structure

WER__REPORT TYPE replype;
DWORD dwllags;
}' WER_REPORT _OPTIONS, *PWER__ REPORT _OPTIONS;
Fields
Field Description
dwSize The size of this structure.
hProcess Handle of the process that the report is regarding.
OPTIONAL: If passed as NULL, WER will use the calling process
context.
wzVertical Name Name of the vertical. This 1s used to lookup the consent
settings 1n the registry. If null, the vertical name defaults to
pwzbventName.

OPTIONAL: Can be passed as empty if vertical does not have

specific registry settings.

wzApplicationPath Full path to the application. For crashes and hangs this will be

the name of the crashing, hanging application. For generic

reports this will be the name of the application that is creating

it

OPTIONAL: WER will attempt to discover this 1f it 1s passed

as empty.
wzApplicationName Identifies the application by a “friendly” name. If null the

application name is pulled from the executable’s metadata.

OPTIONAL: WER will attempt to discover this 1f it 1s passed

as empty.
replype Identifies the type of the report:

WerReportCritical - Crashes, hangs will be critical
errors. These event types will be archived. By default
these processes will be terminated or restarted.
WerReportNonCritical - Other errors, these may not be
archived. These processes are not terminated or
restarted.

dwFlags Combination of one or more of the following flags:
WER_ REPORT_HONOR__RECOVERY - Honor any

recovery registration for the application.

WER__REPORT HONOR__RESTART - Honor any restart

registration for the application.
WER__REPORT__QUEUE - This will force reports to be
queued. This flag is 1gnored 1f repType 1s set to

WerReportNonCritical as all non-critical reports are queued.

wzDescription [Optional] A short 2-3 sentence description (512 characters) of
the problem. This description is displayed in the report details.

Another mterface that can be provided to verticals can be an
interface for setting the reporting signature. Table 4, below,
illustrates such an interface, exemplarily entitled “WerRe- 45
portSetParameter”. A reporting signature can be the collec-
tion of parameters that will uniquely 1dentily a particular
event, wherein a separate call can be made for each parameter.
Examples of such parameters contemplated by an embodi-
ment of the present invention comprise the application’s
name, the application’s version information, and like param-
eters. A verification to ensure that the report signature 1s valid
can be made when the report 1s submutted.

50

55
TABL.

(L]

4

WerReportSetParameter API

ApplicationProgram Interface (API) 0

HERSULT WerReportSetParameter(
IN HREPORT hReportHandle

IN WER__PARAM ID
IN PCWSTR pwzName
IN PCWSTR pwzValue) 65

12

TABLE 4-continued

WerReportSetParameter API

Parameters
Parameter Description
hReportHandle The report handle returned from WerReportCreate
ID This represents the parameter enumeration which we are
setting. Values will be WerP0O, WerP1, etc. Parameters
need not be specified in order.
pwzName Optional name of the parameter. This can be NULL, in
these cases Px will be used where x is the index of the
parameter.
pwzValue This will be the value of the parameter that we are setting
Return Values
Value Description
S OK SUCCESS
E__OUTOFMEMORY Out of memory error while adding
the parameter
E_INVALIDARG Bad parameter ID or NULL Param
Value
E__HANDLE Bad Report Handle

US 7,391,312 B2

13

TABLE 4-continued

WerReportSetParameter API

WER_E LENGTH__EXCEEDED Length exceeded. Adding the

parameter will cause the parameter
data storage to overflow and 1t may
be trimmed.

E_ FAIL Some unexpected error occurred

As described above, custom verticals can be created to
address incidents that may be specific to a particular applica-
tion or class of applications. In some circumstances, those
incidents may require that the application’s support personnel
be able to review one or more files that are associated with the
incident. Therefore, another interface contemplated by
embodiments of the present invention enables a vertical to
attach one or more files to 1ts report. One such interface,
illustratively entitled “WerReportAddFile” 1s specified 1n
Table 5 below.

TABLE 5

WerReportAddFile API

Application Program Interface (API)

HRESULT WerReportAddFile(
IN HREPORT hReportHandle
IN PCWSTR pwzPath
IN WER__FILE TYPE repFileType
IN DWORD dwFileFlags)

Parameters

Parameter Description

hReportHandle
pwzPath

The report handle returned from WerReportCreate
Complete path to the file that needs to be added. The
path can contain environment variables.

This 1s used to describe the contents of the file being
added. This can be one of

WerlileTypeMinidump - Minidump file
WerFile'TypeHeapdump - Heap dump file
WerFileTypeUserDocument - Contents of some
user document like a .doc file

WerFileTypeOther - File that fall under this

category will be uploaded whenever a 29 Level data
request 1s made

This 1s used to define what action should be taken for the
file once it 1s added to the report:
WER_DELETE_ FILE. WHEN_ DONE
WER__ANONYMOUS__DATA

Denotes that this is “safe 27 level” data

repFile’Type

dwFileFlags

Return Values

Value Description

S OK Success
E__OUTOFMEMORY Out of memory error while adding the parameter

E__FAIL Some unexpected error occurred
E_ FILENOTFOUND Invalid path to file

E__ACCESSDENIED File cannot be read
E__HANDLE Invalid report handle

Rather than adding an entire file to a report, a vertical can, as
indicated above, add a dump of memory to a report. A dump
of memory, as will be known by those skilled 1n the art, 15 a
collection of information, read from memory, that 1s com-
prised ol data, such as heap data or stack data, that i1s not

10

15

20

25

30

35

40

45

50

55

60

65

14

normally saved and that remains in a constant state of tlux
during the normal operation of an application program. An
interface, exemplarily entitled “WerReportSetMiniDump™ 1n
Table 6, below, can enable a vertical to add a dump to a report
and set the options and flags for the generation of that dump.

TABL.

(L]
N

WerReportSetMiniDump API

Application Program Interface (API)

HRESULT WerReportSetMiniDump(
IN HREPORT hReportHandle
IN DWORD dwDumpFlavor
IN HANDLE hProcess
IN PEXCEPTION__CUSTOM__ OPTIONS pDumpCustomOptions
IN BOOL bCollectAlways)

Parameters
Parameter Description
hReportHandle The report handle returned from
WerReportCreate.
dwDumpFlavor One of the following:
Microdump
Minidump
Fulldump (aka heap)
Custom
hProcess Handle to the process for which the information is
to be generated. This handle must have read and
qUEry access
pDumpCustomOptions This can be used to customize any minidump that
will be collected. If the value of this parameter 1s
NULL, then a standard minidump 1s collected.
bCollectAlways If TRUE always collects this dump. If FALSE
collects only if the server requests the dump.
Default value 1s FALSE.
Return Values
Value Description
S OK Success
E_ FAIL Some unexpected error occurred
E__HANDLE Invalid Report Handle

E__INVALIDARG Invalid argument

The options and flags for the generation of the dump,
requested using an interface such as that described 1n Table 6
above, can be specified using a structure such as that custom
options structure specified in Table 7, below.

US 7,391,312 B2
15

TABLE 7

Custom Options Structure

Structure

typedet struct _ EXCEPTION__CUSTOM__OPTIONS

1
DWORD dwSize;
DWORD dwMask;
DWORD dwMinidumpType;
BOOL bDisableHeap;

PMINIDUMP_ _EXCEPTION__INFORMATION

pExceptionParam,

BOOL bOnlyThisThread;

DWORD dwExceptionThreadFlags;

DWORD dwOtherThreadFlags;

DWORD dwExceptionThread ExFlags;

DWORD dwOtherThreadExFlags;

DWORD dwPreferredModuleFlags;

DWORD dwOtherModuleFlags;

WCHAR wzPreferredModuleListft WER_ MAX MODULES];

} EXCEPTION__CUSTOM__OPTIONS, PEXCEPTION__CUSTOM__OPTIONS;

Field

dwSize
dwMask
dwMinidumpType

bDisableHeap
pExceptionParam

bOnlyThisThread
dwExceptionThreadFlags

dwExceptionThreadExFlags
dwOtherThreadFlags

dwOtherThreadExFlags

dwPreferredModuleFlags

dwOtherModuleFlags
wzPreferredModulel ist

Once a vertical has created a report, such as by using the
above described exemplary interfaces, 1t can request that the

Fields

Description

The size of this structure.

Bit mask to control which options are valid 1n the structure.
The type of the minidump. This 1s an ORing of
MINIDUMP_TYPE

Do not collect heap.

Pointer to a
MINIDUMP_EXCEPTION__INFORMATION

structure describing the client exception that caused

the minidump to be generated. If this parameter 1s

NULL (default), no exception information is

included in the mimidump file.

Whether the dump has to be collected only for this thread
The flags for the thread that encountered the exception
Extra dump flags for the thread encountering the exception
Thread flags for threads other than the thread encountering
the exception

Extra dump flags for the any other thread (threads

that did not encounter the exception)

Module Flags for the crashing application, crashing
module or any modules present in

wzExtraModuleList

Module flags for other modules

List of modules for which we want to customize

dump generation. The dwPreferredModuleFlags

will apply to these as well. Each name must be

NULL terminated with the list being double NULL
terminated.

report be sent by using an interface, such as the exemplarily sq
entitled “Wer ReportSubmit” interface described in detail 1in
Table 8, below. Such an interface can 1nitiate the sending of

the report, and can return when the report has been mserted

into a queue.

Parameter

55 hReportHandle

TABL.

L1l

3

WerReportSubmit API

Application Program Interface (API) 60

HRESULT WerReportSubmit(IN HREPORT hReportHandle
IN DWORD dwConsentResult
OUT PWER__SUBMIT
SUCCESSCODE pSubmitCode) 65

dwConsentResult

16

TABLE 8-continued

WerReportSubmuit API

Parameters

Description

The report handle returned from
WerReportCreate.

This indicates that prior to report being submuitted,
the caller has already attempted to get 1%

level consent from the user and gotten back the
specified consent result. This consent must
include permission to send 1*' level parameters
and caller specified files. One of:
WerConsentNotAsked

Indicates the caller did not obtain consent
resulting in the normal consent evaluation and
experience.

WerConsentAskedDenied

Indicates the caller attempted to obtain consent

US 7,391,312 B2

17

TABLE 8-continued

WerReportSubmit API

the user denied the request.

WerConsentAsked Approved

Indicates the caller attempted to obtain consent,
and the user agreed to sending 1% level data and
the current contents of the CAB.
WerConsentAskedShowConsentDialog

Indicates the caller obtained interest from the user
for sending a report but not consent. The consent
dialog will appear to obtain consent provided the
current settings don’t allow the report to be sent
automatically.

The extended success code. One of:
WerReportQueued

WerReportResultUploaded

WerRestart

WerClose

WerDebug

WerReportFailed

pSubmitSuccessCode

Return Values

Value Description

S OK Success
E__OUTOFMEMORY Out of memory error while submuitting the report

Once the vertical has completed collecting information for
the report, and sending the report, 1t can end and clear any
memory 1t may have used. An interface, such as the interface
described 1n Table 9, below, illustratively entitled “WerRe-
portCloseHandle” can be used to close the report handle,
terminate error reporting and free any memory associated
with the report.

TABL

(L.

9

WerReportCloseHandle API

Application Program Interface (API)

HRESULT WerReportCloseHandle(
IN HREPORT hReportHandle)

Parameters
Parameter Description
hReportHandle The report handle returned from WerReportCreate.
Return Values
Value Description
S OK SUCCESS
E_ FAIL Some unexpected error occurred
E.__HANDLE Invalid Report Handle

In addition to providing interfaces for verticals to perform
various reporting functions, the infrastructure 220 can also
provide interfaces by which those verticals register for call-
backs, such as can be used for document recovery, in a manner
to be described in detail below. For example, one type of
callback interface can enable a vertical to register to be made
aware ol any attempt to recover the user’s work after the
incident that resulted 1n the vertical preparing a report 1n the
first place. Such a callback can provide the vertical with the
opportunity to, for example, prevent the recovery 1t 1t would
coniflict with the vertical or otherwise produce undesirable
results, prepare for document recovery, or even handle the
document recovery itself. One such callback, illustratively

10

15

20

25

30

35

40

45

50

55

60

65

18

entitled “WerReportSetReadyForDocumentRecovery-
Callback™ 1s described 1n greater detail 1n Table 10 below.

TABLE 10

WerReportSetReadyForDocumentRecoveryCallback

Application Program Interface (API)

HRESULT WerReportSetReadyForDocumentRecoveryCallback(
IN HREPORT hReportHandle
IN
DR__CALLBACK__ROUTINE ReadyForDocumentRecoveryRoutine)

Parameters

Parameter Description

hReportHandle The report handle returned from
WerReportCreate.

ReadyForDocumentRecovery “DWORD

Routine ReadyForDocumentRecoveryRoutine()”
Returned DWORD:

0 - Preparations done, WER can continue
with recovery.

1 - Do not attempt document recovery
(cancel).

2 - Document recovery handled without
problem.

3 - Document recovery handled, but
problems were encountered.

In addition to providing interfaces for verticals to perform
various reporting functions, and recerve various callbacks,
the infrastructure 220 can also provide interfaces by which
applications can register for various options and features to be
implemented when a vertical, 1rrespective of exactly which
vertical itmay be, handles any of the incidents that may affect
that application. For example, one such interface can provide
a mechanism by which an application can register for some
form of recovery. If an application had called this interface
during its lifetime and it crashes, hangs or encounters any
other fatal event that can be handled by a general purpose
vertical, 1t can be called at the appropriate time to allow for
data recovery. Generally, the actual recovery would be
handled by the application itself. Table 11, below, provides

further details of one such interface, exemplarily entitled
“RegsiterSetRecovery”™.

TABLE 11

RegisterSetRecovery API

Application Program Interface (API)

HRESULT RegisterSetRecovery(
IN RECOVERY__ROUTINE RecoveryRoutine

IN PVOID pvParameter)
Parameters
Parameter Description
RecoveryRoutine The function to call to do the actual document
recovery.
“DWORD RecoveryRoutine(LPVOID IpParam)”
pvParameter Any parameter to be passed to the function
Return Values
Value Description
S OK SUCCESS
E_ FAIL Some unexpected error occurred

US 7,391,312 B2

19

Alter arecovery 1s initiated via a call to an appropriate routine
of the application, another interface can provide a mechanism
by which the application can indicate that 1t 1s still “alive” and
continuing to recover user data. Such an interface can be
required to be called on a predefined interval 1n order to
provide a mechanism by which external processes can deter-
mine 11 the application has failed in its recovery attempt and
has ceased proper operation. In such a case, external pro-
cesses can assume that the application 1s unable to continue
recovery and can terminate 1t. One such interface, illustra-

tively entitled “RecoveryInProgress™ 1s described 1n greater
detail 1n Table 12 below.

TABLE 12

RecoveryInProgress API

Application Program Interface (API)

HRESULT RecoveryInProgress()

Return Values
Value Description
S OK SUCCESs
E_ FAIL Some unexpected error occurred
E__CANCEL User canceled the recovery process

In an analogous fashion to the interface that can be called to
inform external processes that a recovery attempt 1s continu-
ing, the application can also explicitly indicate, via an inter-
face call, that 1t has completed recovery. Table 13, below,
illustrates one such interface, exemplarily entitled “Recov-
eryFinished”.

TABLE 13

RecoveryFinished API

Application Program Interface (API)

HRESULT RecoveryFinished()
Parameters
Parameter Description
bSuccess Indicates whether the document was recovered

Another type of interface that an application can use 1s an
interface by which the application can register to be automati-
cally restarted after the incident and after the vertical used to
report the incident has completed its information gathering.

An exemplary version of such an interface, illustratively
entitled “RegisterSetRestart”, 1s shown 1n Table 14 below.

TABLE 14

RegisterSetRestart API

Application Program Interface (API)

RegisterSetRestart()

Parameters
Parameter Description
pwzCommandline Command line passed to the application when we

restart it. The maximum size of the command line is
4K. The command line should not include the name

10

15

20

25

30

35

40

45

50

55

60

65

20

TABLE 14-continued

RegisterSetRestart API

of the exe, as the infrastructure will always prepend
it. For example if you are notepad.exe and want to
register for aa.txt call this API only with L*aa.txt”

and not “notepad.exe aa.txt”.

Return Values
Value Description
S_OK Success
E_ FAIL Some unexpected error occurred

As described above, applications can also register for verti-
cals, including general purpose verticals and custom verti-
cals, to include specific information in the reports that the
verticals prepare. For example, specific aspects of the verti-
cal’s reporting can be addressed via flags that an application
can set via an interface such as that shown 1n Table 15 below,
and 1illustratively entitled “WerRegisterSetConfiguration-
Flags™.

TABLE 15

WerRegisterSetConfigurationFlags API

Application Program Interface (API)

HRESULT WerRegisterSetConfigurationFlags(
IN DWORD dwFlags)

Parameters

Parameter Description

dwFklags One of:
WER__MASK_NO__HEAP - Do not collect heap from this
process 1n the event of a crash or hang.
Return Values
Value Description
S OK Success
E_ FAIL Some unexpected error occurred

Insutficient size of command line buffer to
recerve the get

E__OUTOFMEMORY

Another interface, contemplated by embodiments of the
present invention, can be used to both register and un-register
files to be added to a report. For example, Table 16, below,
illustrates an 1nterface, exemplarily enftitled “WerRegis-
terAddFile”, which can enable an application to register that
a file be added to any report transmitted by a vertical.

TABLE 16

WerRegisterAddFile API

Application Program Interface (API)

HRESULT WerRegisterAddFile(
IN PCWSTR pwzFile
IN REPORT_FILE_TYPE repFileType
IN DWORD dwFileFlags
IN OUT PDWORD pdwFileID)

US 7,391,312 B2

21

TABLE 16-continued

WerRegisterAddFile API

Parameters

Parameter Description

Complete path of the file to be added.

This 1s used to describe the contents of the file being
added. This can be one of

WerFileTypeMinidump- Minidump file
WerlileTypeHeapdump - Heap dump file
WerFileTypeUserDocument - Contents of some

user document like a .doc file

WerlileTypeOther - Any other type of file

This 1s used to define what action should be taken for the
file once it 1s added to the report
WER_DELETE_FILE__WHEN__DONE
WER__ANONYMOUS_ DATA

Denotes that this is “safe 2 level” data

Pointer to a variable that for the ID. This variable should
initially contain WER__INVALID_ ID. On successiul
return that variable will contain the ID of the registered

file.

pwzFile
repFileType

dwFileFlags

pdwFilelD

Return Values

Value Description
S OK

E_ FAIL
E_INVALIDARG
E__OUTOFMEMORY

SUCCESS

Some unexpected error occurred
Invalid arguments were passed.
No memory is available.

Similarly, an interface can be provided to enable applications
to register memory blocks or areas to be attached to any report

that a vertical creates. One such interface, exemplarily
entitled “WerRegisterAddMemoryBlock™, 1s further detailed

in Table 17 below.

TABLE 17

WerRegisterAddMemoryBlock API

Application Program Interface (API)

HRESULT WerRegisterAddMemoryBlock(
IN PVOID pvAddress
IN DWORD dwSize
IN OUT PDWORD pdwMemID)

Parameters
Parameter Description
pvAddress The address of the memory block
dwSize The size of the memory block. This can be a max of
WER_ MAX MEM_ BLOCK as defined 1n werapi.h,
which is currently defined as 256 KB.
pdwMemlID Pointer to a variable that for the ID. This varialble should

initially contain WER__INVALID__ID. On successiul
return that variable will contain the ID of the registered
memory block.

Return Values

Value Description

S__OK
E _OUTOFMEMORY

SUCCESS
Out of memory

As can be seen, the infrastructure 220, as contemplated by
one embodiment of the present invention, can provide access
to a number of mechanisms and underlying support systems
to enable verticals and applications to collect information
regarding various incidents and access other attendant alter-

10

15

20

25

30

35

40

45

50

55

60

65

22

natives. To illustrate one exemplary use of these interfaces, a
flow diagram describing the operations performed by verti-
cals according to one embodiment of the present invention 1s
shown 1n FIGS. 4a and 45b.

Turming to FIG. 4a, an initiating incident can occur at step
410, as shown. In one alternative, contemplated by an
embodiment of the present invention, 1f the incident at step
410 was a hang incident, a determination of whether the
incident was “fatal” can be made at step 411. If the incident at
step 410 was a non-hang incident, then steps 411-419 could
be bypassed, as will be described 1n further detail below, and
the first step after the non-hang incident at step 410 would be
the determination of whether the incident was fatal at step
421. In another alternative, contemplated by an embodiment
of the present invention, steps 411-419 can be performed
irrespective of whether the incident at step 410 was a hang
incident or a non-hang incident. In such a case, all incidents
can trigger an evaluation, at step 411, of whether the incident
was fatal. As described 1n detail above, a “fatal” incident can
be one 1 which the application having the incident ceases to
operate properly and cannot be relied upon to execute future
instructions properly without being restarted. It at step 411 1t
1s determined that the incident 1s not fatal, an appropriate
vertical can use the infrastructure described above to create a
default report at step 417. However, 11 at step 411 it 1s deter-
mined that the incident 1s fatal, then a subsequent determina-
tion at step 413 can determine 11 the application experiencing,
the incident currently posses the top level window it the
application 1s being run 1n a windowing operating system. If
the application experiencing the incident does not currently
possess the top level window, then an appropnate vertical can
use the infrastructure described above to create a default
report at step 417.

However, 11 the application 1s determined to have the top
level window at step 413, that window can be “frosted” at step
415 and a notification can be presented to the user indicating
the incident and the anticipated vertical behavior 1n order to
aid the user 1n better selecting an appropriate course of action.
As will be known by those skilled in the art, the act of
“frosting” a window comprises removing some of the color
intensity of the window to visually indicate that the window
corresponds to an application or process that 1s either operat-
ing 1n the background, or has ceased operation. Additionally,
a frosted window enables a more recent window, such as the
user notification of step 415, to be more noticeable to a user.

If the application experiencing the incident at step 410 1s
not being run 1n a windowing operating system, then a user
interface analogous to that at step 415 can be presented to the
user in whichever mechanisms such a non-windowing oper-
ating system allows for. Alternatively, the vertical could use
the infrastructure described above to create a default report at
step 417 without presenting any user notifications.

Because a user may be concerned about any information
that might be transmitted without their consent, embodiments
of the present invention contemplate a user interface which
can convey to the user the nature of the information that will
be collected and the potential benefits, including possible
solutions to the incident, that the user may derive from allow-
ing the vertical to send all of the information 1t collects. I1 the
user closes the user iterface, then the vertical can operate
using a limited behavior, as shown at step 419. Such limited
behavior may comprise a reduction in the amount of 1nfor-
mation collected, the type of imnformation collected, or the
teedback provided as a result of the information collection.
However, 11 the user, 1n response to the notification provided
at step 415, enables the vertical to operate fully, a default
behavior can be used as shown at step 417.

US 7,391,312 B2

23

In addition, embodiments of the present invention contem-
plate that the user’s authorization to send information can be
stored on a per-vertical basis. Thus, for example, 1f the user
had authorized, via the user interface presented at step 415,
the vertical to send all of the information it collected, that
explicit authorization could be stored in such a manner that
the particular vertical that was authorized would no longer
need to request authorization to send an equivalent amount of

information. Similarly, the user could have a default setting
which a vertical could use 11 the user did not explicitly autho-
rize the collection of a particular level of information. In such
a case, the limited behavior of step 419 would be commen-
surate with the user’s default authorization.

Initially, all verticals can have a default setting that requires
the user to be prompted every time the vertical seeks to collect
information. The user can be provided with the ability to
select different default settings, including, for example, set-
tings that enable the vertical to only send the report param-
cters, or all of the data collected, or only “sate” additional
data. For example, the user interface presented at step 415 can
serve as a mechanism by which the user can select a default
setting for the vertical presenting the user interface. Alterna-
tively, a common user interface can be presented at a time
prior to the incident at step 410.

Irrespective of whether the vertical executes using a default
behavior or a limited behavior, however, the user notification
aspect ol the vertical’s operations can still be dependent upon
whether the incident was a fatal incident, as shown at step 421
and whether the application experiencing the incident owned
the top level window, as shown at step 423. While FIG. 4a
illustrates steps 421 and 423 as independent of steps 411 and
413, one of skill in the art will recognize that only a single
determination need be made for each of steps 411 and 421 and
again for steps 413 and 423. Thus, for example, 11 an mitial
determination was made as to whether the incident was fatal
at step 411, then step 425 or step 427 could be performed
immediately after steps 417 or 419 because the system would
already know whether the incident was fatal.

As 1indicated above, an alternative, contemplated by an
embodiment of the present invention, skips steps 411-419 for
incidents other than hang incidents. Thus, according to that
alternative, after a non-hang incident at step 410, a determi-
nation could be made whether the imncident was fatal at step
421 and whether it owned the top level window at step 423
without performing steps 411-419. In such a case, steps 421
and 423 would be the only determinations made of whether
the mcident was fatal and whether the application experienc-
ing the incident owned the top level window, since steps 411
and 413 would not have been performed. As explained 1n
detail above, a vertical may already have authorization from a
user to collect information, such as through a previously
presented user iterface, or a default setting, and a user inter-
face would not need to be presented. Consequently, steps
411-419 could be bypassed as indicated. Alternatively, the
incident experienced at step 410 may not be of a type that
necessitates the performance of steps 411-419. For example,
if incident 410 was a hang incident there may be benefits to
performing steps 411-419. However, 11 the incident 410 was
an application-specific incident, such as the failure to load a
plug-in, 1t could be very inconvenient for the user to have the
application’s window frosted as indicated by step 415. In
such a case, the application could continue to operate after the
incident 410, steps 411-419 could be bypassed, and subse-
quent steps, such as steps 421 and 423, could be performed 1n
the background without afiecting the user’s ability to con-
tinue to use the application.

10

15

20

25

30

35

40

45

50

55

60

65

24

As shown 1n FIG. 4a, if the application experiencing the
incident was being run 1n a windowing operating system and
owned the top level window, and 11 the incident was fatal, then
subsequent to either step 417 or step 419, a progress indicator
can be displayed to the user, together with additional relevant
information, as illustrated at step 425. However, if either the
incident was non-fatal, or 1f the application experiencing the
incident did not own the top level window, then the vertical
need not display any user notifications, and can simply collect
the information as illustrated in step 427. If the application
experiencing the imcident was not being run in a windowing
operating system, then a user iterface analogous to that at
step 425 can be presented to the user 1n whichever mecha-
nisms such a non-windowing operating system allows for.
Alternatively, the vertical could simply collect information,
as 1llustrated at step 427, without presenting any user notifi-
cations.

Once the information requested by the vertical has been
collected, 1t can be enqueued for transmission at step 429, and
the vertical can end at step 450, as shown. Those of skill in the
art will recognize that steps 427 and 429 can be performed
using the infrastructure 220 described in detail above. For
example, step 427 can comprise imvoking one or more nter-
faces such as the WerReportCreate, WerReportSetParameter,
or WerReportAddFile interfaces described in detail above,
while step 429 can comprise using an interface such as the
WerReportSubmit interface also described 1n detail above.

If, however, a progress user intertace, or some other user
notification, was presented at step 425, then, continuing to
FIG. 4b, the vertical can collect information to prepare a
report at step 431. As above, with step 427, step 431 can
comprise invoking one or more interfaces such as the WerRe-
portCreate, WerReportSetParameter, or WerReportAddFile
interfaces, which were previously described 1n detail. After
collecting the information for the report to be submitted by
the vertical, a check can be made at step 433 to determine 11
the host computing device 1s online. As will be recognized by
those skilled 1n the art, the term “online” refers only to the
existence of connectivity between the host computing device
and whatever computing device 1s the destination for the
vertical’s report, and 1s not intended to signify the use of any
particular network or protocol.

If the computing device 1s not currently online, then the
information collected by the vertical can be enqueued for
transmission at step 435 in a matter analogous to that
described above with respect to step 429. However, 11 the host
computing device 1s online, then one embodiment of the
present invention contemplates a user feedback mechanism
by which the information gathered by the vertical may be able
to present the user with a solution to the incident immediately.
Additionally, another embodiment of the present invention
contemplates that the infrastructure can receive real time
requests for additional information that may be deemed to be
particularly relevant given the information already collected.

Therefore, as shown 1n FIG. 45, if the host computing
device 1s currently online, then the information collected by
the vertical can be transmitted for analysis at step 437. At step
439, the infrastructure may receirve a request for additional
data. Additionally, as described in detail above, the vertical
can register for a callback, such as the WerReportSetAddi-
tionalDataCallback described 1n detail above, such that 1f
additional information 1s requested after the vertical has
already completed gathering information and submitting 1ts
report, 1t can be made aware of the request. The ability to
request the collection of additional information can be espe-
cially usetul for developers and application support personnel
if the information commonly collected by a vertical identifies

US 7,391,312 B2

25

the incident as one of a handiul of possibilities, but additional
information, not collected by the vertical by default, is
required to precisely identify the cause of the incident.

As shown 1n FIG. 4b, if a request for additional data 1s
received at step 439, the infrastructure can collect the addi-
tional information requested at step 441 and submit a subse-
quent report at step 437. As will be recognized by those
skilled 1n the art, the additional data can be collected in much
the same manner as the preparation of the original report.
Specifically, rather than responding to a vertical’s requests,
such as via the APIs described 1n detail above, the infrastruc-
ture 220 can utilize the routines exposed via those APIs to
collect the requested information itself. Additionally, as 1llus-
trated by the loop comprising steps 437, 439 and 441, there
can exist multiple requests for additional data. For example, 1f
the additional data requested may be large, it may be more
cificient to request only a subset mitially, especially if that
subset may rule out a particular analysis that would have
required sigmificantly more data collection.

If there are no requests for additional data at step 439, or no
turther requests, the infrastructure may receive a response
that provides the user with additional information regarding,
the incident. For example, if the incident 1s a known or com-
mon incident, the user can be provided with information
regarding 1ts cause and possible solutions. Alternatively, the
user may be imformed that an updated version of the applica-
tion that experienced the incident 1s available that no longer
shares the same 1ssue. I the incident 1s one that has not yet
been solved by the application’s support personnel, then the
user may be presented with generalized information regard-
ing possible causes or possible preventative steps that the user
can take. The infrastructure can recerve the response for the
user 1n much the same manner as 1t receives the requests for
additional data.

The infrastructure can display any responses to the user at
step 443, as shown 1n FI1G. 4b. Such responses can provide the
user with information that can reduce or eliminate future
occurrences of the incident at step 410. For example, 11 the
incident was caused by a known problem that may have been
corrected 1n a newer version of the application experiencing
the incident, the user can be mnformed of the availably of the
newer version. Similarly, 1t the incident was caused by a
known problem what was corrected by additional computer-
readable mstructions commonly referred to as a “patch” the
user can be presented with a location from which the user can
download the patch and 1nstall 1t. For those users who wish to
mimmize their efforts, an option can be provided by which
such patches are automatically downloaded and installed.
Alternatively, if the cause of the incident at step 410 1s
unknown, then the user can be presented with a series of
suggestions that may be generally helpful when dealing with
incidents similar to the incident at step 410. Once the user has
been presented with any responses that may have been
received, the process can end, such as 1n step 450, and the
vertical 1t can signal its completion to other processes, so that
the memory used by the vertical can be released, and, i1t the
application experienced a fatal incident, the application can
be restarted. One such mterface that can be used by the
vertical to end properly can be the WerReportCloseHandle
interface described 1n detail above.

As can be seen, the iifrastructure 220 can provide mecha-
nisms by which general purpose verticals, such as the Crash
Vertical 211 or the Hang Vertical 213, can be created to collect
information regarding specific incident types and transmuit
that information to application support personnel so that a
solution may be found. In addition, the infrastructure can be
used to create custom verticals, such as custom vertical 215,

10

15

20

25

30

35

40

45

50

55

60

65

26

that can be used to collect information for a specific incident.
Applications can request the verticals to collect additional
information and can request to be notified when the vertical
has completed i order to attempt to recover from the inci-
dent. Once a vertical has sent the information 1t has collected,
the infrastructure may receive a request for additional infor-
mation, to which 1t can similarly respond, or it can receive
teedback that can be presented to the user.

In view of the many possible embodiments to which the
principles of this mvention may be applied, 1t should be
recognized that the embodiments described herein with
respect to the drawing figures are meant to be 1llustrative only
and should not be taken as limiting the scope of invention. For
example, those of skill in the art will recognize that some
clements of the 1llustrated embodiments shown in software
may be implemented 1n hardware and vice versa or that the
illustrated embodiments can be modified 1n arrangement and
detail without departing from the spirit of the invention.
Therefore, the invention as described herein contemplates all
such embodiments as may come within the scope of the
tollowing claims and equivalents thereof.

What 1s claimed 1s:

1. A computer-readable medium having computer-execut-
able mnstructions for collecting information in response to an
incident, the computer-executable instructions performing
steps comprising: registering for a specific incident or an
incident type; recerving a notification of an occurred incident,
wherein the occurred incident 1s either the registered specific
incident or 1s of the registered incident type; collecting a
predetermined set of information associated with the inci-
dent; and transmitting the collected predetermined set of
information for analysis.

2. The computer-readable medium of claim 1 having fur-
ther computer-executable instructions for performing steps
comprising: collecting a requested set of information,
wherein the requested set of information was requested by an
application associated with the incident; and transmaitting the
collected requested set of information for analysis.

3. The computer-readable medium of claim 1 having fur-
ther computer-executable instructions for performing steps
comprising: receiving feedback in response to the transmit-
ting the collected predetermined set of information, wherein
the feedback 1s related to an analysis of the collected prede-
termined set of mnformation.

4. The computer-readable medium of claim 3, wherein the
teedback comprises information for the user regarding the
incident, the computer-readable medium having further com-
puter-executable instructions for performing steps compris-
ing: displaying the feedback to the user.

5. The computer-readable medium of claim 3, wherein the
teedback comprises a request for additional information, the
computer-readable medium having further computer-execut-
able 1nstructions for performing steps comprising: collecting
the requested additional information; and transmitting the
collected requested additional information for further analy-
S18.

6. The computer-readable medium of claim 1, wherein the
transmitting the collected predetermined set of information
comprises enqueuing the collected predetermined set of
information for subsequent transmission ii there 1s no access
to a transmitting destination, 11 the occurred incident 1s non-
fatal, or 1f the occurred incident 1s associated with an appli-
cation that does not control a top level window.

7. The computer-readable medium of claim 1, wherein the
receiving the notification of the occurred incident comprises
receiving the notification from an operating system

US 7,391,312 B2

27

unhandled exception filter, and wherein the registering for the
specific incident or the incident type comprises registering for
a crash type incident.

8. The computer-readable medium of claim 1 having fur-
ther computer-executable instructions for performing steps
comprising: collecting a further set of information 1n accor-
dance with a user’s explicit or default authorization.

9. A computer-readable medium having computer-execut-
able 1nstructions for supporting the collection of information
in response to an incident, the computer-executable mstruc-
tions performing steps comprising: recewving a request to
create a report object, the report object being associated with
an event name; providing a handle to the report object, the
report object having been created 1n response to the request to
create the report object; receving a request to set a parameter
ol the report object comprising the handle of the report object;
receiving a request to submait the report object comprising the
handle of the report object and an indication of a user’s
consent to the submission; and providing an indication of the
success of a transmission of the report object, the transmis-
s10n occurring in response to the request to submit the report
object.

10. The computer-readable medium of claim 9 having fur-
ther computer-executable mstructions performing steps com-
prising: recerving a request to add a file to the report object
comprising the handle of the report object and an 1dentifier of
the file.

11. The computer-readable medium of claim 9 having fur-
ther computer-executable istructions performing steps com-
prising: receiving a request to add a dump of a section of
memory to the report object comprising the handle of the
report object and an identifier of the section of memory.

12. The computer-readable medium of claim 9 having fur-
ther computer-executable mstructions performing steps com-
prising: receiving a request to register a callback mechanism
for responding to a request for additional data comprising the
handle of the report object and an 1dentification of a function
to call 11 the request for additional data 1s received 1n response
to the transmission of the report object.

13. The computer-readable medium of claim 9 having fur-
ther computer-executable mstructions performing steps com-

10

15

20

25

30

35

40

28

prising: receiving a request to register a recovery callback
mechanism comprising the handle of the report object and an
identification of a function to call if a request for recovery of
data 1s made by an application experiencing the incident.

14. An operating system for a computing device, the oper-
ating system comprising an incidental feedback platform for
providing feedback in response to incidents, the incidental
teedback platform comprising: an interface for registering a
vertical, wherein the vertical comprises computer-executable
instructions for collecting information 1n response to 1nci-
dents; an interface for creating a report 1n response to 1nci-
dents; an interface for editing the report; an interface for
transmitting the report; and one or more general purpose
verticals comprising computer-executable instructions for
collecting a first predetermined set of information in response
to application incidents.

15. The operating system of claim 14, wherein the inciden-
tal feedback platiform further comprises an interface for add-
ing a file to the report.

16. The operating system of claim 14, wherein the inciden-
tal feedback platform further comprises an interface for add-
ing a dump of memory to the report.

17. The operating system of claim 14, wherein the one or
more general purpose verticals further comprise computer-
executable instructions for collecting a further set of infor-
mation requested by an application experiencing an incident.

18. The operating system of claim 14, wherein the inciden-
tal feedback platform further comprises computer-executable
istructions for responding to a request for additional data,
the request for additional data being recerved 1n response to a
transmission of the report.

19. The operating system of claim 14, wherein the inciden-
tal feedback platform further comprises an interface for pro-
viding analysis for display to a user, the analysis being based
on the report.

20. The operating system of claim 14 further comprising a
mechanism for storing a user’s default authorization as to
which imnformation can be collected by the vertical.

	Front Page
	Drawings
	Specification
	Claims

