12 United States Patent

Pal et al.

US007386541B2

US 7,386,541 B2
Jun. 10, 2008

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR COMPILING
AN EXTENSIBLE MARKUP LANGUAGE
BASED QUERY

(75) Inventors: Shankar Pal, Redmond, WA (US);
Istvan Cseri, Redmond, WA (US);
Oliver Seeliger, Sammamish, WA (US);
Gideon Schaller, Bellevue, WA (US);
Adrian Baras, Redmond, WA (US);
Weil Yu, Issaquah, WA (US); Denis
Churin, Sammamish, WA (US); Peter
Kukol, Scottsdale, AZ (US)
(73) Assignee: Microsoft Corporation, Redmond, WA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 443 days.
(21) Appl. No.: 10/803,283
(22) Filed: Mar. 18, 2004
(65) Prior Publication Data
US 2005/0210002 Al Sep. 22, 2005
(51) Int. CIL
GO6F 17/30 (2006.01)
GO6EF 7/00 (2006.01)
(52) US.CL 707/3; 70°7/1; 7077/2; 707/100;
707/101; 707/102
(58) Field of Classification Search 70°7/1-34,
7077/100-103
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS
6,836,778 B2* 12/2004 Manikutty et al. 707/102

6,917,935 B2* 7/2005 Zwiegincew et al. 707/4
2003/0101169 Al* 5/2003 Bhatt et al. 707/3
2003/0225759 Al1* 12/2003 Nonko et al. 707/4
2004/0220912 Al1* 11/2004 Manikutty et al. 707/3
2005/0203933 Al1* 9/2005 Chaudhurt et al. 707/101

OTHER PUBLICATTONS

Hou, W.C. et al., “Statistical Estimators for Aggregate Relational
Algebra Queries” ACM Transactions on Database Systems, Dec.
1991, 16(4), 600-654.

Klug, A., “Equivalence of Relational Algebra and Relational Cal-

culus Query Languages Having Aggregate Functions”, Journal of
the Association for Computing Machinery, Jul. 1982, 29(3), 699-

717,

Richard, P., “Evaluation of the Size of a Query Expressed in

Relational Algebra”, Association for Computing Machinery, 1981,
155-163.

Wyss, C., et al. “A Relational Algebra for Data/Metadata Integration
in a Federated Database System™, CIKM, 2001, 65-72.
Yokota, H. et al., “An Enhanced Inference Mechanism for Gener-

ating Relational Algebra Queries”, Association for Computing
Machinery, 1984, 229-238.

* cited by examiner

Primary Examiner—John Cottingham

Assistant Examiner—Susan Rayyan
(74) Attorney, Agent, or Firm—Woodcock Washburn LLP

(57) ABSTRACT

An extensible markup language (XML) expression included
in a query 1s parsed to yield an abstract syntax tree. The
abstract syntax tree 1s then transformed into a unified tree
including XML algebra operations. The unified tree 1s then
converted 1nto a relational tree including enhanced relational
algebra operations. The relational tree 1s then forwarded to
a query processor for optimization and execution of the
query at the query processor.

22 Claims, 15 Drawing Sheets

Front End 310

ML
Expression
415

Relational
q:;gy —m Parser
422

abstrac
syntax tree
3258a

Relational

Operation

Generator
424

unified {free
335a

Relational
Algebrizer
426

XML

Parser
432

abstra

syntax tree
326h

XML
Oparation
Generator

434

unified tree
335b

XML
Algebrizer
436

elation
log-op tree Eﬁ?ﬁ
345

U.S. Patent Jun. 10, 2008 Sheet 1 of 15 US 7,386,541 B2

Fig. 1
Client
Application
220
% front end prgg:s?éor .
310 390

storage
processor
330
Database
210

(Prior Art)

U.S. Patent Jun. 10, 2008 Sheet 2 of 15 US 7,386,541 B2

Fig. 2

Front End 310

Relational

@ Parser
422

abstrac
syntax tree

325a

Relational
Operation

Generator
424

unified tree
335a

Relational

Algebrizer
426

Relationad
log-op tree %
345 ' -

(Prior Art)

U.S. Patent Jun. 10, 2008 Sheet 3 of 15 US 7,386,541 B2

Fig. 3

client
application
220

Database 210

Data Table 230

U.S. Patent Jun. 10, 2008 Sheet 4 of 15 US 7,386,541 B2

Fig. 4
400

CREATE XML SCHEMA COLLECTION xs people AS
'<schema xmlns="http://www.w3.0rqg/2001/XMLSchema"
targetNamespace="pecople-uri”
xmlns:p="people-uri'">
<element name="perscon" maxOccurs="unbounded">
<complexType>
<sequence>
<element ref="p:name" />
<element ref="p:emailaddress" />
<element ref="p:phone" minCccurs="0" maxOccurs="1" />
<element ref="p:address" minOccurs="0" maxOccurs="1" />
<element ref="p:homepage" minCccurs="0" maxOccurs="1" />
<element ref="p:creditcard” minOccurs="0" maxOccurs="1" />
<element ref="p:profile" minOccurs="0" maxOccurs="1" />
</seguence>
<attribute name="id" type="string" use="required" />
</complexType>
</element>
<element name="name" type="string"/>
<element name="emailaddress" type="anyURI" />
<element name="phone" type="string" />
<element name="address">
<complexType>
<sequence>
<element ref="p:street" />
<element ref="p:city" />
<element ref="p:country" />
<element ref="p:province" minOccurs="0" maxOccurs="1" />
<element ref="p:zipcode" />
</sequence>
</complexType>
</element>
<element name="street" type="string" />
<element name="city" type="normalizedString"” />
<element name="province" type="string" />
<element name="zipcode" type="string" />
<element name="country" type="normalizedString" />
<element name="homepage" type="anyURI" />
<element name="creditcard" type="string" />
<element name="profile”">

<complexType>
<sequence>
<element ref="p:interest” minCccurs="0"
maxOccurs="unbounded" /> -

<element ref="p:education" minOccurs="0" maxOccurs="1" />
<element ref="p:gender" minOccurs="0" maxOccurs="1" />
<element ref="p:business" />
<element ref="p:age" minOccurs="0" maxOccurs="1" />
</seguence>
<attribute name="income" type="decimal" use="optional" />
</complexType> |
</element>
<element name="interest">
<complexType>
<attribute name="category" type="string" use="required" />
</complexType>
</element>
<element name="education" type="normalizedString" />
<glement name="income" type="decimal" />
<element name="gender" type="token" />
<element name="business" type="string" />
<element name="age" type="short" />
</schema>

| { ,xuosxad/>
<duoyd/>Lp9€86 (998) 6SG+<duoyd>
<SSaIppeITewus/>A0D TUTTHTUUN ::0OJTTRUCSSDIPpPpRTTRWS>
<OUWRU/>TUU UOMEBMNLDWERU>
<, 2uosixed,=pT ,TaIn-sa7doad,=suTuwx uosxad>
<uosaad/>
<PIBOITPRID/>ET68 66ES 0569 ££8L<PIBOITPDID>
<ebedswoy/>oTaIN,~ /9P "UdYORER-YUIMI “MMM/ / :dIjy<abedaswoy>
£SsaIppe/>
<9POoOdIZ/>ET<OpoodTZ>
<9DUTAOId/>IUCUIDIALIOUTAOIC>
<Axjunoo/>s83e318 PO3ITUNCAIIUNOCD>
<A3T10/>suUsyly<A3To>
<39211§8 />335 I9UTd G<ISDIIS>
<ssaippe>

<duoyd/>6£59602L (Z269) GG+<auoyd>
<SSSIPPRITIRWD/>0P "USUder-YiMIgOoTIN, 03[TRPUCSSDIPPE T TRUD>
<BUWRU/>OTIN, OITUSTeg<awueu>

<aTuosxad,=pT , TIN-8TdO8d,=SUTWUX uOsSIad>

2) senTea sTdoad ojuT j3aesurt

US 7,386,541 B2

Sheet 5 of 15

(,cuosxad/>
<d11301d/>
<abe/>/c<abe>
<SSBUTSN/>ONKSSaUTSN>
<Ispuab/>sTeucIapUsby>
<UOTIeONPa/>TOo0Uns yYbiTH<uoT3iRONPI>
<u98°98£GG,=SwWOdUT STTFOoId>
<PIBOJTPIID/>ELBE E6FF 8ZCT Z818<PIBRDITPSIO>
<ss3aIppe/>
0G <opoodrz />zc<opoodTzy>
<AI3Uunoo/>s23¥38 Pa31TUN<KAIIUNOD>
<A3TO/>UODBRKAITO>
<399435/>35 I2JUTIH Gp<IS9I3S>
<SsaIppe>
<SSOIPPETTRWS/>9S "NNyawd:03TTRUCSSaIpPeTTRUD>
<BURU/>OWSJ TINH<SWRU>
<,Quoszad,=pT , TIn-8Tdoad,,=SUuTuxX uosIad)

m m_H_ ,TysanTea a7doad o3uT 3I9SUT

Jun. 10, 2008

U.S. Patent

U.S. Patent Jun. 10, 2008 Sheet 6 of 15 US 7,386,541 B2

Fig. 6

Front End 310

ML
Expression
415
Relational XML
Parser Parser
422 432
abstrac abstrac
syntax tree syntax tree
32ba 325b
Relational XML
Operation Operation
Generator Generator
424 434
unified tree unified tree
335a 335b

Relational XML

Algebrizer
426

Algebrizer
436

Relationa
log-op tree @
345 ' '

US 7,386,541 B2

Sheet 7 of 15

Jun. 10, 2008

U.S. Patent

<T>dWdl [(uosxad: {tan-ardoad}d)juswus(e=adiy] Iea (PI6EEYSTT]
. [,uosxad:d{,Tan
-a1doed,,}, ::pTTUD=yled] [« (uosxad: {tTan-aTdosad}d)1uswsTa=adX3] x310-paad [PPYEYCAT]
[{ "} JusumdOop=odA3l] <3001'INO> [DGLEYGHAT)
[,uosxad:d{, TIN
-a7doad,, }, : :pTTYO=yjed] [+ (uoszad:{tan-sTdoad}d)juswara=adA3] / [DZLEYGHT]
| ,uosxad:d{,Tan
-91doad,, }, [,uosaad:d{,Tan-aTdoad,},::pTTUo=y3ed] sSueu [D8LEYSGHT]
[po3sauy/] [(uosxad: {Tan-sTdoad}d)juswaTa=3dA3] [X3puT] [D9/.€YGAT]
<1>dWdl [,uvoszad:d{,tan-atdoad,},::pTTYyd=y3led]
[(uosaed: {Tan-aTdosad}d) yusuaTea=adA3] x=2A [78REYCHT]
[, uosaad:d{,Tan-aTdoad,}, ::PTTY2,o2171T30ad: :d{,, Tan-a7doad, }, : :pTTtUun=yled]
[¢ (8TTFoad:{Tan-aTdoad}d)juswe1s=adA3] / [7I8EYGHT]
,OTTJoxd:d{,, Tan-a1doad,,}, [,uocsaad:d{(, Tan-aT7doad,},::pTTUo,o17130xd:d{,TIN
-a1doad,, } , : :pTTUO=y3zed] SueU [OFLEYGHAT]
[, uosxad:
d{,Tan-sa7dosad,}, ::pITUo,a1TtI0ad:d{, Tan-a7doad,,},::pTTYyo,s9be:d{,, Tan-s1dosd,, }, : :pTTUs=yaed]
[¢ (3x0oys:sx’obe:{Tan-o1dosad}d)jusweTe=adA]] / [PI8EYGHT]
obe:d{,Tan-a7doad,}, [,uoszad:d{,tan-a7doad,}, ::pTTyY2,o27TFoxd:d{,tan-a7doad,,},::pTTYUD,2be:d{,TIN
-aTdoad, }, : :pTTYD=yaed] sweu [PT6EYGET]
[¢ 3aoys:sx=adAl] ()eaep [D6G0YGHT]
[¢ a9bojuTt:sX=3dAl] 2201900 [PAGOYGHT]
[&¢ uesTooq:sx=0dA]] < [P 76 EYSHT]
[Z.,=9nTea [x8bsjul=adA3] uodD3ap [P L6EYSHT]
[,uosasd:d{,Tan-a7dosad,}, :PTTYD,2weu:d{, TaIn
—aTdoad,}, :pTTYUS=y3ed] [« (PuTxjs:sx’/ouweu: {Tan-oTdoad}d)ususTo=0dAl3] / [7 LYEYSHAT
,pueu:d{, tan-a1doad,, },
[\uoszad:d{,Tan-atdoad, },::pTTyUo,aweu:d(, TIn-ardoad,, }, : :pTTYO=yied] SWeu [PIYEYGHT]
<3ISTT> [THEYGHT]
4Ggcée

/ "B

U.S. Patent Jun. 10, 2008 Sheet 8 of 15 US 7,386,541 B2

<XmlOp Apply VarName="#3" Simple="Yes" >
<XmlOp Select VarName="%1" >
<XmlOp Path Path="/Child:Element (people-uri:person)" >
</XmlOp Path>
<XmlOp Compare Operator=">" >
<XmlOp Coerce Simple="Yes" >
<XmlOp Accessor Type="Value" >
<XmlOp Path Path="/Child:Element (people-
uri:profile) /Child:Element (people-uri:age)" Context="%1"
ContextPath="/Child:Element (people-uri:person)" >
</XmlOp Path>
</XmlOp Accessor>
</XmlOp Coerce>
<XmlOp Constant Value="numeric, Not
Owned,Value=(len,prec,scale)=(9,38,10)" >
</XmlOp Constant>
</XmlOp Compare>
</XmlOp Select>
<XmlOp Path Path="/Child:Element (people—-uri:name)" Context="#3"
ContextPath="/Child:Element (people~uri:person)" >
</XmlOp Path>
</XmlOp Apply>

pPI-[z:9be] :7000 I9TFTUuspIr dO®BOS
pPT - [T:uoszad] :7000 ISTFTIuspIl doedS
1 TWIT3URpUSsDseplsb orsurajzur doeos
39dmo x dwop dpeos
pt-[z:8be] :7000 IxoryriuepIr doeos
pT° [T1:uosxad] :7000 I9TFTIuspI do®OS
ordmo x dwmon dpeog
asuon doeos
Pt [Z:@b®v] :7000 I°9TFT3uspI dO®OS
Jo3seooueysb orsurazur doeos
Pt [1:uosasd] :7000 aeryriuspl doeos
badmo x dwmon dpeos
puydoT x TeoTboT dpEdS
3suop dpeos
PTy- [Z:@be] :7000 Ix8TFTIUSPI dOBOS

US 7,386,541 B2

nl badmo x dmop dpeos
et [Aqdwe] (1) 3899TqRI3ISUOD dpboT
S - 1yd- [z:obe] :7000 aorzyTzuspr dpeos
N pT d-[aTdoad] * [oqp] * [xpToopbTeTwX] :@(TODD ISTIFT3uspl dO®BOS
-5 bgdmo x dmon dpeos
.M srdoed xprx (Z:9be :71gl serre)ordoad xprx :741 399 dpboT
7. 3ooT9s dpboT
uror dpoboT
/+x ©be:ds/err303d:d/Uuoszed:d x/ 3o0eT8s dpboT
joefoxg dpboT

X joeTes doboTt
— utor dopbor
o s3sTXy dOBOS
< 3suo) doeos

: PTY": [T:u0saad] :TODD a=9TITIUSPI dOeds

M baduo x dwo) doeos
= (Ajdwa] (1) 29898TgeriIsuo) doboTq

T3d* [T:uosaad] 7000 I°TITIuspI dOeDoSs
pT d-[s7doad] - [ogp] * [(xpToopbTeTux] :TODD I8TITIuspI dOeDdS

baduo x dwon dpoeos

o1doad xptx (T:uosaad :qg] setie)erdoed xXpTx :7Tg] 309 d0oboT

109798 dpboT
GHe /x uoszad:d/ x,/ utop dpboT
joeTes doboT
(zeuuTil x) AT1ddy dopboT

m@ @_II._ 109Loxg dpboTg

U.S. Patent

1suo0) dpeos
pT’ [g:oweu] :7000 I8TITIuspI doeos
asuo) dpoeos
ya1edpIolonIlsuocoaInloeInNuew OTSUTIIUT dOeog
0TOoTIdx3 :7T0D Tdlxzg doouy
- 3st1lag doouy
PT° [g:oweu] :T0D00 IoTITauspl doeos
pT- [T:uosxad] :7000 I9TITIuspl dOeOS
JTWITIURPUaOsapl1ab orsutajur doeog
10dus x. dwon doessg
pT- [g:aweu] :7000 I8TFTiuspr doeos
ptT* [T:uosxad] 7000 IDTFTIUSPT Qomum
mAQEo x dwon dpeos
| 1suon doeos
Pt (€:oweu] 7000 Io9T3Tiuspl dQedS
I03seouel1sbh otsutaqur doeos
PT- [T:uosaad] :7T0D0 a9TITIUSPIT ~doeos
bagdwuo x dwopn doeos
puydoT X TeotboT dpeos
1suen doeos
pTY- [¢:aweu] :7000 I@TITiuapI doeds
baydwo x QEOU doeosg
[A3dwa] (1) 3998Tgelasuod doboT
_ 3d* [giaweu] :70D0 I9TITIUSPI dOBOS
pT d- [sTdoad] - [oqp] - (xpIoopbTeTwx] :7T0D0 ISTITIUSpPI dQEDS
baduo x dwon doros
oTdoad XpIx (g:aweu :7g] seTtTe)eTdoad xpTtx :7g] 199 doboT
10aT1es doboT
utor doboT
/x Buweu:d/uocszad:d y/ 309TSS “doboT
LOOTIAXT :T0D I2TFT3uspl dQeds
9T08=TH’'ICA’ TTNN'3ueTIRCA TDS 3I9AUO0N dOEDS

ontea" [Z:9be] :TODD ISTIFITIUSPI “doeos
e 39dwo x dwon doeos

vt 3suo) doeos

L00Txdxg :T0D TALIg doouy

3stT1lag doouy

[A3dw=] (1) 3°9°Tgerasuo) dpboq

_3oeloag dobon

3suo) doeos
antea” [z:@be] 700D ISTITIUSPI momum

D@ m_m qoNsTdmo ¥ dwon doeos

US 7,386,541 B2

Sheet 10 of 15

Jun. 10, 2008

3sT7lxg doouy

U.S. Patent

U.S. Patent Jun. 10, 2008 Sheet 11 of 15 US 7,386,541 B2

Fig. 10

Relational
Operations
1005

CLogOpArg
1010a

CScaOpArg
1010b

COpArg
1000

CAncOpArg
1010c

CXMLOPpArg
1010d

U.S. Patent Jun. 10, 2008 Sheet 12 of 15 US 7,386,541 B2

Fig. 11

Apply
1114

CLogOp_GbAgg($nes CLogOp_ Unnest($nest) CLogOp Unnest($nest)
t), group by “ltemld” 1116 1118
1112

rows representing

ordered list of XML

nodes that Expr 1
evaluates to

1110

U.S. Patent Jun. 10, 2008 Sheet 13 of 15 US 7,386,541 B2

Fig. 12

xpr2(key
1214

ClogOp Spool
1212

rows representing ordered
list of XML nodes that Expr

1 evaluates to
1210

U.S. Patent

Computing
Device
110a

Object
110d

Jun. 10, 2008 Sheet 14 of 15

Computing Device

/14

Communications
Network/Bus

Server Object

US 7,386,541 B2

Computing
Device
110e

10b

i gz}

I Server Object

———

Database 20

- _

€Ll

NIOM]IIN ealy 9PIM E

o

aa

—

4

) 00 [[oooooo] | 0]

\O

v 181 o

€

N 58T

% H¥3LNdWOD

3LONdN

nl _

y—

. _ "

" LLL _

™ |

= |

P

= Yom}aN |

. ealy |e207
|
|
|

0 |

e |

—

~ |

S “

- |

=

=

— |

U.S. Patent

S8l SNVHOO0Yd
NOILYOI'lddVY
310NN

19l
a91Aa(Q
Z9) pieoqAs) Bunuiod

¢l

gvl
SV

NOILVOITddVY | ONILVY¥3d0

.
AN 0ol 0S| agepayuy orl momtm.._—m._
9oe4I9u) adejlaju) Aiowap Aowaiy
NIOMION nduj sas a[I}e|]OA-UON 9l11e|OA-UON
9[qeAOWISY 9|qeAQUISY-UON
12| shg wajsAg
—— 061 =aT —
56+ gopp1a3u] — aoeuau) ¢l
jejaydilad O3PIA sdlydeso nun
indinQ Buissadoid

¥8l

Ndo

e e Saeae NS AN eSS
IIIIIIlIIIllI|IIlI|IIIIII.II!IIIIIII'IIII‘IIIIIIIII
]

001 juswuoliAuUg bunpndwio

r
i.‘._i.
at
at
27

ek —

LE)

ejeQq
welbo.id

9€l sanpopn
weiboid 19410

Sl sweiboid
uonedddy

pEl WOISAS
Gunesado

II'III.IIIII'II'II.II'I.I.I.I'III.IIIII'I

Us 7,386,541 B2

1

SYSTEM AND METHOD FOR COMPILING
AN EXTENSIBLE MARKUP LANGUAGE
BASED QUERY

FIELD OF THE INVENTION

The present invention relates to the field of data retrieval

and manipulation, and, more specifically, to compiling an
extensible markup language (XML) based query.

BACKGROUND OF THE INVENTION

In conventional databases, an incoming query 1s typically
received and manipulated by a database front end prior to
being submitted to a query processor for optimization and
execution. Generally, the front end uses the mncoming query
to generate a query plan for executing the query at the query
processor. Generating an execution plan 1s a multi-stage
process. For example, SQL Server™ from Microsoit Corp.
of Redmond, Wash., 1s a relational database in which an
execution plan may be generated as follows. First, the query
may be parsed to yield an abstract syntax tree. The abstract
syntax tree may then be transformed into a unified tree
structure 1n which nodes represent abstract operations to be
performed on the query. An algebrizer may then be
employed to convert the unified tree operations into rela-
tional algebraic expressions 1n a log-op tree. The log-op tree
1s the resulting query plan which 1s submitted to the query
processor for optimization and execution.

A recent development with respect to databases 1s that, 1n
addition to supporting traditional relational data, the data-
bases also support extensible markup language (XML) data.
For example, SQL Server enables data to be defined using an
XML data type. Columns with such an XML data type can
be created 1n a data table, and XML variables and parameters
can be declared. Such XML data can be searched, retrieved,
and updated. Specifically, a query may include an XML
expression written 1n an XML based query language such as
XQuery and XSLT.

A limitation of conventional databases 1s that the existing
method of generating a query plan set forth above 1s 1nad-
equate for queries that include such an XML expression.
Specifically, the existing relational operations are inadequate
for XML expressions that include document order and
hierarchical ordering of data. Furthermore, existing alge-
brizers are inadequate to convert XML operations 1nto
relational algebra operations. Furthermore, existing rela-
tional algebra operations are inadequate to describe XML
operations.

Thus, there 1s a need 1n the art for systems and methods
for compiling an XML based query. The present invention
satisfies these needs.

SUMMARY OF THE INVENTION

The present invention 1s directed to systems and methods
for compiling an extensible markup language (XML) based
query. According to the mvention, a query including an
XML expression 1s received by a database engine front end.
The query 1s parsed by a relational query parser and embed-
ded XML expressions are forwarded to an XML parser. The
XML expression 1s parsed by the XML parser to yield an
abstract syntax tree. The abstract syntax tree 1s then for-
warded to an XML operation generator, which transiorms
the abstract syntax tree into a unified tree mcluding XML
algebra operations. The unified tree 1s then forwarded to an
XML algebrizer, which converts the unified tree into a

10

15

20

25

30

35

40

45

50

55

60

65

2

relational tree including enhanced relational algebra opera-
tions. The relational tree 1s graited into a log-op tree being
produced for the enclosed relational query. The log-op tree
results 1n a query plan that 1s forwarded to a query processor
for optimization and execution of the query at the query
Processor.

According to an aspect of the invention, the enhanced
relational algebra operations include nested table abstraction
operations. Such operations may include, for example, a row
nesting operation, a nested table expansion, a nested row
expansion, and a nested row descendant expansion.

Additional features and advantages of the invention will
be made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The illustrative embodiments will be better understood
alter reading the following detailed description with refer-
ence to the appended drawings, in which:

FIG. 1 1s a block diagram of an exemplary prior art query
processing environment;

FIG. 2 1s a block diagram of an exemplary prior art
database front end;

FIG. 3 1s a block diagram of an exemplary database 1n
accordance with the present invention;

FIG. 4 shows an exemplary XML schema 1n accordance
with the present mvention;

FIG. 5 shows exemplary instances of an XML document
conforming to an XML schema in accordance with the
present 1nvention;

FIG. 6 shows a block diagram of an exemplary database
front end 1n accordance with the present invention;

FIG. 7 shows an exemplary abstract syntax tree in accor-
dance with the present invention

FIG. 8 shows an exemplary unified tree in accordance
with the present invention;

FIGS. 9a and 96 show an exemplary relational tree 1n
accordance with the present invention;

FIG. 10 shows an exemplary interface class of algebra
operations 1n accordance with the present invention;

FIG. 11 shows an exemplary algebrization of a LET
expression 1n accordance with the present invention;

FIG. 12 shows another exemplary algebrization of a LET
expression 1n accordance with the present invention;

FIG. 13 1s a block diagram representing an exemplary
network environment having a variety of computing devices
in which the present invention may be implemented; and

FIG. 14 1s a block diagram representing an exemplary
computing device in which the present invention may be
implemented.

DETAILED DESCRIPTION OF ILLUSTRATIV.
EMBODIMENTS

T

The subject matter of the present invention 1s described
with specificity to meet statutory requirements. However,
the description 1tself 1s not intended to limait the scope of this
patent. Rather, the inventors have contemplated that the
claimed subject matter might also be embodied in other
ways, to mclude different steps or elements similar to the
ones described 1n this document, in conjunction with other
present or future technologies.

Us 7,386,541 B2

3

1. Exemplary Query Processing Environment

An exemplary prior art query processing environment 1s
shown 1n FIG. 1. Generally, client application 220 submuits
a query 305 to database 210. The query 1s then processed at

database 210, and results are returned to client application
220.

Database 210 includes database front end 310, query
processor 320, and storage processor 330. Database front
end 310 receives query 305 from client application 220 and
validates query 305. For example, front end 310 may
validate that a table referenced by query 303 is a valid table
that 1s present 1n database 210. Front end 310 may also
verily that query 305 has been submitted by an authorized
user. Front end 310 also generates a query plan 3135 for
executing the query 305, which will be discussed 1n detail
below with reference to FIG. 2.

Query processor 320 receives query plan 3135 and gener-
ates an execution plan based on query plan 315. Query
processor 320 may perform an optimization on query plan
315 to determine the optimal manner 1n which to execute
query plan 315.

Storage Processor 330 maintains data i a storage
medium. Storage processor 330 also maintains a database
schema, which 1s a hierarchical organization of the data.
Essentially, then, storage processor 330 contains the func-
tionality to access the data of database 210 based on a
received execution plan from query processor 320.

An exemplary prior art database front end 310 1s shown
in FIG. 2. Generally, front end 310 receives query 3035 and
generates a corresponding query plan 315, which 1s submiut-
ted to query processor 320 for optimization and execution.
Relational parser 422 parses query 303 to yield an abstract
syntax tree 3235a. Relational operation generator 424 than
transforms the abstract syntax tree 325q 1nto a unified tree
structure 335a. The nodes of unified tree structure 335q
represent abstract relational operations to be performed for
query 305. Algebrizer 426 converts the relational operations
in the unified tree 3354 to relational algebraic expressions 1n

a log-op tree 345. The log-op tree 343 1s the resulting query
plan 315, which 1s submitted to query processor 320.

2. Systems and Methods for Compiling an Extensible
Markup Language Based Query

As set forth above, the present mvention 1s directed to
compiling an extensible markup language (XML) based
query. The present invention may be implemented 1n con-

nection with a database that enables data to be defined using,
an XML data type, such as database 210 of FIG. 3. Database

210 includes a data table 230 with columns 232a and 2325.
Column 2324 1s a relational column that 1s the primary key
column of table 230 including a unique identifier for each
instance of column 232b6. As should be appreciated, table
230 may include other relational columns (not shown) 1n
addition to column 232a. Column 2325 1s an XML column
that includes XML data organized according to a hierarchi-
cal manner which may include elements, attributes, and text.
Table 230 may also include additional XML columns (not
shown).

Referring now to FIG. 4, exemplary XML schema 400
shows a hierarchy for “People” data. For each person that 1s
an 1nstance of “People” schema 400, data may be entered for
a corresponding name, email address, phone, address, home-
page, credit card, and profile and so on as permitted by the

XMIL, schema.

10

15

20

25

30

35

40

45

50

55

60

65

4

Retferring now to FIG. 5, document 500 includes data for
two 1nstances of “People” schema 400. Each such instance
has a corresponding unique 1dentifier that 1s a value for 1D
column 232a 1n FIG. 3.

The XML data in XML column 2325 may be searched,
retrieved, and updated by submitting to database 210 a query
3035 that includes an XML expression. The XML expression
may be written 1 XML query language such as, for
example, XQuery, XSLT, or an extension of the SQL lan-
guage. An exemplary XML expression for retrieving data

from “People” data table 230 including XML column 2325
with “people” schema 400 1s shown below:

select p__xmlperson.query(®
declare namespace p="people-ur1”
/pperson|p:profile/p:age>21]/p:mame’)
from people

This query includes one path expression, namely: /p:per-
son|[p:profile/p:age>21]/p:name, which contains the paths
p:person, p:person/p:profile/p:age, and p:person/p:name. To
cvaluate the expression, “People” table 230 1s filtered on
XML column 2326 with an age predicate (age>21). The
name ol each person that satisfies the age predicate 1s then
retrieved.

Retferring now to FIG. 6, query 3035 including XML
expression 415 may be received and manipulated by front
end 310 to generate a query plan 315 for executing query
305. In addition to parsing query 305 to vield a relational
abstract syntax tree 323a, relational parser 422 passes XML
expression 4135 from query 305 to XML parser 432. XML
parser 432 than parses XML expression 4135 to generate an
XML abstract syntax tree 3255.

Referring now to FIG. 7, exemplary XML abstract syntax
tree 3255H 15 a bound abstract syntax tree that corresponds to
exemplary XML expression 415 above. The process of
generating abstract syntax tree 3255 1s well known 1n the art
and will not be described 1n detail herein.

XML operation generator 434 transforms the XML
abstract syntax tree 3255 into an XML umified tree structure
335b. Unlike relational operation generator 424, XML
operation generator 434 employs a set of XML operations
corresponding to XML algebraic expressions.

XML operation generator 434 recursively traverses
abstract syntax tree 323b. For each node of abstract syntax
tree 323b, a corresponding unified sub-tree 1s generated.
Each such unified sub-tree includes a number of XML
algebra operations required to perform the expression 1n 1ts
associated abstract syntax tree node. The unified sub-trees
are then inserted into unified tree 3355b.

Referring now to FIG. 8, exemplary unified tree structure
3355 corresponds to the exemplary XML expression shown
above. Tree structure 3356 includes a number of XML
operations, which are discussed in detail within the “XML
Operation Generation” section below.

XML Algebrizer 436 converts the XML operations within
unified tree structure 3356 into a relational log-op tree 345
that 1includes enhanced relational operations. XML Alge-
brizer 436 recursively traverses unified tree 333b. For each
node of unified tree 3355H, a corresponding relational sub-
tree 1s generated. Each such relational sub-tree includes a
number of enhanced relational algebra operations required
to perform the XML algebra operation in 1ts associated
unified tree node. The relational sub-trees are then serted
into relational tree 345.

Us 7,386,541 B2

S

Referring now to FIGS. 9a and 95, exemplary relational
log-op tree 345 corresponds to the exemplary XML expres-
sion shown above. Tree structure 345 includes a number of
enhanced relational operations, which are discussed 1n detail
within the “XML Algebrization” section below.

a. XML Operation Generation

XML operation generator 434 transiforms the XML
abstract syntax tree 3255 into an XML umfied tree structure
335bH including XML algebra operations. Referring now to
FIG. 10, the set of operations “COpArg” 1000 includes a set
of relational operations 1005 employed by relational algebra
generator 424, “CXMLOpArg” 10104 15 added to
“COpArg” 1000. “CXMLOpArg” 10104 1s the set of XML
operations employed by XML operation generator 434.
“CXMLOpArg” 10104 includes a number of operations,
which are discussed i1n detail below. Each such operation
may accept input such as, for example, an ordered XML
node list, an unordered XML node set, a Boolean condition,
an ordinal condition, a node list condition, and other scalar
input.

CXmlOp_Follow 1s an operation that takes an XML node
list as mput, and returns a following XML node list as
output. The types of following node lists which are output
may be, for example: children (*/”), which are followed
from a parent to the children; descendants (*//”), which are
tollowed from an ancestor to the descendants; a parent (*..”),
which 1s followed from a child to the parent; a self node

(*.”); and an 1dentifier reterence (IDREF), (*->""), which 1s
a reference to a corresponding node.

When a child or a descendant follow i1s performed, a
“target” may be set. The target restricts the output list of
XML nodes. For example, “a/b” sets the target as “b”, so that
the output list 1s restricted to sub-elements with name “b”.
A target can be elements, attributes, or PCDATA. When an
IDREF follow 1s performed, the source node already con-
tains the name of the referred node. Accordingly, the target

— 1

restriction 1s only used for re-validation of an IDREF follow.

In addition to a target, a follow operation may include a
flag that provides detail as to how the follow 1s to be applied.
Such flags may include, for example, an all elements tlag
and a relative tlag. An all elements flag indicates that the
target of the follow 1s all elements. The all elements flag
does not require string comparison. A relative flag may be
employed when a follow does not have a specified mput
such as, for example, in the case of predicates 1n XPath
expressions. For example, 1 a[b="c”], the predicate opera-
tor takes “a” as one mput, and “follow =*b’”" as another input
tor the condition. The follow operator sets the target as “b”,
but the target 1s not bound to any input until the predicate
operation 1s evaluated. The actual input is the left child of 1ts
nearest predicate above it 1n the unified tree. It that child 1s
also a relative follow operator, then the next child above 1t
1s evaluated until an XML node list 1s found. Thus, a
predicate defines the context for relative follow operators
below 1it.

The relative flag may also be employed to express a
nested follow that i1s not to be evaluated from left to right.
For example, “a/b/c” 1s normally expressed as “(a/b)/c”.
However, if “a/b/c” 1s specified as “a/(b/c)”, then “b/c” 1s
evaluated first, and, since *“b” 1s not bound, it 1s expressed as
a relative follow.

The list of output nodes 1s ordered according to the order
of mput nodes. Output nodes that are generated from dii-
ferent input nodes are ordered in the same order of 1put
nodes, while output nodes that are generated from the same
input node are ordered in the global document order.

XmlOp_Follow 1s an operation that represents XPath
axes. The mput of this operator 1s one node, and the output
1s a list of nodes following the axis. The follow types may

10

15

20

25

30

35

40

45

50

55

60

65

6

include, for example, child, self, descendant, descendant-or-
self, parent, ancestor, ancestor-or-self, following-sibling,
preceding-sibling, following, preceding, and IDREF.

CXmlOp_Select 1s an operation that takes a list of ordered
XML nodes as a lett child and a condition as right child, and
returns the qualifying input nodes based on the given
condition in their input order. The *“select” operator can have
three types of conditions: Boolean, ordinal or XML nodes.

The Boolean condition 1s usually expressed as a compari-
son of an XML node and some constant. The XML node can
be the list output of a relative “follow™ operation, meaning
that the XML node 1s evaluated based on the mput XML
node of the “select” operation such as, for example, the list
ol ‘a’ nodes m ‘/a[b=3]". The XML node can also be
evaluated regardless of the current node such as, for
example, “/a[/b=6]". The condition means that the current
XML node “a” on which the “select” operation 1s working
must have at least one XML node “b” with which the given
relationship 1s present. The given condition must also be
satisfied.

The ordinal condition can be either an integer or a list of
integers such as, for example, “/a[2]”. The condition means
that the XML nodes “a” corresponding to the “select”
operation must be 1n one of the given positions among 1ts
siblings (1.e. position 2).

This XML node list implies checking for existence, which
means that the current XML node on which the “select”
operation 1s working must have at least one XML node with
which the given relationship 1s present. An example 1s the
XPath expression “/a[b]”.

CXmlOp_Get 1s an operation that 1s used to read an XML
source. CXmlOp_Construct creates a new XML node.

CXml_OpConstruct 1s an operation that can create all
types of XML nodes, namely: elements, attributes, process-
ing structions, comments, and PCDATA. For an element,
the operator takes input, which gives the sub-nodes (at-
tributes and/or children) and indicates the order among the
attributes. For an attribute, the operator takes a constant
(integer, float, string, etc.) as the mput, and creates an
attribute with the value as the input constant as the value. For

PCDATA, the operator takes a string as the input, and creates
a PCDATA element.

CXmlOp_Concat 1s an operation that takes two XML
node lists as mput, concatenates the second list to the end of
the first list, and returns the new list. CXmlOp_Union takes
two unordered XML node sets as input, and returns one
XML node set which 1s the union of the two mput sets. The
union operation 1s based on node identity.

CXmlOp_Except 1s an operation that takes two unordered
XML node sets as mput, and returns one XML node set, in
which each node exists 1n the first set but doesn’t exist 1n the
second set.

CXmlOp_Intersect 1s an operation that takes two unor-
dered XML node sets as mput, and returns one XML node
set, 1n which each node exists in both of the input node sets.

CXmlOp_Filter 1s an operation that takes two XML node
lists as mput, and returns copies of some of the nodes 1n the
forest represented by the first node list, while preserving
their hierarchic and sequential relationships. The nodes that
are copied into the result are those nodes that are present at
any level 1n the first operand and are also top-level nodes 1n
the forest represented by the second node list.

CXmlOp_If 1s an operation that takes two XML node lists
and a condition as input, and, 1f the condition 1s satisfied,
returns the first node list. If the condition 1s not satisfied, the
operation returns the second node list.

CXmlOp_OrderBy 1s an operation that takes two XML
node lists as mput. One node list 1s the list of nodes to be
sorted. The other node list includes only one node, which 1s

Us 7,386,541 B2

7

evaluated within the context of the individual nodes to be
sorted. The sorting can be either ascending or descending.

CXmlOp_Before 1s an operation that 1s used to search for
information by ordinal position. It operates on two lists of
nodes and returns those nodes in the first list that occur
betore at least one node of the second list in document order.

CXmlOp_After 1s an operation that 1s used to search for
information by ordinal position. It operates on two lists of
nodes and returns those nodes 1n the first list that occur after

at least one node of the second list 1n document order.

CXmlOp_Var 1s an operation that 1s used to refer to a
declared node varnable. CXmlOp_Var has no iput. It has a

“name” property which is that of the node vanable. CXm-
10p_Var 1s normally used as the right child of CXmlOp_A-

pply.

CXmlOp_Apply 1s an operation that takes two XML node
lists as mput, and returns one node list. It has an “apply
name” property whose value 1s the name of the variable
bound by a corresponding FOR clause in XQuery. The

variable 1s bound to each of the nodes 1n a first node list. A
second node list may contain references to this vanable.

CXmlOP_Insert 1s an operation that takes two 1nputs. The
first input 1s an XML node list, which has only one node. The
second mput can be erther an ordered XML node list or an
unordered XML node set. The operation inserts a copy of the
node 1n the first list to some position related to the node in
the second list or set. The insertion can have three types:
INTO, BEFORE, or AFTER. The insertion doesn’t have
output. For an INTO type, a copy of the node in the first list
1s 1nserted as a direct descendent for each of the nodes N of
the second list or set. If there are already children for such
a node N, then the inserted node 1s appended to the existing
list of children 11 they are ordered, or otherwise 1nserted into
the unordered children collection of N. For BEFORE or
AFTER types, a copy of the node 1n the first list 1s mserted
directly after or before each of the nodes of the second list.
The second mput must be an ordered XML node list.

CXmlOp_Delete 1s an operation that takes an XML node
list as mput, and deletes all the nodes in the list.

CXmlOp_Replace 1s an operation that takes two XML
node lists as input. Each node 1n the first list 1s replaced with
a copy of the node in the second list. The replaced node’s
position 1s preserved. As part of the replacement, the old
node including its subtrees 1s deleted. If the second list
results 1n an empty sequence, then the nodes 1n the first list
are deleted. If the second list results 1n more than one node,
then an error 1s returned.

XmlScaOp_Accessor 1s an operation that has no input,
meaning that i1t refers to the context node, or current node
which can be determined. The operator returns the scalar
value of specific properties of XML nodes. Such properties
may 1include, for example, name, nodetype (element,
attribute, text, comment, processing instruction), position,

and data.

XmlScaOp_Function 1s an operation that represents a
built 1n function that returns a scalar. The inputs are the
parameters of the function and the output 1s the result of the
function as a scalar.

XmlOp_Function 1s an operation that represents a built in
function that returns XML nodes. The inputs are the param-
cters of the function and the output 1s the result of the
function as a list of nodes. For XPath expressions, a function
NameTypeCheck may be defined. The function has 3 inputs:
a list of nodes, a string (name), or an nteger (type). The
output 1s a list of nodes that have the requested name and

type.

XmlOp_XmlNode 1s an operation that keeps the context
node 1n addition to a bound variable.

5

10

15

20

25

30

35

40

45

50

55

60

65

3
b. XML Algebrization

XML Algebrizer 436 converts the XML operations within
unified tree structure 3356 1nto a relational log-op tree 345.
Conventional relational algebra operations are inadequate to
describe XML operations which access hierarchical data.
Accordingly, XML algebrization in accordance with the
present invention converts XML operations into enhanced
relational algebra operations.

Enhanced relational algebra operations in accordance
with the present mnvention may include one or more nested
table abstraction operations. Such nested table abstractions
may include, for example, a GbAgg operation that nests a set
of rows 1nto an existing row, thereby creating a parent/child
relationship between the existing row and the nested rows;
an UNNEST operation that expands a nested table; an
UNNEST* operation that expands all levels of nesting for an

existing nested row; and a FLATTEN operation that expands
all descendants of an existing nested row.

XML algebrization 1s described in detail below with
respect to an XML expression in the XQuery language.
However, an XML expression in accordance with the
present invention may also be submitted in other XML query
languages such as, for example, XSLT and an extension of
the SQL language. XML algebrization of an XQuery expres-
sion 1 accordance with the present invention may be
divided into algebrization of XPath expressions, XQuery
language constructs, XQuery built 1n functions, and data
modification constructs.

1. XPath Expressions

An exemplary set of enhanced relational algebra map-
pings for XPath expressions 1s shown in Table 1:

TABLE 1

Path XML Algebra
eXpression Operation Enhanced Relational Mapping
/ (Children) CXMLOp_ Follow UNNEST
// CXMLOp_ Follow UNNEST * (recursive
(Descendants) UNNEST)
[Predicate] CXMLOp__Select EXISTS or SELECT
[Ordinal | CXMLOp__ Select RANK (adds a ranking column

that refers to existing position)
=> (IDREF) CXMLOp_ Follow JOIN

The slash operator “/”, yielding the children of a node,
maps directly to an UNNEST operation. Predicate evalua-
tion 1s performed within the WHERE clause of a SELECT
or by checking whether a row exists that satisfies the
predicate. The Ordinal operation adds a ranking column for
ordering. Following an IDREF 1s converted into a JOIN
between origin and destination XML nodes.

An exemplary enhanced relational mapping of /a//b 1s:
SELECT b* FROM UNNEST* (a, b).

An exemplary enhanced relational mapping of /x/a [P=5],
where P 1s an element, 1s:

SELECT a. * FROM UNNEST (x, a) as $b,
WHERE EXISTS (SELECT * FROM UNNEST ($b, P) WHERE
P.Value = 5)

11. XQuery Language Constructs
a. 1f/then/else

An exemplary set of enhanced relational algebra map-
pings for XQuery language constructs 1s shown in Table 2:

Us 7,386,541 B2

9

TABLE 2
XQuery XML Algebra Enhanced
eXpression Operation Relational Mapping
WHERE CXMLOp_ Select SELECT
Assemble elements FLATTEN

CLogOp_ Union(all)
CLogOp_ Select
exprl
CScaOp__Exists
test_expr
CLogOp_ Select
expr2
CScaOp__NotExists
test_expr
CScaOp__Exists
CLogOp__Select
el
e2
CScaOp_ NotExists
CLogOp__Select
el

if test_ expr
then exprl
else expr2

Some $v 1n el
satisfies e2

Every $v in el
satisfies e2

not(e2)
Construct CXMLOp_ Construct PROJECT and
UNION__ALL
Concat (comma) CXMLOp_ Concat UNION__ALL

FOR CXMLOp_ Apply Variable binding
(FROM clause) or
APPLY

FOR (only Path CXMLOp_ Apply APPLY

eXpression 1In
binding)

FOR (Path Construct/
Concat 1 binding)
LET (Path Construct

in binding)

CXMLOp_ Apply APPLY, ClogOp__ Spool
and CLogOp__Sequence
CLogOp__ Spool and
CLogOp__Sequence
(common subexpression

spool)

CXMLOp_ Let

With respect to the if/then/else expressions, a “Switch
Union” operation may be employed to simplify the map-
ping. The Switch Union operation chooses one of many
children 1n accordance with a scalar.

With respect to the LET expression, LET 1s best under-
stood as a sub-expression such as shown below:

LET $var = expressionl($vl, $v2,...)
RETURN expression2($var, $vl, $v2, .. .)

Expressionl may be effectively assigned to $var, and
expression?2 can refer to this variable any number of times.
In addition, both expressions can depend on vanables
defined by outer expressions.

Two exemplary implementations for converting a LET
expression are described below. The implementation plans
depend on a GbAgg(nest)/unnest operation and to a lesser
extent on exposing the Common Subexpression Spool
(CLogOp_Spool) as an mput operator.

The first exemplary implementation ivolves the use of
simple nested table algebra. It leaves the choice of whether
to re-execute or spool nested sub-expressions to query
processor 320, which 1s appropriate given that this 1s a
cost-based decision. An exemplary enhanced relational map-
ping for an exemplary LET expression under the first
implementation 1s shown 1n FIG. 11. The LET expression 1s
of the following form:

LET $v=Exprl

RETURN Expr2

10

15

20

25

30

35

40

45

50

55

60

65

10

Steps 1110-1118 show that, as part of “Exprl”, an item
identifier (“Itemld”) 1s manufactured and used by nest as the
grouping column. The mapping shown in FIG. 11 assumes
that “Expr2” refers to $v in two places.

The second exemplary implementation 1s based on expos-
ing CLogOp_Spool to XML algebrizer 436. An exemplary
enhanced relational mapping for the exemplary LET expres-
sion above under the second implementation 1s shown 1n
FIG. 12. Steps 1210-1214 show that an “Itemld” 1s
employed to distinguish multiple different groups of XML
nodes flowing into the same spool.

The conversion of the LET expression may be applied 1n
situations other than user specified queries. For example,
arbitrary expressions in FOR-bindings and ORDER-BY
expressions are query transforms that enable implementa-
tions for other XQuery constructs. The two exemplary
queries below 1illustrate how arbitrary expressions 1 a
FOR-binding may involve the LET expression. The two
exemplary queries are semantically equivalent, but suggest
different execution plans:

FOR $b in exprl
RETURN expr2($b)
LET $bl = exprl
FOR $b in $bl
RETURN expr2($b)

The second version can be mapped even 1f exprl 1s not
subject to reference semantics such as, for example, 1n the
case of path expressions. The second query 1s advantageous
because 1t 1solates the copy via the LET expression and then
has the FOR operation refer to this copy.

The Order-by expression can be converted to reference
semantics 1 a similar fashion as shown below:

<a> { /x/c[2] } { /y/c[3] } ORDER-BY a/b/c
to

LET $e = <a> { /x/c[2] } { /y/c[3] }

$e ORDER BY a/b/c

As shown 1n the examples above, conversion of the LET
expression may be applied 1n situations other than user
specified queries.

111. Data Modification

An exemplary set of enhanced relational algebra map-
pings for data modification constructs 1s shown in Table 3:

TABLE 3
XML Algebra
Modification Operations Enhanced Relational Mapping
INSERT CXMLOp_ Insert CLogOp__Insert, CLogOp_ UDX(re-
1d/validate)
DELETE CXMLOp_ Delete CLogOp_ Delete,
CLogOp_ UDX(validate)
REPLACE CXMLOp_ Replace 1. For value replace:

CLogOp_ Update
2. For tree replace: Combination
of INSERT and DELETE (may

be optimized)

In addition to the operations shown in Table 3 above,
other data modification constructs can be made available as
XML algebra operations and converted into enhanced rela-

Us 7,386,541 B2

11

tional mappings. Such additional operations may include,
for example, MOVE, RENAME, and UPSERT operations.

The MOVE operation combines an INSERT and a DELETE.
An UPSERT operation replaces an existing subtree or inserts
a non-existing subtree.

An exemplary mapping for the insertion statement
“INSERT N AFTER L” 1s shown below:

INSERT (RE-ID (CROSS-PRODUCT
(APPLY (L, Children (Parent (L)))
(FLATTEN (N))))

An alternative mapping 1s shown below:

INSERT (APPLY (L,
RE-ID (UNION (Children (Parent (L),
FLATTEN (N)))))

The first exemplary mapping above includes the RE-ID
user defined expression (UDX) above the APPLY where the
RE-ID receives and processes a rowset for all L and the
single subtree N. The second exemplary mapping above
includes the RE-ID under the APPLY so that FLATTEN (N)
1s called on all insertion locations, unlike the first plan. Thus,
the first mapping 1s faster than the second.

An exemplary mapping for the deletion statement
“DELETE A” 1s shown below:

DELETE (FLATTEN
(APPLY $b
(SELECT A)
(VALIDATE
(UNION (PROJECT 1, $b)
(PROJECT 0, UNNEST (Parent ($b))))))

As 1s apparent from the above, all or portions of the
various systems, methods, and aspects of the present inven-
tion may be embodied in hardware, software, or a combi-
nation of both. When embodied 1n software, the methods and
apparatus of the present invention, or certain aspects or
portions thereof, may be embodied in the form of program
code (1.e., instructions). This program code may be stored on
a computer-readable medium, such as a magnetic, electrical,
or optical storage medium, including without limitation a
floppy diskette, CD-ROM, CD-RW, DVD-ROM, DVD-
RAM, magnetic tape, tlash memory, hard disk drive, or any
other machine-readable storage medium, wherein, when the
program code 1s loaded into and executed by a machine,
such as a computer or server, the machine becomes an
apparatus for practicing the invention. A computer on which
the program code executes will generally include a proces-
sor, a storage medium readable by the processor (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device. The
program code may be implemented 1 a high level proce-
dural or object oriented programming language. Alterna-
tively, the program code can be implemented 1n an assembly
or machine language. In any case, the language may be a
compiled or interpreted language.

The present invention may also be embodied 1n the form
of program code that 1s transmitted over some transmission
medium, such as over electrical wiring or cabling, through

10

15

20

25

30

35

40

45

50

55

60

65

12

fiber optics, over a network, including a local area network,
a wide area network, the Internet or an intranet, or via any
other form of transmission, wherein, when the program code
1s received and loaded 1nto and executed by a machine, such
as a computer, the machine becomes an apparatus for
practicing the 1mvention.

When implemented on a general-purpose processor, the
program code may combine with the processor to provide a
unique apparatus that operates analogously to specific logic
circuits.

Moreover, the mnvention can be implemented 1n connec-
tion with any computer or other client or server device,
which can be deployed as part of a computer network, or in
a distributed computing environment. In this regard, the
present invention pertains to any computer system or envi-
ronment having any number of memory or storage units, and
any number of applications and processes occurring across
any number of storage units or volumes, which may be used
in connection with the present invention. The present inven-
tion may apply to an environment with server computers and
client computers deployed 1n a network environment or
distributed computing environment, having remote or local
storage. The present mvention may also be applied to
standalone computing devices, having programming lan-
guage functionality, interpretation and execution capabilities
for generating, receiving and transmitting information in
connection with remote or local services.

Distributed computing facilitates sharing of computer
resources and services by exchange between computing
devices and systems. These resources and services include,
but are not limited to, the exchange of information, cache
storage, and disk storage for files. Distributed computing
takes advantage of network connectivity, allowing clients to
leverage their collective power to benefit the entire enter-
prise. In this regard, a variety of devices may have appli-
cations, objects or resources that may implicate processing
performed 1n connection with the present invention.

FIG. 13 provides a schematic diagram of an exemplary
networked or distributed computing environment. The dis-
tributed computing environment comprises computing
objects 10a, 1056, etc. and computing objects or devices
110a, 1105, 110c¢, etc. These objects may comprise pro-
grams, methods, data stores, programmable logic, etc. The
objects may comprise portions of the same or different
devices such as PDAs, televisions, MP3 players, personal
computers, etc. Each object can communicate with another
object by way of the communications network 14. This
network may itself comprise other computing objects and
computing devices, and may 1tsell represent multiple inter-
connected networks. In accordance with an aspect of the
invention, each object 10a, 105, etc. or 110a, 1105, 110¢, etc.
may contain an application that might make use of an API,
or other object, software, firmware and/or hardware, to
request use of the processes used to implement the present
ivention.

It can also be appreciated that an object, such as 110c,
may be hosted on another computing device 10a, 105, etc.
or 110qa, 1105, etc. Thus, although the physical environment
depicted may show the connected devices as computers,
such 1illustration 1s merely exemplary and the physical
environment may alternatively be depicted or described
comprising various digital devices such as PDAs, televi-
sions, MP3 players, etc., software objects such as interfaces,
COM objects and the like.

There are a variety of systems, components, and network
configurations that support distributed computing environ-
ments. For example, computing systems may be connected

Us 7,386,541 B2

13

together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many of the net-
works are coupled to the Internet, which provides the
infrastructure for widely distributed computing and encom-
passes many diflerent networks. Any of the infrastructures
may be used for exemplary communications made ncident
to the present 1nvention.

The Internet commonly refers to the collection of net-
works and gateways that utilize the TCP/IP suite of proto-
cols, which are well-known 1n the art of computer network-
ing. TCP/IP 1s an acronym for “Transmission Control
Protocol/Internet Protocol.” The Internet can be described as
a system of geographically distributed remote computer
networks interconnected by computers executing network-
ing protocols that allow users to interact and share informa-
tion over the network(s). Because of such wide-spread
information sharing, remote networks such as the Internet
have thus far generally evolved into an open system for
which developers can design soitware applications for per-
forming specialized operations or services, essentially with-
out restriction.

Thus, the network infrastructure enables a host of network
topologies such as client/server, peer-to-peer, or hybrid
architectures. The “client” 1s a member of a class or group
that uses the services of another class or group to which it
1s not related. Thus, 1n computing, a client 1s a process, 1.e.,
roughly a set of instructions or tasks, that requests a service
provided by another program. The client process utilizes the
requested service without having to “know” any working
details about the other program or the service itself. In a
client/server architecture, particularly a networked system, a
client 1s usually a computer that accesses shared network
resources provided by another computer, e.g., a server. In the
example of FIG. 13, computers 110a, 1105, etc. can be
thought of as clients and computer 10a, 105, etc. can be
thought of as servers, although any computer could be
considered a client, a server, or both, depending on the
circumstances. Any of these computing devices may be
processing data 1n a manner that implicates the invention.

A server 1s typically a remote computer system accessible
over a remote or local network, such as the Internet. The
client process may be active 1n a first computer system, and
the server process may be active in a second computer
system, communicating with one another over a communi-
cations medium, thus providing distributed functionality and
allowing multiple clients to take advantage of the informa-
tion-gathering capabilities of the server. Any software
objects utilized pursuant to the mvention may be distributed
across multiple computing devices.

Client(s) and server(s) may communicate with one
another utilizing the functionality provided by a protocol
layer. For example, Hypertext Transfer Protocol (HT'TP) 1s
a common protocol that 1s used 1n conjunction with the
World Wide Web (WWW), or “the Web.” Typically, a
computer network address such as an Internet Protocol (IP)
address or other reference such as a Universal Resource
Locator (URL) can be used to i1dentify the server or client
computers to each other. The network address can be
referred to as a URL address. Communication can be pro-
vided over any available communications medium.

Thus, FIG. 13 illustrates an exemplary networked or
distributed environment, with a server in communication
with client computers via a network/bus, i which the
present mvention may be employed. The network/bus 14
may be a LAN, WAN, intranet, the Internet, or some other
network medium, with a number of client or remote com-

puting devices 110a, 1105, 110¢, 1104, 110¢, etc., such as a

10

15

20

25

30

35

40

45

50

55

60

65

14

portable computer, handheld computer, thin client, net-
worked appliance, orother device, such as a VCR, TV, oven,
light, heater and the like 1 accordance withthe present
invention.

In a network environment 1n which the communications
networkibus 14 1s the Internet, for example, the servers 10a,
1054, etc. can be servers with which the clients 1104q, 1105,
110¢, 1104, 110e, etc. communicate via any of a number of
known protocols such as HI'TP. Servers 10a, 105, etc. may
also serve as clients 110a, 11056, 10¢, 1104, 110¢, etc., as may
be characteristic of a distributed computing environment.

Communications may be wired or wireless, where appro-
priate. Client devices 110qa, 1105, 110¢, 1104, 110e¢, etc. may
or may not communicate via communications network/bus
14, and may have independent communications associated
therewith. For example, i the case of a TV or VCR, there
may or may not be a networked aspect to the control thereof.
Each client computer 110a, 105, 110c¢, 1104, 110e, etc. and
server computer 10a, 105, etc. may be equipped with various
application program modules or objects 135 and with con-
nections or access to various types of storage elements or
objects, across which files or data streams may be stored or
to which portion(s) of files or data streams may be down-
loaded, transmitted or migrated. Any computer 10a, 105,
110a, 1105, etc. may be responsible for the maintenance and
updating of a database, memory, or other storage element 20
for storing data processed according to the invention. Thus,
the present invention can be utilized 1n a computer network
environment having client computers 110a, 1105, etc. that
can access and interact with a computer network/bus 14 and
server computers 10a, 105, etc. that may interact with client
computers 110a, 1105, etc. and other like devices, and
databases 20.

FIG. 14 and the following discussion are intended to
provide a briel general description of a suitable computing
device 1n connection with which the invention may be
implemented. For example, any of the client and server
computers or devices illustrated in FIG. 3 may take this
form. It should be understood, however, that handheld,
portable and other computing devices and computing objects
of all kinds are contemplated for use 1n connection with the
present invention, 1.e., anywhere from which data may be
generated, processed, received and/or transmitted 1n a com-
puting environment. While a general purpose computer 1s
described below, this 1s but one example, and the present
invention may be implemented with a thin client having
network/bus 1nteroperability and interaction. Thus, the
present invention may be implemented 1n an environment of
networked hosted services 1n which very little or minimal
client resources are implicated, e.g., a networked environ-
ment 1 which the client device serves merely as an interface
to the network/bus, such as an object placed 1n an appliance.
In essence, anywhere that data may be stored or from which
data may be retrieved or transmitted to another computer 1s
a desirable, or suitable, environment for operation of the
object persistence methods of the invention.

Although not required, the invention can be implemented
via an operating system, for use by a developer of services
for a device or object, and/or included within application or
server software that operates 1n accordance with the mven-
tion. Soltware may be described in the general context of
computer-executable instructions, such as program modules,
being executed by one or more computers, such as client
workstations, servers or other devices. Generally, program
modules include routines, programs, objects, components,
data structures and the like that perform particular tasks or
implement particular abstract data types. Typically, the func-

Us 7,386,541 B2

15

tionality of the program modules may be combined or
distributed as desired in various embodiments. Moreover,
the mnvention may be practiced with other computer system
configurations and protocols. Other well known computing
systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not
limited to, personal computers (PCs), automated teller
machines, server computers, hand-held or laptop devices,
multi-processor systems, microprocessor-based systems,
programmable consumer electronics, network PCs, appli-
ances, lights, environmental control elements, minicomput-
ers, mainirame computers and the like.

FI1G. 14 thus illustrates an example of a suitable comput-
ing system environment 100 1n which the invention may be
implemented, although as made clear above, the computing
system environment 100 1s only one example of a suitable
computing environment and 1s not intended to suggest any
limitation as to the scope ol use or functionality of the
invention. Neither should the computing environment 100
be imterpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 100.

With reference to FIG. 14, an exemplary system for
implementing the invention includes a general purpose
computing device 1n the form of a computer 110. Compo-
nents of computer 110 may include, but are not limited to,
a processing unit 120, a system memory 130, and a system
bus 121 that couples various system components including
the system memory to the processing unit 120. The system
bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such archi-
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association

(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus (also known as Mezzanine bus).

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and commumnication media. Computer storage
media include both volatile and nonvolatile, removable and
non-removable media implemented 1n any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules or other data.

Computer storage media include, but are not limited to,
RAM, ROM, EEPROM, flash memory or other memory

technology, CDROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computer 110.
Communication media typically embody computer readable
instructions, data structures, program modules or other data
in a modulated data signal such as a carrier wave or other
transport mechamsm and include any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such
a manner as to encode iformation in the signal. By way of
example, and not limitation, communication media include
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, RF, infrared

10

15

20

25

30

35

40

45

50

55

60

65

16

and other wireless media. Combinations of any of the above
should also be included within the scope of computer
readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during
start-up, 1s typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 14
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way ol example only, FIG. 14 1llustrates a hard disk drive
141 that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from
or writes to aremovable, nonvolatile magnetic disk 152, and
an optical disk drive 135 that reads from or writes to a
removable, nonvolatile optical disk 156, such as a CD-RW,
DVD-RW or other optical media. Other removable/non-
removable, volatile/nonvolatile computer storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM and the like. The hard disk
drive 141 1s typically connected to the system bus 121
through a non-removable memory 1nterface such as interface
140, and magnetic disk drive 151 andoptical disk drive 155
are typically connected to the system bus 121 by a remov-
able memory interface, such as interface 150.

The drives and their associated computer storage media
discussed above and 1llustrated in FIG. 14 provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 14, for
example, hard disk drive 141 1s illustrated as storing oper-
ating system 144, application programs 145, other program
modules 146 and program data 147. Note that these com-
ponents can either be the same as or different from operating
system 134, application programs 135, other program mod-
ules 136 and program data 137. Operating system 144,
application programs 145, other program modules 146 and
program data 147 are given diflerent numbers here to
illustrate that, at a minimum, they are diflerent copies. A user
may enter commands and information into the computer 110
through input devices such as a keyboard 162 and pointing
device 161, such as a mouse, trackball or touch pad. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite dish, scanner, or the like. These and
other mput devices are often connected to the processing
unmt 120 through a user input interface 160 that 1s coupled to
the system bus 121, but may be connected by other interface
and bus structures, such as a parallel port, game port or a
umversal serial bus (USB). A graphics interface 182 may
also be connected to the system bus 121. One or more
graphics processing units (GPUs) 184 may communicate
with graphics iterface 182. A monitor 191 or other type of
display device 1s also connected to the system bus 121 via
an interface, such as a video interface 190, which may 1n
turn communicate with video memory 186. In addition to
monitor 191, computers may also include other peripheral
output devices such as speakers 197 and printer 196, which
may be connected through an output peripheral interface

195.

Us 7,386,541 B2

17

The computer 110 may operate 1n a networked or distrib-
uted environment using logical connections to one or more
remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
clements described above relative to the computer 110,
although only a memory storage device 181 has been
illustrated 1n FIG. 14. The logical connections depicted 1n
FIG. 14 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networks/buses. Such networking environments are com-
monplace 1n homes, offices, enterprise-wide computer net-
works, intranets and the Internet.

When used 1n a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used 1n a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be internal or external, may be connected to the system
bus 121 via the user input itertace 160, or other appropnate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 14 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

CONCLUSION

As the foregoing illustrates, the present invention 1s
directed to systems and methods for compiling an XML
query. An extensible markup language (XML) expression
included 1n a query 1s parsed to yield an abstract syntax tree.
The abstract syntax tree 1s then transformed into a unified
tree including XML algebra operations. The unified tree 1s
then converted into a relational tree including enhanced
relational algebra operations. The relational tree 1s then
forwarded to a query processor for optimization and execu-
tion of the query by the query processor.

While the present invention has been described 1n con-
nection with the preferred embodiments of the various
figures, 1t 1s to be understood that other similar embodiments
may be used or modifications and additions may be made to
the described embodiment for performing the same function
of the present invention without deviating therefrom. There-
fore, the present invention should not be limited to any
single embodiment, but rather should be construed in
breadth and scope 1n accordance with the appended claims.

What 1s claimed:

1. A method for processing a query including an exten-
sible markup language based expression with istructions to
modily data that 1s stored 1n a node of an extensible markup
language schema 1n a database, the method comprising:

transforming an abstract syntax tree corresponding to the

expression 1nto a unified tree including extensible
markup language based algebra operations;

mapping the extensible markup language based algebra

operations 1n the unified tree to enhanced relational
algebra based extensible markup language modification
operations 1n a relational tree; and

executing the query by moditying data that is stored in the

node of the extensible markup language schema 1n the
database 1n accordance with the relational tree com-

10

15

20

25

30

35

40

45

50

55

60

65

18

prising the enhanced relational algebra based exten-
sible markup language modification operations.

2. The method of claam 1, wherein transforming the
abstract syntax tree comprises:

recursively traversing the abstract syntax tree;

generating a unified sub-tree for each abstract syntax tree

node, the sub-tree including at least one corresponding
extensible markup language based algebra operation;
and

inserting the sub-tree into the unified tree.

3. The method of claim 1, wherein mapping the extensible
markup language based algebra operations comprises:

recursively traversing the unified tree;

generating a relational sub-tree for each unified tree node,

the sub-tree including at least one corresponding rela-
tional algebra based operation; and

inserting the sub-tree into the relational tree.

4. The method of claim 1, further comprising parsing the
query to yvield the extensible markup language based expres-
S1011.

5. The method of claim 1, further comprising parsing the
extensible markup language based expression to yield the
abstract syntax tree.

6. The method of claim 1, further comprising generating
a query plan according to the relational tree.

7. The method of claim 6, further comprising submitting,
the query plan to a query processor for execution by the
query processor.

8. The method of claim 1, comprising mapping the
extensible markup language based algebra operations in the
unified tree to enhanced relational algebra based extensible
markup language modification operations with nested table
abstraction 1n the relational tree.

9. A computer readable storage medium having computer-
executable instructions for performing the steps recited 1n
claim 1.

10. A database engine for processing a query including an
extensible markup language based expression with instruc-
tions to modily data that 1s stored 1n a node of an extensible
markup language schema 1n a database, the database engine
comprising:

a Processor;

an extensible markup language operation generator for

transforming an abstract syntax tree corresponding to
the expression 1nto a unified tree including extensible
markup language based algebra operations;
an extensible markup language algebrizer for mapping the
extensible markup language based algebra operations
in the unified tree to enhanced relational algebra based
extensible markup language modification operations 1n
a relational tree; and

a query processor that executes the query by modilying
data that 1s stored in the node of the extensible markup
language schema 1n the database 1n accordance with the
relational tree comprising the enhanced relational alge-
bra based extensible markup language modification
operations.

11. The database engine of claim 10, further comprising
a relational parser for parsing the query to yield the exten-
sible markup language based expression.

12. The database engine of claim 10, further comprising
an extensible markup language parser for parsing the exten-
sible markup language based expression to yield the abstract
syntax tree.

13. The database engine of claim 10, wherein the exten-
sible markup language operation generator transiforms the
abstract syntax tree by recursively traversing the abstract

Us 7,386,541 B2

19

syntax tree; generating a umfied sub-tree for each abstract
syntax tree node, the sub-tree including at least one corre-
sponding extensible markup language based algebra opera-
tion; and inserting the sub-tree into the umfied tree.

14. The database engine of claim 10, wherein the exten-
sible markup language algebrizer maps the extensible
markup language based algebra operations by recursively
traversing the unified tree; generating a relational sub-tree
tor each unified tree node, the sub-tree including at least one
corresponding relational algebra based operation; and 1nsert-
ing the sub-tree into the relational tree.

15. A method for processing a query, the method com-
prising;:

parsing the query to yield an extensible markup language

based expression; and

generating a query plan for the expression including

enhanced relational algebra expressions with a nested
table abstraction operation; and

executing the query based on the query plan by using the

nested table abstraction operation to establish a parent
to descendent relationship among nstances of nodes in
an extensible markup language schema without com-
piling separate lists.

16. The method of claim 15, comprising generating a
query plan for the expression including enhanced relational
algebra expressions with a nested table abstraction operation
that 1s one of a row nesting operation, a nested table
expansion, a nested row expansion, and a nested row
descendant expansion.

17. The method of claim 15, wherein generating the query
plan comprises:

parsing the expression to yield an abstract syntax tree;

transforming the abstract syntax tree mnto a unified tree

including extensible markup language based algebra
operations; and

mapping the extensible markup language based algebra

operations 1n the unified tree to relational algebra based
operations 1n a relational tree.

10

15

20

25

30

35

20

18. A computer readable storage medium having com-
puter-executable 1nstructions for performing the steps
recited 1n claim 15.

19. A database engine comprising:

d Proccssor,

a relational parser for parsing a query to vield an exten-
sible markup language based expression;

an extensible markup language algebrizer for generating
a query plan for the expression including enhanced
relational algebra expressions with a nested table
abstraction operation; and

a query processor that executes the query based on the
query plan by using the nested table abstraction opera-
tion to establish a parent to descendent relationship
among 1nstances of nodes i an extensible markup
language schema without compiling separate lists cor-
responding to each of the nodes.

20. The database engine of claim 19, wherein the nested
table abstraction operation 1s one of a row nesting operation,
a nested table expansion, a nested row expansion, and a
nested row descendant expansion.

21. The database engine of claim 19, further comprising:

an extensible markup language parser for parsing the
expression to yield an abstract syntax tree; and

an extensible markup language operation generator for
transforming the abstract syntax tree into a unified tree
including extensible markup language based algebra
operations.

22. The database engine of claim 21, wherein the exten-
sible markup language algebrizer maps the extensible
markup language based algebra operations 1n the unified tree
to relational algebra based operations in a relational tree.

	Front Page
	Drawings
	Specification
	Claims

