12 United States Patent

US007380112B2

(10) Patent No.: US 7,380,112 B2

Okabayashi et al. 45) Date of Patent: May 27, 2008
(54) PROCESSOR AND COMPILER FOR 6,629,238 B1* 9/2003 Arora et al. 712/241
DECODING AN INSTRUCTION AND 2002/0091996 A1 7/2002 Topham
EXECUTING THE DECODED INSTRUCTION
WITH CONDITIONAL EXECUTION FLAGS
FOREIGN PATENT DOCUMENTS
(75) Inventors: Hazuki Okabavashi, Hirakata (JP);
Tetsuya Tanaka, Soraku-gun (JIP); EP 1 164 471 12/2001
Taketo Heishi, Osaka (JP); Hajime JP 2002-024011 1/2002
Ogawa, Suita (JP)
(73) Assignee: ytztsghilt(a ?Jl;;tric Industrial Co., OTHER PURI ICATIONS
., Osaka
Mitsuru Ikel, IA-64 Processor Basic Course, Tokyo, Ohmsha Ltd.,
(*) Notice: Subject to any disclaimer, the term of this 1999, Fig. 4.32 of p. 129 and English translation of Fig. 4.32.
patent 1s extended or adjusted under 35 _
U.S.C. 154(b) by 284 days. (Continued)
_ Primary Examiner—Richard L. Ellis
(21) Appl. No.: 10/805,381 Assistant Examiner—Brian P Johnson
(22) Filed: Mar 22. 2004 (74) Attorney, Agent, or Firm—Wenderoth, Lind & Ponack,
' T L.L.P.
(65) Prior Publication Data (57) ABRSTRACT
US 2004/0193859 Al Sep. 30, 2004
(30) Foreign Application Priority Data The present invention provides a processor which has a
small-scale circuit and 1s capable of executing loop process-
Mar. 24, 2003 (IP) e, 2003-081132 ing at a high speed while consuming a small amount of
(51) Int. CI power. When the processor decodes an instruction “jloop
GOE?F 7 /38 (2006.01) C6,C1:C4, TAR Ra”, the processor (i) sets a conditional flag
GOGF 900 (200 6. O:h) C4 to O when the value of a register Ra 1s smaller than 0, (11)
COGF 9/44 (200 6‘ O:h) moves the value of a conditional tflag C2 to a conditional flag
COGF 15/00 (200 6‘ O:h) C1, moves the value of a conditional flag C3 to the condi-
2 US. Cl o 712/241 tional flag C2, and moves the value of the conditional flag
(52) S CLos s e C4 to the conditional flags C3 and C6, (iii) adds 1 to the
(58) Field of ‘Cla‘smﬁcatlon Search : 712/241 register Ra and stores the result into the register Ra, and (iv)
See application file for complete search history. branches to an address specified by a branch register (TAR).
(56) References Cited When not filled with a branch target instruction, the jump

U.S. PATENT DOCUMENTS

6,449,713 B1* 9/2002 Emer et al. 712/234

jloop C6,C2:C4,TAR,Ra

| 2> jloop C6,C2:C4,TAR,Ra,-1

PC <- TAR;

Behavior

bufler will be filled with a branch target instruction.

18 Claims, 60 Drawing Sheets

C2<-C3,C3<.C4, C6 <-C4;
C4 <- (Ra>=0)71: 0;
Ra <. Ra - soxt(1);

Used as part of loop, Following processing is performed:
(1) Move C3 to C2, and C4 1o CJ and C8.

{2) Add -1 to Ra, and store result in Ra. Set 0 to C4 when value
held in Ra becomes smaller than 0.

{3} Branch to address stored in TAR. Fill branch destination

instruction, if there is no branch destination instruction filled in
branch destination buffer.

L Assambler mnemonic Format Affecting flag Affected flag
jloop CB8,C2:C4,TAR,Ra 32bit synonym C2,C4,C6,C3 —
Remarks

-

US 7,380,112 B2
Page 2

OTHER PUBLICATIONS Adams et al., “A Parallel Pipelined Processor with Conditional

| | | Instruction Execution”, Computer Architecture News, vol. 19, No. 1,
Furopean Search Report 1ssued Dec. 27, 2007 in the corresponding pp. 135-142, 1991.

Furopean Application No. 04006078.2.
Warter et al., “The Benefit of Predicated Execution for Software
Pipelining”, System Sciences, vol. 1, pp. 497-506, 1993. * cited by examiner

US 7,380,112 B2

Sheet 1 of 60

May 27, 2008

U.S. Patent

yun
@oej19ul O/I

06

u__c:_ 193s1ba.
pPapuUalIX3

yun
4/1

yun

Alowawl eleQ

0§

Hun Alowsuwl
UO13ONJIISU]

09 =

iy L S NN -_— s uay wes - ek =k S

" A4 mmbEis St 44 AL FE I B IMAZ AL
| mu. mu. mu. wu. "
_ T 2 =+ —~+ —~+ ~ |
“ 3 C © =2 T 3 S I © 3|
_ & ~ 0 3 = o 3 v 3| |
_ C - —. (D —. (D . . |
“ 0 6 = 0n 0O 0 = 0| !
_ A st i C O O A& O 6O o & | |
“ o , m = - o o9 .- 5|
| 3 -3 D O = o 3 O 3 O 3 O 3 |
_ -- e . A — do dp dp dp dp _
“ s 18] 12| 122 25| [25) 125 18]
" 31 13 13| |22 (28] |28 |28] [2&]
_ = D o 5 O o O o O o0 | |
m B S 3 S~ S~ S~ > >~
“ c S, - - C - “
| =3 - - - - _
| -t —+ ~t ~ —~ |
_ H: +: H ia _
_ N << b S !
_ |
_ m "

i

JIUN [0J3U0D UOIINJISUT

o T "bi

U.S. Patent May 27, 2008 Sheet 2 of 60 US 7,380,112 B2

Fig. 2

30a
General-purpose registers R0-R31

32

41a

et/
41b (AU/LU/CMP/TST)

Saturation processing unit

41(42, 43, 48)

41C

Flag unit

Fig. 3

d

30 30b
General-purpose registers RO-R31 Accumulators MO-M1
32
32 453 3zl 45b 32 r32‘
45¢C — 45d ——
| ower bit 64
barrel shifter
45
3 45e 3

Saturation processing unit

Higher bit
barrel shifter

US 7,380,112 B2

Sheet 3 of 60

, 2008

May 27

U.S. Patent

it A - oy, o A

519151631 asodind-jeiauss

013

*[0}3

U.S. Patent May 27, 2008 Sheet 4 of 60 US 7,380,112 B2

Fig. S
30a 30b
General-purpose registers R0-R31 | | Accumulators MO-M1 |
32 32 32 32
DIV

a%Db a/b

US 7,380,112 B2

Sheet 5 of 60

May 27, 2008

U.S. Patent

14°)

N

\/ \/

145,

14°,

S[0}3

TIW-0OW SJ03e|nwindoy

Oty

¢t ACE ¢t Act

¥ \;

TeW-0Y SJ2151694 9s0d4nd-|elauag

={0}9
9 "Dbi

ct

US 7,380,112 B2

Sheet 6 of 60

May 27, 2008

U.S. Patent

Jun buipoda

07 DAWNSU0D e1ep
SUQ8ZT UOIIDNJISUI JO 13QWINN
_ql IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ;- -~ - - ---"-—="-"-—"-=-"=-"="-—="-=-="-==-"77
m U013L10.
m moH S)1q87
{sssssssi) Eaanana) Naaaant) AA300000) NANRRRD
“
_ a 1a4ng 3 484nq g Jaynq v Jaynq
m aynq dunt o s uT UONINASUT UOMINASUT UORINIASUT
_
_ w
_ | [&Vl | [Od]
1 SA94l0 pue ssSalppe ‘3senbal youeug Jiun juawabeuew Ssa1ppy

| qQoT—

r:ll"llllllllllllll'lllll.I.IIlI-Illlllllllillllllll:l T T T T S

ssaJlppe ‘3sanbay

ayoed

UOI13ONIISUT

OT EOT
/ 'bi4

S}HABCT

R1EP UOIIDNIISUT

U.S. Patent May 27, 2008 Sheet 7 of 60 US 7,380,112 B2

Fig. 8
30a
31 0
Fig. 9
30cC
R 0
31 1 0
Fig. 10
30d

TAR 0

31 1 O

US 7,380,112 B2

[| _ [0:Z]WI - E
| o | v |z e | v | s | 9 | ¢ | ¥

PoAl9Sal E
3 IHHHHHHH
| o HIHIHIII
bz IIIIIIHI

It

Sheet 8 of 60

May 27, 2008

IT 'Bi4

U.S. Patent

US 7,380,112 B2

Sheet 9 of 60

May 27, 2008

U.S. Patent

S B T B B T B R T

¢T 'bi4

U.S. Patent May 27, 2008 Sheet 10 of 60 US 7,380,112 B2

Fig. 13
(a) MHnN
31 0
30b
(b) MLn
31 0
Fig. 14
33
T
31 1 0
Fig. 15
34
[PC
31 1 0
Fig. 16

35

31 0

US 7,380,112 B2

Sheet 11 of 60

May 27, 2008

U.S. Patent

jusawiubisse
UOI3oNJISUT|uonoNIISU]

juswubisse

\-@.DE:C _.._n_.:.ﬂ+_)_=

F_UumL. .._wﬁ_E_JC cu.._)___

builam

_ _

g1 b4

L1

9IDADT

_ H . _ [wuawubisse

b1

J|JAIT

Juawubisse

bunjiipy | uoiIndex3 EEmE:Qmmm

US 7,380,112 B2

UOI3DNIISUT
>

UOI3ONJISUT| UOIINIISU]

juswubisse A
uoI13oNJISuUJ

juawubisse
UOI3ONJISU]
juswubisse
UoI13oNJIsug

juswubisse
uoidNJIsUIiuoONIISUT|

—t

6T 'Di4

U.S. Patent

_mn_E—.:-_ _;_“_._.._”+_>_=

1PquIinu Y3, W,

_

g P—

31DADT

U.S. Patent May 27, 2008 Sheet 13 of 60 US 7,380,112 B2

Fig. 20A

1514 1312

oprore |

Fig. 20B
31 30 29 28

US 7,380,112 B2

0

Sheet 14 of 60

May 27, 2008

U.S. Patent

yun

ofjedad

0
Fle
:m:n_whn.m o Z Euummm
ng|I'dD'ay
S11'dS
sgor'eey
£qy cey £y
S61/'dS
sgi'ed'ay
0y'ey oy

e g
I pueJsdg | uoonnsu ! neg
_ ajen

vz bid

(Auipunod Yum) (L+) (L)L +)(1+)
1<< 1<<

qQy'ey'oy| qusppen

q'ey'oy qsppeA

S80!'ey qppesA

US 7,380,112 B2

qy'ey'oy qppeA

qy'ey'od| uyAyppelA

qy'ey'oy| uppelA

—
=
b= qu'eyd'oy| YAuppEYA
T
= YppEYA
'
>
7 UAYPPEXA
7 b
YppexA
OAUIPPRA
= OAYPRERA
S
S
2._., YisppeA
r~
gl

_ - -l
Jolaeyaq jeoidA |
440 puedad(| uoiyonusuj

U.S. Patent

SAH
wajysAs
PPE
Ny
PiOM jlEeH

Alo3
9ZIS E 81e9

glc b1

US 7,380,112 B2

Sheet 16 of 60

May 27, 2008

U.S. Patent

Ges M| 1500 5eom ewauou|__oas

S¢0!'2ey
ay'ce

Joiaeyaq jesidA| Astod
puedad()| ucijontysus ayen

I FHGUoU]___unansi] pom jieH
==y I
T wopmroww[T sAom ey aod| MAGns|
PAOAA O Enummm

vzz ‘bid

US 7,380,112 B2

Sheet 17 of 60

May 27, 2008

U.S. Patent

oy [wwun
—.m uoneJed()

doineyaq [edidA |

sgorey'ay| qgnsisa 914g

YAYQNS|A

ygnsiA

ey'qy'od yansya

ey'dy'oy| YAygnsxa q |weisAs

A qns
ey'qyoy| yansxa 1 | miv

pdom jleH| S
BY'qQY'oYy| ysqnsaA
Alo3
44 puesad() | uonontsuj ajen

dee b

US 7,380,112 B2

S — <) e

Sheet 18 of 60

May 27, 2008

U.S. Patent

I N A A 1T
0->SVO¥40 _'SVOU4O SVOUAO-DIswQuOl] SeoM) I+WQWOl seopauwl
0->SAOY4D __ ‘SAOW4Q SAOMIO->+wQWO] | SAOM] L+WQwH) shopaw

._L_o...vso.aav_oll :o.so.agog
qY-> 1494 qy'ed’1+oy:0y4| dAcw

' o sg0i'zey
sgi'ey
IHW OHW ¥7 MVL = 91334 cau’'gi3ay
EY4D YD 144D 0440 €4Sd 24Sd (uSd 9183y'za
0M¥Sd Od3 Od ¥Sdl Odl MSd3 1T qy'zesey
0TW IHW OHIN ¥40 4Sd HAS H1 dV.l = 2€39Y ¢e33y'qy Aou

Al WALS

v & v BEE

ngol'ey qy
MO 9AISN|OX3 aqy'ey oy A0X

cqy'cey

f
ngorey'ay
N’ mm -
=
ONY gy ey'oy

yun Joiaeyaq |edidA |
uolje.adQ pueiad()juoionsu

=
L

Piop| B
N |weisAs
I AOW
S Ny
3
R

piop| ©) |walsAs
N o130}
[Ny
S)

AL03
ajen

vez D14

US 7,380,112 B2

Sheet 19 of 60

May 27, 2008

U.S. Patent

o4
™)

jun
uohesed()

I S

—_— 1
I
- 1
- T
I

-
-
-
e
I L T T

(qy'eYy)xeul —> 3y

doiaeyaq |edidA]

et L D

SAOIM ey'qy] yApuy

ey'ay| Zydwnsa
B e o |
ey'ay YwnsA pAom jiei H

!!EIE&

M)) B ¥) e

eal et —pow] s | my
LWO)SAS

—on [31
NIS

] qy'edod| yulwa
w xewt
 |9IQ9M gy'eyoy| xew psopm| NIS

I .| M-
I T)
AIO3

Ny
| qy'eyayl quwa Q
| owewou| geun og| W |wershs
I uiw
OoM| auegod| uw
q¢z b4

US 7,380,112 B2

Sheet 20 of 60

May 27, 2008

U.S. Patent

(0 =i 2AueCed) > 99

(0 == Zaypzey) -> 99
(U0 | (0 =i 9y 9 BM))_ —> L+WD
ug |0=igyeey)-> wH
(D 9 (0 =i 9y 9 BH))_ -> i+WD
U R 0=iqdPey)-> wo

(U0 7 (0 =i 94 7 BY)_ -> 1+UWD)

D P(O=iqy PEN) > W
WO T(0 == a4 7 BN))_ —> 1+WD

g (0= PEY)-> WY
(UD® (0 = G 3 BY))_ —> L+WD
U9 P (0 ==y BEH)-> WD

(UD 7 (0==0a¥ B BY)_ -> L+WQ)

U R (0==qd ey -> WY
YNsa4d -> 99

Y '9) ‘98 38 'au ‘b3 = 9N

(LD jUnsad) —> (+WD

U | ynsad - wH

(UD R ynsady_ > +wo

U0 @ Jnsad = Wy

(FUQ B YNSAI_ - [+W]D)
U9 g ynsad - W)
naj ‘na| 'Y ‘9| ‘ndd ‘'n1d ‘a8 '3d ‘au ‘ba = NN

Aoiaeyaq |edidAt

40-M

40-M

NyOrZey 90
294 '284'99
ny0I'Zed 90
294'284'90
UQ ngorey’ | +WHiWy
uD'qy 'Ry’ | +WDIWD
UQ'RGOIRY’ | +WDWD
UD'qN'eY’ | +WDIWD
UQNGOreY' | +WwW)
uQ'qYy‘ey’ L+ WY
ug'NgoIeYy WY
uD'qy'ey'wd
uQ'NGOrey’ | +WOIWY
uD'qy'ey’ f+wQiWY
ug'ngorey | +Woiwg
uD'qy'ey’ |+WDIWY
ug'ngoIey’ | +WoIWy
UD'qY ey’ L +WDIWD
UD'NGOIeY WY
uD'qy‘ey Wy
Sp0!'724'00
294'284'90
up'sgoIey’ L+WYWY
uD'qy‘eY’ |+WYIWY
ug'sgorey’ [+WHWY
uD'qy'eY’ |+WOD
U5'sgOrey’ | +Wywy
uD'qy'eY’ |+WOWD

ug'sgoley'wy
uQ'qy'ey'wy

uys)
735}
ou)s)

BU)S)

uuls}

eZ}5}

NHdwd

0 dwd

enndws

unndwo

dWO

ND— ZO0Juw

Al0d
2ZiS 2180

¢ ‘D1

US 7,380,112 B2

Sheet 21 of 60

May 27, 2008

U.S. Patent

yun
uofjuled()

Joiaeyaq |eotdAt
L8,

scol'ey [0D duosA
qy'ey| gooduoa
SG0!'ed [YD dwosA
qy'eYl YDQHWoA

e
dWD
PiOM J{eH

Alod
ajen

dvz b1

qy'ey oy W

Fuipunod YIM

"2y oY WA

piom JjeH
X piom JieH

¢X

US 7,380,112 B2

0 ol

MINUYA

qQy'ey oy ' W

1 =
) | <t— [To1 J ot P

=
-

Q4 '2Y oy W _
QY ey oY WA Ayynuy

—
&
= qy'edown| yynuy| plom yey
S X P4oM JieH
S
!
5 dxy qyey oy wN| mynuy
=
s 9,
! B Oy W E
g | weisAs

= QN 'eN' oM WA piom JieH 7 |Inw
~ X P4OpM| D)
RS QY 'y’ oY W N
™ [
- uonesado juiod paxi4 ! ay'eyoy'wn| mmpnuy S
> S80)'eN'qy WA

uonesidiyni pausisun aQy'eN'oN W PAOA 3 PAOM

(enjea
o T e] <— [

S901'eN 'y W
0By 'O W

Mun doiaeyaq (estdA | Al03
uoneJedQ 'SP L puesad | uollonasul ajen

vGe ‘D1

0o

U.S. Patent

BuipunoJd Yum

US 7,380,112 B2

.

Sheet 23 of 60

=
E
L
>

May 27, 2008

(@)= x > X—=(1)

]
O 1O T @0] <— [T o Pu

124 I el = | 4

m Cn__.u.n..__ﬂﬂo

qu ‘e’ L+0M: 0 "W pioMm jjeH
gy ey’ |+0Y: 0y Wi | mmyjnwdA X PAOM
qy'ey' oy WN| dyinwyA
QY By oY WA
QY ‘e oy W M
ey oy "W fnwjA
qu'ey' oy wn| Ayinwya
qy'ey'od'WwiN| yinuyya
QY ey Y WN] M)
Q
gy 'eM Oy WA |NWYA N | weisAs
qy'ey' oy Wiy [| (Inw
S
qy'ey oy ‘W
'Y Oy WA a
O ey Wi H

A103
puetsd() j uollonnsul ajen

gG¢ 01

E. 33 33 & &

i o
O

=

U.S. Patent

US 7,380,112 B2

Sheet 24 of 60

May 27, 2008

")

U.S. Patent

X¥'qy ey o0

UN'qQY ey o W

(NWXA 3Uisn uoljelado s1onpo.d Jo ung

P40M J{eH X
pAoM B

E

UW'qY'ey "oy WA
XH4'qY ey oY OW
UW'qy‘ey ‘oY ' WiN
XY gy ey 'Oy O
UWN'qY'ey 'Oy W
XY'qY ey Oy 0N l pJoMm JjeH x
un'qy'ey'oy'w| yyoewy pioMm jleH
Xy'qy'2Y 94 0N

UN'queyoy'wy| mydsewy
Xy'qy'ey 0y 0N
UN'GY ey oy ‘Wi
XY'qY ey 9y 'OW
UA'GY ey oy WA
X4'qy ey oy ‘0N
UN'gY ey oy ' W

X M|NWYA 3uisn uonedado syonpoad jJo wing

O
O
-

InwiA Fuisn uoljessdo s3onpoad Jo wng

suIpuUNoJd Yy

yy[nwy} 3uisn uonjesado s3onpoad Jo wng

myjnuy 3uisn uonessdo sjonpoud Jo wWng

X

WaIsSAS
Jeuwl

l.

mmyInuy 3uisn uoljesado s$3oNpoJd jo wng

|nw| Buisn uoljesado s3oNpPoUd Jo Wwng
jnwy Suisn uonjesado sjonpodd JO WNG
xm.é.mm.umncz
mmjnuy 8uisn uoinedado sjonpoad Jo wng Xy UN'qe ey oy Wi
XYy ' ey oY 'ON
|nw Buisn uoljetado sjonposd jJo wng UAI'Qy eM O WAl

Hun Jolaeyaq |eoidA |
uone.tedg H49) pueJadp | uoizonnsuj

pAOM jIBH X
PAOM

Nw—Z20 JL

X
PO x PIOM

Alo3
ajen

v9¢ bt

US 7,380,112 B2

Sheet 25 of 60

May 27, 2008

U.S. Patent

O
—

X

BUIPUNOJ YIM
Yinwiyja Suish uolledado s3onpoad jo wng

SuUIpuno.a Yypa

LINLWIA auisn uocljedado muu:_uﬂr_n JO wng

[nujA duisn uotiedado sjonpoud Jo wng

Y[nwiya Buisn uorjeirado syonpoud 40 wWNG

M[NWwyA Suisn uoljesado sionpoid Jo wng

M|nuXA 3uisn Joljetsdo sjonpoad o wNg
doiaeyaq |eoidA |

..

|

UGN ‘e | +94: 0N "W
XH'qY By O ON
UGN 'Ry Oy W
UP'GH ey Oy WA
UN'GY ey Oy W
SYC VTG
UGBy Oy WA
XH'qy "2y 04 0N
UN'GY'eY Oy WA

UM By oy Wiy
XY'qH ey OH 0N
UN'qQu ey o0y Wiy
Xy'ay'ey'oy on
UW'qy ey oy wiN
XY 9 ey 04 ON
UA'qY ey oy Wi

UA'qY ey oy W
XY ey 0y 0N
UN'QY ey oy Wi
XY 'ay ey oy OnW
UN 'Y ‘e oY W
XH'ay'ey' 9y 0N
UN'qM ey 'Sy 'WIN

:E-é -mm-um -EE

AYDBULYA

yoeuYYA

AYORULXA

Y ORULXA

MOBLUJXA
UOI}ONSU]

P4OM {iTH
X P4OM
Wa3sAs
oew

Alo3d
9181

g9¢ 014

US 7,380,112 B2

Sheet 26 of 60

May 27, 2008

U.S. Patent

ct

1 X

-

Hun
uoneladp

FuUIpUNOJ Yy dy
yyjnwy Suisn uonesade sionpoud JO aousLaly(] dx}

myjnwy} duisn uonedade sionpoJd Jo adUaLaIQ !I
Mmmynwy suisn uonedado syonpoud Jo aousdayi(!I
jnw| dutsn uonesado sjonpoad Jo 3dualdIYI(
[nwy Buisn uoljesado syonpodd jJo 3oU3BYI]
mminwy Buisn uoljesado sjonpoud Jo souUsiayi() !I

|nw Buisn uofjesado sjonpodd JO IDUSLIYG II
AOIARY3(EuE}F
44D

Xy q4 208 0N
UW'GY'BY'ON W
Xy'q ‘B 04 O

UN'QY 'Y "9y WA
XY'qy’ed oy 0N
UN'Q4'BY 'Oy WA
XY'qH By oY 0N
UN'QY ey oy WA
XY'aY ey Od 0N
UGN 'ed oM WAl
X4'ay ey'oy'ON
UN'GY BY oY W

XY'ay ey oY 0N
U 'O ‘€Y Oy WAL
Xy'qy ey oy oW
UN'GY BY Oy WA

ayynsuy

yynswy

Mynswy

MMYNSy

nSuwij

nswy

MMNS LY

uolyon.nsug

PIOM YBH X

piom jieH

3

prom gieH x |
pioM| D) wajisAs
N nsw

L
S
PAOM x PIOM

Alod

v.zZ b4

Xd'qey ou 0N

yinuyiA Suisn uojetado s1onpodd Jo 30UBIBHIQ UN'TG ‘BN oM W

US 7,380,112 B2

MinwyjA 3uisn uopedado syonpouad Jo 3duaBYIQ]

UG ey 0y WA

SYCYCYENT
UGy ey’ oy WA
Xy'qy'ey oY 'ON

[nwjA 3uisn uonelado sonpoJd 4o sdussBYI(

Ujnuyya 8uisn uoljetado sionpodd Jo aduadajQ UN'qQx ey’ 0y Wiy
S
m MINWIYA 3uisn uoljesado sionpodd Jo 90Ut UN'9Gy ey ' oy ' Wi
> Xy'q ey "0y 0N
w/.., [nwyA Buisn uonetado sionpoad JO aduaLayli(UAN'Q¥ 'Y O W
D ¢X XY "By OH 0N
.M Yjnuyxa duisn uonesddo s3onpo4d JO a0uUa430 U9y ‘eM 'Oy W
7
MnuXA Buisn uonielsdo s3onpousd JO 30U dy UN'qY ey’ oy Wiy
XH'qy ey 'o0d 0N
m |[nWIXA Buisn uoiesado sjonpouad Jo 30U UN'qu e ' 2y WA
& X494 '8y 0 N
> Y|nwiAa Buisn uojesado s3onpo.ad JO 90UaLI] dxy uN‘'qy'ey ' oy Wiy
o\
WVaJ |InWjA 3uisn uoljesado syonpoud Jo 32USIIPIG dxy UAI'gM 'eM'oM ' WIA

XM 'y 2y 0y 0N

[NWA 3uish uotjelsado sjonpoud Jo 3duaLali(UN'dMeM O WA
Hun Joineysaq |esidA|

uonesad() H4D puesad(

U.S. Patent

o o
=

SULJA

=
7
£
>

=5
)
£
>

o
-

SULYA

MNSUJYA

NSWYA

yn

MNSULIXA

NSWXA
Ynsuya

MNSULA

NSWA

WwajsAs
nsu

Alo3d
9189

g/¢ b

US 7,380,112 B2

Sheet 28 of 60

May 27, 2008

U.S. Patent

—
I
&

Hun
uonuledQ

[T]—>[&]

Joiaeyaq |eoldA)

SgOI(+ed)' I
(NLLP'dS)ay
(N1 IP'dD)ay
(PBOPeY) Ay
sgoI(+ey)'ay
(NLLP'dS)ay
(N1 IP'dD) '
(ngop‘ey)ay
SGON+ed) 'Y
(NZ1LP'dS)'a
(N IP'dD) I
(NeoP ey
(+7ed)'29
(NGOP'dS) 29y
(NGOP'dD)'2a
(NYOP'EEY) £

sgON(+ed) Ay
(NZ1P'dS)ay
(NZ1P'dD)'9y
(ngoP'eN)'ay
(+2ey)¢ay
(NYOP'dS) 29
(N9OP'dD)'2a
(nGop‘zey)’cay

SO LI(+eY)'ay
(NEILP'dS)'qY
(PE 1P dD) N

NDLPEY) A

Adod

Yp!

piom JleH

-

UI91sAS

Pl
WdJW

V—2Z0Juw

w8z "Dl

US 7,380,112 B2

Sheet 29 of 60

May 27, 2008

U.S. Patent

Hun
uonelady

J0lABYaq |edidA |

PAOM
SLOM+eY) L+ dyndp HeH
SLOY+eH)' 1+9q4:qY dyapl| (-31Ag

| w] e
PAOM
J€H

—_

:___%_ piom J[eH
(-o1g

S60I(+ey)’ ?@é
(NGOP'eY) 1+94:qY
::.?.Nw.m.v.w.mﬂ Ll
SO LI(+eY) 1+94:qY
(PO LP'eY) |+ :ay
(+2eY)'Zo8Zay

(NLOP'dS)YUASYHT
| (NLOP dS) 1+AY:aY

S| LK+ey) [+
(NP 1P'dS)'HANYVY.L

(NP LP'dS)HMASNH

(M IP'dS) 1+9M-aY
(M 1P dDYHaNyYL

(N LP'dD) HASY
(NP LP'dD) 1+9-aY
(N1 1P'eY)'HANNHYL
(NLIP'BY)Y YASH)
(N1 1b'eY) 1+aN:ay
sLO(+ed)'ay
sLQi(+ey)'qy
IIIEIH

Wa}sAs

P
W3W

O <€ — X
)= Z O J

Al03
M4 pueiadp | uonsnysul 23en

gge bl

US 7,380,112 B2

9 'S80 +EY)

ay'(nLLP'dS)

qy'(NLLP'dD) 234g
qy'(ngop'ey) |

A (+2ey)
2ay'(NSOP'dS)
294 (NSOP'dD)
= Zay'(npop'zEN)
= AT AL) PioM JeH
— QM 'sgoi(+ey)
~— ay'(nNZ1p'dS) 3
= au'(NZ LP'dD) N
- q4'(N60PeY) y3s 3
< ¢qu'(+Zey) N
Zay'(NgopP'ds) [
' (NYOP'dD) S
X Zay'(NSoP'ZeY)
~
gl
~ qy'soLi(+ey)
R aqy'(ng LP'dS)
> , :
- ay'(NELP'dD)
> ay'(noLp'ey }s

ADIABY3q |edidA | Alo8
uoynsedy) 44D puesadQ juonion}suj ajen

w62 DI

U.S. Patent

US 7,380,112 B2

Sheet 31 of 60

, 2008

May 27

U.S. Patent

w
~—

@0

Hun
uonuJdad(

i

=|

1 91
Joiaeyasq jedidA |

|

T
i
I

i

T

| +q0 S60K+2N)
214g
.H
|+ Q'O LP'Y) dyss

14+94: Q4 (N6OP eY)
AT RANCRAL:)
HASHT(NLOP'AS)
.Uy (L0 dS)
“Tlayiay’s | [{+ey)
HANYYL'(NyLP'dS)
HASYHT'(NYLP'AS)
L+ (MY LP'dS)
HANYYL' (PP 1P D)
HASHT (N IP'AD)
L+ (NF IP'dD)
HanyvyLi'(nip'ey)
HASHT (N IPY)
L+ QY (N LPeY)

94T (+2Y)
qu's L O}(+2 (=038

—Bmﬁm.mno_?mmv A..mtnm
LIRS0 I+ Ea)
Alo3
a6z ‘D14

A < — (@&

£

Hg

SQcP

o
4vL'r020'90
VLW
HY1

.

19

US 7,380,112 B2

a
=

4

T
Q
E

o
HV.1

vid

$80!'ed'HV.L'90
SB0'BY YISO

I I
%M S60P'¥D 90
W gI:M S60P'WI'9D

9o'pOZIAM S60P'$0:20'90

[99] @3edipaad Ajup
[GO] 21edipaid AjuQ
Aa4nq youetq ul Y] Woy payolsj uoijonsul a403g
J4Nnq youeaq ul y7 wol payosidj uoiponnsul 0103g

May 27, 2008

99 M S60P 90
S60P Je)yes

194JNq Youeiq Ul 37 WOl payo3a) UCIJONISUl 84018 S60P'SD l
M7 39S S0P Jes

A3ng Yyouedq ut MYyl Wol paysisj uoijonnsul 2403
dV1 39S

N
<

Sheet 32 of 60
o8 fels | = P¥eEE

HunN doiaeyaq |edtdA | A403
ueneledQ puesad(Q | uoijonasy| alen

I

U.S. Patent

US 7,380,112 B2

Sheet 33 of 60

May 27, 2008

U.S. Patent

uone.Led()

[Z0]lad>> [Z:0]au>)

[1® [@ [| o

[Z-0)au>> Z:0jq>>

UoIIRIMES LI

w O T] < C@ L@ Jw

[e:0]qH>> [E0JR>)

w T T] <— Ca T m =

[e-0jqud>> [e:0]qu>>

[boleu>M2) [Po]eu>X(l)

? 0JeH>)>

I ? 0}aM>>

[b-0jqud>>
Ylys tu._
Aolaeyaq |eosidA |

.l
SAOM
.L

. SAOM

ngoley ay
R 'ey oy

nyol'ed'ay
9 ey oy

npol'ey'ay
qy ey oy

NGOIUN'qQY Wi
Q4 UN'BY W

NGOIUN'qY W
QY UNBY W

NGOIUA'GY ' WIA
ay‘u'ey'wi
ngo!l‘ey UHW'qY WA
qy'ey'UHW' Oy ' Wiy
ngol'uiN'ay Wi
qy'upy'ey Wiy
ngoLey qy

aqy‘ey oy

Ngol'ey'qy
qy ey oy
nyOI'cey
ngorey'qQy
qy‘ey oy

-FI8,

g|seA

YA[SBIA

y|seA

MAJSBJA

Q

mad|sey

MA[SEe}

a3Ag
p4om JieH
P4OM
LLSYSAS
|se
sd
PIOM J1Bd
3
]
.
N
_
piop| S

Al03
a1en

Y€ "Dl

US 7,380,112 B2

Sheet 34 of 60

May 27, 2008

U.S. Patent

¢t

)

ueneiedg

[Z:0]ay¢<< [Z:0]qy<K

oy (T 1@ TH 1<— L TE_T@ 0T Jey

[Z0]9U<C [T0]qL

[F-0]eH<<

[(v:0]auH<<
WU YIYs dHBWYILY

iolaeyaq |esidA |

Ngorey’qy

NGOIrUYN'QY Wi

O UN'eN WA
ngo!'ey UH'GY WiN
QY ey UHIN 'Oy Wiy
NYOIUN'GY Wi

Q4 'UN'eY W
nyolrzey

ngorey'qy
ey’ oY

m Eﬂmmm
1_ .am
Eof_mamvmm
z
I
S
Alo3
321 3)en

gLe ‘014

US 7,380,112 B2

Sheet 35 of 60

May 27, 2008

U.S. Patent

— Nw

Q1 Jun
1§ uoiBed(

[Z:0]9u<<LK [270]aH<LK

oy (@ TEI T T J— [T [@ 1D Jou

[2:0]qU<<C [Z:0])9d<LK

@ J) |

[£:0]aH<<< [£:0]A<K

[F0)EH<<(T) [P:0]eH<<L(1)

W3 Yiys |eoifo
Joiaeyaqg [esidA]

ngoYey'qy
qy'ey oy

nyol'ey'ay
qy 4o

NGO!'UWN QY Wi
qy'ui'ey WA
NQOI"eY UHIN Gy WN
QY ‘2 UHIW' Y W
NOOI'UN 'Y W

Gy U By WA

! S
d
W
LIS(A]
!!
3J Wa)sSAS
1| =
piom uied| 1y | sg
N
I
S
ﬁho>>

Atod
uoilonsuf ajen

vee b

)

US 7,380,112 B2

Sheet 36 of 60

May 27, 2008

U.S. Patent

9]

gl | wwun
—m" uonesadn

l0ianeyaq |edidA |

e

BY QY WP MIX 3
ngorey'qy
qy'ey 'Y qIoJA

NpOr'ey'qy
qY‘eY'Y Y10

nGoYey qy

QY'Y {04

paom yeH| aw
BY'qy W IxaA IS

alAg
3
7 | weisAs
O I R
PAOM JIBHI N S8
|
S
plopm
JAQg
WI)1SAS
pioMm jjleH 812101

S8
319
P4CM] NIS

A1od
21Q ayen

gee b

US 7,380,112 B2

Sheet 37 of 60

. AU|EA
. OAUJEA
g E WwaysAs
c_m>
ujea
ujeA
ujeA

Ol Hun Aoliaeyaq |esidA | Al03
£ uoneJad(pueJadp) | uoi3o NSy 91en

c¢ "bi-

May 27, 2008

U.S. Patent

US 7,380,112 B2

Sheet 38 of 60

May 27, 2008

U.S. Patent

m
)

Hun

uone.edg

payoweal S| QG 1544 [RUN |- S WOL SIN|BA JO JaquINU JUNDY
pPaY2894 SI| 1544 RUN GSN WOl SON|eA JO JSqUNU JUNO0Y
payseas) O 1544 [RUN gSIN WoLy SAN|RA JO JaquinU JUNOY

Joiaey3q |edldA |

.. qy ey 2y qypuIA
.. qy'ey' oy Yljauia

IE GALPISL

2y 'qy
T %

eYy'qy
L ey'qu] 1woq

.“

N—Z0Juw

AJo3
ajen

Ve b

US 7,380,112 B2

Sheet 39 of 60

May 27, 2008

U.S. Patent

LT T T@©] o
E..
w0 1L 0 1<¢t—[C T Je II

'ey'0y g

ey'L+q4:q4] nopidunia

aduniA

ey’ |+qu:qy| nyidunia

ey’ 1+qy:qd| widuna

.

314Q
AND

piom JieH

By 1+94 Y EI

J101ABYaq [edidA | Ado3
puesad j uondnAsy| 91e))

aye 014

US 7,380,112 B2

Sheet 40 of 60

May 27, 2008

U.S. Patent

T2 e 73 I I I) I 7
dorereE e | eym| enen
GoReRE g peBNn| [| eya| mpwent
Gonemes eS| | [eya| e

uonRBIMmes W R

wORERES W || eya| _zne
) I I R R
e S pelE || ew| e
woREmespoR e | [oyay| _wes

S S N I
N I R

loiaeyaq |esidA)

-_
N
psom Jleq| 1
3 | waisAs
] jes
O 1VS
PAIOM| N
|
S

TEE u,_m_._
WwWalsAs
xn__p
pdom jeH
{-piopm

A103
3jen

Ge b

US 7,380,112 B2

Sheet 41 of 60

May 27, 2008

U.S. Patent

uone.ed()

qd

40

v/ (-0} 3] qy

[0:b]ad [g-Z1]ad
Msew ajeiausr)

J0iAeYaq |edidA |

UoIsIAIg l SAOM

oy "2Y UHIN'OY WHI
O ‘B 'UHI' O WHIN
ngoI'NGoI'ey'qy
R4'ey'oy
nNGOI'NSOol'ey qy

R4 'eY"oY

ngo!I'NSorey'ay

0y '8y oY

nG0!I'NSOI'aY
ay oY

nnxs
b e

UaENSW

I N

Ad03
puesadp | uollonsul aien

v9¢ b1

£ 9juIduWIA
Z3uiduia

pajqeus 3uiyolims 4NA | SJUVITUA

US 7,380,112 B2

CPIVIdUIA

CPIUIdWIA
|PIUdWIA

pajqesip Suyoums dA

MSAWA
BUIYIUMS dINA Mmsduwa

ROPFEUON _ [orwdom| | e
WeEA [N[[i e
_!II GG

2au'(2eN)
Qy'(N1LP)
4'(BY)

913

Sheet 42 of 60

L~(0=N |82 waisAg

May 27, 2008
o2l | e | fefs e

yun 101ABYaq |edidA] Ai0H
uonessdy H40 _u:m.__uﬂo Uonannsuj EE

g9¢ b1

U.S. Patent

U.S. Patent May 27, 2008 Sheet 43 of 60 US 7,380,112 B2

Fig. 37

jloop C6,Cm,TAR,Ra

=>jloop C6,Cm, TAR,Ra,-1

PC <-TAR; C6 <-(Ra >=0)?1:0; Cm <- 1;

Ra <- Ra - sext(1);

Used as part of loop.

Behavior _ o
Following processing is performed:

(1) Set 1 to Cm.

(2) Add -1 to Ra, and store result in Ra. Set 0 to C6 when value
held in Ra becomes smaller than 0.

(3) Branch to address stored in TAR. Fill branch destination
instruction, if there is no branch destination instruction filled in
branch destination buffer.

Assembler mnemonic Affecting flag Affected flag

jloop C6,Cm, TAR,Ra 32bit synonym Cm,C6

Remarks

>Behavior when Cm=C6 is undefined.

U.S. Patent May 27, 2008 Sheet 44 of 60 US 7,380,112 B2

Fig. 38

settar C6,Cm,D9

TAR <- PC + (sext(D9[8:1]) <<1);
C6<-1;Cm <-0;

Following processing is performed:

Behavior (1) Store address resuited from adding PC value to

displacement value (D9) into TAR.

(2) Fetch instruction corresponding to such address, and store
it iIn branch destination buffer.

(3) Set C6to 1, and Cm to 0.

Formmat Affecting flag Affected flag

Remarks

Assembler mnemonic

settar C6,Cm,D9

D9 1s a signed value, and low 1 bit shall be 0.

Behavior when Cm=C6 is undefined.

U.S. Patent May 27, 2008 Sheet 45 of 60 US 7,380,112 B2

Fig. 39
settar (6, G4, LO
A L0:
B A [C6] A
B A [C4] B
B A [C6] jloop
B
r1g. 40

int func2(int a, int b, int ¢)

|
int 1,
Int t;
for (i =0; i <100; i+
vLi]l = x[i] + i;
] t += x[i],;
return t,

U.S. Patent May 27, 2008 Sheet 46 of 60 US 7,380,112 B2

Fig. 41

mov r4, O
Id ré, (gp, _x$ — .MN. gptop)
ﬁév ri, 98

settar (6, C4,L00023 // Reset C4 at the same time
d r5, (gp._y$ — . MN. gptop)

L00023 //2cycle/iterartion
[C4] add r2, r3. ré
[C4] add ro, r3, r0
[C6] | d r3, (r6+)

[C4] ééd r4, r4, 1
[C4] st (ro+), r2
[C6] Jloop G6, C4, tar,r1,-1// Set C4 at the same time

ret

U.S. Patent May 27, 2008 Sheet 47 of 60 US 7,380,112 B2

Fig. 42

jloop C6,C2:C4,TAR,Ra

=> jloop C6,C2:C4,TAR,Ra,-1

PC <- TAR;
C2<-C3,C3<-C4, C6<-C4;
C4 <-(Ra>=0)?1:0;
Ra <- Ra - sext(1);

Behavior

Used as part of loop. Following processing is performed:

(1) Move C3 to C2, and C4 to C3 and CB6.

(2) Add -1 to Ra, and store result in Ra. Set 0 to C4 when value
held in Ra becomes smaller than 0.

(3) Branch to address stored in TAR. Fill branch destination

instruction, if there is no branch destination instruction filled in
branch destination buffer.

jloop C6,C2:C4,TAR,Ra

32bit synonym C2,C4.C6,C3 _

Remarks

U.S. Patent May 27, 2008 Sheet 48 of 60 US 7,380,112 B2

Fig. 43

settar C6,C2:C4,D9

TAR <- PC + (sext{D9[8:1]) <<1);
C2<-0; C3<-0; C4<-1,C6<-1;

Following processing is performed:

Behavior (1) Store address resulted from adding PC value to

displacement value (D9) into TAR.

(2) Fetch instruction corresponding to such address, and store
it In branch destination buffer.

(3) Set C4 and C6 to 1, and C2 and C3 to 0.

Assembier mnemonic Format Affecting flag Affected flag

Remarks

D9 1s a signed value, and low 1 bit shall be 0.

U.S. Patent May 27, 2008 Sheet 49 of 60 US 7,380,112 B2

Fig. 44
settar (6, C4 LO
LO:
[G4] A
[C3] B
[C2] C
(C6] jloop
Flag C4 C3 C2 C6
Instruction A B C jloop
1 0 0 1 A
1 1 0 1 B A
(b) 11 1 1 CBA
T 1 1 1 CBA
0 1 1 1 CBA
0 0 1 1 C
Fig. 45

int x[100], y[100];

int func(int a, int b, int ¢

{

int 1;

for (i =0; i < 100; i++){

} vii] =a * x[i] +b + i;

return t,

U.S. Patent May 27, 2008 Sheet 50 of 60 US 7,380,112 B2

Fig. 46
mov re, 0
| d r10, (gp, _x$ - . MN. gptop)
r;lr;v r4, 98
settar (6, C4:C2, L00014
d r9, (gp, _v$ - . MN. gptop)
LO0014 - //2cycle/iterartion

[C2] add r5, r8, r6
[C3] mac mo, r8,r7, r0, rt
(C4] |d rl, (r10+)

[C2] éad reé, r6, 1
[C2] st (r9+), r5
[C6] jloop C6, tar,rd4,-1 //L00014

ret

U.S. Patent May 27, 2008 Sheet 51 of 60 US 7,380,112 B2

Fig. 47

Jloop C6,C1:C4,TAR,Ra

=> leOp CG,C1 :C4,TAR;Ra,'1

PC <- TAR;

C1<-C2, C2<-C3, C3<-C4C6<-C4;
C4 <-(Ra>=0)?1:0;

Ra <- Ra - sext(1);

Behavior

Used as part of loop. Following processing is performed:
(1) Move C2to C1, C3 to C2, and C4 to C3 and C6.

(2) Add -1 to Ra, and store result in Ra. Set 0 to C4 when value
held in Ra becomes smaller than 0.

(3) Branch to address stored in TAR. Fill branch destination
Instruction, if there is no branch destination instruction filled in
branch destination buffer.

Assembler mnemonic Format Affecting flag Affected flag
Jloop C6,C1:C4,TAR,Ra 32bit synonym C1,C2,C4,C6,C3 —

Remarks

U.S. Patent May 27, 2008 Sheet 52 of 60 US 7,380,112 B2

Fig. 48

settar C6,C1:C4,D9

TAR <- PC + (sext(D9[8:1]) <<1);
C1<-0;C2<-0;C3<-0;C4<-1,C6<-1:

Following processing is performed:

Behavior

(1) Store address resulted from adding PC value to
displacement value (D9) into TAR.

(2) Fetch instruction corresponding to such address, and store
it in branch destination buffer.

(3) Set C4 and C6to 1, and C1,C2 and C3 to 0.

Assembler mnemonic Format Affecting flag Affected flag
settar C6,C1:C4,D9 32bit C1,C2,C4,C6,C3 _

Remarks

D9 is a signed value, and low 1 bit shall be 0.

US 7,380,112 B2

Sheet 53 of 60

May 27, 2008

U.S. Patent

{
11 ulnjad
(
k(1 + g + [1]X xe)=[1]A
)(++! 700T> 1:0=1) 40J
11Ul
]

(2 3u1 ‘g 3u1 ‘e jui)ouny Ju
L00T]A “[00T]x Jul

61 "Dl

U.S. Patent May 27, 2008 Sheet 54 of 60 US 7,380,112 B2

Fig. 50
Mov rli1, O
MoV ro, O
{s r10,(gp,_x%$-.MN.gptop)
;‘nov r4, 98
settar C6, C1:C4, L0O0014
Id r9,(9p,_y$-.MN.gptop)
LO0014
[C1] mul ri2, r5, rii
[C2] add rs, r8, ré
[C3] mac mQO, r8, r7, r0, ril
(C4] |d r7,(ri0+)
[C1] add rii, ril, 1
[C2] add ré, ré, 1
[C1] st (r9+), r12
[C6H] jloop Co, C1:C4, tar, r4 //LO0014

' i J
ret

rr

US 7,380,112 B2

Sheet 55 of 60

May 27, 2008

U.S. Patent

aseyd bo|d3

aseyd [ouia)

aseyd bojo.d

OlIO|IO | ™ |||+
OIO| A —H =[O
01—|1—|1—I1—IOO
| ||| OO|O

[1D0] [22] [€D] [+D]
Suiuljedid a1emljos

TG "bi4

rI|jvYj ||| O

[9D]
doo| 104

<|mO|AO
<|mO|AO
<|0n|O|O
<|/mO|O

[3|2AD
93[0AD
GIIDAD
£9]0AD
£9]2AD
C9I2AD
I3[0AD

US 7,380,112 B2

Sheet 56 of 60

May 27, 2008

U.S. Patent

aseyd 60oj1d3

aseyd |ould)

oseyd bojoid

O-l—l1—l1—l1—lo

O
T
!
!
!
0
0

QICIOIr v]|v1] v
™Yl 4 ||~ [O|ODO
Yt v =] |~]~

[1D] [22] [€D2] [¥D] [9D]
buluiadid aiemijos doo| 40

¢S 'bid

£3IAD
932AD
GII2AD
£310AD
CIDAD
Z3J0AD
T3]2AD

OI
<|m{O|O
<|m|O|O0
<|m| O[O
<|m{O|O

US 7,380,112 B2

Sheet 57 of 60

May 27, 2008

U.S. Patent

aseyd bo|id3

aseyd |ouloy

oseyd bojo.d

0
0
0
!
!
I
I

Olo|ldl-l—l-~]O]f
OlH|H|l-]|HI[O|lO}
(OO0 OO

-
-
T
I
0
O
0

[1D2] [2D2] [€2] [¥D] [sD]
buluijadid 3.1emljos

€qg 'bi4

Yt vl |™ | v4 | || O

[9D]
dooj 104

£3|2AD
992AD
G3DAD
H3[0AD
€312AD
Z3PAD
T21PAD

US 7,380,112 B2

Sheet 58 of 60

May 27, 2008

U.S. Patent

aseyd 60jid3

aseyd [auJd)]

aseyd bojo.dd

I @ 0 O 0
T T 0 0 T
T T T 0 T
T T T T !
0 T T T I
0 0 T T T
0 0 0 I T
[12] [20] [€2] [¥D] [9D]
buiuladid aleml)os doo| 404
G "bi4

<<|ImO|0O
<|mMm|O|O

<M OO
< MmOO

£3]2AD
99|2AD
G3I2AD
£9|2AD
£3|2AD
Z3PAD
T9]2AD

US 7,380,112 B2

Sheet 59 of 60

May 27, 2008

U.S. Patent

aseyd bojid3

aseyd |ouJo)

oseyd b60jo.d

01—11—11—11-100

0
I
I
!
!
0
0

OQOICOICO |~ v | vi]| vi

[12] [2D2] [€D] [¥D]
buiuijadid aiemljos

GG ‘b4

US 7,380,112 B2

I 0 0 O

oseyd bojidg 1 T 0 0

m T T T O

2 oseyd |ould) I T T I

M 0 ! ! !

m 0 0 T !

oseyd bojold g 0 0 T

" 193S1634 33ed1pald

m, buiuiedid aiemljos
-
>

U.S. Patent

T T |N]

1%

NI—H[OJO|O|O

3

123unod body ™ 123unod doon

oG b4

dooj 104

<<|mniO|0O
< moO|O

<< mMm|O|O
<|n{O|O

[3DAD
99|2AD
GoDAD
£9|2AD
£3]2AD
Z32AD
T9I12AD

Us 7,380,112 B2

1

PROCESSOR AND COMPILER FOR
DECODING AN INSTRUCTION AND
EXECUTING THE DECODED INSTRUCTION
WITH CONDITIONAL EXECUTION FLAGS

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to a processor such as a DSP
(Digital Signal Processor) and a CPU (Central Processing
Unit), as well as to a compiler that generates instructions
executed by such a processor. More particularly, the present
invention relates to a processor and a compiler which are
suitable for performing signal processing for sounds, 1mages
and others.

(2) Description of the Related Art

With the development 1n multimedia technologies, pro-
cessors are increasingly required to be capable of high-speed
media processing represented by sound and image signal
processing. As existing processors responding to such
requirement, there exist Pentium®/Penttum® I1I/Pentium
4® MMX/SSE/SSE2 and others produced by the Intel
Corporation of the United States supporting SIMD (Single
Instruction Multiple Data) instructions. Of these processors,
MMX Pentium, for example, 1s capable of performing the
same operations 1n one instruction on a maximum of eight
integers stored 1 a 64-bit-long MMX register.

Such existing processors realize high-speed processing by

utilizing software pipelining, as described 1n the following;:
Mitsuru Ikei, 14-64 Processor Basic Course (I4-64 Proces-

sor Kihon Koza), Tokyo: Ohmsha Ltd., 1999. FIG. 4.32 p.
129.

FIG. 56 1s a diagram showing the operation of an existing
processor using 4-stage soltware pipelimng. In order to
implement soltware pipelining, predicate flags used for
predicates that indicate whether or not instructions should be
executed are stored 1n a predicate register. In addition to this,
the number of execution times until processing of the prolog
phase in the software pipelining ends 1s stored in the loop
counter, whereas the number of execution times until pro-
cessing ol the epilog phase in the software pipelining ends
1s stored 1n the epilog counter.

However, the above-described existing processor man-
ages the loop counter, the epilog counter and the predicate
register as individual hardware resources. Therefore, such
processor 1s required to be equipped with many resources,
which results 1n large-scale circuits.

Moreover, a large-scale circuit means that the amount of
power consumed by the processor becomes large.

SUMMARY OF THE INVENTION

The present invention has been conceived in view of the
above circumstances, and i1t 1s an object of the present
invention to provide a processor whose circuitry scale 1s
small and which 1s capable of performing loop processing at
a high speed while consuming a low amount of power.

In order to achieve the above object, the processor accord-
ing to the present invention 1s a processor for decoding an
istruction and executing said decoded instruction. The
processor comprises: a tlag register in which a plurality of
conditional execution flags are stored, where the plurality of
conditional execution flags are used as predicates for con-
ditional execution instructions; a decoding unit operable to
decode an instruction; and an execution unit operable to
execute the mstruction decoded by the decoding unit. When
the istruction decoded by the decoding unit 1s a loop

10

15

20

25

30

35

40

45

50

55

60

65

2

instruction, an iteration of a loop to be executed terminates
in the execution unit, based on a value of one of the plurality
of conditional execution flags for an epilog phase 1n the loop
in a case where the loop 1s unrolled into the conditional
execution mnstructions by means of software pipelining.

As described above, a judgment 1s made as to whether or
not the loop iteration has terminated, based on a conditional
execution flag 1n the epilog phase i1n the case where such
loop 1s unrolled into conditional execution instructions by
means of software pipelining. Accordingly, there 1s no need
to use special hardware resources such as a counter 1n order
to judge whether or not the loop processing has terminated,
and 1t becomes possible to prevent the circuitry scale from
becoming large. This contributes to a reduction 1n the power
consumption of the processor.

Moreover, the tlag register may further store a loop tlag
which 1s used to judge whether or not the iteration has
terminated, and the execution unit may set, to the loop flag,
the value of the one of the plurality of conditional execution
flags for the epilog phase. For example, the execution unit
sets, to the loop flag 1n one cycle later 1n the epilog phase,
the value of the conditional execution flag for a conditional
execution istruction to be executed 1n an (N-2)th pipeline
stage (where N 1s an integer greater than or equal to 3), 1n
a case where the number of stages in the software pipelining
1s N and the stages are counted up each time processing n
the epilog phase finishes.

As described above, a judgment 1s made as to whether or
not the loop has terminated by use of the value of a
conditional execution flag that 1s specified according to
which stage the software pipelining such conditional execu-
tion flag 1s 1n. Accordingly, there 1s no need to use special
hardware resources such as a counter 1 order to judge
whether or not the loop processing has terminated, and 1t
becomes possible to prevent the circuitry scale from becom-
ing large, regardless of how many stages are contained 1n
soltware pipelining. This contributes to a reduction in the
power consumption of the processor.

Also, the processor according to the above configuration
may further comprise an instruction bufler for temporarily
storing the 1nstruction decoded by the decoding unit, and 1n
such processor, the decoding unit may be configured not to
read out one of the conditional execution instructions from
the instruction builer until the loop terminates, when judging
that the conditional execution instruction should not be
executed based on the value of the one of the plurality of
conditional execution flags for the epilog phase.

As described above, once a conditional execution instruc-
tion stops being executed 1n the epilog phase, the conditional
execution nstruction will not be executed in the software
pipelining until the loop processing ends. Accordingly, there
1s no need to read out the conditional execution instruction
from the corresponding instruction bufler, which makes 1t
possible for the processor to consume a small amount of
power.

Meanwhile, the compiler according to another aspect of
the present invention 1s a complier for translating a source
program 1nto a machine language program for a processor
which 1s capable of executing instructions in parallel. The
complier comprises: a parser unit for parsing the source
program; an intermediate code conversion unit for convert-
ing the parsed source program into intermediate codes; an
optimization unit for optimizing the mntermediate codes; and
a code generation unit for converting the optimized inter-
mediate codes into machine language instructions. The
processor stores a plurality of flags which are used as
predicates for conditional execution instructions, and the

Us 7,380,112 B2

3

optimization unit, when the intermediate codes include a
loop, places an mstruction 1n a prolog phase in loop 1n a case
where said loop 1s unrolled by means of software pipelining
so that the mstruction 1s to be executed immediately before
the loop.

As described above, an instruction to be executed imme-
diately before a loop 1s placed 1n the prolog phase 1n the case
where such loop 1s unrolled by means of software pipelining.
Accordingly, 1t becomes possible to reduce the number of
empty stages 1n the software pipelining, and therefore to
execute a program at a high speed. Furthermore, 1t also
becomes possible to reduce the amount of power consump-
tion of a processor that executes a program compiled by this
compiler.

Also, the compiler according to another aspect of the
present invention 1s a complier for translating a source
program 1nto a machine language program for a processor
which 1s capable of executing instructions in parallel. The
compiler comprises: a parser unit for parsing the source
program; an intermediate code conversion unit for convert-
ing the parsed source program into intermediate codes; an
optimization unit for optimizing the intermediate codes; and
a code generation unit for converting the optimized inter-
mediate codes into machine language instructions. The
processor stores a plurality of flags which are used as
predicates for conditional execution instructions, and the
optimization unit, when the intermediate codes include a
conditional branch instruction, assigns the plurality of con-
ditional execution flags so that a conditional execution flag
which 1s used as a predicate for a conditional execution
instruction 1 a case where a condition indicated by said
conditional branch instruction 1s met, becomes different
from a conditional execution flag used as a predicate for a
conditional execution instruction 1n a case where the con-
dition 1s not met.

As described above, even when an instruction to be
executed when a predetermined condition 1s met and an
instruction to be executed when the condition 1s not met are
different as 1n the case of an if-else statement 1n the C
language, for example, different flags to be used as predi-
cates shall be associated with the respective instructions.
Accordingly, it becomes possible to implement processing
which 1s equivalent to a conditional branch instruction,
simply by changing flag values. Since 1t 1s possible to realize
a conditional branch instruction through such simple pro-
cessing, 1t becomes possible to reduce the amount of power
consumed by a processor that executes a program compiled
by this compiler.

Note that not only 1s 1t possible to embody the present
invention as a processor that executes the above character-
istic 1nstructions and a compiler that generates such char-
acteristic instructions, but also as an operation processing
method to be applied on plural data elements, and as a
program that includes the characteristic instructions. In
addition, 1t should also be noted that such program can be
distributed via a recording medium such as CD-ROM (Com-
pact Disc-Read Only Memory) and a transmission medium
such as the Internet.

As Turther information about the technmical background to
this application, Japanese Patent application No. 2003-
081132, filed on Mar. 24, 2003, 1s incorporated herein by

reference.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects, advantages and features of the
invention will become apparent from the following descrip-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion thereol when taken in conjunction with the accompa-
nying drawings that 1llustrate a specific embodiment of the
invention. In the Drawings:

FIG. 1 1s a schematic block diagram showing a processor
according to the present mvention;

FIG. 2 1s a schematic diagram showing arithmetic and
logic/comparison operation units of the processor;

FIG. 3 1s a block diagram showing a configuration of a
barrel shifter of the processor;

FIG. 4 1s a block diagram showing a configuration of a
converter of the processor;

FIG. 5 1s a block diagram showing a configuration of a
divider of the processor;

FIG. 6 1s a block diagram showing a configuration of a
multiplication/sum of products operation unit of the proces-
SOr;

FIG. 7 1s a block diagram showing a configuration of an
instruction control unit of the processor;

FIG. 8 1s a diagram showing a configuration of general-
purpose registers (R0-R31) of the processor;

FIG. 9 1s a diagram showing a configuration of a link
register (LR) of the processor;

FIG. 10 1s a diagram showing a configuration of a branch
register (TAR) of the processor;

FIG. 11 1s a diagram showing a configuration of a
program status register (PSR) of the processor;

FIG. 12 1s a diagram showing a configuration of a
conditional flag register (CFR) of the processor;

FIG. 13 1s a diagram showing a configuration of accu-
mulators (M0, M1) of the processor;

FIG. 14 1s a diagram showing a configuration of a
program counter (PC) of the processor;

FIG. 15 1s a diagram showing a configuration of a PC save
register (IPC) of the processor;

FIG. 16 1s a diagram showing a configuration of a PSR
save register (IPSR) of the processor;

FIG. 17 1s a timing diagram showing a pipeline behavior
of the processor;

FIG. 18 1s a timing diagram showing each pipeline
behavior when instructions are executed by the processor;

FIG. 19 1s a diagram showing a parallel behavior of the
Processor;

FIG. 20A 1s a diagram showing a format of a 16-bit
instruction executed by the processor;

FIG. 20B 1s a diagram showing a format of a 32-bit
instruction executed by the processor;

FIGS. 21A and 21B are diagrams explaining instructions
belonging to a category “ALUadd (addition) system”;

FIGS. 22A and 22B are diagrams explaining instructions
belonging to a category “ALUsub (subtraction) system’™;

FIGS. 23A and 23B are diagrams explaining instructions
belonging to a category “ALUlogic (logical operation) sys-
tem and others”™:

FIGS. 24 A and 24B are diagrams explaining instructions
belonging to a category “CMP (comparison operation) sys-
tem’’;

FIGS. 25A and 25B are diagrams explaining instructions
belonging to a category “mul (multiplication) system”;

FIGS. 26 A and 26B are diagrams explaining instructions
belonging to a category “mac (sum of products operation)
system’;

FIGS. 27A and 27B are diagrams explaining instructions
belonging to a category “msu (diflerence of products) sys-
tem’’;

FIGS. 28A and 28B are diagrams explaining instructions
belonging to a category “MEMId (load from memory)
system’™;

Us 7,380,112 B2

S

FIGS. 29A and 29B are diagrams explaining instructions
belonging to a category “MEMstore (store in memory)
system’;

FIG. 30 1s a diagram explaining instructions belonging to
a category “BRA (branch) system”;

FIGS. 31A and 31B are diagrams explaining instructions
belonging to a category “BSasl (arithmetic barrel shiit)
system and others™;

FIGS. 32A and 32B are diagrams explaining instructions
belonging to a category “BSlsr (logical barrel shift) system
and others™;

FIG. 33A 1s a diagram explaining instructions belonging,
to a category “CNVvaln (arithmetic conversion) system’;

FIGS. 34A and 34B are diagrams explaining instructions
belonging to a category “CNV (general conversion) sys-
tem’;

FIG. 35 1s a diagram explaining instructions belonging to
a category “SATvlpk (saturation processing) system”;

FIGS. 36A and 36B are diagrams explaining instructions
belonging to a category “E'TC (et cetera) system”™;

FIG. 37 1s a diagram explaining a detailed behavior of the
processor when executing Instruction “jloop C6, Cm, TAR,
Ra™;

FIG. 38 1s a diagram explaining a detailed behavior of the
processor when executing Instruction “settar C6, Cm, D9”;

FIG. 39 1s a diagram showing prolog/epilog removal
2-stage soltware pipelining;

FI1G. 40 15 a diagram showing a source program written in
the C language;

FIG. 41 1s a diagram showing an example machine
language program to be generated by using Instruction jloop
and Instruction settar according to the present embodiment;

FI1G. 42 1s a diagram explaiming a detailed behavior of the
processor when executing Instruction “jloop Cé, C2: C4,
TAR, Ra”;

FI1G. 43 1s a diagram explaining a detailed behavior of the
processor when executing Instruction “settar, C6, C2: C4,
D9,

FIG. 44 1s a diagram showing prolog/epilog removal
3-stage soltware pipelining;

FI1G. 45 15 a diagram showing a source program written in
the C language;

FIG. 46 1s a diagram showing an example machine
language program to be generated by using Instruction jloop
and Instruction settar according to the present embodiment;

FI1G. 47 1s a diagram explaiming a detailed behavior of the
processor when executing Instruction “jloop Cé, C1: C4,
TAR, Ra”;

FIG. 48 15 a diagram explaiming a detailed behavior of the
processor when executing Instruction “settar C6, C1: C4,
D9,

FI1G. 49 15 a diagram showing a source program written in
the C language;

FIG. 50 1s a diagram showing an example machine
language program to be generated by using Instruction jloop
and Instruction settar according to the present embodiment;

FIG. 51 1s a diagram showing a behavior to be performed
in 4-stage solftware pipelining that uses the jloop and settar
instructions shown respectively 1 FIGS. 47 and 48;

FIG. 52 1s a diagram explaining an example method of
setting a conditional tflag Cé for Instruction jloop shown 1n
FIG. 47;

FIG. 53 1s a diagram showing a behavior of 4-stage
software pipelining in which instructions to be executed
betore and after the loop are incorporated respectively 1nto
a prolog phase and an epilog phase;

5

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 54 1s a diagram explaining another example method
ol setting the conditional flag C6 for Instruction jloop shown
in FIG. 47;

FIG. 55 1s a diagram explaining further another example
method of setting the conditional flag C6 for Instruction
1loop shown 1n FIG. 47; and

FIG. 56 1s a diagram showing a behavior of an existing,
processor using 4-stage soltware pipelining.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENT

L1l

An explanation 1s given for the architecture of the pro-
cessor according to the present invention. The processor of
the present invention 1s a general-purpose processor which
has been developed targeting at the field of AV (Audio
Visual) media signal processing technology, and instructions
1ssued 1n this processor offer a higher degree of parallelism
than in ordinary microcomputers. By being used as a core
common to mobile phones, mobile AV devices, digital
televisions, DVDs (Digital Versatile discs) and others, the
processor can improve soltware reusability. Furthermore,
this processor allows multiple high-performance media pro-
cesses to be performed with high cost eflectiveness, and
provides a development environment for high-Level lan-
guages mtended for improving development efliciency.

FIG. 1 1s a schematic block diagram showing the proces-
sor according to the present invention. The processor 1 1s
comprised of an instruction control unit 10, a decoding unit
20, a register file 30, an operation unit 40, an I'F (interface)
unmit 50, an instruction memory unit 60, a data memory unit
70, an extended register unit 80, and an I/O (Input/Output)
interface unit 90.

The operation unit 40 includes arithmetic and logic/
comparison operation umts 41-43 and 48, a multiplication/
sum of products operation unit 44, a barrel shifter 45, a
divider 46, and a converter 47 for performing operations of
SIMD 1instructions. The multiplication/sum of products
operation unit 44 1s capable of performing accumulation
which results 1n a maximum of a 63-bit operation result,
without lowering bit precision. The multiplication/sum of
products operation unit 44 1s also capable of executing
SIMD 1nstructions as in the case of the arithmetic and
logic/comparison operation units 41-43 and 48. Further-
more, the processor 1 1s capable of parallel execution of an
arithmetic and logic/comparison operation instruction on a
maximum of four data elements.

FIG. 2 1s a schematic diagram showing the arithmetic and
logic/comparison operation units 41-43 and 48. Each of the
arithmetic and logic/comparison operation units 41-43 and
48 1s made up of an ALU (Anthmetic and Logical Unait) 414,
a saturation processing unit 415, and a flag unit 41c. The
ALU 4la includes an arithmetic operation unit (AU), a
logical operation unit (LU), a comparator (CMP), and a TST.
The bit widths of operation data to be supported by the ALU
41a are 8 bits (when using four operation units 1n parallel),
16 bits (when using two operation units in parallel) and 32
bits (when using one operation unit to process 32-bit data).
For a result of an arithmetic operation, the tlag umt 41¢ and
the like detects an overtlow and generates a conditional flag.
For a result of each of the operation units, the comparator
and the TST, an arnthmetic shift right, saturation by the
saturation processing unit 415, the detection of maximum/
minimum values, and absolute value generation processing
are performed.

FIG. 3 1s a block diagram showing the configuration of the
barrel shifter 45. The barrel shifter 45 1s made up of selectors

Us 7,380,112 B2

7

45a and 455b, a higher bit barrel shifter 45¢, a lower bit barrel
shifter 454, and a saturation processing unit 45e. This barrel
shifter 45 executes an arithmetic shift of data (shift in the 2’s

complement number system) or a logical shift of data
(unsigned shift). Usually, 32-bit or 64-bit data 1s imputted to
and outputted from the barrel shifter 45. The amount of
shifting data stored 1n the register 30a or 305 1s specified by
another register or according to its immediate value. The
barrel shifter 45 performs an arithmetic or logical shift of
input data in the range of left 63 bits and right 63 bits, and
outputs data of the same bit length as that of the input data.

The barrel shifter 45 1s also capable of shifting 8-, 16-,
32-, or 64-bit data 1n response to a SIMD instruction. For
example, the barrel shifter 45 can shift four pieces of 8-bit
data 1n parallel.

An arithmetic shift, which 1s a shiit in the 2°s complement
number system, 1s performed for decimal point alignment at
the time of addition and subtraction, for multiplication of
powers of 2 (the 1°” power of 2, the 2"¢ power of 2, the —1st
power of 2, the -2 power of 2) and other purposes.

FI1G. 4 15 a block diagram showing the configuration of the
converter 47. The converter 47 includes a saturation block

(SAT) 47a, a BSEQ block 475, an MSKGEN block 47¢, a
VSUMB block 47d, a BCN'T block 47¢, and an IL block 47f.

The saturation block (SAT) 47a performs saturation pro-
cessing on input data. By having two blocks for performing
saturation processing on 32-bit data, the saturation block
(SAT) 47a supports a SIMD 1nstruction executed on two
data elements 1n parallel.

The BSEQ block 475 counts consecutive Os or 1s from the
MSB (Most Significant Bit).

The MSKGEN block 47¢ outputs a
as 1, while outputting the others as 0.

The VSUMB block 474 divides the input data into speci-
fied bit widths, and outputs their total sum.

The BCNT block 47¢ counts the number of bits in the
input data specified as 1.

The IL block 47f divides the mput data ito specified bit
widths, and outputs a value that results from exchanging the
positions of data blocks.

FI1G. 5 15 a block diagram showing the configuration of the
divider 46. With a dividend being 64 bits and a divisor being
32 bits, the divider 46 outputs 32 bit data as a quotient and
a modulo, respectively. 34 cycles are involved for obtaining
a quotient and a modulo. The divider 46 can handle both
singed and unsigned data. Note, however, that whether or
not to sign a dividend and a divisor 1s common between
them. The divider 46 1s also capable of outputting an
overflow flag, and a 0 division flag.

FIG. 6 15 a block diagram showing the configuration of the
multiplication/sum of products operation unit 44. The mul-

tiplication/sum of products operation unit 44, which 1s made
up of two 32-bit multiphiers (MUL) 44a and 44b, three
64-bit adders (Adder) 44c-44e, a selector 44f and a satura-

tion processing unit (Saturation) 44g, performs the follow-
ing multiplications and sums of products:

Multiplication, sum of products, and difference of prod-
ucts on signed 32x32-bit data;

Multiplication on signed 32x32-bit data;

Multiplication, sum of products, and difference of prod-
ucts on two signed 16x16-bit data in parallel; and

Multiplication, sum of products, and difference of prod-
ucts on two 32x16-bit signed data in parallel.

The above operations are performed on data 1n integer and
fixed point format (hl, h2, wl, and w2). Also, the results of
these operations are rounded and saturated.

specified bit segment

5

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 7 1s a block diagram showing the configuration of the
mstruction control unit 10. The instruction control unit 10,
which 1s made up of an instruction cache 10q, an address
management unit 105, mstruction bufllers 10¢-10e and 10/,
a jump bufller 10/, and a rotation unit (rotation) 10g, 1ssues
instructions at ordinary times and at branch points. By
having four 128-bit imstruction buflers (the mstruction budl-
ers 10c-10e and 10/2), the instruction control unit 10 supports
the maximum number of parallel nstruction execution.
Regarding branch processing, the instruction control unit 10
stores, 1n advance, a branch target instruction nto the jump
bufler 10f and stores a branch target address into the
below-described TAR register before performing a branch
(settar instruction). Thus, the instruction control unit 10
performs the branch by using the branch target address
stored 1n the TAR register and the branch target instruction
stored 1n the jump bufler 107

Note that the processor 1 1s a processor with a VLIW
architecture. The VLIW architecture 1s an architecture that
allows a plurality of 1nstructions (e.g. load, store, operation,
and branch) to be stored in a single instruction word, and
allows such instructions to be executed all at once. If a
programmer describes a set of instructions which can be
executed 1n parallel as a single 1ssue group, 1t 1s possible for
such 1ssue group to be processed n parallel In this speci-

fication, the delimiter of an 1ssue group 1s indicated by *;;”.
Notational examples are described below.

Example 1

mov rl, 0x23;;

This mstruction description indicates that only an instruc-
tion “mov’” shall be executed.

Example 2

mov rl, Ox38
add r0, rl, r2

sub r3, rl, r2;;

These mstruction descriptions 1indicate that three instruc-
tions of “mov”, “add” and “sub” shall be executed in
parallel.

The mstruction control unit 10 i1dentifies an 1ssue group
and sends the 1dentified 1ssue group to the decoding unit 20.
The decoding unit 20 decodes the instructions in the 1ssue

group, and controls resources required for executing such
instructions.

Next, an explanation 1s given for registers included 1n the
processor 1.

Table 1 below lists a set of registers of the processor 1.

TABLE 1
Register Bit No. of
name width registers Usage
RO-R31 32 bits 32 General-purpose registers. Used as data
memory pointer, data storage at the
time of operation instruction,
and the like.
TAR 32 bits 1 Branch register. Used as branch address
storage at branch point.
LR 32 bits 1 Link register.
SVR 16 bits 2 Save register. Used for saving
conditional flag (CFR) and
various modes.
MO-M1 64 bits 2 Operation registers. Used as data
(MHO:MLO- storage when operation instruction
MHI1~ML1) 1s executed.

Us 7,380,112 B2

9

Table 2 below lists a set of flags (flags managed in a
conditional flag register and the like described later) of the
processor 1.

TABLE 2

Flag Bit No. of

name width flags Usage

CO-C7 1 8 Conditional flags. Indicate if
condition is true or false.

VCO-V(C3 1 4 Conditional flags for media processing
extension instruction. Indicate if
condition 1s true or false.

OVS 1 1 Overflow flag. Detects overflow at the
time of operation.

CAS 1 1 Carry flag. Detects carry at the time
of operation.

BPO 5 1 Specifies bit position. Specifies bit
positions to be processed when
mask processing instruction is
executed.

ALN 2 1 Specified byte alignment.

FXP 1 1 Fixed point arithmetic mode.

UDR 32 1 Undefined register.

FIG. 8 1s a diagram showing the configuration of the
general-purpose registers (R0-R31) 30a. The general-pur-
pose registers (R0-R31) 30a are a group of 32-bit registers
that constitute an integral part of the context of a task to be
executed and that store data or addresses. Note that the
general-purpose registers R30 and R31 are used by hardware
as a global pointer and a stack pointer, respectively.

FIG. 9 1s a diagram showing the configuration of a link
register (LR) 30c. In connection with this link register (LR)

30¢, the processor 1 also has a save register (SVR) which 1s
not illustrated i FIG. 9. The link register (LR) 30c¢ 1s a

32-bit register in which a return address at the time of a
function call 1s stored. Note that the save register (SVR) 1s
a 16-bit register for saving a conditional flag (CFR.CF) of
the conditional flag register at the time of a function call. The
link register (LR) 30c 1s also used for the purpose of
increasing the speed of loops, as in the case of a branch
register (TAR) to be explained later. O 1s always read out
from the low 1 bit of the link register (LR) 30c, and O must
be written to the low 1 bit of the link register (LR) 30c¢ at the
time of writing.

For example, when executing “call (brl, ympl)” mnstruc-
tions, the processor 1 saves a return address into the link
register (LR) 30c¢ and saves a conditional flag (CFR.CF) 1into
the save register (SVR). When executing a “ymp” instruc-
tion, the processor 1 fetches the return address (branch
destination address) from the link register (LR) 30c¢, and
restores a program counter (PC). Furthermore, when execut-
ing a “ret (yjmpr)” instruction, the processor 1 fetches the
branch destination address (return address) from the link
register (LR) 30c¢, and stores (restores) the branch destina-
tion address 1nto the program counter (PC). Moreover, the
processor 1 fetches the conditional flag from the save
register (SVR) so as to store (restore) the conditional flag

into a conditional tlag area CFR.CF 1n the conditional flag
register (CFR) 32.

FIG. 10 1s a diagram showing the configuration of the
branch register (TAR) 30d. The branch register (TAR) 30d
1s a 32-bit register 1n which a branch target address 1s stored,
and which 1s used mainly for the purpose of increasing the
speed of loops. 0 1s always read out from the low 1 bit of the
branch resister (TAR) 30d, and 0 must be written to the low
1 bit of the branch resister (TAR) 304 at the time of writing.

10

15

20

25

30

35

40

45

50

55

60

65

10

For example, when executing “ymp” and “jloop” instruc-
tions, the processor 1 fetches a branch target address from
the branch register (TAR) 30d, and stores the branch target
address 1n the program counter (PC). When the 1nstruction
indicated by the address stored 1n the branch register (TAR)
30d 1s stored 1n a branch instruction builer, a branch penalty
will be 0. An increased loop speed can be achieved by
storing the top address of a loop 1n the branch register (TAR)
30d.

FIG. 11 1s a diagram showing the configuration of a
program status register (PSR) 31. The program status reg-
ister (PSR) 31, which constitutes an integral part of the
context of a task to be executed, 1s a 32-bit register 1n which
the following processor status information are stored:

Bit SWE: indicates whether the switching of VMP (Vir-
tual Multi-Processor) to LP (Logical Processor) 1s enabled or
disabled. “0” indicates that switching to LP 1s disabled and
“1” 1ndicates that switching to LP 1s enabled.

Bit FXP: indicates a fixed point mode. “0”” indicates mode
0 and “1” indicates mode 1.

Bit IH: 1s an interrupt processing flag indicating whether
or not maskable interrupt processing 1s ongoing. “1” 1ndi-
cates that there 1s an ongoing interrupt processing and “0”
indicates that there 1s no ongoing interrupt processing. “1”
1s automatically set on the occurrence of an interrupt. This
flag 1s used to make a distinction of which one of interrupt
processing and program processing 1s taking place at a point
in the program to which the processor returns 1n response to
a “rt1” instruction.

Bit EH: 1s a flag indicating whether or not an error or an
NMI 1s being processed. “0” imndicates that error processing
or NMI interrupt processing 1s not ongoing and “1”” indicates
that error processing or NMI interrupt processing 1s ongo-
ing. This tlag 1s masked if an asynchronous error or an NMI
occurs when EH=1. Meanwhile, when VMP 1s enabled,
plate switching of VMP 1s masked.

Bit PL [1:0]: indicates a privilege level. “00” indicates the
privilege level O, 1.e. the processor abstraction level, “01”
indicates the privilege level 1 (non-settable), “10” indicates
the privilege level 2, 1.e. the system program level, and *“11”
indicates the privilege level 3, 1.e. the user program level.

Bit LPIE3: indicates whether LP-specific interrupt 3 1s
enabled or disabled. “1”” indicates that an interrupt 1s enabled
and “0” indicates that an interrupt 1s disabled.

Bit LPIE2: indicates whether LP-specific interrupt 2 1s
enabled or disabled. “1” indicates that an interrupt 1s enabled
and “0” indicates that an interrupt i1s disabled.

Bit LPIE1: indicates whether LP-specific iterrupt 1 1s
enabled or disabled. “1” indicates that an interrupt 1s enabled
and “0” indicates that an interrupt 1s disabled.

Bit LPIEO: indicates whether LP-specific interrupt 0 1s
enabled or disabled. “1” indicates that an interrupt 1s enabled
and “0” indicates that an interrupt 1s disabled.

Bit AEE: indicates whether a misalignment exception 1s
ecnabled or disabled. “1” indicates that a misalignment
exception 1s enabled and “0” indicates that a misalignment
exception 1s disabled.

Bit IE: indicates whether a level interrupt i1s enabled or
disabled. “1” indicates that a level interrupt 1s enabled and
“0” indicates a level mterrupt 1s disabled.

Bit IM [7:0]: indicates an interrupt mask, and ranges from
levels 0-7, each being able to be masked at 1ts own level.
Level 0 1s the highest level. Of the interrupt requests which
are not masked by any IMs, only the interrupt request with
the highest level 1s accepted by the processor 1. When the
interrupt request 1s accepted, levels below the level of the
accepted 1nterrupt request are automatically masked by

Us 7,380,112 B2

11

hardware. IM[0] denotes a mask of level 0, IM|1] denotes a
mask of level 1, IM|2] denotes a mask of level 2, IM]|3]
denotes a mask of level 3, IM[4] denotes a mask of level 4,
IM[5] denotes a mask of level 5, IM[6] denotes a mask of
level 6, and IM][7] denotes a mask of level 7.

reserved: indicates a reserved bit. 0 1s always read out
from “reserved”. 0 must be written to “reserved” at the time
of writing.

FIG. 12 1s a diagram showing the configuration of the
conditional flag register (CFR) 32. The conditional flag
register (CFR) 32, which constitutes an integral part of the
context of a task to be executed, 1s a 32-bit register made up
of conditional flags, operation flags, vector conditional flags,
an operation instruction bit position specification field, and
a SIMD data alignment information field.

Bit ALN [1:0]: indicates an alignment mode. An align-
ment mode of “valnvc™ instruction 1s set.

Bit BPO [4:0]: indicates a bit position. It 1s used 1n an
istruction that requires a bit position specification.

Bit VC0-V(C3: are vector conditional flags. Starting from
a byte on the LSB (Least Sigmificant Bit) side or a half word
through to the MSB side, each corresponds to a flag ranging,
from VCO0 through VC3.

Bit OVS: 1s an overtlow flag (summary). It 1s set on the
detection of saturation and overflow. If not detected, a value
before the execution of the instruction is retained. Clearing,
of this flag needs to be carried out by software.

Bit CAS: 1s a carry flag (summary). It 1s set when a carry
occurs under an “addc’ instruction, or when a borrow occurs
under a “subc” instruction. If there 1s no occurrence of a
carry under an “addc” imnstruction or a borrow under a “subc”
instruction, a value betfore the execution of the instruction 1s
retained as the Bit CAS. Clearing of this flag needs to be
carried out by software.

Bit C0-C7: are conditional flags. The value of the tlag C7
1s always 1. A reflection of a FALSE condition (writing of 0)
made to the flag C7 1s 1gnored.

reserved: indicates a reserved bit. 0 1s always read out
from “reserved”. 0 must be written to “reserved’ at the time
ol writing.

FIGS. 13(a) and () are diagrams showing the configu-
ration of accumulators (M0, M1) 305. Such accumulators
(MO, M1) 305, which constitute an integral part of the
context of a task to be executed, are made up of a 32-bit
register MHO-MH1 (register for multiply and divide/sum of
products (the higher 32 bits)) shown 1n (a) in FIG. 13 and a
32-bit register MLO-MLI1 (register for multiply and divide/
sum of products (the lower 32 bits)) shown 1n (b) in FIG. 13.

The register MHO-MHI1 1s used for storing the higher 32
bits of an operation result at the time of a multiply 1nstruc-
tion, whereas the register MHO0-MH1 1s used as the higher 32
bits of the accumulators at the time of a sum of products
instruction. Moreover, the register MHO-MHI1 can be used
in combination with the general-purpose registers 1n the case
where a bit stream 1s handled. Meanwhile, the register
MLO-ML1 1s used for storing the lower 32 bits of an
operation result at the time of a multiply instruction, whereas
the register MLO-ML1 1s used as the lower 32 bits of the
accumulators at the time of a sum of products 1nstruction.

FIG. 14 1s a diagram showing the configuration of a
program counter (PC) 33. This program counter (PC) 33,
which constitutes an integral part of the context of a task to
be executed, 1s a 32-bit counter that holds the address of an
instruction being executed. “0” 1s always stored 1n the low
1 bit of the program counter (PC) 33.

FIG. 15 1s a diagram showing the configuration of a PC
save register (IPC) 34. This PC save register (IPC) 34, which

5

10

15

20

25

30

35

40

45

50

55

60

65

12

constitutes an integral part of the context of a task to be
executed, 1s a 32-bit register. “0”” 1s always read out from the
low 1 bit of the PC save register (IPC) 34. “0” must be
written to the low 1 bit of the PC save register (IPC) 34 at
the time of writing.

FIG. 16 1s a diagram showing the configuration of a PSR
save register (IPSR) 35. This PSR save register (IPSR) 35,
which constitutes an itegral part of the context of a task to
be executed, 1s a 32-bit register for saving the program status
register (PSR) 31. O must be always read out from a part in
the PSR save register (IPSR) 35 corresponding to a reserved
bit 1n the program status register (PSR) 31, and 0 must be
written to a part in the PSR save register (IPSR) 35 corre-
sponding to a reserved bit 1in the program status register
(PSR) 31 at the time of writing.

Next, an explanation 1s given for the memory space of the
processor 1. In the processor 1, a linear memory space with
a capacity of 4 GB 1s divided into 32 segments, and an
instruction SRAM (Static RAM) and a data SRAM are
allocated to 128-MB segments. With a 128-MB segment

serving as one block, a target block to be accessed 1s set 1n
a SAR (SRAM Area Register). A direct access 1s made to the

instruction SRAM/data SRAM when the accessed address 1s
a segment set 1n the SAR, but an access request shall be
1ssued to a bus controller (BUC) when such address 1s not a
segment set in the SAR. An on chip memory (OCM), an
external memory, an external device, an I/O port and others
are connected to the BUC. The processor 1 1s capable of
reading/writing data from and to these devices.

FIG. 17 1s a timing diagram showing the pipeline behavior
of the processor 1. As 1llustrated in FI1G. 17, the pipeline of
the processor 1 basically consists of the following five
stages: 1nstruction fetch; instruction assignment (dispatch);
decode; execution; and writing.

FIG. 18 1s a timing diagram showing each stage of the
pipeline behavior of the processor 1 at the time of executing,
an instruction. In the instruction fetch stage, an access 1s
made to an instruction memory which 1s indicated by an
address specified by the program counter (PC) 33, and the
instruction 1s transierred to the mnstruction buflers 10c-10e
and 10/, and the like. In the mstruction assignment stage, the
output of branch target address information 1n response to a
branch instruction, the output of an input register control
signal, and the assignment of a variable length nstruction
are carried out, which 1s followed by the transier of the
istruction to an instruction register (IR). In the decode
stage, the istruction stored in the IR 1s mputted to the
decoding unit 20, from which an operation umt control
signal and a memory access signal are outputted. In the
execution stage, an operation 1s executed and the result of
the operation 1s outputted either to the data memory or the
general-purpose registers (R0-R31) 30aq. In the writing

stage, a value obtained as a result of data transier, and the
operation results are stored 1n the general-purpose registers.

The VLIW architecture of the processor 1 allows parallel
execution of the above processing on a maximum of four
data elements. Therefore, the processor 1 performs parallel
execution as shown in FIG. 18 at the timing shown 1n FIG.

19.

Next, an explanation 1s given for a set of instructions
executed by the processor 1 with the above configuration.

Tables 3-5 list categorized instructions to be executed by
the processor 1.

Category

Memory move
instruction (load)
Memory move
instruction (store)
Memory move
instruction (others)
External register
move 1nstruction

Branch instruction

Software mterrupt
instruction

VMP/interrupt
control instruction
Arithmetic operation

instruction

Logical operation
instruction

Compare 1nstruction

Move 1nstruction
NOP instruction
Shift instruction 1

Shift imstruction 2

Category

Extract instruction

Mask instruction
Saturation
instruction
Conversion
instruction

Bit count instruction
Others

Multiply instruction 1

Multiply instruction 2
Sum of products
instruction 1

Sum of products
instruction 2
Difference of
products mstruction 1
Difference of
products instruction 2
Divide 1nstruction
Debugger instruction

Op-
era-

tion

Us 7,380,112 B2

13

TABLE 3

unit Instruction operation code

M

M

g

S1

82

Id

1dh,Idhu,ldb,ldbu,ldp,ldhp, Idbp, [dbh,

ldbuh,ldbhp,ldbuhp

St,

sth,stb,stp,sthp,stbp,stbh,stbhp

dpref,ldstb

rd,rde,wt,wte

br,brl,call,jmp,jmpl,jmpr,ret,jmpi,jloop,

setbb,setlr,settar

rt1,p10,p10Lp1l,p1l1l,p12,p12],p13,p13L,pi4,

p14l,p13,p13],p16,p161,p17.p171,sc0,scl,sc2,

sc3,sc4,8cd,8¢c0,8¢7

intd,inte,vmpsleep,vmpsus,vmpswd,vimpswe,

vmpwait
abs,absvh,absvw,add,addarvw,addc,addmsk,

adds,addsr,addu,addvh,addvw,neg,
negvh,negvw,rsub,sladd,s2add,sub,

subc,submsk,subs,subvh,subvw,max,

min

and,andn,or,sethi,xor,not

cmpCC,cmpCCa,cmpCCn,cmpCCo.tstn,
tstna.tstnn,tstno,tstz,tstza,tstzn.tstzo

mov,movct,mvclcas,mvclovs,setlo,vechk

nop

as

0ol

as

Op-

l,aslvh,aslvw,asr,asrvh,asrvw,lIsl,lsr,

JTOr

Ip,aslpvw,asrp,asrpvw,lslp,lsrp

TABLE 4

eration
unit

DIV

52

C
C

X1

X2
X1

X2

X1

X2

Instruction operation code

ext,extb,extbu,exth,exthu ,extr,
extru,extu

msk,mskgen
satl2,sat9,sath,satbu,sath,satw

valn,valnl,valn2,valn3,valnvel,valnve?2,
valnve3,valnved, vhpkb,vhpkh,vhunpkb,
vhunpkh,vintlhb,vintlhh,vintllb,vintllh,
vlpkb,vilpkbu,vlpkh, vipkhu,vlunpkb,
vlunpkbu,vlunpkh,vlunpkhu,vstovb,
vstovh,vunpkl,vunpk?2,

vxchngh,vexth

bentl,bseq,bseqO,bseql
byterev,extw,mskbrvb,mskbrvh,rndvh,
movp

fmulhh,fmulhhr, fmulhw, fmulhww,
hmul,lmul

fmulww,mul.mulu
fmachh,fmachhr,fmachw,fmachww,
hmac,Imac

fmacww,mac

fmsuhh,fmsuhhr,fmsuhw,fmsuww,

hmsu,lmsu
fmsuww,msu

div,divu

DBGM dbgmO,dbgml1,dbgm?2.,dbgm3

10

15

20

25

30

35

40

45

50

55

60

65

14

TABLE 5
Op-
era-
tion
Category unit Instruction operation code
SIMD arithmetic A wvabshvh,vaddb,vaddh,vaddhvc,vaddhvh,
operation vaddrhve,vaddsb,vaddsh,vaddsrb,vaddsrh,
instruction vasubb,vcchk,vhaddh,vhaddhvh,
vhsubh,vhsubhvh,vladdh,vladdhvh,vlsubh,
vlsubhvh,vnegh,vnegh,vneghvh,vsaddb,
vsaddh,vsgnh,vsrsubb,vsrsubh,vssubb,
vssubh,vsubb,vsubh,vsubhvh,vsubsh,
vsumbh,vsumh?2,vsumrh?2,vxaddh,
vxaddhvh,vxsubh,vxsubhvh,
vmaxb,vmaxh,vminb,vminh,vmovt,vsel
SIMD compare A vcmpeqgb,vempegh,vempgeb,vempgeh,
instruction vempgtb,vempgth,vempleb,vempleh,
vempltb,vemplth,vempneb,vcmpneh,
vscmpegb,vscmpeqgh,vscmpgeb,vscmpgeh,
vscmpgtb,vscmpgth,vscmpleb,vscmpleh,
vscmpltb,vscmplth,vscmpneb,vscmpneh
SIMD shift S1 wvaslb,vaslh,vaslvh,vasrb,vasrh,vasrvh,
instruction 1 vislb,vlslh,vlsrb,vlsrh,vrolb,vrolh,vrorb,
vrorh
SIMD shift S2 vasl,vaslvw,vasr,vasrvw,vlsl,vlsr
instruction 2
SIMD saturation C wvsath,vsathl2,vsath®,vsath8u,vsath9
instruction
Other SIMD C wvabssumb,vrndvh
instruction
SIMD multiply X2 vimulh,vimulhr,vimulw,vhimulh,vhimulhr,
instruction vhimulw,vhmul,vlfmulh, vlimulhr,vlfmulw,
vimul,vmul,vpimulhww,vximulh,
vximulhr, vximulw,vxmul
SIMD sum of X2 vimach,vimachr,vimacw,vhimach,vhimachr,
products vhimacw,vhmac,vlfmach,vlfmachr,
instruction vlfmacw,vlmac,vmac,vpfmachww,vximach,
vximachr,vxfmacw,vxmac
SIMD difference of X2 vimsuh,vimsuw,vhimsuh,vhifmsuw,vhmsu,
products vlimsuh,vlimsuw,vimsu,vmsu,vximsuh,
instruction vximsuw,vxmsu

Note that “Operation units” in the above tables refer to
operation units used in the respective instructions. More
specifically, “A” denotes an ALU instruction, “B” denotes a
branch instruction, “C” denotes a conversion instruction,
“DIV” denotes a divide 1instruction, “DBGM” denotes a
debug 1instruction, “M” denotes a memory access instruc-
tion, “S1” and “S2” denote a shift instruction, and “X1” and

“X2” denote a multiply nstruction.

FIG. 20A 1s a diagram showing the format of a 16-bit
instruction executed by the processor 1, and FIG. 20B 1s a
diagram showing the format of a 32-bit instruction executed
by the processor 1.

The following describes the meaning of the acronyms
used 1n the diagrams: “E” 1s an end bit (boundary of parallel
execution); “F” 1s a format bit (00, 01, 10: 16-bit instruction
format, 11: 32-bit instruction format); “P” 1s a predicate
(execution condition: one of the eight conditional tlags
C0-C7 1s specified); “OP” 1s an operation code field; “R” 1s
a register field; “I” 1s an immediate value field; and “D” 1s
a displacement field. Note that an “E” field 1s unique to
VLIW, and an 1nstruction corresponding to E=0 1s executed
in parallel with the next instruction. In other words, the “E”
field realizes VLIWs whose degree of parallelism 1s vari-
able. Furthermore, predicates, which are tlags for controlling
whether or not to execute an instruction based on values of
the conditional tlags C0-C7, serve as a technique that allows
instructions to be selectively executed without using a
branch instruction and therefore accelerates the speed of
processing.

Us 7,380,112 B2

15

For example, when the conditional tflag C0 indicating a
predicate 1n an 1nstruction 1s 1, the mstruction being
assigned the conditional flag C shall be executed, whereas
when the conditional flag C0 1s 0, such instruction shall not
be executed.

FIGS. 21A-36B are diagrams explaiming an outlined
functionality of the instructions executed by the processor 1.
More specifically, FIGS. 21A and 21B explain instructions
belonging to the category “AlLUadd (addition) system)”;
FIGS. 22A and 22B explain instructions belonging to the
category “ALUsub (subtraction) system)”; FIGS. 23A and
23B explaimn mstructions belonging to the category “ALU-
logic (logical operation) system and others”; FIGS. 24A and
24B explain instructions belonging to the category “CMP
(comparison operation) system”; FIGS. 25A and 25B
explain 1nstructions belonging to the category “mul (multi-
plication) system”; FIGS. 26 A and 26B explain instructions
belonging to the category “mac (sum of products operation)
system”; FIGS. 27A and 27B explain istructions belonging
to the category “msu (difference of products) system”; FIGS.
28 A and 28B explain instructions belonging to the category
“MEMId (load from memory) system”; FIGS. 29A and 29B
explain instructions belonging to the category “MEMstore
(store 1n memory) system”; FIG. 30 explains instructions
belonging to the category “BRA (branch) system”; FIGS.
31A and 31B explain instructions belonging to the category
“BSasl (arithmetic barrel shift) system and others”; FIGS.
32 A and 32B explain mstructions belonging to the category
“BSlsr (logical barrel shift) system and others™; FIG. 33
explains istructions belonging to the category “CNVvaln
(arithmetic conversion) system”; FIGS. 34A and 34B
explain instructions belonging to the category “CNV (gen-
eral conversion) system’™; FIG. 35 explains instructions
belonging to the category “SATvlpk (saturation processing)
system”; and FIGS. 36A and 36B explain instructions
belonging to the category “ETC (et cetera) system”™.

The following describes the meaning of each 1tem 1n these
diagrams: “SIMD” indicates the type of an 1nstruction
(distinction between SISD (SINGLE) and SIMD); “Size”
indicates the size of an individual operand to be an operation
target; “Instruction” indicates the operation code of an
instruction; “Operand” indicates the operands of an nstruc-
tion; “CFR” indicates a change in the conditional flag
register; “PSR” indicates a change in the processor status
register; “Iypical behavior” indicates the overview of a
behavior; “Operation unit” indicates an operation unit to be
used; and “3116” indicates the size of an instruction.

Next, the behavior of the processor 1 when executing
some of the characteristic instructions 1s explained. Note
that tables 6-10 describe the meaning of each symbol used
to explain the instructions.

TABLE 6
Symbol Meaning
X[1] Bit number 1 of X
X[1:] Bit number j to bit number 1 of X
XY Concatenated X and Y
{n{X}} n repetitions of X
sextM(X,N) Sign-extend X from N bit width to M bit width.
Default of M 1s 32.
Default of N 1s all possible bit widths of X.
uextM(X,N) Zero-extend X from N bit width to M bit width.
Default of M 1s 32.
Default of N 1s all possible bit widths of X.
smul(X,Y) Signed multiplication X * Y
umul(X,Y) Unsigned multiplication X * Y

sdiv(X,Y) Integer part 1n quotient of signed division X/Y

10

15

20

25

30

35

40

45

50

55

60

65

16

TABLE 6-continued

Symbol Meaning
smod(X,Y) Modulo with the same sign as dividend.
udiv(X,Y) Quotient of unsigned division X/Y
umod(X,Y) Modulo
abs(X) Absolute value
bseq(X,Y) for (i=0; i<32; i++) {
if (X[31-1] 1=7Y) break;
h
result = 1;
bent(X,Y) S =0;
for (i=0; 1<32; i++) {
if (X[1] ==Y) S++;
h
result = §;
max(X,Y) result = (X > Y)? X:Y
min{X,Y) result = (X < Y)? X:Y;
tstz(X,Y) X&Y ==0
tstn(X,Y) X&Y!=0
TABLE 7
Symbol Meaning
Ra Ra[31:0] Register numbered a (0 <= a <= 31)
Ra+1 R{a+1)[31:0] Register numbered a+1 (0 <= a <= 30)
Rb Rb[31:0] Register numbered b (0 <= b «= 31)
Rb+1 R(b+1)[31:0] Register numbered b+1 (0 <= b <= 30)
Rc Rec[31:0] Register numbered ¢ (0 <= c <= 31)
Rc+1 R{c+1)[31:0] Register numbered c+1 (0 <= ¢ <= 30)
Ra2 Ra2[31:0] Register numbered a2 (0 <= a2 <= 15)
Ra2+1 R(a2+1)[31:0] Register numbered a2+1 (0 <= a2 <= 14)
Rb2 Rb2[31:0] Register numbered b2 (0 <= b2 <= 15)
Rb2+1 R(b2+1)[31:0] Register numbered b2+1 (0 <= b2 <= 14)
Rc2 Rc2[31:0] Register numbered c2 (0 <= c2 <= 15)
Rc2+1 R{c2+1)[31:0] Register numbered c2+1 (0 <= c2 <= 14)
Ra3 Ra3[31:0] Register numbered a3 (0 <=a3 <= 7)
Ra3+1 R{a3+1)[31:0] Register numbered a3+1 (0 <= a3 <= 6)
Rb3 Rb3[31:0] Register numbered b3 (0 <=b3 <=7)
Rb3+1 R(b3+1)[31:0] Register numbered b3+1 (0 <= b3 <= 6)
Rc3 Rc3[31:0] Register numbered ¢3 (0 <=¢c3 <= T7)
Rc3+1 R{c3+1)[31:0] Register numbered c3+1 (0 <= c3 <= 6)
Rx Rx[31:0] Register numbered x (0 <= X <= 3)
TABLE 8
Symbol Meaning
+ Addition
— Subtraction
& Logical AND
| Logical OR
! Logical NOT
<< Logical shift left (arithmetic shift left)
>> Arithmetic shift right
> Logical shift right
) Exclusive OR
~ Logical NOT
== Equal
|= Not equal
> Greater than
Signed(regard left-and right-part MSBs as sign)
>= Greater than or equal to
Signed(regard left-and right-part MSBs as sign)
>(1) Greater than
Unsigned(Not regard left-and right-part MSBs as sign)
>=(1) Greater than or equal to
Unsigned(Not regard left-and right-part MSBs as sign)
< Less than
Signed(regard left-and right-part MSBs as sign)
<= Less than or equal to

Signed
Less than

(regard left-and right-part MSBs as sign)

Unsigned(Not regard left-and right-part MSBs as sign)

Us 7,380,112 B2

17

TABLE 8-continued

Symbol Meaning

<=(1) Less than or equal to
Unsigned(Not regard left-and right-part MSBs as sign)

TABLE 9

Symbol Meaning
D{addr) Double word data corresponding to address “addr”™

in Memory
W (addr) Word data corresponding to address “addr” in Memory
H{addr) Half data corresponding to address “addr” in Memory
B(addr) Byte data corresponding to address “addr” in Memory
B(addr, Access byte data corresponding to address “addr”
bus_ lock) in Memory, and lock used bus concurrently

(unlockable bus shall not be locked)
B(addr, Access byte data corresponding to address “addr” in
bus__ Memory, and unlock used bus concurrently
unlock) (unlock shall be 1gnored for unlockable bus and

bus which has not been locked)

EREG(num) Extended register numbered “num”

EREG _ERR To be 1 if error occurs when immediately previous access
is made to extended register.
To be O, when there was no error.

<- Write result

=> Synonym of instruction (translated by assembler)

reg # (Ra) Register number of general-purpose register Ra(5-bit value)

0x Prefix of hexadecimal numbers

Ob Prefix of binary numbers

tmp Temporally variable

UD Undefined value (value which is implementation-dependent
value or which varies dynamically)

Dn Displacement value
(n 1s a natural value indicating the number of bits)

In Immediate value

(n 1s a natural value indicating the number of bits)

TABL.

(L]

10

Symbol Meaning

OFExplanation for syntax
if (condition) {
Executed when condition 1s met;

}else {

Executed when condition 1s not met;

Executed when condition A 1s met, if (condition A); * Not executed
when condition A 1s not met
for (Expressionl;Expression2;Expression3) * Same as C language
(Expression 1)? Expression2:Expression3 * Same as C language
OFExplanation for terms
The following explains terms used for explanations:
Integer multiplication Multiplication defined as “smul”
Fixed point multiplication
Arithmetic shift left 1s performed after integer operation. When PSR.FXP
1s 0, the amount of shift is 1 bit, and when PSR.FXP 1s 1, 2 bits.
SIMD operation straight / cross / high / low / pair
Higher 16 bits and lower 16 bits of half word vector data

1s RH and RL, respectively. In the case of operations performed
between Ra register and Rb register, each operation is defined
as follows:

straight Operation 1s performed between RHa and RHb, and

RILa and RLb

CIross Operation 1s performed between RHa and RLb, and
RILa and RHb

high Operation 1s performed between RHa and RHb, and

RI.a and RHb

low Operation 1s performed between RHa and RLb, and
RILa and RLb

pair Operation 1s performed between RH and RHb, and

RH and RLb (RH 1s 32-bit data)

10

15

20

25

30

35

40

45

50

55

60

65

18

[Instruction jloop, settar]

Instruction jloop 1s an instruction for performing a branch
and setting conditional flags (predicates, here) 1n a loop. For
example, when

1loop C6, Cm, TAR, Ra

the processor 1 behaves as follows, by using the address
management unit 106 and others: (1) sets 1 to the conditional
flag Cm; (11) sets O to the conditional tlag Cé6 when the value
held 1n the register Ra 1s smaller than O; (111) adds -1 to the
value held 1n the register Ra and stores the result into the
register Ra; and (1v) branches to an address specified by the
branch register (TAR) 304. When not filled with a branc
instruction, the jump bufler 10/ (branch 1nstruction builer)
will be filled with a branch target instruction. A detailed
behavior 1s as shown 1n FIG. 37.

Meanwhile, Instruction settar 1s an nstruction for storing,
a branch target address into the branch register (TAR) 304,
and setting conditional flags (predicates, here). For example,
when

settar C6, Cm, D9

the processor 1 behaves as follows, by using the address
management unit 105 and others: (1) stores an address that
results from adding the value held 1n the program counter
(PC) 33 and a displacement value (D9) into the branch
register (TAR) 30d; (11) fetches the mstruction correspond-
ing to such address and stores the instruction mto the jump
buffer 10f (branch instruction builer); and (111) sets the
conditional flag Cé to 1 and the conditional flag Cm to 0. A
detailed behavior 1s as shown in FIG. 38.

These structions jloop and settar, which are usually used
in pairs, are eflective for increasing the speed of a loop 1n
prolog/epilog removal software pipeliming. Note that soft-
ware pipelining, which 1s a technique used by a compiler to
increase a loop speed, allows an eflicient parallel execution
of a plurality of mstructions by converting a loop structure
into a prolog phase, a kernel phase and an epilog phase, and
by overlapping each iteration with the previous and follow-
ing iterations 1n the kernel phase.

As shown 1 FIG. 39, “prolog/epilog removal™ 1s intended
to visually remove the prolog phase and epilog phase by
using the prolog phase and the epilog phase as conditional
execution instructions to be performed 1n accordance with
predicates. In prolog/epilog removal 2-stage software pipe-
lining shown 1n FIG. 39, the conditional flags C6 and C4 are
illustrated as predicates for an epilog instruction (Stage 2)
and a prolog instruction (Stage 1), respectively.

For example, when the above-described jloop and settar
instructions are used 1n a source program written 1n the C
language shown in FI1G. 40, a compiler generates a machine
language program shown in FIG. 41 by means of prolog/
epilog removal software pipelining.

As 1ndicated by the loop part in such a machine language
program (Label LO0023-Instruction jloop), setting and reset-
ting of the conditional flag C4 1s carried out 1n an Instruction
1loop and Instruction settar, respectively. Accordingly, there

1s no need for special instructions for such processing,
thereby enabling the loop execution to end 1n two cycles.

Note that the processor 1 1s capable of executing the
following instructions which are applicable not only to
2-stage software pipelining, but also to 3-stage software
pipelining: Instruction “jloop Cé, C2: C4, TAR, Ra” and
Instruction “settar C6, C2: C4, D9”. These instructions
“1loop C6, C2: C4, TAR, Ra” and “settar C6, C2: C4, D9”
are equivalent to 1nstructions 1n which the register Cm 1n the

Us 7,380,112 B2

19

above-described 2-stage instructions “jloop C6, Cm, TAR,
Ra” and “settar C6, Cm, D9 1s extended to the registers C2,
C3 and C4.

To put 1t another way, when
1loop Cé6, C2: C4, TAR, Ra

the processor 1 behaves as follows, by using the address
management unit 105 and others: (1) sets the conditional flag
C4 to 0 when the value held 1n the register Ra 1s smaller than
0; (1) moves the value of the conditional flag C3 to the
conditional flag C2 and moves the value of the conditional
flag C4 to the conditional flags C3 and Cé; (111) adds -1 to
the register Ra and stores the result into the register Ra; and
(1v) branches to an address specified by the branch register
(TAR) 30d4. When not filled with a branch instruction, the
jump builer 10/ (branch mstruction builer) will be filled with

a branch target 1nstruction. A detailed behavior 1s as shown
in FIG. 42.

Also, when
settar C6, C2: C4, D9

the processor 1 behaves as follows, by using the address
management unit 105 and others: (1) stores, into the branch
register (TAR) 30d, an address that results from adding the
value held 1n the program counter (PC) 33 and a displace-
ment value (D9); (11) fetches the mstruction corresponding to
such address and stores the instruction into the jump builer

10/ (branch instruction bufler); and (1) sets the conditional
flags C4 and C6 to 1 and the conditional flags C2 and C3 to

0. A detailed behavior 1s as shown 1n FIG. 43.

FIGS. 44(a) and (b) show the role of the conditional flags
in the above 3-stage instructions “jloop C6, C2: C4, TAR,
Ra” and “settar C6, C2: C4, D9”. As shown 1n (a) in FIG. 44,
in prolog/epilog removal 3-stage software pipelining, the
conditional flags C2, C3 and C4 serve as predicates for Stage
3, Stage 2 and Stage 1, respectively. FIG. 44(b) 1s a diagram
showing how instruction execution 1s carried out when
moving flags 1 such a case.

For example, when the above-described jloop and settar
instructions shown respectively 1 FIGS. 42 and 43 are used
in a source program written in the C language shown 1n FIG.
45, a compiler generates a machine language program
shown 1 FIG. 46 by means ol epilog removal software
pipelining.

Note that the processor 1 1s also capable of executing the
following 1nstructions which are applicable to 4-stage soft-
ware pipelining: Instruction “jloop C6, C1: C4, TAR, Ra”
and Instruction “settar C6, C1: C4, D9”.

To put 1t another way, when

1loop C6, C1: C4, TAR, Ra

the processor 1 behaves as follows, by using the address
management unit 105 and others: (1) sets the conditional flag
C4 to 0 when the value held 1n the register Ra 1s smaller than
0; (1) moves the value of the conditional flag C2 to the
conditional flag C1, moves the value of the conditional flag
C3 to the conditional flag C2, and moves the value of the
conditional flag C4 to the conditional flags C3 and C6; (i11)
adds -1 to the register Ra and stores the result into the
register Ra; and (1v) branches to an address specified by the
branch register (TAR) 304. When not filled with a branch

target instruction, the jump butler 10/ will be filled with a
branch target instruction. A detailed behavior 1s as shown in

FIG. 47.

Meanwhile, Instruction settar 1s an mstruction for storing
a branch target address into the branch register (TAR) 304 as
well as for setting conditional flags (predicates, here).

10

15

20

25

30

35

40

45

50

55

60

65

20

For example, when
settar C6, C1: C4, D9

the processor 1 behaves as follows, by using the address
management unit 106 and others: (1) stores an address
resulted from adding the value held in the program counter
(PC) 33 and a displacement value (ID9) into the branch
register (TAR) 30d; (1) fetches the mstruction correspond-
ing to such address and stores the instruction into the jump
bufler 10/ (branch instruction bufler); and (111) sets the

conditional tlags C4 and Cé6 to 1 and the conditional flags
C1, C2 and C3 to 0. A detailed behavior 1s as shown 1n FIG.
48.

For example, when the above-described jloop and settar
instructions shown respectively in FIGS. 47 and 48 are used
in a source program written in the C language shown 1n FIG.
49, a compiler generates a machine language program
shown i FIG. 50 by means of epilog removal software
pipelining.

FIG. 51 1s a diagram showing the behavior to be per-
formed 1n 4-stage software pipelining that uses jloop and
settar 1structions shown respectively 1 FIGS. 47 and 48.

In order to implement 4-stage software pipelining, the
conditional flags C1-C4 are used as predicates, each of
which indicates whether or not to execute an instruction.
Instructions A, B, C, and D are 1nstructions to be executed
in the first, second, third, and fourth stages in the software
pipelining, respectively. Furthermore, the instructions A, B,
C, and D are associated with the conditional flags C4, C3,
C2, and C1, respectively. Also, Instruction jloop 1s associ-
ated with the conditional flag C6é.

FIG. 52 15 a diagram for explaining an example method of
setting the conditional flag Cé6 for the Instruction jloop
shown 1 FIG. 47. This method utilizes the following
characteristic: 1n the case where the number of software
pipelining stages 1s “N” stages (where “N” 1s an integer
greater than or equal to 3) when a loop to be executed 1is
unrolled into conditional execution instructions by means of
soltware pipeliming, the loop ends in the next cycle of a cycle
in which a conditional flag corresponding to the conditional
execution instruction to be executed 1n the (N-2) th pipeline
stage 1n the epilog phase, becomes O.

Therefore, 1n the prolog phase and kernel phase in the
loop processing, (1) the value of the conditional flag Cé 1s
always set to 1, (1) the value of the conditional flag C3
(being a conditional flag corresponding to the conditional
execution mstruction to be executed 1n the (N-2)th stage 1n
the software pipelining) 1s monitored from when the epilog
phase 1s entered, and (111) the value of the conditional flag C3
1s set to the conditional flag C6 which 1s 1n one cycle later.
With the above configuration, the conditional flag Cé
assigned to Instruction jloop 1s set to 0 at the end of the loop
processing, making 1t possible for the processor 1 to exat
from the loop. For example, 1n an example of the machine
language program shown 1n FIG. 50, when the value of the
conditional flag C6 becomes 0, not Instruction “jloop C6,
C1: C4, TAR, R4” but Instruction “ret” being placed next to
it 1s to be executed, which makes it possible for the processor
1 to exit from the loop.

Note that, as shown 1n FIG. 51, when the value of a certain
conditional flag becomes 0 1n the epilog phase, the value of
such conditional flag remains to be 0 until the loop process-
ing ends. This means that the conditional execution instruc-
tion corresponding to the conditional flag 1n question 1s not
to be executed until the end of the loop. For example, when
the value of the conditional tlag C4 becomes 0 1n the fifth
cycle, the value of such conditional flag C4 remains to be 0

Us 7,380,112 B2

21

until the seventh cycle in which the loop ends. Therefore, the
instruction A that corresponds to the conditional flag C4 1s
not to be executed from the fifth cycle to the seventh cycle.

Thus, when a conditional flag becomes 0 in the epilog
phase, a control may be performed so that no mstruction will
be read out, until the loop processing ends, from the mnstruc-
tion bufler 10¢ (104, 10e, and 10/2) 1n which the instruction
corresponding to such conditional flag 1s stored.

Meanwhile, a part of each instruction indicates the num-
ber of a conditional flag. Accordingly, the decoding unit 20
may read out only the number of a conditional flag from the
corresponding instruction buller 10c (104, 10e, and 104),
and check the value of the conditional flag based on such
read-out number, so that the decoding umt 20 will not read
out instructions from the instruction bufler 10¢ (104, 10e,
and 10/2) when the value of the conditional flag 1s O.

Furthermore, as shown in FIG. 53, instructions to be
executed before and after the loop may be placed respec-
tively 1n the prolog and epilog phases for execution. For
example, the conditional flag C5 1s assigned to an instruction
X to be executed immediately before the loop and to an
istruction Y to be executed immediately after the loop, so
as to have such mstructions X and Y executed in empty
stages 1n the epilog and prolog phases. Accordingly, it
becomes possible to reduce the number of empty stages in
the epilog and prolog phases.

Moreover, 1n the case where different instructions are
executed depending on whether or not a predetermined
condition 1s true, as 1n the case of an if-else statement 1n the
C language, different conditional flags shall be used for a
conditional execution instruction to be executed when the
condition 1s true and for a conditional execution instruction
to be executed when the condition 1s false, so that the value
of each conditional flag can be changed depending on a
condition. Through such simple processing, 1t becomes
possible to realize a conditional branch instruction.

Also, the below-described method of setting the condi-
tional tlag C6 may be used instead of the method of setting,
the jloop instruction conditional flag C6 shown 1n FIG. 52.
FIG. 54 1s a diagram for explaining another example method
of setting the conditional flag Cé for the Instruction jloop
shown 1 FIG. 47. This method utilizes the following
characteristic: 1n the case where the number of software
pipelining stages 1s “N” stages (where “N” 1s an integer
greater than or equal to 2) when a loop to be executed 1s
unrolled into conditional execution instructions by means of
soltware pipelining, the loop ends 1n the same cycle as the
one 1 which a conditional flag corresponding to the con-
ditional execution instruction to be executed in the (N-1) th
pipeline stage 1n the epilog phase becomes O.

Therefore, 1n the prolog phase and kernel phase 1n the
loop processing, (1) the value of the conditional flag C6 1s
always set to 1, (11) the value of the conditional flag C2
(being a conditional flag corresponding to the conditional
execution struction to be executed 1n the (N-1)th stage 1n
the software pipelining) 1s monitored from when the epilog
phase 1s entered, and (111) the value of the conditional flag C2
1s set to the conditional flag C6 within the same cycle. With
the above configuration, the conditional flag Cé assigned to
the Instruction jloop 1s set to O at the end of the loop
processing, making 1t possible for the processor 1 to exit
from the loop.

Furthermore, the below-described method of setting the
conditional flag C6 may also be used. FIG. 35 1s a diagram
for explaining another example method of setting the con-
ditional flag C6 for the Instruction jloop shown in FIG. 47.
This method utilizes the following characteristic: in the case

"y

10

15

20

25

30

35

40

45

50

55

60

65

22

where the number of software pipelining stages 1s “N”
stages (where “N” 1s an iteger greater or equal to 4) when
a loop to be executed 1s unrolled 1nto conditional execution
instructions by means of software pipelining, the loop ends
in the cycle which 1s two cycles after the cycle 1n which a
conditional flag corresponding to the conditional execution
istruction to be executed in the (N-3) th pipeline stage 1n
the epilog phase becomes O.

Therefore, 1n the prolog phase and kernel phase in the
loop processing, (1) the value of the conditional flag Cé6 1s
always set to 1, (11) the value of the conditional flag C4
(being a conditional flag corresponding to the conditional
execution struction to be executed 1n the (N-3)th stage 1n
the software pipelining) 1s monitored from when the epilog
phase 1s entered, and (11) the value of the conditional flag C4
1s set to the conditional flag C6 which 1s 1n two cycles later.
With the above configuration, the conditional flag Cé
assigned to the Instruction jloop 1s set to 0 at the end of the
loop processing, making it possible for the processor 1 to
exit from the loop.

Note that soitware pipelining up to four stages has been
explained 1n the present embodiment, but the present inven-
tion 1s also applicable to software pipelining containing five
or more stages. It 1s possible to achieve such a configuration
by increasing the number of conditional flags used as
predicates.

A machine language instruction with the above-described
characteristics 1s generated by a complier, where such
machine language instruction 1s comprised of: a parser step
of parsing a source program; an intermediate code conver-
sion step of converting the parsed source program 1nto
intermediate codes; an optimization step of optimizing the
intermediate codes; and a code generation step of converting
the optimized intermediate codes into machine language
instructions.

As described above, according to the present embodi-
ment, a conditional tlag for a loop 1s set by the use of a
conditional flag for the epilog phase of software pipelining.
Accordingly, there 1s no need to use special hardware
resources such as a counter in order to judge whether or not
loop processing has terminated, and 1t becomes possible to
prevent the circuitry scale from becoming large. This con-
tributes to a reduction i1n the power consumption of the
Processor.

Moreover, when a conditional execution instruction stops
being executed 1n the epilog phase, such conditional execu-
tion istruction will not be executed 1n the soltware pipe-
lining until the loop processing ends. Accordingly, there 1s
no need to read out such a conditional execution 1nstruction
from the corresponding instruction bufler until the loop
processing ends, which leads to a reduction 1n the power
consumption of the processor.

Furthermore, by placing instructions to be executed
before and after a loop 1n the prolog phase and the epilog
phase, respectively, 1t becomes possible to reduce the num-
ber of empty stages 1n software pipelining, and therefore to
execute a program at a high speed. This results 1n a reduction
in the power consumption of the processor.

As 1s obvious from the above description, according to the
processor of the present invention, it 1s possible to provide
a processor whose circuitry scale 1s small and which 1s
capable of high-speed loop execution while consuming a
small amount of power.

Furthermore, according to the present invention, 1t 1s
possible to provide a complier which 1s capable of gener-
ating machine language instructions that enable the proces-
sor to consume only a small amount of power.

Us 7,380,112 B2

23

As described above, the processor according to the
present invention 1s capable of executing instructions while
consuming only a small amount of power. It 1s therefore
possible for the processor to be employed as a core processor
to be commonly used in a mobile phone, mobile AV device,
digital television, DVD and others. Thus, the processor
according to the present invention 1s extremely useful 1n the
present age 1 which the advent of high-performance and
cost effective multimedia apparatuses 1s desired.

The invention claimed 1s:

1. A processor for decoding an instruction and executing
the decoded 1instruction, said processor comprising:

a flag register in which a plurality of conditional execu-
tion flags are stored, the plurality of conditional execu-
tion flags being used as predicates for conditional
execution instructions;

a decoding unit operable to decode an instruction; and

an execution unit operable to execute the instruction
decoded by said decoding unit, and

a loop counter used for determiming termination of a loop,

wherein when the instruction decoded by said decoding
unit 1s a loop instruction, said execution unit is operable
to terminate an 1teration of a loop to be executed, based
on a value of one of the plurality of conditional
execution tlags for an epilog phase 1n the loop 1n a case
where the loop 1s unrolled 1nto the conditional execu-
tion instructions by means of software pipelining,

wherein when the mnstruction, decoded by said decoding
umt, 1s said loop instruction, said execution unit 1s
turther operable to set, to a first conditional execution
flag of said register, a certain value indicating that an
instruction using the first conditional execution flag as
a predicate 1s to be executed,

wherein said first conditional execution flag i1s different
from said one of the plurality of conditional execution
flags, and

wherein said execution unit 1s operable to perform pro-
cessing 1n the epilog phase, without using an epilog
counter, by copying the determination result of the loop
counter to the predicate of the instruction with a delay
necessary lfor the processing in the epilog phase by
executing the loop struction.

2. The processor according to claim 1, wherein:

said flag register 1s further operable to store a loop flag
used to judge whether or not the iteration has termi-
nated; and

said execution unit 1s operable to set, to the loop flag, the
value of the one of the plurality of conditional execu-
tion flags for the epilog phase.

3. The processor according to claim 2, wherein said
execution unit 1s operable to set, to the loop flag 1n one cycle
later 1n the epilog phase, the value of the conditional
execution flag for a conditional execution instruction to be
executed 1n an (N-2)th pipeline stage, where N 1s an integer
equal to or greater than 3, 1n a case where the number of
stages 1n the software pipelining 1s N and the stages are
counted each time processing in the epilog phase finishes.

4. The processor according to claim 2, wherein said
execution unit 1s operable to set, to the loop flag 1n the same
cycle as a cycle of the conditional execution flag 1n the
epilog phase, the value of the conditional execution flag for
a conditional execution instruction to be executed in an
(N-1)th pipeline stage, where N 1s an integer equal to or
greater than 2, 1n a case where the number of stages 1n the
software pipelining 1s N and the stages are counted each time
processing in the epilog phase finishes.

10

15

20

25

30

35

40

45

50

55

60

65

24

5. The processor according to claim 2, wherein said
execution unit 1s operable to set, to the loop flag 1n two
cycles later 1n the epilog phase, the value of the conditional
execution flag for a conditional execution instruction to be
executed 1n an (N-3)th pipeline stage, where N 1s an 1integer
equal to or greater than 4, 1n a case where the number of
stages 1n the software pipelining 1s N and the stages are
counted each time processing in the epilog phase finishes.

6. The processor according to claim 1, further comprising
an 1nstruction bufler for temporarly storing the instruction
decoded by said decoding unit,

wherein said decoding unit 1s operable to judge whether
or not the conditional execution should be executed
based on the value of the one of the plurality of
conditional execution flags for the epilog pulse, and not
read one of the conditional execution 1nstructions from
said 1nstruction bufler until the loop terminates, when
judging that the conditional execution instruction
should not be executed.

7. The processor according to claim 1, further comprising,
an 1nstruction bufler for temporarly storing the instruction
decoded by said decoding unit, wherein:

a part of the imstruction stored in said nstruction builer
indicates a storage location of the one of the plurality
of conditional execution flags; and

saild decoding unit 1s operable to read the conditional
execution flag stored 1n said flag register based on the
part of the instruction stored in said istruction bufler,
judge whether or not the conditional execution nstruc-
tion should be executed based on the read conditional
execution flag, and not read out one of the conditional
execution 1nstructions from said instruction builer
when judging that the conditional execution mstruction
should not be executed.

8. The processor according to claim 1, further comprising,

a flag assignment umt operable to assign the plurality of
conditional execution flags,

wherein when a conditional branch instruction 1s included
in the loop 1n a source program, said flag assignment
unit 1s operable to assign the plurality of conditional
execution flags so that a conditional execution tlag used
as a predicate for a conditional execution instruction 1n
a case where a condition 1ndicated by the conditional
branch instruction 1s met, becomes different from a
conditional execution flag used as a predicate for a
conditional execution instruction 1 a case where the
condition 1s not met.

9. A processor for decoding an instruction and executing,

the decoded 1nstruction, said processor comprising:

an 1nstruction control unit for 1ssuing a conditional execu-
tion 1nstruction

a decoding unit operable to decode the conditional execu-
tion 1nstruction 1ssued by said instruction control unit,
the conditional execution nstruction using a flag as a
predicate for determining whether or not the condi-
tional execution i1nstruction 1s executed; and

an execution umt operable to execute the conditional
execution instruction decoded by said decoding unit,

wherein the conditional execution instruction includes a
loop 1nstruction using a second flag as a predicate a
function of the loop 1nstruction 1s setting a first value to
a first flag and branching to another conditional execu-
tion 1nstruction specified by a branch address,

wherein the first flag 1s different from the second flag and
used as a predicate of one of the conditional execution
instructions, and

Us 7,380,112 B2

25

wherein when the decoding unit decodes the loop 1nstruc-
tion 1n a decode stage the execution unit 1s operable to
set a first value to the first flag 1n a succeeding execu-
tion stage based on a decoding result of the decode
stage.

10. The processor according to claim 9,

wherein when the instruction decoded by said decoding
umt 1s said loop instruction, said execution unit 1s
further operable to decrement a value stored on a loop
counter register.

11. The processor according to claim 10,

wherein when the instruction decoded by said decoding
unit 1s said loop mstruction and a value stored on said
loop counter register becomes smaller than a certain
value, said execution unit 1s further operable to set a
second value that 1s diflerent from the first value to said
second flag, and

wherein the first value indicates that a conditional execu-
tion istruction 1s to be executed and the second value
indicates that a conditional execution 1nstruction 1s not
to be executed.

12. The processor according to claim 11,

wherein by setting the second value to said second flag, an
iteration of a loop 1s terminated and goes to an epilog
phase 1n the loop 1n a case where the loop 1s unrolled
into the conditional execution instructions by means of
soltware pipelining.

13. The processor according to claim 9,

wherein said first flag 1s specified by said loop instruction.

14. A processor for decoding an nstruction and executing

the decoded instruction, said processor comprising:

an 1nstruction control unit for 1ssuing a conditional execu-
tion 1nstruction;

a decoding unit operable to decode the conditional execu-
tion 1nstruction 1ssued by said instruction control unit,
the conditional execution instruction using a flag as a
predicate for determining whether or not the condi-
tional execution instruction 1s executed; and

an execution unit operable to execute the conditional
execution instruction, decoded by said decoding unit,

wherein the conditional execution instruction includes a
loop, mstruction using a third flag as a predicate, a
function of the loop instruction 1s copying a value

10

15

20

25

30

35

40

26

stored on a second flag as a predicate, a function of the
loop mstruction 1s copying a value stored on the second
flag to the first flag and branching to another condi-
tional execution 1nstruction specified by a branch
address,

wherein the first, second, and third flag are different and
used as a predicate of one of the conditional execution
instruction, and

wherein when the decoding unit decodes the loop 1nstruc-
tion 1n a decode stage, the execution unit 1s operable to
copy the value stored on the second flag to the first tlag
in a succeeding execution stage based on a decoding
result of the decode stage.

15. The processor according to claim 14,

wherein when the istruction decoded by said decoding
unit 1s said loop instruction, said execution unit 1s
further operable to copy a value stored on a fourth tlag
to said second and third flag.

16. The processor according to claim 14,

wherein when the istruction decoded by said decoding
unit 1s said loop instruction, said execution unit 1s
further operable to decrement a value stored on a loop
counter register.

17. The processor according to claim 16,

wherein when the instruction decoded by said decoding
unit 1s said loop mstruction and a value stored on said
loop counter register becomes smaller than a certain
value, said execution unit 1s further operable to set a

second value that 1s diftferent from a first value to said
third flag, and

wherein the first value indicates that a conditional execu-
tion 1nstruction 1s to be executed and the second value
indicates that a conditional execution instruction 1s not
to be executed.

18. The processor according to claim 17,

wherein by setting the second value to said third flag, an
iteration of a loop 1s terminated and goes to an epilog
phase 1n the loop 1n a case where the loop 1s unrolled
into the conditional execution instructions by means of
soltware pipelining.

"y

	Front Page
	Drawings
	Specification
	Claims

