12 United States Patent

Jindal et al.

US007376977B2

US 7,376,977 B2
May 20, 2008

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(51)

(52)
(58)

(56)

How 'To
Executables;

DEFENSE AGAINST VIRUS ATTACKS

Inventors: Dinesh K. Jindal, Naperville, IL (US);
Venkateshwar Nandam, Naperville, IL
(US)

Lucent Technologies Inc., Murray Hill,
NI (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 782 days.

Assignee:

Notice:

Appl. No.: 10/856,454

Filed: May 28, 2004

Prior Publication Data

US 2005/0278788 Al Dec. 15, 2005

Int. CI.
GO6F 17/30 (2006.01)

US.CL 726/30; 726/27,726/26

Field of Classification Search 726/24,
726/23, 22, 26, 27, 30

See application file for complete search history.

References Cited

OTHER PUBLICATIONS

Maintain Intranet Security When Downloading
http://www.microsoft.com/technet/archive/ie/main-

tain/0497exe.mspx?mir=true, printed Sep. 14, 2007.*
RFC 2726—PGP Authentication for RIPE Database Updates; http://
www.laqgs.org/rics/ric2726 html, Dec. 1999 *

START

Detecting Internet worms at early stage Shigang Chen; Ranka, S.;

Selected Areas in Communications, IEEE Journal on vol. 23, Issue
10, Oct. 2005 pp. 2003-2012.*

Computer attack trends challenge Internet security Householder, A.;
Houle, K.; Dougherty, C.; Computer vol. 35, Issue 4, Part Supple-
ment, Apr. 2002 pp. 5-7.*

Cognitive authentication schemes safe against spyware Weinshall,
D.; Security and Privacy, 2006 IEEE Symposium on May 21-24,
2006 p. 6.*

* cited by examiner

Primary Examiner—David Y Jung

(57) ABSTRACT

A method, software, and computer system for defending
against virus attacks 1s described. Assume that a computer
system receives an 1nstruction to run an executable file.
Belfore the computer system runs the executable file, the
computer system determines 11 the executable file 1s certified
to run on the computer system. If the executable file 1s not
certified, then the computer system prevents the executable
file from running. If the executable file 1s certified, then the
computer system determines if the executable file has been
modified since being certified. If the executable file has been
modified, then the computer system prevents the executable
file from running. If the executable file has been certified and
has not been modified, then the computer system runs the
executable file. Because many viruses are included 1in
executable files, virus attacks may be prevented by requiring
executable files to be certified before they can run.

17 Claims, 6 Drawing Sheets

600
’/-

IDENTIFY A CERTIFICATION

INDICATOR IN THE EXECUTABLE FILE | ~602

IDENTIFY A COMPUTER ID
FOR THE COMPUTER 604

YES

DETERMINE THAT

EXECUTABLE FILE
IS CERTIFIED

—~-608

CERTIFICATION

INDICATOR CORRESPONDS

WITH COMPUTER |D
?

606

NO

DETERMINE THAT

EXECUTABLE FILE

IS NOT CERTIFIED 610

U.S. Patent May 20, 2008 Sheet 1 of 6 US 7,376,977 B2

FIG. 1

COMPUTER SYSTEM 100

PROCESSING
SYSTEM

COMMUNICATION
INTERFACE 102

101

STORAGE SYSTEM
103

OPERATING 410
USER SYSTEM ~ —

INTERFACE

EXECUTABLE 100
104 FILE -

U.S. Patent May 20, 2008 Sheet 2 of 6 US 7,376,977 B2

FIG. 2

200
e

202 RECEIVE AN INSTRUCTION TO
RUN AN EXECUTABLE FILE

204

EXECUTABLE FILE

CERTIFIED TO BE RUN

ON THIS COMPUTER
?

NO PREVENT THE
EXECUTABLE FILE [206
FROM RUNNING

YES

208 HAS
EXECUTABLE FILE YES PREVENT THE
BEEN MODIFIED SINCE EXECUTABLE FILE 210
BEING CERTIFIED FROM RUNNING
9

NO

212 RUN

EXECUTABLE FILE

U.S. Patent May 20, 2008 Sheet 3 of 6 US 7,376,977 B2

300
Vs
START
NOTIFY THE USER THAT THE
EXECUTABLE FILE IS 302
NOT CERTIFIED END
304 NO
WAS THE 310
EXECUTABLE FILE NO
EVER CERTIFIED
?
YES
YES
NOTIFY THE USER THAT THE GO TO
EXECUTABLE FILE IS CERTIFIED 306 PROCESS 400
TO RUN ON ANOTHER COMPUTER

PROVIDE OPTIONS TO
THE USER 308

U.S. Patent May 20, 2008 Sheet 4 of 6 US 7,376,977 B2

FIG. 4

0
’/'40

PROMPT USER FOR A USER ID
AND PASSWORD 402

RECEIVE A USER ID AND PASSWORD
FROM THE USER 404
VALIDATE THE USER BASED ON
THE USER ID AND PASSWORD 406

CERTIFY THE EXECUTABLE FILE BY

WRITING A CERTIFICATION INDICATOR 408
INTO THE EXECUTABLE FILE

DETERMINE A MODIFICATION
INDICATOR FOR THE EXECUTABLE FILE 410
WRITE THE MODIFICATION
INDICATOR INTO THE EXECUTABLEFILE [~ 412

U.S. Patent May 20, 2008 Sheet 5 of 6 US 7,376,977 B2

FIG. 5

O

NOTIFY THE USER THAT THE
EXECUTABLE FILE HAS BEEN MODIFIED 502
SINCE BEING CERTIFIED

PROVIDE OPTIONS TO
THE USER 504

FIG. 6

600
4

IDENTIFY A CERTIFICATION
INDICATOR IN THE EXECUTABLE FILE 602

FOR THE COMPUTER 604

IDENTIFY A COMPUTER ID

606

CERTIFICATION

INDICATOR CORRESPONDS

WITH COMPUTER ID
?

YES NO

DETERMINE THAT DETERMINE THAT
EXECUTABLE FILE EXECUTABLE FILE
IS CERTIFIED 608 IS NOT CERTIFIED

610

U.S. Patent May 20, 2008 Sheet 6 of 6 US 7,376,977 B2

FIG. 7

;7

DETERMINE A CURRENT

MODIFICATION VALUE FOR THE
EXECUTABLE FILE 702

IDENTIFY A MODIFICATION INDICATOR
FROM THE EXECUTABLE FILE 704

706

CURRENT

MODIFICATION VALUE

CORRESPONDS WITH THE

MODIFICATION INDICATOR
?

YES NO

DETERMINE THAT THE DETERMINE THAT
EXECUTABLE FILE HAS 708 THE EXECUTABLE FILE 710

NOT BEEN MODIFIED HAS BEEN MODIFIED

Us 7,376,977 B2

1
DEFENSE AGAINST VIRUS ATTACKS

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention 1s related to the field of computer systems,
and 1n particular, to systems, methods, and software for
defending against virus attacks on computer systems.

2. Statement of the Problem

Many people use computers daily at work or at home. One
problem hampering computer users 1s computer viruses. A
computer virus 1s typically understood to mean an unwanted
soltware program that operates on a computer to do harm to
the computer. The virus may erase data files, create operat-
ing errors, or otherwise infect the computer.

Computers typically operate with three main elements. A
first element 1s the operating system that creates the envi-
ronment for operating the computer. A second element 1s the
executable files that perform a pre-defined set of actions,
such as programs and script files. A third element 1s the data
files. A majority of the computer viruses exist as executable
files that run on a computer. The executable files may be sent
via email, web downloads, or some other manner.

When an executable file representing a virus ends up on
a computer and 1s subsequently executed, the virus may
perform a set of destructive steps on the computer. The virus
may cause a loss of information on the computer, a loss of
time to install patches to repair the computer harmed by the
virus or to prevent future virus attacks, or other problems.
Viruses may also require companies or organizations to have
a stafl on hand to handle virus attacks and track down those
initiating the viruses. Unfortunately, there i1s currently no
ellective way to control whether an executable file 1s run or
not once the executable file 1s on the computer. As long as
there 1s no control on the execution of an executable file, the
executable file runs on the computer 1f the computer 1s so
instructed. If the executable file happens to be a virus, then
the computer will most likely be infected with the virus.

SUMMARY OF THE SOLUTION

The invention solves the above and other related problems
by preventing an executable file from running unless the
executable file has been certified to run. Because many
viruses are included 1n executable files, virus attacks may be
prevented by requiring executable files to be certified before
they can run. That way, any executable file that has been
downloaded without passing through a certification process
will not be allowed to run and will not be allowed to perform
any unintended action on a computer. The certification
process advantageously gives computers and operating sys-
tems another layer of protection against viruses. This saves
on the time and money required to handle virus attacks.

One embodiment of the mvention describes a method of
operating a computer system before the computer system
runs an executable file. First, the computer system receives
an instruction to run an executable file. Before the computer
system runs the executable file, the computer system deter-
mines 1 the executable file 1s certified to run on the
computer system. To be “certified” means that the execut-
able file has been previously authenticated and authorized to
run on a specific computer system. If the computer system
determines that the executable file 1s not certified, then the
computer system prevents the executable file from running.
I1 the computer system determines that the executable file 1s
certified, then the computer system determines 11 the execut-
able file has been modified since being certified for the

10

15

20

25

30

35

40

45

50

55

60

65

2

computer system. If the computer system determines that the
executable file has been modified, then the computer system
prevents the executable file from running. If the computer
system determines that the executable file 1s certified for this
computer system and has not been modified since being
certified, then the computer system runs the executable file.

The mvention may include other exemplary embodiments
described below.

DESCRIPTION OF THE DRAWINGS

The same reference number represents the same element
on all drawings.

FIG. 1 illustrates a computer system in an exemplary
embodiment of the invention.

FIG. 2 1s a flow chart illustrating a method of operating a
computer system before the computer system runs an
executable file 1n an exemplary embodiment of the inven-
tion.

FIG. 3 1s a flowchart illustrating a process 1n an exemplary
embodiment of the invention.

FIG. 4 1s a flow chart 1llustrating another process to certify
executable files 1n an exemplary embodiment of the inven-
tion.

FIG. 5 1s a flowchart illustrating another process 1n an
exemplary embodiment of the mnvention.

FIG. 6 1s a tlowchart illustrating a process for determining,
if an executable file 1s certified 1n an exemplary embodiment
of the mvention.

FIG. 7 1s a flowchart illustrating a process for determining,
il an executable file has been modified m an exemplary
embodiment of the invention.

DETAILED DESCRIPTION OF TH.
INVENTION

L1

FIGS. 1-7 and the following description depict specific
exemplary embodiments of the invention to teach those
skilled 1n the art how to make and use the best mode of the
invention. For the purpose of teaching inventive principles,
some conventional aspects of the mvention have been sim-
plified or omitted. Those skilled 1n the art will appreciate
variations from these embodiments that fall within the scope
of the invention. Those skilled 1n the art will appreciate that
the features described below can be combined in various
ways to form multiple variations of the mvention. As a
result, the invention 1s not limited to the specific embodi-
ments described below, but only by the claims and their
equivalents.

FIG. 1 illustrates a computer system 100 in an exemplary
embodiment of the invention. Computer system 100
includes a communication interface 101, a processing sys-
tem 102, a storage system 103, and a user interface 104.
Storage system 103 stores operating system 110 and execut-
able file 120. Processing system 102 operates according to
operating system 110. When computer system 100 or pro-
cessing system 102 1s referenced in this description, the
function of computer system 100 or processing system 102
may be attributed to operating system 110. Processing
system 102 1s linked to communication interface 101, stor-
age system 103, and user interface 104.

Computer system 100 could be comprised of a pro-
grammed general-purpose computer, such as a desktop
computer or a laptop computer. Processing system 102 could
comprise a computer microprocessor, logic circuit, or some
other processing device. Storage system 103 could comprise
a disk, tape, CD, mtegrated circuit, server, or some other

Us 7,376,977 B2

3

memory device. Storage system 102 may be distributed
among multiple memory devices. User intertace 104 could
comprise a display, keyboard, mouse, voice recognition
interface, graphical display, touch-screen, or some other
type of user device.

Executable file 120 comprises any software, script file, or
program that performs a pre-defined set of actions. Execut-
able file 120 1s shown as being stored 1n storage system 103,
but executable file 120 may be 1 a “desktop™ or other
location of operating system 110, in an email (such as 1n
Microsoit Outlook or another email application), or in
another location that processing system 102 can access.
Executable file 120 may have been loaded onto computer
system 100 by a user, may have been recetved 1n an email,
may have been received 1n a web download, efc.

FIG. 2 1s a flow chart illustrating a method 200 of
operating computer system 100 before computer system 100
runs executable file 120 1n an exemplary embodiment of the
ivention. In step 202, computer system 100 receives an
instruction to run an executable file 120. The instruction may
be from the user of computer system 100 through user
interface 104, may be from an external system or device
through communication interface 101, or may come from an
internal application. Before computer system 100 runs the
executable file 120, computer system 100 determines 11 the
executable file 120 1s certified to run on computer system
100 1n step 204. To be “certified” means that the executable
file has been previously authenticated and authorized to run
on a specific computer system. The authentication and
authorization may be done by computer system 100 or
another computer system. The authentication and authori-
zation 1s done by a valid user or users who are properly
authorized to give such certification. If computer system 100
determines that the executable file 120 1s not certified for
computer system 100, then computer system 100 prevents
the executable file 120 from running 1n step 206. Computer
system 100 may perform further steps as discussed below.
Computer system 100 may also delete the executable file
120.

If computer system 100 determines that the executable file
120 1s certified for computer system 100, then computer
system 100 determines if the executable file 120 has been
modified since being certified for computer system 100, in
step 208. To be “modified” means that the executable file
was altered, tampered with, or otherwise changed either
intentionally or unintentionally. If computer system 100
determines that the executable file 120 has been modified,
then computer system 100 prevents the executable file 120
from running in step 210. Computer system 100 may per-
torm further steps as discussed below. Computer system 100
may also delete the executable file 120.

If computer system 100 determines that the executable file
120 has been certified for computer system 100 and has not
been modified since being certified, then computer system
100 runs the executable file 120 1n step 212. Method 200
may include further steps for desired implementations.

In case the executable file 120 was not executed (either
because 1t wasn’t certified to run on computer system 100 or
it was modified), computer system 100 may provide addi-
tional options to the user on how to proceed (in steps 206 and
210). For instance, one option may be to re-certily the
executable file 120 (see process 400 1n FIG. 4). Another
option may be to run the executable file 120 even 11 1t 1s not
certified for computer system 100 i1 the executable file 120
1s certified to run on another computer within the same
enterprise, company, university, etc. Another option may be
to delete the executable file 120.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 1s a flowchart illustrating a process 300 1n an
exemplary embodiment of the mmvention. In FIG. 2, 1if
computer system 100 determines that the executable file 120
1s not certified in step 204, then computer system 100 may
perform the steps of process 300. In step 302, computer
system 100 notifies the user of computer system 100 that the
executable file 120 1s not certified. Computer system 100
may notily the user with a pop-up window or similar
message. In step 304, computer system 100 determines 11 the
executable file 120 was ever certified, such as being certified
to run on another computer. If computer system 100 deter-
mines that the executable file 120 has never been certified,
then computer system 100 prompts the user whether or not
he/she wants to certify the executable file 120 1n step 1n step
310. If the user wants to certily the executable file, then
computer system 100 performs process 400 described as
follows 1n FIG. 4.

If computer system 100 determines that the executable file
120 1s certified but not for computer system 100 1n step 304,
then computer system 100 notifies the user accordingly in
step 306. Computer system 100 then provides options to the
user on how to proceed in step 308. For instance, one option
may be to certity the executable file 120 (see process 400 1n
FIG. 4). Another option may be to run the executable file 120
even 1f 1t 1s not certified for computer system 100 11 the
executable file 120 1s certified to run on another computer
within the same enterprise, company, university, etc, and 1t
can be verified that the executable file 120 1s 1dentical to the
executables installed on those trusted entities. Another
option may be to delete the executable file 120.

FIG. 4 1s a flow chart illustrating a process 400 to certily
executable files 1n an exemplary embodiment of the inven-
tion. Process 400 may be executed by a valid user on
demand, or automatically called from one or more steps of
FIG. 3. In step 402, computer system 100 prompts the user
for a user ID and a password. Computer system 100 may
prompt the user for other information and i1dentification. In
step 404, the computer system 100 recerves the user 1D and
password. Computer system 100 will have a list of user 1Ds
and passwords that identily those who are allowed or
authorized to certily executable files for this computer
system 100. Computer system 100 validates the user based
on the user ID and password provided by the user 1n step
406. To validate the user means that the user 1s 1dentified as
one of the people allowed to certily executable files on a
specific computer system.

After the user 1s validated, computer system 100 certifies
the executable file 120 by writing a certification indicator
into the executable file 120 1n step 408. A certification
indicator comprises any values, 1dentifiers, control charac-
ters, or codes that certily an executable file for a particular
computer. The certification indicator 1s meant to be an
indication that 1s maintained in the executable file 120,
which shows that the executable file 120 1s certified to run
on computer system 100. In one example, the certification
indicator may comprise a computer ID for computer system
100. Computer system 100, or its associated motherboard or
operating system, may include a unique computer 1D that
distinguishes 1t from other computers. To certily the execut-
able file 120, computer system 100 may write 1ts unique
computer ID (or an encrypted or encoded version of the
computer ID) into the executable file 120, such as in a header
or 1n meta-data of the executable file 120. Computer system
100 may also write the computer ID as part of a checksum
or hash sum into the executable file 120. The certification
indicator may also limit the permissions to execute the
executable file 120 to a limited set of users as well as an

Us 7,376,977 B2

S

expiration date to control when someone may need to
re-certily and ensure the executable file 1s still sate based
upon the parameters at that time.

In step 410, computer system 100 determines a modifi-
cation indicator for the executable file 120. A modification
indicator comprises any values, 1dentifiers, control charac-
ters, or codes that are computed based upon file properties
at the time the file was certified. Some of the file properties
may include a size of the file, a sum of ASCII codes of every
nth value, or many other industry-standard checksum or
hash sum algorithms. The properties are selected in such a
way that 11 someone modifies or tampers with a file, then
these properties would change. The modification indicator
will allow computer system 100 to later determine 1f the
executable file 120 has been modified. In step 412, computer
system 100 writes the modification indicator into the execut-
able file 120, such as 1n a header, 1n meta-data, or some other
control-type portion of executable file 120.

Computer system 100 may certily an entire soiftware
package at once. Therefore, each executable file in the
soltware package does not need to be certified individually.
Also, executable files that are part of the operating system
110 of computer system 100 are automatically certified and
do not need to be individually certified according to process

400.

FIG. 5 1s a flowchart illustrating a process 500 1n an
exemplary embodiment of the mmvention. In FIG. 2, 1if
computer system 100 determines that the executable file 120
has been modified 1n step 208, computer system 100 may
also perform the steps of process 500. In step 502, computer
system 100 notifies the user that the executable file 120 has
been modified since being certified. Computer system 100
may notily the user with a pop-up window or similar
message. In step 504, computer system 100 provides options
to the user on how to proceed. For instance, one option may
be to re-certily the executable file 120 (see process 400 in
FIG. 4). Another option may be to delete the executable file
120.

FIG. 6 1s a flowchart illustrating a process 600 for
determining i1f the executable file 120 1s certified 1n an
exemplary embodiment of the invention. In step 204 1n FIG.
2, computer system 100 determines if the executable file 120
1s certified to run on this computer system 100. Computer
system 100 may use process 600 to make this determination.
In step 602, computer system 100 i1dentifies a certification
indicator in the executable file 120. In one example, the
certification indicator may comprise a computer ID for
computer system 100. The certification indicator may be
read by computer system 100 from a header, meta-data, or
another other control-type portion of executable file 120.

In step 604, computer system 100 1dentifies a computer 1D
for the computer. Assume for this embodiment that com-
puter system 100, or its associated motherboard or operating
system, includes a unique computer ID that distinguishes it
from other computers. The computer ID 1s like a social
security number for computers. In step 606, computer sys-
tem 100 determines 1f the certification indicator read from
the executable file corresponds with the computer 1D for
computer system 100. To “correspond with” may mean that
the certification indicator matches the computer ID. To
“correspond with” may also mean that the certification
indicator and the computer ID produce the same value when
passed through an algorithm or decryption process. If the
certification indicator corresponds with the computer 1D
(and the certification has not expired i1f there was any
expiration date maintained as part of the certification pro-
cess), then computer system 100 determines that the execut-
able file 120 1s certified for computer system 100 1n step 608.
I the certification indicator does not correspond with the

10

15

20

25

30

35

40

45

50

55

60

65

6

computer ID, then computer system 100 determines that the
executable file 120 1s not certified 1n step 610.

FIG. 7 1s a flowchart illustrating a process 700 for
determining 1f the executable file 120 has been modified 1n
an exemplary embodiment of the invention. In step 208 1n
FIG. 2, computer system 100 determines 1f the executable
file 120 has been modified since being certified. Computer
system 100 may use process 700 to make this determination.
In step 702, computer system 100 determines a current
modification value for the executable file 120. A current
modification value comprises any value computed based
upon current file properties. Some of the file properties may
include a size of the file, a sum of ASCII codes of every nth
value, or many other industry-standard checksum or hash
sum algorithms. For instance, computer system 100 may
determine the current modification value by determining a
number of bytes for the executable file 120. Computer
system 100 may also calculate a checksum value, a hash sum
value, or some other value based on an algorithm to deter-
mine the current modification value.

In step 704, computer system 100 1dentifies a modifica-
tion indicator from the executable file 120. For instance,
computer system 100 may 1dentily the modification 1ndica-
tor by reading the modification indicator from a header,
meta-data, or another other control-type portion of execut-
able file 120. The modification indicator may have been
written into the executable file 120 at the time of certifica-
tion.

In step 706, computer system 100 determines ii the
current modification value calculated for the executable file
120 corresponds with the modification indicator read from
the executable file. To “correspond with” may mean that the
current modification value matches or equals the modifica-
tion indicator. To “correspond with” may also mean that the
current modification value and the modification indicator
produce the same value when passed through an algorithm
or decryption process. Although the certification expiration
date has been shown to be maintained with the certification
indicators 1n this embodiment, the expiration details can
casily be kept as part of the modification value.

I1 the current modification value does correspond with the
modification indicator, then computer system 100 deter-
mines that the executable file 120 has not been modified
since being certified, 1n step 708. I the current modification
value does not correspond with the modification i1ndicator,
then computer system 100 determines that the executable
file 120 has been modified since being certified, in step 710.

In summary, because many viruses are included 1n execut-
able files, virus attacks may be prevented by requiring
executable files to be certified betfore they can run. Execut-
able files that are viruses cannot be mnadvertently run accord-
ing to the certification process described above. Computers
and operating systems advantageously have another layer of
protection against viruses.

We claim:

1. A method of operating a computer system, the method
comprising the steps of:

recerving an instruction to run an executable file;

determining 1f the executable file 1s certified to run on the
computer system by:
identifying a certification indicator in the executable
file;
identifying a computer 1D for the computer system;

determining 1f the certification indicator corresponds
with the computer 1D; and

determining that the executable file 1s certified to run on
the computer system 1f the certification indicator
corresponds with the computer 1D;

Us 7,376,977 B2

7

determining 11 the executable file has been modified since
being certified for the computer system; and

running the executable file responsive to a determination
that the executable file 1s certified to run on the com-
puter system and that the executable file has not been
modified since being certified.

2. The method of claim 1 further comprising the step of:

preventing the executable file from running responsive to
a determination that the executable file 1s not certified
or that the executable file has been modified since being
certified.

3. The method of claim 1 further comprising the steps of:

notifying a user of the computer system if the executable
file 1s not certified; and

determining 1f the executable file 1s certified to run on
another computer system.

4. The method of claim 1 further comprising the steps of:

receiving a user ID and a password from a user of the
computer system;

validating the user based on the user ID and password;
and

certitying the executable file by writing a certification
indicator 1nto the executable file.

5. The method of claim 4 further comprising the steps of:

determining a modification indicator for the executable
file; and
writing the modification indicator into the executable file.
6. The method of claim 1 wherein the step of determining
i the executable file has been modified since being certified
for the computer system comprises the steps of:

determining a current modification value for the execut-
able file;

identifying a modification indicator from the executable
file;

determining 11 the current modification value corresponds
with the modification indicator; and

determining that the executable file has been modified 1
the current modification value does not correspond with

the modification indicator.
7. A soltware product for a computer system, the software
product comprising:
operating system software when executed by a processing,
system that:
recelves an instruction to run an executable file,
determines 1f the executable file 1s certified to run on
the computer system when the operating system
soltware:

1dentifies a certification indicator in the executable

file,

identifies a computer ID for the computer system,

determines if the certification indicator corresponds
with the computer 1D, and
determines that the executable file 1s certified to run
on the computer system if the certification indi-
cator corresponds with the computer 1D,
determines 1f the executable file has been modified
since being certified for the computer system, and
runs the executable file responsive to a determination
that the executable file 1s certified and that the
executable file has not been modified since being
certified; and

a storage system that stores the operating system soft-

ware.

8. The software product of claim 7 wherein the operating
system soiftware prevents the executable file from running
responsive to a determination that the executable file 1s not
certified or that the executable file has been modified since
being certified.

10

15

20

25

30

35

40

45

50

55

60

65

8

9. The software product of claim 7 wherein the operating
system soltware notifies a user of the computer system if the
executable file 1s not certified and determines if the execut-
able file 1s certified to run on another computer system.

10. The software product of claim 7 wherein the operating
system software receives a user ID and a password from a
user of the computer system, validates the user based on the
user ID and password, and certifies the executable file by
writing a certification indicator into the executable file.

11. The software product of claim 10 wherein the oper-
ating system software determines a modification indicator
for the executable file and writes the modification indicator
into the executable file.

12. The software product of claim 7 wherein the operating
system soltware determines a current modification value for
the executable file, 1dentifies a modification indicator {from
the executable file, determines i1f the current modification
value corresponds with the modification indicator, and deter-
mines that the executable file has been modified 1t the
current modification value does not correspond with the
modification indicator.

13. A computer system, comprising:

a user mterface configured to recerve an instruction to run

an executable file; and

a processing system, responsive to recerving the instruc-

tion from the user interface, that:
determines 1t the executable file 1s certified to run on

the computer system when the operating system
software:
identifies a certification indicator in the executable
file,
identifies a computer ID for the computer system,
determines 1if the certification indicator corresponds
with the computer 1D, and
determines that the executable file 1s certified to run
on the computer system 1f the certification indi-
cator corresponds with the computer 1D,
determines 1f the executable file has been modified
since being certified for the computer system, and
runs the executable file responsive to a determination
that the executable file 1s certified and that the
executable file has not been modified since being
certified.

14. The computer system of claim 13 wherein the pro-
cessing system prevents the executable file from running
responsive to a determination that the executable file 1s not
certified or that the executable file has been modified since
being certified.

15. The computer system of claim 13 wherein the pro-
cessing system notifies a user of the computer system if the
executable file 1s not certified and determines 11 the execut-
able file 1s certified to run on another computer system.

16. The computer system of claim 13 wherein the pro-
cessing system receives a user ID and a password from a
user of the computer system, validates the user based on the
user ID and password, and certifies the executable file by
writing a certification indicator into the executable file.

17. The computer system of claim 13 wherein the pro-
cessing system determines a current modification value for
the executable file, 1dentifies a modification indicator from
the executable file, determines 1f the current modification
value corresponds with the modification indicator, and deter-
mines that the executable file has been modified 1t the
current modification value does not correspond with the
modification indicator.

	Front Page
	Drawings
	Specification
	Claims

