United States Patent

US007376754B2

(12) (10) Patent No.: US 7,376,754 B2
Peddada 45) Date of Patent: May 20, 2008
(54) SYSTEM AND METHOD FOR 6,006,254 A * 12/1999 Waters et al. 709/205
COMMUNICATIONS BETWEEN SERVERS 6,256,634 B1* 7/2001 Moshaiov et al. 707/100
IN A CLUSTER 6,577,599 B1* 6/2003 Gupta et al. 370/236
6,782,398 B1* &/2004 Bahll. 707/200
(75) Inventor: Prasad Peddada, Albany, CA (US) 6,912,569 B1* 6/2005 Sharma et al. 709/223
6,965,938 B1* 11/2005 Beasley etal. 709/229
(73) Assignee: BEA Systems, Inc., San Jose, CA (US) 2002/0023173 Al* 2/2002 Jacobs et al. 709/245
2003/0110172 Al 6/2003 Selman et al.
(*) Notice: Subject to any disclaimer, the term of this 2003/0217119 Al* 11/2003 Raman et al. 709/219
patent 1s extended or adjusted under 35 2004/0025079 A1* 2/2004 Srinivasan et al. 714/13
U.S.C. 154(b) by 727 days. 2006/0015574 Al* 12006 Seed et al. 709/219
(21) Appl. No.: 10/789,138
OTHER PUBLICATIONS
(22) Filed: Feb. 27, 2004
nternational >Searc eport, 1In connection wi
| lonal S h Rep | | ith PCT/US2004/
(65) Prior Publication Data 06215 dated May 12, 2006, 9 pages.
US 2005/0021690 A1 Jan. 27, 2005 * cited by examiner
S Primary Examiner—QOanh Duon
Related U.S. Application Dat Y 2
caw ppREAHon Tt (74) Attorney, Agent, or Firm—Fliesler Meyer LLP
(60) Provisional application No. 60/450,294, filed on Feb.
27, 2003. (37) ABSTRACT
51) Imt. CIL
(51) (;10617 16 (2006.01) A syslten: an;lhmeth?d foalcomnflunic%ltifils be?vieen Servers
(52) US.Cl oo 709/248; 709/203; 709/219: f‘; ‘;‘32 Ezj . : 3’3;2;;1 ZEZSLEEL? ;;ﬁ‘;fi d‘;f;i?f
709/224; 709/229; 709/232; 707/10; 707/201 L . . p
58) Field of Classification Search 109/203 nication of services provided by each server or member of
(700/224. 219, 220, 248 201217232 707/10’ that cluster. EFach server or member within the cluster
" ’ " " " " " 207120 1" advertises its services as before. If one of the receiving
Q Leation file f | - servers misses an advertisement, 1.e. 1t becomes out-of-sync
ee application lile lor complete search history. with the sending server, then the second (receiving) server
(56) References Cited makes a reliable point-to-point request to the first (sending)

U.S. PATENT DOCUMENTS
5,452,448 A 9/1995 Sakuraba et al.

hitp Response

152

server asking for the missed services.

24 Claims, 5 Drawing Sheets

Server 3
148

(Point-to-Point Update)

US 7,376,754 B2

Sheet 1 of 5

May 20, 2008

U.S. Patent

(91epdn 1seannin)

L @4nbi4

901
Z JOAI9S

IaNP

0Ll 9lepdn

AZ-400G~

0Ll ®epdn

801
¢ JOAIRS

0Ll
ajepdn

J00C-0L~

-9]1e1S

AN’
dwnq

14"
L J9AIDS

(23epdn ysean|iniy)

Z 9inbi14 100¢-01~ /\ 801

US 7,376,754 B2

el IONP /€ JoAI3S
dwnq
-91e)S
oclL
\r
=
. 1onid
3 v IOAISS %002-01~
e
99
)
o %00z-01~ | 9Wna
® -01e1S
—
|
< 74
W 9z} MVN ,
MVN
901
Z JOAIDS
¥0l
L JOAIAG

U.S. Patent

US 7,376,754 B2

Sheet 3 of 5

May 20, 2008

U.S. Patent

(93epdn juiod-03-juiod)

ol
Z JOAIDSS

¢ a1nbi4

¢Gl

asuodsay dju

vl
¢ JOAIBS

0G1

| dny _

\/

IONF

144"
| JOAISS

US 7,376,754 B2

Sheet 4 of 5

May 20, 2008

U.S. Patent

(3)epdn julod-03-juiod) 8Pl
¢ I9AIBS

\/

4002-01~ IONF

L a)els
091

$ 24nbi14

1234

c9l
¥ JOAIOS

ol
Z JOAIDS

1144
L JOAIDS

U.S. Patent May 20, 2008 Sheet 5 of 5 US 7,376,754 B2

First Server determines its view of services 1s out of

172
sync with services prouvded by Second Server
First Server issues Point-to-Point (http) request to 174
Second Server seeking naming service update
Second Server packages services which are being 176
provided at Second Server
Update Package is communicated by http to First 178

Server

First Server receives Update Packages and uses it to
synchronize its naming service with services available 180
on Second Server

Figure 5

Us 7,376,754 B2

1

SYSTEM AND METHOD FOR
COMMUNICATIONS BETWEEN SERVERS
IN A CLUSTER

CLAIM OF PRIORITY

This application claims priority to U.S. Provisional Patent

Application 60/450,294, filed Feb. 27, 2003 entitled “SY S-
TEM AND METHOD FOR COMMUNICATIONS
BETWEEN SERVERS IN A CLUSTER”, and incorporated

herein by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as 1t appears in the Patent and Trademark Oflice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

The invention relates generally to application servers and
clusters of application servers, and particularly to a system
and method for communications between servers 1n a clus-
ter.

BACKGROUND

In the field of application servers and distributed systems,
clusters of servers are often used to provide highly available
and scalable resources. One example of an application server
1s the WebLogic Server from BEA Systems, Inc. A cluster
(such as a WebLogic Server cluster) comprises multiple
server 1nstances running simultaneously and working
together to provide increased scalability and reliability. A
cluster appears to clients to be a single server. The server
instances that constitute a cluster can run on the same
machine, or be located on different machines. A cluster’s
capacity can be increased by adding additional server
instances to the cluster on an existing machine, or by adding
machines to the cluster to host the incremental server
instances. Fach server instance in a cluster must typically
run the same version of the server product.

In terms of how a cluster relates to the environment in
which the application server exists, a cluster 1s usually part
of a particular server (e.g. WebLogic Server) domain. A
domain 1s an interrelated set of resources that are managed
as a unit. A domain includes one or more server instances,
which can be clustered, non-clustered, or a combination of
clustered and non-clustered instances. A domain can include
multiple clusters. A domain also contains the application
components deployed in the domain, and the resources and
services required by those application components and the
server instances 1n the domain. Examples of the resources
and services used by applications and server instances
include machine definitions, optional network channels,
connectors, startup classes, EJB’s, JSPs, etc. An adminis-
trator can use a variety of criteria for organizing server
instances ito domains. For instance, they might choose to
allocate resources to multiple domains based on logical
divisions of the hosted application, geographical consider-
ations, or the number or complexity of the resources under
management.

10

15

20

25

30

35

40

45

50

55

60

65

2

In a WebLogic domain, one WebLogic Server instance
typically acts as the Administration Server—the server
instance which configures, manages, and momtors all other
server 1nstances and resources in the domain. If a domain
contains multiple clusters, each server in the domain has the
same Administration Server.

Clustered server instances behave similarly to non-clus-
tered 1nstances, except that they provide failover and load
balancing. The process and tools used to configure clustered
server 1nstances are the same as those used to configure
non-clustered instances. A server cluster provides the fol-
lowing benefits and features:

Scalability—The capacity of an application deployed to a
cluster can be increased dynamically to meet demand.
Server instances can be added to a cluster without interrup-
tion of service—the application continues to run without
impact to clients and end users.

High-Availability—In a cluster, application processing
can continue when a server instance fails. Application com-
ponents are “clustered” by deploying them on multiple
server instances 1n the cluster—so, 1f a server instance on
which a component 1s running fails, another server instance
on which that component i1s deployed can continue applica-
tion processing.

Faillover—Failover means that when an application com-
ponent (typically referred to as an “service” 1n the following
sections) doing a particular “job”—some set of processing,
tasks—becomes unavailable for any reason, a copy of the
failed service finishes the job. For the new service to be able
to take over for the failed service there must be a copy of the
failed service available to take over the job. There must also
be information, available to other services and the program
that manages failover, defimng the location and operational
status of all services—so that 1t can be determined that the
first service failed before finishing its job. There must also
be information, available to other services and the program
that manages failover, about the progress of jobs 1n pro-
cess—so that a service taking over an interrupted job knows
how much of the job was completed betfore the first service
failed, for example, what data has been changed, and what
steps 1n the process were completed. Many application
servers, mcluding WebLogic Server, use standards-based
communication technmiques and {faciliies—multicast, IP
sockets, and the Java Naming and Directory Interface
(JNDI)—to share and maintain information about the avail-
ability of services 1n a cluster. These techniques allow the
server to determine that a service stopped before finishing 1ts
10b, and where there 1s a copy of the service to complete the
job that was interrupted. Information about what has been
done on a job 1s called state. WebLogic Server maintains
information about state using techniques called session
replication and replica-aware stubs. When a particular ser-
vice unexpectedly stops doing 1ts job, replication techniques
enable a copy of the service pick up where the failed service
stopped, and finish the job.

Load Balancing—I.oad balancing 1s the even distribution
of jobs and associated communications across the comput-
ing and networking resources in the application server
environment. For load balancing to occur there must be
multiple copies of a service that can do a particular job.
Information about the location and operational status of all
services must also be available. In addition, WebLogic
Server allows services to be clustered—deployed on mul-
tiple server mstances—so that there are alternative services
to do the same job. WebLogic Server shares and maintains
the availability and location of deployed services using
multicast, IP sockets, and JNDI.

Us 7,376,754 B2

3

Cluster members must typically keep in touch with one
another to ensure consistency throughout the cluster. This 1s
particularly relevant i keeping track of the wvarious
resources, provided by the cluster, including the fact that
some resources may be provided by certain cluster members,
while other cluster members provide a different set of
resources, services, etc. Many application server cluster
products, including for example BEA’s WebLogic server
product maintain a cluster-wide JNDI tree or naming service
that keeps track of all of the available resources and services
in the cluster. Each cluster member 1n the cluster maintains
its own naming service whose view mimics that of the global
tree. In this manner, when a client (or server, or any other
process) accesses a server in the cluster they get the same set
of available resources, which attempts to provide consis-
tency throughout the cluster. During normal use each server
within the cluster binds 1ts resources to 1ts mternal naming
service, which 1s then replicated (advertised) to all of the
other cluster members. For example, 1f a server A 1s pro-
viding a particular service, then information about this
server 1s lirst bound to server A’s naming service (for
example 1ts JNDI tree), and from there 1s replicated to the
other servers.

Typically, the approach used to replicate information from
one cluster member or server to another server within the
cluster 1s to multicast the information. Using multicast,
information about all of a servers resources, services, etc. 1S
multicast to each other member of the cluster. However,
mutlicast 1s an unreliable transport mechanism. The packet
of information could be intercepted or dropped along the
way, resulting 1n one server having a different view of the
naming service from the view at another server. As such, this
impinges on the consistency throughout the cluster.

Traditionally, there are two primary methods to make the
multicast process more reliable at a higher level. A first
approach 1s for the second (receirving) server to 1ssue a
request (for example a NAK request) to the first (sending)
server, saying “I missed an update packet—please resend 1t”.
In return the second server will be sent the missing update.
Another approach 1s for the first server to send an aggregated
view (a statedump) of all of its resources and services to the
second server. The statedump describes the aggregate view

of the services provided by a server. Large packets of

multicast messages exchanged between servers in a cluster
can potentially destabilize the cluster. Frequent resend
requests for service advertisements can quickly overtlow the
operating system message bullers, causing stability prob-
lems. As the number of services provided by a server
increase, so does the size of the statedump. Coupled with the
increasing of a cluster, this could lead to longer startup time
and the time each server takes to stabilize 1n a cluster. The
need to send frequent large multicast messages also impacts
the cluster scalability and the performance.

SUMMARY

The 1nvention provides a system and method for commu-
nications between servers in a cluster. The system allows for
point-to-point messaging to be used 1n a clustered environ-
ment to provide communication of services provided by
cach server or member of that cluster. Each server or
member within the cluster sends out a single advertisement
as before. If one of the recerving servers misses an adver-
tisement, 1.¢. 1t becomes out-oi-sync with the sending server,
then the second (receiving) server makes a reliable point-
to-point request to the first (sending) server asking for
everything it missed. In accordance with one embodiment

5

10

15

20

25

30

35

40

45

50

55

60

65

4

this request 1s 1n the form of an http request from the
receiving server to the sending server. This process ensures
the message bullers are not overflowed, which 1 turn
improves the stability of the cluster. The result 1s enhanced
overall cluster stability and scalability.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 shows an illustration of an update mechanism
between servers 1n a cluster, which uses multicast messag-
ng.

FIG. 2 shows an illustration of a cluster-join mechanism
between a new server and existing servers in a cluster, which
uses multicast messaging.

FIG. 3 shows an illustration of an update mechanism
between servers in a cluster, which uses point-to-point
messaging, 1n accordance with an embodiment of the inven-
tion.

FIG. 4 shows an 1llustration of a cluster-join mechanism
between a new server and existing servers 1n a cluster, which
uses point-to-poimnt messaging, i1n accordance with an
embodiment of the invention.

FIG. 5§ shows a flowchart of a server communication
process between a first and second server 1n a cluster, which
uses point-to-point messaging, i1n accordance with an
embodiment of the invention.

DETAILED DESCRIPTION

As disclosed herein, and embodiment of the present
invention provides a system and method for communica-
tions between servers in a cluster. Generally described, the
invention provides a system for point-to-point messaging
that can be used with or within application servers 1n a
clustered environment to provide communication of services
provided by each server or member of that cluster. Each
server or member within the cluster sends out a single
advertisement as before. If one of the receiving servers
misses an advertisement, 1.€. it becomes out-oi-sync with the
sending server, then the second (receiving) server makes a
reliable point-to-point request to the first (sending) server
asking for everything 1t missed. In accordance with one
embodiment this request 1s in the form of an http request
from the receiving server to the sending server. This process
ensures the message bufllers are not overtflowed. The result
1s enhanced overall cluster stability and scalability.

In addition, the invention provides a useful mechanism
for adding new servers as members mto the cluster. In the
past, when a new server joined the cluster, 1t would have to
1ssue requests (NAK’s) to each of the servers already 1n the
cluster requesting information from each server as to the
services 1t provides. If there are N servers already in the
cluster, and each update 1s M bytes 1 size, then this would
require NxM bytes 1n data transfer, and would take a long
time for the new server to mitialize. Using the present
invention, a new server need only wait for a few seconds to
see who else 1s 1n the cluster. The new server can then make
a http request to one node or member to retrieve a copy of
the services provided by that server. The result 1s a reduction
in the total number and size of messages that need to be
transierred to and from the new server.

FIG. 1 shows an 1llustration of an update mechanism 102
between servers 1n a cluster, which uses multicast messag-
ing. As shown in FIG. 1, server 1 (104) must update all of
the other servers 106, 108 in the cluster (in this example
server 2 and server 3) on a regular basis. Each update 110 1s
typically of the order of 500 bytes to 2 k bytes. Updates are

Us 7,376,754 B2

S

sent by multicast to each server i the cluster, and the total
number of multicast messages increases proportionally with
an 1ncrease 1n cluster size. Since multicast 1s not a reliable
protocol, 1f an update 1s missed, each server (in this case
server 2 and server 3) which misses the latest update must
send a request to server 1 asking it to resend the update. A
problem arises when the servers message buflers begin to
overtlow, with a resulting loss 1n cluster performance. A
server may choose to send an aggregated view of the
services listed in the naming service or JNDI tree at that
server (a statedump). However, these aggregated views or
statedumps are typically of the order of 10 k-200 k bytes.
Communicating such large packets of data also diminishes
cluster performance.

FIG. 2 shows an 1llustration of a cluster-join mechanism
120 between a new server and existing servers 1n a cluster,
which uses multicast messaging. As shown in FIG. 2, the
joimng server (server 4 (122)) must issue requests 124, 126,
128 to each other member 1n the cluster (server 1, server 2,
and server 3), and then receive information as to the services
offered by those servers. This results 1n a large transier of

ata 130, 132, 134 to the jommng server, and causes the
initialize time to be lengthened, impacting the cluster sta-
bility and performance.

FIG. 3 shows an illustration of an update mechanism 140
between servers in a cluster, which uses point-to-point
messaging, 1n accordance with an embodiment of the inven-
tion. FIG. 3 illustrates how a first server in the cluster 1.¢. a
first cluster member, 1n this example shown as server 3
(148), can 1ssue a point-to-point request 150 to a second
server 1n the cluster, 1.e. a second cluster member, 1n this
example shown as server 1 (144), requesting that the second
server communicate an update of 1ts naming service or JINDI
tree, and the services defined thereby, to the first server. The
first server can then update its own naming service accord-
ingly. Fewer messages need be sent between the cluster
members, and of those messages that do need to be sent
tewer are of the larger statedump variety. The result 1s that
message buflers are not likely to be overflowed, and the
cluster 1s both more stable and more scalable.

In one embodiment the point-to-point request 1s made
using an hypertext transier protocol (http) request. Http 1s
uselul because i1t does not require a communication socket
be kept open between the servers—instead, the http socket
can be opened, the message sent, and the socket closed. This
climinates the need to maintain additional sockets on the
servers, together with the additional overhead and reduced
performance that would entail.

Each server in the cluster acts independently in this
regard, 1.e. each server makes 1ts own determination as to
whether 1ts naming service 1s out-of-sync with a particular

10

15

20

25

30

35

40

45

50

6

server. I1 1t determines that 1t 1s out of sync, then the server
makes 1ts own point-to-point request to the particular server
to receive an update and remedy the discrepancy.

FIG. 4 shows an illustration of a cluster-join mechanism
160 between a new server and existing servers in a cluster,
which uses point-to-point messaging, 1n accordance with an
embodiment of the invention. As shown in FIG. 4, the
joming server (server 4 (162)), need only wait for a few
seconds to see who else 1s 1n the cluster. The new server can
then make a point-to-point or http request 164 to one node
or member to receive 166 a copy or statedump of 1ts naming
service. There 1s no need to communicate directly with any
of the other servers. The overall result 1s a reduction 1n the
number of messages, together with corresponding better
cluster stability, and shorter times for new members to be
added into the cluster.

FIG. 5 shows a flowchart 170 of a server communication
process between a first and second server 1n a cluster, which
uses point-to-point messaging, in accordance with an
embodiment of the invention. As listed 1n FIG. 5, a first step
172 1n the process 1s for a first server in the cluster (1.¢. a first
cluster), to determine that its copy of the naming service or
INDI tree 1s out-of-sync with the services provided by a
second server 1n the cluster (1.e. a second cluster member).
In step 174, the first server 1ssues a point-to-point request (1n
on embodiment an http request) to the second server, seeking
a naming service update from that server. In step 176, the
second server packages an update of all of 1ts services and,
in step 178, communicates the update to the first server. In
step 180, the first server receives the update package and
uses 1t to synchronize its naming service with the services
available at the second server.

Code Implementation
The {following code segments illustrate, by way of
example, how the system can be provided to communicate
information between cluster members, in a point-to-point
fashion 1n accordance with one embodiment of the mnven-
tion. It will be evident that additional implementations may
be developed within the spirt and scope of the invention, and
that the mnvention 1s not limited to the examples shown. The
key points to note are that any system, application server, or
server that incorporates or utilizes the imvention, should
support the following features:
The server should be able to handle http requests for
updated information.
The server should know how to process the http request/
response.

The server should recognize an out-of-sync condition, and
act accordingly.

HT TPExecuteRequest.Java

package weblogic.cluster;

import java.io.DatalnputStream;
import java.i0.JOException;

import java.io.QutputStream;

import java.net.ConnectException;
import java.net. HttpURILConnection;
import java.net.ProtocolException;
import java.net. URL;
import java.security.AccessController;

import java.security.Privileged Action;

import weblogic.common.internal. WLObjectInputStream;

import we

impoit we

blogic.kerne]
import weblogic.kernel
blogic.kerne]

.ExecuteRequest;
.ExecuteThread;
. Kernel;

import web
import web
import web
import web
import web
import weblogic.security.service.Security ServiceManager;
import web
import web
import web
import web
import web

Us 7,376,754 B2

-continued

logic.protocol.Protocol;
logic.protocol.ServerChannel;
logic.rmi.spi.HostID;

logic.security.acl.internal. Authenticated Subject;
logic.security.service.Privileged Actions;

logic.server.Server;
logic.utils.Debug;
logic.utils.StringUtils;
logic.utils.UnsyncStringBuffer;
logic.utils.10.DatalO;

/* package */ final class HTTPExecuteRequest implements ExecuteRequest {
private HttpURLConnection con;
private DatalnputStream in;
private final String request;
private final ServerChannel srvrAddress;
private final int senderNum;
private final HostID memberID;
private static AuthenticatedSubject kernelld = (AuthenticatedSubject)

AccessController.doPrivileged(Privileged Actions.getKemelldentity Action());

private static final boolean DEBUG = false;
public HT'TPExecuteRequest (ServerChannel srvrAddress, long lastSeqNum,

)

h

int senderNum, HostID memberID

{

this.senderNum = senderNum;
this.srvrAddress = srvrAddress;:
t

t

his.request = getHeader(srvrAddress, lastSeqNum);
nis.memberlD = memberlID;

private void connect() throws ConnectException, IOException {

h

URL url = new URL(*http”, srvrAddress.getAddress(), srvrAddress.getPort(
Protocol.PROTOCOL_HTTP), request);

con = (HttpURILConnection) url.openConnection();

con.setDolnput(true);

con.connect();

in = new DatalnputStream(con.getInputStream());

public void execute(ExecuteThread thread) {

if (DEBUG) {
ClusterDebug.log(*“Request ” + request + ** to ” + srvrAddress);
h

try {
if (ClusterDebug. DEBUG &&

Server.getDebug().getDebugClusterAnnouncements()) {
ClusterLogger.logFetchServerStateDump(srvrAddress.getAddress());

h

connect();
if (con.getResponseCode() != 200)
throw new IOException(“Failed to get OK response”);
if (DEBUG) {
ClusterDebug.log(“GOT CONTENT LENGTH + con.getContentLength());
h

byte[| b = readHttpResponse(in, con.getContentLength());
WLObjectInputStream ois = MulticastManager.getInputStream(b);
final MemberAttributes attributes = (MemberAttributes) ois.readObject();
processAttributes(attributes);
final GroupMessage finalmsg = (GroupMessage) ois.readObject();
long currentSeqNum = ois.readL.ong();
// FIXME andyp 1-Aug-02 -- identity and addressing are different
final HostID finalid = (HostID)srvrAddress;
SecurityServiceManager.runAs(kernelld, kernelld,
new PrivilegedAction() {
public Object run() {
finalmsg.execute(finalid);
return null;

h
1)3
} catch (ConnectException ce) {
if (ClusterDebug. DEBUG &&
Server.getDebug().getDebugClusterAnnouncements()) {
ClusterLogger.logFalledWhileRecervingStateDump(srvrAddress.toString(),
ce);
h
} catch (IOException ioe) {
ClusterLogger.logFailedWhileReceivingStateDump(srvrAddress.toString(),
10€);
} catch (ClassNotFoundException cnfe) {
ClusterLogger.logFailledToDeserializeStateDump (srvrAddress.toString(),
cnie);

} finally {

h

private void resetHTTPRequestDispatchFlag() {
RemoteMemberInfo info = MemberManager.theOne().findOrCreate(memberID);
HybridMulticastReceiver receiver = (HybridMulticastReceiver)
info.findOrCreateReceiver(senderNum, true);

receiver.setHttpRequestDispatched(false);
MemberManager.theOne().done(info);

h

h

try 1
if (
} catch

Us 7,376,754 B2

-continued

in != null) in.close();
(IOException ioe) { /* ignore */ }

if (con != null) con.disconnect();
resetH T TPRequestDispatchFlag();

private String getHeader(ServerChannel address, long lastSeqNum) {
UnsyncStringBufter sb = new UnsyncStringBuffer();

sb.append(*/bea_ wls__internal/psquare/p2.jsp?senderNum="");
sb.append(senderNum);

sb.append(“&lastSeqNum="");

sb.append(lastSeqNum);

sb.append(** ”*);

return sb.toString();

h

private byte[| readHttpResponse(DatalnputStream 1s, int contentLength)
throws IOException, ProtocolException

{

byte [] b = new byte[contentLength];
DatalO.readFully(is, b);
return b;

)

private void processAttributes(MemberAttributes attributes) {
RemoteMemberlnfo info = MemberManager.theOne().findOrCreate(
attributes.identity());

info.processAttributes(attributes);
MemberManager.theOne().done(info);

35

HybridMulticastReceiver

package weblogic.cluster;

import java.io.DatalnputStream;
import java.i0.JOException;

import java.io.OutputStream;

import java.net.Protocol Exception;
import java.net.Socket;

import java.security. AccessController;
import java.security.Privileged Action;

import we
import we
import we
import we
import we
import we
import we
import we
import we
import we
import we
import we
import we
import we

import we
/=I= b3

D

0
D
D
D
D
0
01
0
D
0
D
D
D
D

logic.common.internal. WLObjectInputStream;
logic.kerne
logic.kernel

.ExecuteRequest;
LExecuteThread;

logic.kerne
logic.protocol. Protocol;
logic.protocol.ServerChannel;
logic.rmi.sp1.HostID;

. Kernel;

ogic.security.acl.internal. Authenticated Subject;

logic.security.service.Privileged Actions;
logic.security.service.SecurityServiceManager;
logic.server.Server;

logic.utils.Debug;

logic.utils.StringUtils;
logic.utils.UnsyncStringBufler;
logic.utils.10.DatalO;

* A MulticastRecelrver assembles in-coming GroupMessages from a
* MulticastSender and executes them 1n order. At any point in time,
* there i1s a current message that it 1s assembling. Fragments for

* this message are assumed to be lost whenever either a heartbeat or

b
k
k
R

a fragment arrives with a sequence number that 1s beyond this

message’s sequence number. The MulticastReceiver sends NAKSs
only with respect to this message. Fragments for future messages
are kept in a fixed-size cache and are dealt with as each becomes

10

Us 7,376,754 B2
11

-continued

* current.
*H

* A MulticastSender can be configured to provide “pretty-reliable”

* delivery or best-effort delivery. It communicates this to the

* MulticastRecerver by sending the retryEnabled flag (true means

* pretty-reliable delivery). If it 1s false, the pair does not

* engage 1n the Heartbeat retry protocol. The MulticastReceiver

* still uses the cache, so that mis-ordered fragments can be handled,
* however 1t freely drops the current message as needed to make

* progress.

K

F SYNCHRONIZATION NOTES: There are three ways mto a MulticastReceiver.

* - dispatch() to handle an incoming fragment
* - processLastSegqNum() to handle an incoming LastSeqNum from a Heartbeat
* - shutdown() to shut things down.

* All are synchromized to protect the local variables.
i

* (@author Copyright (¢) 1996-98 by WebLogic, Inc. All Rights Reserved.

* (@author Copyright (¢) 1999-2000 by BEA WebXpress. All Rights Reserved.

kf

public class HybridMulticastReceiver extends MulticastReceiver {

private final static boolean DEBUG = ClusterDebug. DEBUG &&
Server.getDebug().getDebugClusterAnnouncements();

private boolean httpReqDispatched; //HTTP Request dispatched to get statedump

private ServerChannel srvrAddress;

private it senderNum;

private it queuelndex;

private final HostID memberID;

private static AuthenticatedSubject kernelld = (AuthenticatedSubject)
AccessController.doPrivileged(Privileged Actions.getKernelldentity Action());

M*package*/ HybridMulticastReceiver(HostID memberID, int senderNum) {

this(memberID, senderNum, Kernel.getDispatchPolicyIndex(
Kernel. SYSTEM_ DISPATCH));

)

// The following constructor should be used if you want request processed
// by specific queue in the kernel.
/*package™®/ HybridMulticastRecerver(

HostID memberID,

int senderNum,

int queuelndex
) 1

super(memberlD, senderNum, queuelndex);

srvrAddress = (ServerChannel) memberlID;
this.senderNum = senderNum;
this.queuelndex = queuelndex;
this.memberID = memberlD:;

)

/* package */ void processLastSeqNum(long lastSeqNum) {
if (lastSeqNum >= currentSeqNum) {
fetchStateDumpOverHttp(lastSeqNum);
h
h

/* package */ void setInSync(int lastSeqNum) {
synchronized(this) {
httpReqDispatched = false;
super.setinSync(lastSeqNum);
h
h
/* package */ void setHttpRequestDispatched(boolean b) {

synchronized(this) {
httpReqDispatched = false;
h
h

private void fetchStateDumpOverHttp(long lastSeqNum) {
if (httpReqgDispatched) return;
synchronized(this) {
httpReqDispatched = true;
h

HTTPExecuteRequest request = new HTTPExecuteRequest(
srvrAddress, lastSeqNum, senderNum, memberID);
Kernel.execute(request, queuelndex);

12

Us 7,376,754 B2
13

MulticastSessionDataRecoveryServlet

package weblogic.cluster;

import java.io.JOException;

import java.io.QutputStream;

import java.util. ArraylList;

import java.util. HashMap;

import java.util.Iterator;

import javax.servlet.ServletException;
import javax.servlet.ServletInputStream;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServietResponse;

import we
import we
import we
import we
import we

import we
/FI‘-‘ K

D

D
]
]
]
]

logic.common.internal. WLObjectOutputStream;
logic.rmi.spl.HostID;

ogic.rmi.spl. RMIRuntime;
ogic.rmi.utils.io.RemoteObjectReplacer;
ogic.utils.Debug;

ogic.utils.i0.UnsyncByte ArrayOutputStream;

* (@author Copyright (¢) 2002 by BEA WebXpress. All Rights Reserved.

*f

public final class MulticastSessionDataRecoveryServlet extends HttpServlet

{

private final static boolean DEBUG = {false;

private final static int DEFAULT__BUF__SIZE = 10 * 1024;

public void doGet{HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{

String senderNumAsString = req.getPararaeter(“senderNum™);

String lastSeqNumAsString = req.getParameter(“lastSeqNum’);
if (DEBUG) {

;

int senderNum = Integer.valueOf{senderNumAsString).intValue();
int lastSeqNum = Integer.valueOf{lastSeqNumAsString).intValue();
UnsyncByte ArrayOutputStream baos = null;

WLObjectOutputStream oos = null;
OutputStream out = null;

try {

ClusterDebug.log(“Nak request for senderNum ” + senderNumAsString);
ClusterDebug.log(*“Last seq num ” + lastSeqNumAsString);

baos = new UnsyncByteArrayOutputStream(DEFAULT _BUF__SIZE);
oos = new W LObjectOutputStream(baos);
oos.setReplacer(new MulticastReplacer(RMIRuntime.getl.ocalHostID()));
MulticastSender sender = MulticastManager.theOne().findSender(senderNum);
if (DEBUG) {
ClusterDebug.log(“SENDER ” + sender + “ CURRENT SEQ NUM ”
+ sender.getCurrentSeqNum());

h
GroupMessage msg = sender.createRecoverMessage();
oos.writeObject(AttributeManager.theOne().getLocal Attributes());
oos.writeObject(msg);
oos.writeLong(sender.getCurrentSegNum());
oos.flush();
res.setContentType(“application/unknown”);
out = res.getOutputStream();
res.setContentLength(baos.size());
if (DEBUG) {
ClusterDebug.log(*WRITING BYTES OF SIZE ” + baos.size());
h

baos.writeTo(out);
out.flush();

} finally {

try {
if (baos != null) { baos.close(); }

1 catch (IOException ioe) { }

try {
if (out != null) { out.close(); }

1 catch (IOException ioe) { }
try {

if (oos = null) { oos.close(); }
} catch (IOException ioe) { }

14

Us 7,376,754 B2
15

StateDumpServlet

package weblogic.cluster;

import java.io.ByteArrayOutputStream;
import java.i0.JOException;

import java.io.OutputStream;

import java.security. AccessController;
import java.security.Privileged Action;
import java.util. Arraylist;

import java.util. HashMap;

import java.util.Iterator;
et.ServletException;
et.ServiletInputStream;

import javax.serv
import javax.serv.

import javax.servl
import javax.servl

ct.
et.

import javax.servl

et.

http.HttpServlet;
http.HttpServletRequest;

http.HttpServletResponse;

import weblogic.common.internal. WLObjectInputStream;

import we
import we
import we
import we
import we

import we
import we
import we

import we
/* K

blogic.common.internal. WLObjectOutputStream;
blogic.rmi.spl.HostID;

vlogic.rmi.spl. RMIRuntime;
blogic.rmi.utils.10.RemoteObjectReplacer:;
vlogic.security.acl.internal. AuthenticatedSubject;
import weblogic.security.service.Privileged Actions;
blogic.security.service. SecurityServiceManager;
vlogic.server.Server;
vlogic.utils.Debug;
blogic.utils.i0.DatalO;

* (@author Copyright (¢) 2002 by BEA WebXpress. All Rights Reserved.

*f

public final class StateDumpServlet extends HttpServlet implements
MulticastSessionIDConstants

1

private final static boolean DEBUG = ClusterDebug. DEBUG &&

Server.getDebug().getDebugClusterAnnouncements();
private final static int DEFAULT _BUF__SIZE = 10 * 1024;
private static AuthenticatedSubject kernelld = (AuthenticatedSubject)
AccessController.doPrivileged(Privileged Actions.getKemelldentity Action());
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

1

ByteArrayOutputStream baos = null;
WLObjectOutputStream oos = null;
OutputStream out = null;

try {

baos = new ByteArrayOutputStream(DEFAULT__BUF__SIZE);

00s = new WLObjectOutputStream(baos);

ArrayList list = (ArrayList) MemberManager.theOne().getRemoteMembers();
if (DEBUG) {

ClusterDebug.log(*“Sending statedump for ” + (list.size() + 1)+ * servers”);

h

oos.writeInt(list.size());

for (int i = 0; i < list.size(); i++) {

MemberAttributes attr = (MemberAttributes) list.get(1);
RemoteMemberInfo memlInfo = MemberManager.theOne().findOrCreate(

attr.identity());

HostID hostID = memlInfo.getAttributes().identity();
oos.setReplacer(new MulticastReplacer (hostID));
oos.writeObjectWL(memlInfo.getAttributes());
oos.writeObject{new

StateDumpMessage(memInfo.getMemberServices().getAllOffers(),
ANNOUNCEMENT_MANAGER__ID,
memInfo.findOrCreateReceiver(ANNOUNCEMENT _ MANAGER__ID, true
).getCurrentSeqNum/()));

if (DEBUG) {

A

ClusterDebug.log(**Sending offers of size +

memlnfo.getMemberServices().getAllOffers().size() + ©“ of ” + hostID);

h

h

MemberManager.theOne().done(memlInio);

oos.setReplacer(new MulticastReplacer(RMIRuntime.getl.ocalHostID()));
oos.writeObject(AttributeManager.theOne().getLocal Attributes());
oos.writeObject{AnnouncementManager.theOne().createRecoverMessage());
oos.flush();

res.setContentType(“application/unknown”);

out = res.getOutputStream();

if (DEBUG) {

ClusterDebug.log(“WRITING DATA OF SIZE + baos.si1ze());

h

16

Us 7,376,754 B2

17

-continued

res.setContentLength(baos.size());
baos.writeTo(out);

out.flush();
} finally {

try {

if (baos != null) baos.close();
1 catch (IOException ioe) { }

try {

if (oos != null) oos.close();
1 catch (IOException ioe) { }

try {

if (out != null) out.close();
} catch (IOException ioe) { }

The present invention may be conveniently implemented
using a conventional general purpose or a specialized digital
computer or microprocessor programmed according to the
teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers
based on the teachings of the present disclosure, as will be
apparent to those skilled in the software art.

In some embodiments, the present invention includes a
computer program product which 1s a storage medium
(media) having instructions stored thereon/in which can be
used to program a computer to perform any of the processes
of the present invention. The storage medium can include,
but 1s not limited to, any type of disk including floppy disks,
optical discs, DVD, CD-ROMs, microdrive, and magneto-
optical disks, ROMs, RAMs, EPROMs, EEPROMs,
DRAMs, VRAMSs, tlash memory devices, magnetic or opti-
cal cards, nanosystems (including molecular memory ICs),
or any type of media or device suitable for storing instruc-
tions and/or data.

The foregoing description of the present invention has
been provided for the purposes of illustration and descrip-
tion. It 1s not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifica-
tions and variations will be apparent to the practitioner
skilled 1n the art. Particularly, 1t will be evident that while the
examples described herein 1llustrate how the mvention may
be used 1n a WebLogic environment, other application
servers, servers, server clusters, and computing environ-
ments, may use and benefit from the invention. The code
examples given are presented for purposes of illustration. It
will be evident that the techniques described herein may be
applied using other code languages, and with different code.

The embodiments were chosen and described 1n order to
best explain the principles of the imnvention and 1ts practical
application, thereby enabling others skilled in the art to
understand the invention for various embodiments and with
vartous modifications that are suited to the particular use
contemplated. It 1s intended that the scope of the mvention
be defined by the following claims and their equivalence.

What 1s claimed 1s:

1. A system for communicating information about server
resources between servers 1n a cluster, the system compris-
ng:

one or more computers;

a server cluster, run on said one or more computers,
having a plurality of cluster members, including a first
cluster member and a second cluster member;

20

25

30

35

40

45

50

55

60

65

18

a set of resources or services on said first cluster member
that can be used by other cluster members 1n the server
cluster;

wherein said first cluster member sends an advertisement
of the services to the other cluster members,

wherein 1f said second cluster member determines said
second cluster member 1s out of synchromzation with
said first cluster member, or missed the advertisement,
said second cluster member makes a Hypertext Trans-
ter Protocol (HTTP) point-to-point request to said first
cluster member requesting the advertisement missed;

wherein said first cluster member responds to said HT'TP
point-to-point request by sending a HTTP point-to-
point response including an update of Java Naming and
Directory Interface (JINDI) tree of said first cluster
member to said second cluster member.

2. The system of claim 1 wherein each member of the
cluster recerves the advertisement, but those members who
do not need to be updated 1gnore the advertisement.

3. The system of claim 1 wherein a third cluster member
1s newly added to the cluster, and wherein said third cluster
member waits for advertisements from said plurality of
cluster members and then makes HTTP point-to-point
requests to each cluster member requesting advertisements
said third cluster member missed from that particular cluster
member.

4. The system of claim 1 wherein the determination as to
whether the second cluster member 1s out of synchronization
with said first cluster member, or missed an advertisement,
1s made by determining that the first cluster member’s JNDI
tree 1s out of synchronization with the second cluster mem-
ber’s JNDI tree.

5. The system of claim 4 wherein the receipt of updated
information at said second cluster member 1s used to syn-
chronize said second cluster member’s iternal JNDI tree
with the resources provided at said first cluster member.

6. The system of claim 1 wherein as part of the adver-
tisement the first cluster member packages a INDI update of
the services and multicasts the package to all cluster mem-
bers.

7. The system of claim 1 wherein a third cluster member
1s newly added to the server cluster, and wherein said third
cluster member waits for advertisements from said plurality
of cluster members and then makes a HI'TP point-to-point
request to a single cluster member requesting a statedump
from said single cluster member.

8. The computer readable medium of claim 1 wherein a
third cluster member 1s newly added to the server cluster,
and wherein said third cluster member waits for advertise-

Us 7,376,754 B2

19

ments from other cluster members and then makes a HI'TP
point-to-point request to a single cluster member requesting
a statedump from said single cluster member.

9. The system of claam 1 wherein making a HTTP
point-to-point request comprises opening a communication
socket, sending the HTTP point-to-point request, and clos-
ing the communication socket.

10. A method of communicating information about server
resources between servers 1n a cluster, the method compris-
ing the steps of:

providing a server cluster including a first cluster member

and a second cluster member, and resources operating
thereon;

sending an advertisement from said first cluster member

to other cluster members 1n the server cluster announc-
ing the resources or services on said first cluster mem-
ber;

subsequently, 1f said second cluster member determines

said second cluster member 1s out of synchronization
with said first cluster member, or missed the advertise-
ment, making a Hypertext Transter Protocol (HTTP)
point-to-point request from said second cluster member
to said first cluster member requesting the advertise-
ment missed;

receiving a HITP point-to-point response mncluding an

update of Java Naming and Directory Interface (JINDI)
tree of said first cluster member from said first cluster
member at said second cluster member and updating
said second cluster member accordingly.

11. The method of claim 10 wherein each member of the
cluster receives the advertisement, but those members who
do not need to be updated ignore the advertisement.

12. The method of claim 10 wherein a third cluster
member 1s newly added to the cluster, and wherein said third
cluster member waits for advertisements from other cluster
members and then makes HT'TP point-to-point requests to
cach cluster member requesting advertisements said third
cluster member missed from that particular cluster member.

13. The method of claim 10 wherein the determination as
to whether the second cluster member 1s out of synchroni-
zation with said first cluster member, or missed an adver-
tisement, 1s made by determining that the first cluster
member’s JNDI tree 1s out of synchronization with the
second cluster member’s INDI tree.

14. The method of claim 13 wherein the receipt of updated
information at said second cluster member 1s used to syn-
chronize said second cluster member’s internal JNDI tree
with the resources provided at said first cluster member.

15. The system of claim 10 wherein as part of the
advertisement the first cluster member packages a JNDI
update of all 11 1ts services and multicasts the package to all
cluster members.

16. The method of claim 10 wherein a third cluster
member 1s newly added to the server cluster, and wherein
said third cluster member waits for advertisements from
other cluster members and then makes a HI'TP point-to-
point request to a single cluster member requesting a stat-
edump from said single cluster member.

10

15

20

25

30

35

40

45

50

55

20

17. The method of claim 10 wherein making a HTTP
point-to-point request comprises opening a communication
socket, sending the HTTP point-to-point request, and clos-
ing the communication socket.

18. A computer readable medium including instructions
stored thereon which when executed cause a computer or
computers to perform the steps of:

providing a server cluster including a first cluster member

and a second cluster member, and resources operating
thereon;

sending an advertisement from said first cluster member

to other cluster members 1n the server cluster announc-
ing the resources or services on said first cluster mem-
ber:;

subsequently, 1t said second cluster member determines

said second cluster member 1s out of synchronization
with said first cluster member, or missed the advertise-
ment, making a Hypertext Transfer Protocol (HTTP)
point-to-point request from said second cluster member
to said first cluster member requesting the advertise-
ment missed;

recerving a HI'TP point-to-point response including an

update of Java Naming and Directory Interface (JNDI)
tree of said first cluster member from said first cluster
member at said second cluster member and updating
said second cluster member accordingly.

19. The computer readable medium of claim 18 wherein
each member of the cluster receives the advertisement, but
those members who do not need to be updated 1gnore the
advertisement.

20. The computer readable medium of claim 18 wherein
a third cluster member 1s newly added to the cluster, and
wherein said third cluster member waits for advertisements
from other cluster members and then makes HTTP point-
to-point requests to each cluster member requesting adver-
tisements said third cluster member missed from that par-
ticular cluster member.

21. The computer readable medium of claim 18 wherein
the determination as to whether the second cluster member
1s out of synchronization with said first cluster member, or
missed an advertisement, 1s made by determining that the
first cluster member’s JNDI tree 1s out of synchronization
with the second cluster member’s JNDI tree.

22. The computer readable medium of claim 21 wherein
the receipt of updated information at said second cluster
member 1s used to synchronize said second cluster mem-
ber’s iternal JNDI tree with the resources provided at said
first cluster member.

23. The computer readable medium of claim 18 wherein
as part of the advertisement the first cluster member pack-
ages a JNDI update of all 11 1ts services and multicasts the
package to all cluster members.

24. The computer readable medium of claim 18 wherein
making a HI'TP point-to-point request comprises opening a
communication socket, sending the HITTP point-to-point
request, and closing the communication socket.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 0 7,376,754 B2 Page 1 of 1
APPLICATION NO. :10/789138

DATED . May 20, 2008

INVENTOR(S) . Peddada

It Is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 3, line 29, delete “mutlicast™ and insert -- multicast --, therefor.

In column 3, line 42, delete “an™ and 1nsert -- a --, therefor.

In column 6, lin¢ 40, delete “spirt” and 1nsert -- spirit --, theretor.

In column 13, Iine 29, delete “Pararacter” and insert -- Parameter --, theretor.

In column 18, line 23, 1n claim 1, delete “members,” and insert -- members; --, therefor.

Signed and Sealed this

Second Day of February, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

