US007370324B2
12 United States Patent (10) Patent No.: US 7,370,324 B2
Goud et al. 45) Date of Patent: May 6, 2008
(54) SWITCHING BETWEEN A SERVICE 7,035,963 B2* 4/2006 Neiger et al. 711/6
VIRTUAL MACHINE AND A GUEST 7,082,598 B1* 7/2006 Leetal 717/127
VIRTUAL MACHINE IN A VIRTUAL 2003/0061497 Al 3/2003 Zimmer
MACHINE MONITOR ENVIRONMENT
(75) Inventors: Gundrala D. Goud, Olympia, WA OTHER PURI ICATIONS
(US); Vincent J. Zimmer, Federal Way,
WA (US); Mallik Bulusu, Olympia, Jeremy Sugerman, Ganesh Venkitachalam and Beng-Hong Lim;
WA (US); Mark S. Doran, Olympia, Virtualizing I/O on VMware Workstation’s Hosted Virtual Machine
WA (US); David K. Dorwin, Puyallup Monitor; Proceedings of the 2001 USENIX Annual Technical
WA (US); Michael A Rothman, Gig Conference.™ o |
Harbor, WA (US) Logical Partition Security in the IBM eServer pSeries 690, IBM

2002.*

Andrew Whitaker, Scale and Performance in the Denali Isolation

(73) Assignee: Intel Corporation, Santa Clara, CA Kernel, ACM SIGOPS Operating Systems Review, 2002.*

(US)
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this s

patent 1s extended or adjusted under 35 Primary Examiner—Meng-Al T. An

U.S.C. 154(b) by 923 days. Assistant Examiner—Abdullah-Al Kawsar
(74) Attorney, Agent, or Firm—Blakely, Sokoloil, Taylor &
(21) Appl. No.: 10/674,686 Zatman LLP
(22) Filed: Sep. 30, 2003 (57) ABSTRACT
(65) Prior Publication Data

A method and system to switch between a Service virtual
machine (VM) and a Guest VM 1n a virtual machine monitor

(VMM) of a computer system. The VMM 1s loaded on the

US 2005/0081212 Al Apr. 14, 2005

G 21;61(; 15') /455 (2006.01) computer‘system ’Eo support a Service VM and a Gugst VM.
GO6F 9/46 (2006.01) The Service OS 1s booted 1n the Service VM during the
GO6F 11/00 (2006.01) pre-boot phase. The Guest.OS 1S bootgd in the Guest VM of

(52) U.S. CL. 718/1- 71%/100: 714/15- the computer system. During OS runtime of the Guest OS,

a VM switch 1s performed from the Guest VM to the Service
VM without rebooting the computer system. The Service OS
includes diagnostic tools to analyze the Guest OS. In one
embodiment, the VM switch 1s performed by firmware of the
computer system. In another embodiment, the VMM oper-

(56) References Cited ates 1n accordance with an Extensible Firmware Interface
(EFI) framework standard.

714/25;714/39

(58) Field of Classification Search 718/1-108;

714/100, 2, 15, 25, 39
See application file for complete search history.

U.S. PATENT DOCUMENTS
5437033 A * 7/1995 Inoue et al. 714/10 26 Claims, 5 Drawing Sheets

SERVICE VM 102 GUEST VM 104

SERVICE OS 106 GUEST OS 10

Ntk E——

VIRTUAL MACHINE MONITOR (VMM) 11

PLATFORM 114

U.S. Patent May 6, 2008 Sheet 1 of 5 US 7,370,324 B2

SERVICE VM 102 GUEST VM 104

SERVICE OS 106 GUEST OS 108

VIRTUAL MACHINE MONITOR (VMM) 112

PLATFORM 11

US 7,370,324 B2

Sheet 2 of §

May 6, 2008

U.S. Patent

gLZ Ve AN 4

Z ‘o1 \ \ / \

HOLIMS HOL1IMS HOLIMS HOLIMS
INA NA NA NA
b\ /é ,_\ \/
|
|
8h¢ m “ m SO 1S3N9

SO JOIALES

NOYH WILSAS
431NdNOD _
ISONOVIA _
]
_
_
|
_
_
_
|
_
JWILNNY "
SO “
_

e/

SO
JOING3IS

oo

4SVHd
1008434ad

¢Qc 4\

U.S. Patent May 6, 2008 Sheet 3 of 5 US 7,370,324 B2

COMPUTER SYSTEM RESET 302
— — 304
LOAD VMM ENVIRONMENT
|
UNLOAD
N VMM AND
INVOKE SERVICE 0S ? NVOKE
GUEST OS
y 306
INVOKE SERVICE 0S 308 307
PERFORM A VM SWITCH AND INVOKE GUEST OS 310
312
- vy _
EXECUTION OF GUEST OS -
RAP EVENT/POLLING EVENT/USER N
INITIATED SWITCH?
314
Y
-] 316
| PEFORM VM SWITCH TO SERVICE VM
Fig. 3

300

U.S. Patent May 6, 2008 Sheet 4 of 5 US 7,370,324 B2

SERVICE VM 102 GUEST VM 104

SERVICE OS 106 GUEST OS 108

VIRTUAL MACHINE MONITOR (VMM) 412

EFl VMM 404
EFl RUNTIME SERVICES 406

PLATFORM 114

U.S. Patent May 6, 2008 Sheet 5 of 5 US 7,370,324 B2

—
il

N | NON-VOLATILE
PROCESSOR | | MEMORY

| 518

{

l

I

i

I

|

I

|

' STORAGE

i 207 204 505 506 |
: 7 :
l BUS |
| |
| |
' :
: _—DI_SEVI_:AYJ | 11O ‘
| l ORAGE ODEM |
: CONTROLLER ST 512 M OR | CONTROLLER :
f 208 NETWORK | | 516 :
| I/F 514 | r :
|

: DISPLAY - 0 .
| 210 DEVICE :
} |
| |
' |
' i
I

NETWORK
524

Fig. 5

Us 7,370,324 B2

1

SWITCHING BETWEEN A SERVICE

VIRTUAL MACHINE AND A GUEST

VIRTUAL MACHINE IN A VIRTUAL
MACHINE MONITOR ENVIRONMENT

BACKGROUND

1. Field of Invention

The field of invention relates generally to computer
systems and, more specifically but not exclusively, relates to
switching between a service virtual machine and a guest
virtual machine 1n a virtual machine monitor environment.

10

2. Background Information

In a typical PC architecture, the initialization and con- |
figuration of the computer system by the Basic Input/Output
System (BIOS) 1s commonly referred to as the pre-boot
phase. It 1s generally defined as the firmware that runs
between the processor reset and the first mstruction of the
Operating System (OS) loader. At the start of a pre-boot, 1t
1s up to the code in the firmware to 1mitialize the system to
the point that an operating system loaded off of media, such
as a hard disk, can take over. The start of the OS load begins
the period commonly referred to as OS runtime. During OS
runtime, the firmware acts as an interface between software 4
and hardware components of a computer system. As com-
puter systems have become more sophisticated, the opera-
tional environment between the application and OS levels
and the hardware level 1s generally referred to as the
firmware or the firmware environment. 10

In today’s servers, the system architecture allows for a
bi-modal server management. Generally, a server has a
server management OS and a guest operating system (OS).
The management OS 1ncludes diagnostic tools and utilities
to service the guest operating system and the server envi- 35
ronment. The guest OS operates as a conventional operating,
system. Usually, the system {first boots the management OS
from the system management partition, and then the system
must be rebooted 1n order to run the guest OS.

However, rebooting into the guest OS results 1n the loss 40
of all state information from the management OS. Also, 1f
there 1s a system failure while running in the guest OS, the
machine must be rebooted back 1nto the management OS for
diagnosis. This reboot results 1n the loss of key state
information that could be analyzed to discover system 45
problems.

Also, some guest OS faults are so severe that the guest OS
cannot take a snapshot of 1ts own system state or perform an
error dump to a storage device. Thus, vital information for
system managers will be lost because the only solution 1s to
reboot the system. Further, if the same error repeats 1tself,
for example due to a mis-configured soltware patch, the
system may continually crash without a scheme to diagnose
the error.

50

55
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention 1s illustrated by way of example

and not limitation 1n the accompanying figures. 0

FIG. 1 1s a schematic diagram illustrating one embodi-
ment of a computer system environment 1n accordance with
the teachings of the present invention.

FIG. 2 1s a timeline diagram 1llustrating one embodiment
of a sequence to switch a computer system between a 65
Service OS and a Guest OS 1n accordance with the teachings
of the present invention.

2

FIG. 3 1s a flowchart illustrating one embodiment of the
logic and operations to switch a computer system between a
Service OS and a Guest OS 1n accordance with the teachings
of the present 1nvention.

FIG. 4 1s a schematic diagram 1llustrating one embodi-
ment ol a computer system environment 1n accordance with
the teachings of the present invention.

FIG. 5 1s a schematic diagram 1llustrating one embodi-

ment of a computer system 1n accordance with the teachings
of the present invention.

DETAILED DESCRIPTION

Embodiments of a method and system to switch a com-
puter system between a Service virtual machine (VM) and a
Guest VM are described herein. In the following description,
numerous specific details are set forth, such as embodiments
pertaining to the Extensible Firmware Interface (EFI) frame-
work standard, to provide a thorough understanding of
embodiments of the invention. One skilled in the relevant art
will recognize, however, that the invention can be practiced
without one or more of the specific details, or with other
methods, components, materials, etc. In other instances,
well-known structures, materials, or operations are not
shown or described in detail to avoid obscuring aspects of
the 1nvention.

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment 1s 1included i at least one embodiment of the
present mvention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined 1n any
suitable manner in one or more embodiments.

In one embodiment of the present invention, a computer
system switches between a Service virtual machine and a
Guest virtual machine in a Virtual Machine Monitor (VMM)
environment. During the pre-boot phase of the computer
system, a Service OS 1s executed. A virtual machine switch
1s performed and the Guest operating system 1s booted 1n the
Guest VM to begin the OS runtime. The computer system
may seamlessly switch between the Guest VM and the
Service VM 1n real-time. In the event of a Guest OS failure,
the computer system may switch into the Service OS envi-
ronment to diagnose the Guest OS fault without rebooting
the computer system.

In one embodiment of the present invention, firmware of
a computer system operates in accordance with an extensible
firmware framework known as the Extensible Firmware
Interface (EFI) (EFI Specification, Version 1.10, Dec. 1,
2002, may be found at http://developer.intel.com/technol-
ogy/efl). EFI 1s a public industry specification that describes
an abstract programmatic interface between platform firm-
ware and shrink-wrap operating systems or other custom
application environments. The EFI framework standard
includes provisions for extending BIOS functionality
beyond that provided by the BIOS code stored in a plat-
form’s BIOS device (e.g., tlash memory). More particularly,
EFI enables firmware, 1n the form of firmware modules and
drivers, to be loaded from a varniety of diflerent resources,
including primary and secondary flash devices, option
ROMs (Read-Only Memory), various persistent storage
devices (e.g., magnetic disks, optical disks, etc.), and from
one or more computer systems over a computer network.

Us 7,370,324 B2

3

FIG. 1 1s a schematic diagram illustrating one embodi-
ment of a computer system environment to switch between

a Service VM and a Guest VM. FIG. 1 shows a Virtual
Machine Monitor (VMM) 112 layered on a platform 114.
The platform 114 1s the hardware of the computer system

(a.k.a., the “real” machine.) The VMM 112 supports a
Service Virtual Machine (VM) 102 and a Guest VM 104.
The Service VM 102 includes a Service OS 106 and the
Guest VM 104 includes a Guest OS 108. Only one Guest
VM 104 1s described herein for the sake of clarity, but 1t waill
be understood the embodiments of the present imvention
may operate with more than one Guest VM with each Guest
VM executing an OS. For example, a Guest VM1 may
include Windows NT and a Guest VM2 may include the
Linux OS. In such a scheme, the Service OS 106 would be
able to observe and diagnose the activity of both Guest VM1
and Guest VM2.

The Virtual Machine Monitor (VMM) 112 provides a
soltware layer to run on the hardware of a computer system
to enable the operation of multiple virtual machines. Each
VM behaves like a complete physical machine that can run
its own OS. Usually, each VM 1s given the illusion that 1t 1s
the only physical machine. The VMM takes control of the
system whenever a VM attempts to perform an operation
that may aflfect the operations of other VMs or the hardware
(e.g., a system call). The VMM will affect the operation for
the VM to ensure the whole computer system 1s not dis-
rupted. Diflerent operating systems, or separate instances of
the same operating system, may execute 1 each VM. Since
VMs are usually 1solated from each other, an OS crashing in
one VM usually does not affect the other VMs.

In one embodiment, the Service OS 106 1s a self-con-
tained operating system that includes a variety of tools and
applications to analyze and diagnose the computer system.
In one embodiment, the Service OS includes a file manage-
ment system, memory management, Input/Output resources,
and a network capability. Generally, the Service OS 1s
smaller in size than conventional operating systems. In one
embodiment, the Service OS 1s approximately 1 megabyte 1n
s1ze. The Service OS may be stored 1n a non-volatile storage
device (such as Flash memory), an EFI system partition, a
Host Protected Area (HPA) of a hard disk, a network
repository, or the like.

FIG. 2 1s a timeline diagram 1llustrating one embodiment
ol a sequence to switch between a Service VM and a Guest
VM of a computer system. The timeline 1s divided into a
pre-boot phase 202 and an OS runtime phase 204 of a
computer system. In one embodiment, the computer system
1s a server. The Service OS 106 boots as part of the pre-boot
phase of the computer system. In one embodiment, the
Service OS 106 runs 1n an EFI environment; in another
embodiment, the Service OS 106 runs 1n a ROM-DOS
(Read-Only Memory-Disk Operating System) environment.

During the startup of the Service OS 106 1n the pre-boot
phase 202, the Service OS 106 may obtain system resources,
such as memory, that the Service OS 106 may need for
execution. By establishing the VMM environment during
the pre-boot phase, the VMM may virtualize items that the
firmware has intimate knowledge of, such as, but not limited
to, the chupset, Advanced Configuration and Power Interface
(ACPI) configurations, mtegrated Input/Output subsystems,
such as the ATA (Advanced Technology Attachment) disk
interface, or the like. Invoking the Service OS 106 during
pre-boot allows firmware knowledge to be accessible to the
Service OS 106.

After the pre-boot phase 1s completed, the computer
system proceeds to a OS runtime phase 204. In one embodi-

10

15

20

25

30

35

40

45

50

55

60

65

4

ment, the OS runtime phase 204 starts at the execution of a
Guest OS 108 and control of the computer system 1s handed
over from the computer system firmware to the Guest OS
108. The Guest OS 108 proceeds through a startup sequence
and executes on the computer system.

The boot of the Guest OS 108 1s preceded by a Virtual
Machine (VM) switch 210 to the Guest VM 104. Generally,
a VM switch is the transition between the Service VM and
the Guest VM. Usually, one VM 1s active at a time and the
VMs time-slice execution on the computer system. Thus, a
processor, such as a CPU, runs only one OS at a time.

Rather than requiring a reboot of the computer system, a
VM switch occurs 1n real-time to seamlessly multiplex
between multiple computer system virtual machine environ-
ments. If the Guest VM suflers a critical failure, then the
computer system may switch to the Service VM, without
rebooting, to perform acute analysis of the failed Guest VM
and Guest OS. In one embodiment, the VM switch 1s
performed by firmware of the computer system. For
example, the firmware may maintain a list of the VM’s to
schedule, time-slice for each VM, maintain exit conditions
for a given VM, etc. In another embodiment, a chipset and
processor of the computer system include hardware aug-
mentation to support virtualization. Such hardware augmen-
tation reduces the cost i clock cycles to perform a VM
switch compared to making the VM switch primarily 1n
software. The processor may 1nclude microcode to assist 1n
virtualization of the computer system.

A VM switch can be activated automatically in response
to a system event or activated by a user of the computer
system. In one embodiment, a user may set-up exit event
parameters during pre-boot. I one of these policies 1s
triggered when the Guest OS 108 1s executing, a VM switch
to the Service OS will occur (discussed further below).

At VM switch 212, the computer system transitions to the
Service VM 102 and Service OS 106. The computer system
continues to operate 1n the Service VM 102 environment.
The user may use the Service OS 106 to observe and analyze
the function of the Guest OS 108 as well as other aspects of
the computer system. The Service VM has the ability to
“peak over the fence” into other VMs. For example, a user
of the computer system may have mitiated the VM switch
212. The user can use the Service OS 108 to monitor the
functioning of the Guest OS 108.

At VM switch 214, the computer system transitions back
to the Guest OS 108. The computer system continues to
operate 1in the Guest VM 104 environment. At VM switch
216, the computer system switches to the Service VM and
Service OS 106. For example, the computer system may
have automatically switched into the Service OS 106 due to
a trap event or a polling event (discussed below.) In this
case, the user can proceed to analyze and diagnose the
computer system, including Guest OS 108, from the Service
OS 106, as shown 1n a block 218.

Referring to FIG. 3, one embodiment of a method to
switch between a Service VM and a Guest VM of computer
system 1s shown. In a block 302, a computer system 1s reset.
Pre-boot 1nitialization of the computer system will begin
based on BIOS firmware available to the computer system.
In one embodiment, the system boot instructions will begin
initializing the computer system by conducting a Power-On
Self-Test (POST) routine, mitializing system board func-
tions, checking for any expansion boards that hold addi-
tional BIOS code, and loading such BIOS code 1f any 1s
found.

Proceeding to a block 304, a Virtual Machine Monitor
(VMM) environment 1s loaded on the computer system.

Us 7,370,324 B2

S

Referring to FIG. 4, one embodiment of a VMM 412
utilizing aspects of the EFI environment 1s shown. The
VMM 412 includes EFI VMM 404 and EFI Runtime Ser-
vices 406. The EFI VMM 404 1s a VMM established in
firmware of the computer system to operate 1n accordance
with the EFI specification. EFI Runtime Services 406 are
services available to the computer system during both pre-
boot and OS runtime. Runtime Services include, but are not
limited to, Reset Services, Status Code Services, and Virtual
Memory Services. In one embodiment, the EFI VMM 404
works with processor virtualization augmentation to support
the VMM 412. In one embodiment, the FFI VMM 404
includes a VM Scheduler (not shown) to arrange when a
switch between VM’s 1s to occur and a VM Resource
Manager (not shown) to manage computer system resources
for the VM’s, such as managing how much memory to
expose to each VM, etc.

During the pre-boot phase, the computer system deter-
mines 1f a Service OS should be mmvoked, as depicted 1n a
decision block 306. In one embodiment, the computer
system displays a query to a user of the computer system; 1n
another embodiment, the computer system refers to a pre-
planned policy for the computer system. If the answer to
decision block 306 1s no, then the logic proceeds to a block
307 to unload the VMM and to mvoke the Guest OS 1n a
non-VMM environment. If the answer to decision block 306
1s yes, then the logic proceeds to a block 308 to invoke the
Service OS.

In block 308, the Service OS 1s booted while the computer
system 1s still 1n the pre-boot phase. After the pre-boot phase
has been completed, a VM switch 1s performed to the Guest
VM and the Guest OS 1s invoked, as shown 1n a block 310.
In one embodiment, the VM switch 1s completed by firm-
ware of the computer system.

As shown 1n a block 312, the Guest OS executes on the
computer system. In one embodiment, the Guest OS 1s not
complicit with the Service OS. The Guest OS has no
knowledge of the Service OS and no knowledge of the
system resources, such as memory, that the Service OS has
acquired for 1ts own use. In another embodiment, the Guest
OS 1s aware of the Service OS. In this instance, the EFI
VMM may act as an mtermediary to send control and
configuration messages between OS’s 1n different VM’s.

The logic proceeds to a decision block 314 to determine
if an event has occurred to cause a VM switch. The VM
switch may be triggered by a trap event, a polling event, a
user mitiated switch, or any combination thereof.

A trap event 1s an event that violates a predetermined
policy condition of the computer system. Whenever such a
violation occurs and 1s detected, a VM switch occurs to put
the computer system in the Service OS environment.
Examples of such policy events include, but are not limited
to, the Guest OS attempts to write to a particular region of
memory, a particular interrupt occurs that signifies a cata-
strophic event has occurred, or the like. In one embodiment,
the VMM monitors the behavior of the VM’s and their
respective OS’s to determine 1f a policy has been violated.

A polling event 1s a periodic check of the Guest VM to
determine 1f the Guest VM and Guest OS are functioning
properly. The operation of the Guest OS may be analyzed on
a regular schedule to determine 11 a fault has occurred. For
example, the Guest OS may be checked every 10 seconds to
determine 1f the Guest OS 1s hung. In one embodiment, the
VMM pertorms the periodic check of the Guest OS. In one
embodiment, the period of polling may occur every micro-
second; 1n another embodiment, the polling may occur up to
every minute.

10

15

20

25

30

35

40

45

50

55

60

65

6

A VM switch may also be triggered by a user of the
computer system. In one embodiment, a hotkey 1s desig-
nated on a keyboard coupled to the computer system to
initiate switching between the Guest VM and the Service
VM. In another embodiment, a user may imtiate a VM
switch from a remote site over a network connection to the
computer system.

Referring again to FIG. 3, 1f the answer to decision block
314 i1s no, then the Guest OS continues to execute, as
depicted 1n block 312. If the answer to decision block 314

1s yes, then the logic proceeds to a block 316 to perform a
VM switch from the Guest VM to the Service VM.

Once 1n the Service VM, a user may perform diagnostics
on the computer system using the Service OS. The user may
diagnose the Guest OS and the Guest VM. Since a re-boot
1s not necessary to enter the Service OS, the Service OS
allows live discernment of the Guest OS from the Service
OS peer environment. The Service OS allows one to probe
the chipset registers and log error information into the
system event log (SEL). If the computer system has network

capabilities, the Service OS can contact another computer
system to report a system fault and transmit state informa-
tion.

For example, if a customer of a server encounters a Guest
OS fault, the customer can use the Service OS to capture
state information and send this data to the server manufac-
turer for analysis. In one embodiment, the Service OS may
retrieve the server chassis information such as temperature,
voltage, fan speed, etc. from a BMC (Baseboard Manage-
ment Controller).

The Service OS allows analysis of the Guest OS without
disturbing the last state of the Guest OS. For example, the
Guest OS encounters a failure while writing to a disk drive
of the computer system. However, as part of the diagnosis of
the Guest OS, the Service OS would like to save information
to the same disk drive. The Service OS may re-take control
of the disk drive controller, save the data, and then return the
controller to the state that existed when the Guest OS had a
write failure.

FIG. § 1s an 1llustration of one embodiment of an example
computer system 500 on which embodiments of the present
invention may be implemented. In one embodiment, com-
puter system 500 1s a server. Examples of such a server,
include, but are not limited to, the Intel/IBM Bladeserver®.
Computer system 500 includes a processor 502 coupled to a
bus 506. Memory 504, storage 512, non-volatile storage
503, display controller 508, input/output controller 516 and
modem or network interface 514 are also coupled to bus
506. The computer system 300 may also include a BMC
(Baseboard Management Controller) (not shown) to monitor
critical hardware chassis components of the system. The
computer system 500 interfaces to external systems through
the modem or network intertace 514. This iterface 514 may
be an analog modem, Integrated Services Digital Network
(ISDN) modem, cable modem, Digital Subscriber Line
(DSL) modem, a T-1 line interface, a T-3 line interface,
token ring interface, satellite transmaission interface, or other
interfaces for coupling a computer system to other computer
systems. A carrier wave signal 523 1s received/transmitted
by modem or network interface 514 to communicate with
computer system 500. In the embodiment illustrated 1n FIG.
5, carrier waive signal 523 1s used to interface computer
system 500 with a computer network 524, such as a local
area network (LAN), wide area network (WAN), or the
Internet. In one embodiment, computer network 324 1is

Us 7,370,324 B2

7

turther coupled to a remote computer (not shown), such that
computer system 500 and the remote computer can com-
municate.

Processor 302 may be a conventional microprocessor
including, but not limited to, an Intel Corporation x86,
Penttum, or Itantum family microprocessor, a Motorola
family microprocessor, or the like. Memory 504 may
include, but not limited to, Dynamic Random Access
Memory (DRAM), Static Random Access Memory
(SRAM), Synchronized Dynamic Random Access Memory
(SDRAM), Rambus Dynamic Random Access .Vemory
(RDRAM), or the like. Display controller 508 controls in a
conventional manner a display 510, which in one embodi-
ment may be a cathode ray tube (CRT),, a liquid crystal
display (LCD), and active matrix display or the like. An
input/output device 518 coupled to mnput/output controller
516 may be a keyboard, disk drive, printer, scanner and other
mput and output devices, including a mouse, trackball,
trackpad, joystick, or other pointing device.

The computer system 500 also includes non-volatile stor-
age 505 on which firmware and/or data may be stored.
Non-volatile storage devices include, but are not limited to
Read-Only Memory (ROM), Flash memory, Erasable Pro-
grammable Read Only Memory (EPROM), Electromically
Erasable Programmable Read Only Memory (EEPROM), or
the like.

Storage 512 1n one embodiment may be a magnetic hard
disk, an optical disk, or another form of storage for large
amounts ol data. Some data may be written by a direct
memory access process into memory 504 during execution
of software 1n computer system 300. It 1s appreciated that
soltware may reside in storage 512, memory 504, non-
volatile storage 505 or may be transmitted or received via
modem or network interface 514.

For the purposes of the specification, a machine-readable
medium includes any mechanism that provides (1.e., stores
and/or transmits) mformation in a form readable or acces-
sible by a machine (e.g., a computer, network device,
personal digital assistant, manufacturing tool, any device
with a set of one or more processors, etc.). For example, a
machine-readable medium includes, but 1s not limited to,
recordable/non-recordable media (e.g., a read only memory
(ROM), a random access memory (RAM), a magnetic disk
storage media, an optical storage media, a tlash memory
device, etc.). In addition, a machine-readable medium can
include propagated signals such as electrical, optical, acous-
tical or other form of propagated signals (e.g., carrier waves,
inirared signals, digital signals, etc.).

It will be appreciated that computer system 500 1s one
example ol many possible computer systems that have
different architectures. For example, computer systems that
utilize the Microsoft Windows operating system 1n combi-
nation with Intel microprocessors often have multiple buses,
one of which may be considered a peripheral bus. Network
computers may also be considered as computer systems that
may be used with the present invention. Network computers
may not include a hard disk or other mass storage, and the
executable programs are loaded from a corded or wireless
network connection into memory 504 for execution by
processor 502. In addition, handheld or palmtop computers,
which are sometimes referred to as personal digital assis-
tants (PDAs), may also be considered as computer systems
that may be used with the present invention. As with
network computers, handheld computers may not include a
hard disk or other mass storage, and the executable programs
are loaded from a corded or wireless network connection
into memory 304 for execution by processor 502. A typical

10

15

20

25

30

35

40

45

50

55

60

65

8

computer system will usually include at least a processor
502, memory 504, and a bus 506 coupling memory 504 to
processor d02.

It will also be appreciated that in one embodiment,
computer system 500 i1s controlled by operating system
software that includes a file management system, such as a
disk operating system, which 1s part of the operating system
software. For example, one embodiment of the present
invention utilizes Microsoft Windows as the operating sys-
tem for computer system 500. In other embodiments, other
operating systems that may also be used with computer
system 500 include, but are not limited to, the Apple
Macintosh operating system, the Linux operating system,
the Microsoft Windows CE operating system, the Unix
operating system, the 3Com Palm operating system, or the
like.

The above description of 1llustrated embodiments of the
invention, including what i1s described in the Abstract, 1s not
intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the mvention are described herein for 1llus-
trative purposes, various equivalent modifications are pos-
sible within the scope of the invention, as those skilled 1n the
relevant art will recognize.

These modifications can be made to the invention 1n light
of the above detailed description. The terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed 1n the specifica-
tion and the claims. Rather, the scope of the invention 1s to
be determined by the following claims, which are to be
construed 1n accordance with established doctrines of claim
interpretation.

What 1s claimed 1s:

1. A method, comprising:

loading a virtual machine monitor (VMM) to support a

service virtual machine (VM) and a guest VM of a
computer system;
invoking a service operating system (OS) 1n the service
VM during the pre-boot phase of the computer system,
the service OS to allow observation of a guest OS;
invoking the guest OS 1n the guest VM to begin a guest
OS runtime of the computer system, wherein invoking,
the guest OS 1s 1nitiated by a switch from the service
VM; and

performing 1n response to a fault of the guest OS a VM
switch from the guest VM and to the service VM during,
the guest OS runtime without rebooting the computer
system.

2. The method of claim 1 wherein the VMM to operate 1n
accordance with mstructions stored in a non-volatile storage
device of the computer system.

3. The method of claim 1, further comprising switching
from the guest VM to the service VM 1n response to a trap
event, wherein the trap event includes detecting a violation
of a policy of the computer system by the VMM.

4. The method of claim 3, further comprising setting the
policy of the trap event during the pre-boot phase of the
computer system.

5. The method of claim 1, further comprising:

periodically checking for a fault condition of the guest OS
by the VMM; and
switching to the service VM 1f the VMM detects the fault
condition.
6. The method of claim 1, further comprising switching to
the service VM from the guest VM 1n response to a user
request.

Us 7,370,324 B2

9

7. The method of claim 1, further comprising unloading
the VMM and executing the guest OS 1in a non-virtual
machine environment of the computer system.

8. The method of claim 1 wherein the VMM 1s loaded
during the pre-boot phase of the computer system.

9. The method of claim 1 wherein switching between the
guest VM and the service VM 1s performed by firmware of
the computer system.

10. The method of claim 1 wherein operations of the
VMM are assisted by microcode of a processor of the
computer system.

11. An article of manufacture comprising:

a machine-storage medium including a plurality of
instructions which when executed by computer per-
form operations comprising:

loading a virtual machine monitor (VMM) during a
pre-boot phase of a computer system, the VMM to
support a service virtual machine (VM) and a guest VM
of the computer system:;

booting a service operating system (OS) during a pre-boot
phase ol a computer system 1n the service VM, wherein
the service OS to provide tools to diagnose a guest
operating system of a computer system;

booting the guest OS 1n the guest VM to begin a guest OS
runtime of the computer system, wherein booting the
guest OS 1s 1nitiated by a switch from the service VM;
and

performing 1n response to a fault of the guest OS a VM
switch from the guest VM and to the service VM during
the guest OS runtime without rebooting the computer
system.

12. The article of manufacture of claim 11 wherein
execution ol the plurality of instructions further perform
operations comprising performing the VM switch from the
service VM to 1mitiate the booting of the guest OS.

13. The article of manufacture claim 11 wherein the VMM
to operate 1n accordance with an Extensible Firmware
Interface (EFI) framework standard.

14. The article of manufacture of claam 11 wherein
execution of the plurality of instructions further perform
operations comprising:

establishing a trap event of the computer system, wherein
the trap event includes detecting a violation of a policy
of the computer system by the VMM; and

performing the VM switch from the guest VM to the
service VM 1n response to detecting the trap event.

15. The article of manufacture of claim 11 wherein
execution ol the plurality of instructions further perform
operations comprising

establishing a polling event of the computer system,
wherein the polling event includes periodically check-
ing for a fault condition of the guest OS by the VMM,
and

performing the VM switch from the guest VM to the
service VM 1n response to detecting the fault condition
of the guest OS during the polling event.

10

15

20

25

30

35

40

45

50

55

10

16. The article of manufacture of claim 11 wherein
execution of the plurality of instructions further perform
operations comprising performing the VM switch from the
guest VM to the service VM 1n response to a user request to
perform the VM switch.

17. The article of manufacture of claam 11 wherein
execution of the plurality of instructions further perform
operations comprising unloading the VMM and executing
the guest OS 1n a non-virtual machine environment of the
computer system.

18. The article of manufacture of claim 11 wherein the
VM switch 1s performed by firmware of the computer
system.

19. The article of manufacture of claim 11 wherein the
VM switch 1s assisted by microcode of a processor of the
computer system.

20. A computer system, comprising:

a processor; and

at least one flash device operatively coupled to the pro-

cessor, the at least one flash device including firmware
istructions which when executed by the processor
perform operations comprising:

loading a virtual machine monitor (VMM) on the com-

puter system during a pre-boot phase of the computer
system:
booting a service operating system (OS) 1n a service
virtual machine (VM) during the pre-boot phase, the
service OS to enable analysis of the computer system:;

booting a guest OS 1n a guest VM of the computer system
in response to a VM switch from the service OS to the
guest OS without rebooting the computer system; and

performing the VM switch from the guest VM to the
service VM during an OS runtime of the guest OS 1n
response to a fault of the guest OS.

21. The computer system of claim 20 wherein the fault of
the guest OS comprises violation of a policy setting of the
computer system.

22. The computer system of claim 21 wherein execution
of the plurality of istructions further perform operations
comprising generating a user interface during the pre-boot
phase to receive the policy setting to trigger the VM switch
during the OS runtime of the guest OS.

23. The computer system of claim 20 wherein the fault 1s
detected during a periodic computer system check by the
VMM to determine a status of the guest OS.

24. The computer system of claim 20 wherein execution
of the plurality of instructions further perform operations
comprising performing the VM switch 1n response to a user
request.

25. The computer system of claim 20 wherein the pro-
cessor mcludes microcode to assist operations of the VMM.

26. The computer system of claim 20 wherein the firm-
ware to operate 1 accordance wit an Extensible Firmware
Intertace (EFI) framework standard.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

