US007370318B1
12 United States Patent (10) Patent No.: US 7,370,318 B1
Howe et al. 45) Date of Patent: May 6, 2008
(54) SYSTEM AND METHODOLOGY FOR 6,804,686 B1 10/2004 Stone et al. 707/104.1
ASYNCHRONOUS CODE REFACTORING 6,807,548 Bl 10/2004 Kemperccoooevvvvvnnn.. 707/103
WITH SYMBOIL., INJECTION 6,851,105 Bl 2/2005 Coad et al. 717/106
6,904,590 B2 6/2005 Ball et al. 717/132
75 _ . _ 6,973,646 Bl 12/2005 Bordawekar et al. 717/146
(75) " Inventors: Mark K. Howe, Capitola, CA (US): 7.076,762 B2* 7/2006 FiSher w.oovoeveovevernn. 717/102
Lubomir B. Litchev, San Carlos, CA 7076764 B2 % 79006 Ki
‘ o 076, 21101 AR 717/120
(US); Christian K. Kemper, Santa 7.168,062 B1* 1/2007 Schmitter 717/113
Cruz, CA (US) 7,237,236 B2* 6/2007 Kershenbaum et al. 717/154
_ 2004/0261057 Al* 12/2004 Shmomiocovvveen.n... 717/114
(73) Assignee: Borland Software Corporation,
Austin, TX (US) OTHER PUBLICATIONS

. [.1. et al. “Tool Support for Refactoring Functional Programs” Aug*
e . 1 4
() NOthB. Subject tO Ellly dlSClEllIIleI'j the term Of thJS 28, 20033 A CM, | 27-38.*

patent 1s extended or adjusted under 35

U.S.C. 134(b) by 665 days. (Continued)

(21) Appl. No.: 10/711,230 Primary Examiner—Eric B. Kiss
Assistant Examiner—Qamrun Nahar

(22) Filed: Sep. 2, 2004 (74) Attorney, Agent, or Firm—John A. Smart; G. Mack
Riddle

(51) Imt. CL.

GO6F 9/44 (2006.01) (57) ABSTRACT
(52) US.CL ... 717/110; 717/111; 71°7/112;

717/113 A system and methodology for asynchronous code refactor-

_ : : ing with symbol 1njection 1s described. In one embodiment,

(58) Field of Classification Search 717/111 ﬁ;/lll% for example, a method 1s described for refactoring a plurality
Q lication file £ - h h'jt " ol interdependent software modules that reside in separate

c& AppHLdtion e T0L COMIPIEIE Scattll AUSIOL. projects, the method comprises steps of: 1n response to a

(56) References Cited change that aflects a particular symbol of a software module
| that resides 1n a first project, refactoring the software module
U.s. PAIENT DOCUMENTS of the first project to propagate the change to all instances of
5,583,983 A * 12/1996 Schmitter 717/138 the particular symbol i the software module; during the
5,671,415 A * 9/1997 HoSSAINcoovvrveenn.. 717/101 refactoring of the software module of the first project,
5,754.858 A * 5/1998 Broman et al. 717/111 recording meta data about the refactoring that 1s required to
5,870,753 A * 2/1999 Chang et al. 707/103 R cllect the change; and automatically propagating the change
5,881,230 A 3/1999 Christensen et al. 709/203 to a dependent software module residing in a second project,
5,946,480 A * 8§/1999 Pekowski 717/128 by refactoring the dependent software module based on the
6,026,238 A * 2/2000 Bond et al. 717/141 recorded meta data about the refactoring that occurred to the
6,662,359 B1 12/2003 Berry etal. 717/130 software module of the first project.
6,704,926 Bl 3/2004 Blandy et al. 717/148
6,704,927 Bl 3/2004 Bak etal 717/151
6,804,682 Bl * 10/2004 Kemper et al. 717/120 35 Claims, 8 Drawing Sheets

300
o~ 305 330 335

/"'
JAVASOURCE | | ~avener e
‘ PROGRAM | »| COMPILER |+ » REFACTORING
' [
COMPILED JAVA
PROGRAM
310 320
CLIENT VIRTUAL MACHINE

US 7,370,318 B1
Page 2

OTHER PUBLICATIONS Garrido, et al. “Challenges of Refactoring C programs”, 2002,

| | ACM, p. 6-14.%
K. Maruyama, “Automated Method-Extraction Refactoring by

Using Block-Based Slicing”, 2001, ACM, p. 31-40.*
Counsell, et al. “Trends 1n Java code changes: the key to identifi-
cation of refactorings?” 2003, PPPJ, p. 1-4.* * cited by examiner

—
an
v o
= (LYY HOIHd)
= [DI
¢
I~
7P,
= SEINIE AV1dSId
r /0l #01l r GOl
901 AHOWIN
" O3AIA
- I 3DIA3C AVOIATH Y31dvav
_M ONILNIOd O3AIN
2 S3714 V.LVA -
- SNOILYDI1ddV 5
SHIAIYA
SO 4OVHOLS m_O_\d,ﬂm_/_Wn_um_mw_.Z_
a3axi
m)
gl
° mmmww_%_»mm Nd2) JOVAH3INI |
.WaJ (S)LINN MMOM L IN
> cLl ONISSIO0¥Ud TVILNID
NIAOW f--—---
~N
- L0 L AN}
b
. 00}
<L €0l 201

U.S. Patent May 6, 2008 Sheet 2 of 8 US 7,370,318 B1

200

2014 201b 201d

APPLICATION
PROGRAM N

APPLICATION APPLICATION BROWSER
PROGRAM 1 PROGRAM 2 PROGRAM

201

OPERATING SYSTEM
(e.g., WINDOWS 9X/NT/2000/XP, SOLARIS, UNIX, LINUX, MAC OS, OR LIKE)

GRAPHICAL
USER INTERFAC

‘ I S 220 X 215 ‘\ 210

DEVICE DRIVERS ‘

(e.g., WINSQOCK)

¥\

230
|\
BIOS
(MICROCODE)

A

L 4

Y

DISPLAY MONITOR
NETWORK INTERFACE
COMM PORT
KEYBOARD

MODEM

MOUSE

DISKS

PRINTER

FIG. 2

U.S. Patent May 6, 2008 Sheet 3 of 8 US 7,370,318 B1

300
305 330 335
S

S
JAVASOURCE | | ~avener e
‘ PROGRAM | .| COMPILER |4 » REFACTORING

340
v a

COMPILED JAVA
PROGRAM

310 320

CLIENT VIRTUAL MACHINE

FIG. 3A

7 321 320

CLASS
L OADER

322
S

BYTECODE
VERIFIER

323

BYTECODE
INTERPRETER

324
o

RUNTIME SUPPORT
LIBRARIES

MEMORY MANAGEMENT
SYNCHRONIZATION
TYPE CHECKING
INTERFACE INVOCATION

FIG. 3B

U.S. Patent

DEPENDEE MODULE

ORIGINAL
REFACTORING

PERFORMED
(CONVENTIONAL)

META INFORMATION
ABOUT
REFACTORING

COLLECTED/
RECORDED

May 6, 2008

400

Sheet 4 of 8

401

402

FIG. 4

DEPENDENT MODULE

403

READ RECORDED
META INFORMATION

l K 404

(OPTIONAL) PRESENT
REFACTORING
INFORMATION TO
USER

| 105

INJECT SYMBOLS
INTO SYMBOL
TABLE(S) BASED ON

RECORDED META
INFORMATION

l /’ 406

APPLY
REFACTORING
BASED ON
RECORDED META
INFORMATION

US 7,370,318 B1

US 7,370,318 B1

Sheet 5 of 8

May 6, 2008

U.S. Patent

O] IR § S
DQUUAZESED) | |ICLUASSSED &

= ==Y IR = ol sin =l (lala=tk= W =] H =R R
JASIIES O OQIASESE S0 & e,
EI02] CAUCRIDSEXTS & 4
uwm”ﬁu_ﬂumﬁ.w__uhmmn_L:aﬂmm_%ﬁ,

-

dirs 1 JRIDAC | DULL R I e

=

£
=0 RTINS o S W =T N = m_ fy i
Bans: (plzpfLamiela s’
. JBZ00d ¢ { ipaCLE | Ea 2R
UNOTEAET | (25 ADLTR00N0S IDIpTamsEIean |

_r

s
L

.d@.p
+#

ﬁw
LSl T e gy S =Rt e = My =R R W

19 LR SRR o 4

[I24 0S5 B &,
G L (3 TLEA TN R) PRI C LGOS R A

—

ada_Bulopappy Cadi =0 e
Lo) ELLES 3l 123004 a0S 3000 [SUIELE 2 4
: ._nﬁ_h..__:__..m__._.:..n*..ﬁ.._h._w_ no B
SSE0 BUELEY £ & -5
spocluTEE
TJUOT) JIpEAEL R

..o.....?.m.“

45

P QT 010 R g

—q el i3
__.__nh_r_.mﬂh_mUL_uU__.__..rH__ul.._Lm_” mm%
PG sA0pda0e 5
HCAUSAC $3TS2P R

..... e

AN PR RS T -

'

LI UG B LG SO T AS Y
.__._.L._U_ m_ﬁ__um.,ﬁ EMWl_I._m.”_.m B
LS

i
i

D.me_n_.Hmm;

e

23

=

-~

iz e

-

R

e
-

IMED0' LU oDl B

oz el Do seeael ﬁw

safeld ojuLes] Gums <eqel 4
ELims verel g #

ELEreael g @

e Brel g

SahOD U J2C DURGS 2L UNE UICO 8 ¢
L Co e SRS WICO 5,

ELLIDSL K] DUE|A0ET LLICD $5

-
A
—-

AR agn, =, e e

.Wﬁmmm@ﬁmmm %%mwmmmm i E u_m._n_ DL 0" LSO %w *

3

gt

JBLJALINE) JLEAOCT ILICO ¢ -4
BN DUECGT LICO ¢ %

@.ﬁ e m T YT P oo ﬁnm.umﬁ.u:m__n_n.Eou%m
W EMEMM nmlargs =R TIRATITAMI g MEt o ragas Drpeande i)" DL|CC ILICD 6 -4
e e e M e L e 2D BUTAC TR TE T HECOT AFDE) A TOL 0 FOr 308) 30020302 L SO SBUT G OTED SOOT MmO B ARG ._u_u_.:._n_nu B
b oOITIR == CogudzssEa) Jr A2 ol
il bl TocxAssseTIie0 TogRicsseTy djeamEd LT er . S

i i

e e s e e e
u.nu.u.nuo.nuﬂ.nuﬂ.nuﬂ.nu.n.ﬂ.n.nu.n.ni

US 7,370,318 B1

Sheet 6 of 8

May 6, 2008

U.S. Patent

e T e e e

bttt

VT

g

A0 O 20D ol L 1L 20

LIt
mprcl

U pEs | ETROLI8|T T TUELET

0 L1220 55220 U o

LG qnEIuy
els gLl

DLLGT Dz

0GG

FAa-=E2d B0

e

_

<LISLIY
=cncgusuodwoTIL Ze U J0UEW JD sIallzizd 3CUEYD &

00 S8 L m___u_Lu_.I.m_m_ N m__num__m LR LR &

NI T I I I D L T I D LR R S PR DR RS) BB e AL i S S = e SR R L Y L o B

D U & RALIGTEE 0 J3N[EALGIAE | PULESLL FLIELEY & -
AR bt RPN PUE g uao0 s e auop el o ceessads el pegsun suaniey g
AL eI U s | DOUEEL |0 SIELISE PALEYD &

L _“_

CAEE RE AT £ZITIm 2=ROLT

UHCI % 'UOCIR-odIo] 232a°J00 PURTI0] BFCCP - 3557 .0) uhTisdod

[TYIG-ATA” AMFTINA) AeT1TII9°0] [T FET-ngr

-

B

R TN T TR

DULCHIANMG T WX ET

-

y

PliTecmagese agab ansosla [Togues = TR 3RS

Pomoape o ol EpE e

‘s=3TabuTisTxs

1A CI 30l) 3000 TAT I A s A b (o =y e S R n 1 e

-) Toeprl seseT ok JoopriaseTs 34mrTEd

éﬁaﬁ%ﬁﬁ%ﬁé;

2 g W=
B[="="Tale'n

= [[W=EY

@5

HEBESHITE R

P LA MO L o e
-

Bdas.] ¢ AL
il A S LA SR Y
A= [wmt=la W o o=t g =M =

[PaLAssser Djoqubssseieh

.

LEZ20C IAUOAT005RI0™S

-J.

125 | aoe)sdc | senmash

JZ=CE | SULERS]se. 10 5=t

5

e

1

=0

157 ¢ O AausE EbuLm e el g W
By (e Doy e ot g
122000 | PRI BYDSILENSL &

A5 AQLTEDINGLPTEN0SERT & 4 -
L{Ieps Jagpaasineszaefissbuelpre ¢
3= s EuuciosjeRETES JF %

s TSI LF 4

pros (23U

SRILD.] BUns 9oslodd 18l0A-gr 155E 00 | MBS %

bl ae.Ey) azgs ducc g Tem

"
PR EF R PP R F PRSP

L

0 Jowgaee s o ()edd R0

.m”_.q.é,m_.__:t.&..ma i m
S0 SIBUSY & g &
oy 82 ¢

- ..Lul ;

-4 BT e

carie

g

figits

T e T T L L T e e T T T e T e,

i

=

o

o

et

chH

i

=

S

T T T

-

A
b

53;E-'\.....-.i“\i

e

o o I QI o =AY -
iy Wle B e RS

IRVl =o' N L=

“x =Londsare @

ey ods oD ¢

LUZL 2R e ioIgssED .

L TLISIE £LITIE o 3N0 00N |

AISOCT Y WER | EIS

=31 [=11]Vs

JEEY JEI DU EARL 41
= N TR TR == oy B Eoa = S -
Bz xEAe] g

el pyrresed mw

I EAEL o

scous)2 Cums 2az(ans woo g
WL =5LELS SSBIERS L O0 4 -
SUgELULd pUS Joq LI oD &ﬁ £
PG e = 0 LI 0D o
JRLIUNE[LI JOT LUOD -

el lge e Biellels g¥ifony. 2 ﬁ
GA5d8p pUS 100 LUOD Hh =

X ELIEIO LIOD -

Seslch sl -8 B

beoatick |

VIR

»d[2L s i

[T PO Tt PP P T

U.S. Patent May 6, 2008 Sheet 7 of 8 US 7,370,318 B1

o

601
READ META INFORMATION ABOUT ORIGINAL REFACTORING
(E.G., cldMethodName AND newMethodName FOR RENAME
REFACTORING OF METHOD OF LIBRARY
002
SYMBOL(S) CREATED BASED ON META INFORMATION (E.G., TO
REPRESENT oldMethodName OF LIBRARY)
603
CREATED SYMBOL(S) INJECTED INTO SYMBOL TABLE (E.G.,
COMPILER SYMBOL TABLE)
004
REFACTORING OF DEPENDENT MODULE BASED ON META
INFORMATION ABOUT ORIGINAL REFACTORING (E.G.,
INSTANCES OF oldMethodName REPLACED WITH newMethodName)
005

AFTER REFACTORING COMPLETE, INJECTED SYMBOL(S) ARE
REMOVED FROM SYMBOL TABLE (E.G., SYMBOL REPRESENTING
oldMethcdName REMOVED)

DONE

FIG. 6

U.S. Patent May 6, 2008 Sheet 8 of 8 US 7,370,318 B1

| BEGIN | 700
l /- 701

DECOMPILE CLASS OF DEPENDEE MODULE (LIBRARY)
ORIGINALLY REFACTORED

702
TEMPORARY STUB CLASS CREATED BASED ON DECOMPILED
CLASS
703
STUB CLASS REFACTORED TO REPRESENT OLD CLASS (BEFORE
ORIGINAL REFACTORING) BASED ON META INFORMATION
ABOUT ORIGINAL REFACTORING
704
STUB CLASS HANDED OFF TO PARSING SYSTEM; PARSING
SYSTEM PARSES/ATIRIBUTES STUB CLASS WITH SYMBOL(S)
INJECTED INTO SYMBOL TABLE(S) AS SIDE EFFECT
705
REFACTORING OF DEPENDENT MODULE BASED ON META
INFORMATION ABOUT ORIGINAL REFACTORING
706

AFTER REFACTORING COMPLETE, SYMBOL(S) INJECTED INTO

SYMBOL TABLE(S) AND STUB CLASS ARE REMOVED

DONE

FIG. 7

Us 7,370,318 Bl

1

SYSTEM AND METHODOLOGY FOR
ASYNCHRONOUS CODE REFACTORING
WITH SYMBOL INJECTION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application 1s related to the following com-
monly-owned, presently-pending application(s): application
Ser. No. 10/209,283, filed Jul. 30, 2002, entitled “System
and Methodology Providing Compiler-Assisted Refactor-
ing”. The disclosure of the foregoing application i1s hereby
incorporated by reference in 1ts entirety, including any
appendices or attachments thereof, for all purposes.

COPYRIGHT STATEMENT

A portion of the disclosure of this patent document
contains material which 1s subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Oflice
patent file or records, but otherwise reserves all copyright
rights whatsoever.

APPENDIX DATA

Computer Program Listing Appendix under Sec. 1.52(e):
This application includes a transmittal under 37 C.F.R. Sec.
1.52(e) of a Computer Program Listing Appendix. The
Appendix, which comprises text file(s) that are IBM-PC
machine and Microsoft Windows Operating System com-
patible, includes the below-listed file(s). All of the material
disclosed 1n the Computer Program Listing Appendix can be
found at the U.S. Patent and Trademark Office archives and
1s hereby incorporated by reference into the present appli-
cation.

Object Description: SourceCode.txt, size 17.2 KB, cre-
ated Aug. 24, 2004, 3:02 pm; Object ID: File No. 1; Object

Contents: Source Code.

BACKGROUND OF INVENTION

1. Field of the Invention

The present invention relates generally to a system pro-
viding methods for facilitating development and mainte-
nance ol soltware applications or systems, with particular
emphasis on a system and methodology for asynchronous
code refactoring.

2. Description of the Background Art

Before a digital computer may accomplish a desired task,
it must receive an appropriate set of instructions. Executed
by the computer’s microprocessor, these instructions, col-
lectively referred to as a “computer program,” direct the
operation of the computer. Expectedly, the computer must
understand the mstructions which 1t receives before 1t may
undertake the specified activity.

Owing to their digital nature, computers essentially only
understand “machine code,” 1.e., the low-level, minute
instructions for performing specific tasks—the sequence of
ones and zeros that are interpreted as specific istructions by
the computer’s microprocessor. Since machine language or
machine code i1s the only language computers actually
understand, all other programming languages represent
ways ol structuring human language so that humans can get
computers to perform specific tasks. While 1t 1s possible for
humans to compose meaningful programs 1n machine code,

10

15

20

25

30

35

40

45

50

55

60

65

2

practically all software development today employs one or
more of the available programming languages. The most
widely used programming languages are the “high-level”
languages, such C++, Pascal, or more recently Java® and
C#. These languages allow data structures and algorithms to
be expressed 1n a style of writing that 1s easily read and
understood by fellow programmers.

A program called a “compiler” translates these instruc-
tions into the requisite machine language. In the context of
this translation, the program written 1n the high-level lan-
guage 1s called the “source code” or source program.

The ultimate output of the compiler 1s a compiled module
such as a compiled C++“object module,” which includes
instructions for execution ultimately by a target processor, or
a compiled Java® class, which includes bytecodes for
execution ultimately by a Java® virtual machine. A Java®
compiler generates platform-neutral “bytecodes”—an archi-
tecturally neutral, intermediate format designed for deploy-
ing application code ethiciently to multiple platforms.

Integrated development environments, such as Borland’s
JBuilder®, Delphi (trademark) and C# Builder (trademark),
are the preferred application development environments for
quickly creating production applications. Such environ-
ments are characterized by an integrated development envi-
ronment (IDE) providing a form painter, a property getter/
setter manager (“inspector”), a project manager, a tool
palette (with objects which the user can drag and drop on
forms), an editor, a debugger, and a compiler. In general
operation, the user “paints” objects on one or more forms,
using the form painter. Attributes and properties of the
objects on the forms can be modified using the property
manager or inspector. In conjunction with this operation, the
user attaches or associates program code with particular
objects on the screen (e.g., button object). Typically, code 1s
generated by the IDE 1n response to user actions in the form
painter and the user then manipulates the generated code
using the editor. Changes made by the user to code 1n the
editor are retlected 1n the form painter, and vice versa. After
the program code has been developed, the compiler 1s used
to generate binary code (e.g., Java® bytecode) for execution
on a machine (e.g., a Java® virtual machine).

Although integrated development environments facilitate
the development of applications, 1ssues remain in the devel-
opment and use of such applications. One problem 1s that
when a large software program or application evolves over
time 1t 1s common that the mitial design gets lost as features
that were not in the original specification are added to the
application. One way of dealing with this problem of making
changes 1s to design everything with the maximum amount
of flexibility. However, this will often lead to unnecessary
complexity 1n the software application, as 1t 1s unknown
betorehand which parts of the application will require this
additional flexibility. Irrespective of how well a system 1s
mitially designed or developed, the system 1s typically
modified from time to time during its useful life to improve
performance, to accommodate changing needs, to make the
system easier to maintain, or for various other reasons.

“Refactoring™ 1s a practice of making structured changes
to soltware applications or systems which add the desired
flexibility, but keep the functionality of the system the same.
Refactoring mnvolves taking small individual steps that are
well defined and that can be applied 1n succession to yield
more significant changes. For example, a developer may
wish to perform a “rename refactoring” to change the name
of a particular module (e.g., a class name 1n a Java®
program). In order to make this change, the user must locate
the definition of this class (1.e., the source code for the class)

Us 7,370,318 Bl

3

as well as all uses of the class 1n other portions of the system.
In the case of a class name 1n a Java® program, the class
name 1s typically used not only for defining a variable, but
also for constructing instances (or objects) of that class and
accessing static members of the class (i.e., class variables).
Another example of refactoring may involve moving a
specified class to a new package (referred to as “move
refactoring’).

Refactoring of a system may be small or extensive, but
even small changes can introduce errors or “defects” mnto the
system. Accordingly, refactoring must be done correctly and
completely 1 order to be effective. Good refactoring
requires a mechanism for quickly and accurately 1dentifying,
definitions and usage of a given symbol 1n a plurality of
source files. The “symbols” that may be mvolved in refac-
toring include, for example, package names, class names,
interfaces, methods, fields, variables, and properties. Iden-
tification of definitions and usage of a given symbol enables
refactoring to be performed responsibly and durably so that
no defects are introduced and no behavior 1s changed
beyond the desired improvements in features, performance,
and/or maintainability.

A particular problem 1n refactoring a complex application
or system 1s that the application or system may be made up
of a number of different modules that are separately devel-
oped. Conventionally, creation of a software application or
system 1ncludes creation of individual source code modules.
This approach simplifies program development by dividing
functionality available in the program into separate source
modules. It should be noted that for purposes of the follow-
ing discussion the terms “source code” or “source” will refer
to source code or any kind of intermediate language repre-
sentation (IR) of a program. When multiple source modules
are employed for creating a program, interdependencies
between the individual modules often exist. Program logic
in a first module can, for instance, reference wvariables,
methods, objects, and symbols 1mported from a second
module. By the very same token, the first module can also
export 1its own methods, objects, and symbols, making them
available for use by other modules. Because of interdepen-
dencies between modules, when a particular source module
1s refactored (e.g., by a developer), the developer must
ensure that the modifications made during the refactoring are
compatible with the other modules of the program. A par-
ticular concern 1s, therefore, that the changes made during
the refactoring might “break” the system, because the
change 1s incompatible with other, dependent modules of the
system.

A common problem 1n the lifecycle of a software system
1s the ability to change application programming interfaces
(APIs) in libraries. Any change of the API 1n a library which
may result from changing source(s) of the library may result
in errors in the parsing/attribution of the clients of this
library (heremafter “dependents™). This may limit or prevent
the execution of traditional refactorings for the library. For
example, a system may include both a library and a separate
application module that uses (1.e., 1s dependent upon) the
library. In this case the refactoring of the library may aflect
the application that 1s dependent upon the library. Generally,
in this environment 1f refactoring occurs 1n one module (e.g.,
the library), then i1t must also be applied to the other
module(s) that are dependent on 1t (e.g., the application
module 1n this example).

Consider the same example of a library that has one or
more applications dependent upon 1t. The library may, for
example, be written and supplied by one company or orga-
nization and used by one or more other organizations in

10

15

20

25

30

35

40

45

50

55

60

65

4

vartous applications. These applications that are written
using the library are dependent upon the library. Accord-
ingly, 11 the library 1s refactored, the dependent applications
will be out of sync with the library and compilation errors
may occur when they attempt to use the library. Unless the
refactoring relates only to internal aspects of the library that
are not used by any dependent applications, when the library
1s refactored, corresponding changes also need to be made to
dependent applications.

The following discussion will use an example of one or
more applications that are dependent upon a library. How-
ever, 1t should be noted this 1s only one example of 1items of
solftware that are dependent upon one another. Other
examples include, but are not limited to: a client portion of
an application and a server portion of the application as well
as a user interface (UI) portion of a system and a non-UI
portion of the system. Various different source components
of a software system (e.g., application) may be developed by
different developers that may be geographically distributed
in different parts of the world. When these components are
integrated 1nto a system they need to work with each other
and changes made to one component may impact other
components of the system.

This problem 1s typically addressed 1n one of the follow-
ing ways in current systems. One approach 1s to manually
refactor the source dependent module(s) to implement the
same changes made to the refactored dependee module. For
instance, 1n the case of a refactoring of a library on which an
application 1s dependent, this would generally involve build-
ing the application against the refactored library to find
compiler errors and then manually 1dentifying and fixing all
of these errors. Disadvantages of this approach include that
this manual refactoring solution 1s both tedious and error
prone. A developer has to find all the errors (e.g., by building
the application against the library and finding compiler
errors) and then manually fix them. He or she might miss
some of the errors or may otherwise introduce incorrect
behavior. In some cases the application may compile, even
though underlying errors remain that were not addressed.
Another problem 1s the possibility that new errors may be
introduced during the manual fix-up process.

Another possible approach 1s to modily the library (de-
pendee module) mn such a way that the old behavior 1s
maintained. For example, 1t may possible to do so by
providing for duplication in the refactored library. This may
involve retaining the existing functionality (before the refac-
toring) 1n the library so as to continue to provide support to
any dependent modules (e.g., the application 1in this
example). The new or additional functionality provided by
the refactoring would then also be provided—ifor example
with different names and with somewhat different behavior.

Another similar alternative 1s to provide an abstract layer
between the application and the (newly refactored) library.
The abstract layer can serve to forward the calls to the
appropriate routines of the refactored library. However, this
approach also adds considerable complexity to the library
and may serve to make the refactoring impractical in many
cases. Disadvantages of these approaches of supporting
multiple iterfaces or to retrofitting support for old versions
into the newly refactored library include that they will cause
the library to become more complex and, therefore, may also
make 1t more fragile and susceptible to error. Use of either
ol these approaches also makes the library more difficult to
design and implement and may take away many of the
advantages of refactoring the library in the first place.

This 1s, 1n fact, another common alternative. In order to
avoild these type of compatibility problems, users often

Us 7,370,318 Bl

S

simply elect not to perform any refactoring of the library (or
other dependee module) i the first place. This avoids the
above-described compatibility problems, but has the disad-
vantage of limiting the ability to implement needed changes.

What 1s needed 1s a solution that facilitates refactoring of
a plurality of interdependent modules. The solution should
enable refactorings of these modules to be performed even
though the modules may be included in separate projects.
The solution should also automate the refactoring process so
as to improve productivity and reduce the possibility of
error. Ideally, the solution should enable a first program or
module to be refactored at one time and at a later date
tacilitate the application of the appropriate changes to a
second module that 1s dependent upon the first one. The
present invention provides a solution for these and other
needs.

SUMMARY OF INVENTION

A system and methodology for asynchronous code refac-
toring with symbol 1njection 1s described. In one embodi-
ment, for example, a method of the present invention 1s
described for refactoring a plurality of interdependent soit-
ware modules that reside 1n separate projects, the method
comprises steps ol: 1n response to a change that affects a
particular symbol of a software module that resides 1n a first
project, refactoring the software module of the first project
to propagate the change to all instances of the particular
symbol 1n the software module; during the refactoring of the
software module of the first project, recording meta data
about the refactoring that i1s required to effect the change;
and automatically propagating the change to a dependent
soltware module residing in a second project, by refactoring
the dependent software module based on the recorded meta
data about the refactoring that occurred to the software
module of the first project.

In another embodiment, for example, a system of the
present invention for automatically applying a refactoring to
a second soltware module based on a refactoring of a first
soltware module 1s described that comprises: a recording
module for recording information about changes made to the
first software module during a refactoring of the first soit-
ware module; an 1njector module for copying symbol infor-
mation about at least one symbol of the first software module
into a symbol table for the second software module; and a
refactoring module for automatically applying a refactoring
to the second software module using the symbol table and
the recorded information about changes made to the first
software module.

In yet another embodiment, for example, a method of the
present invention 1s described for asynchronous refactoring
of a plurality of interdependent soitware programs, the
method comprises steps of: refactoring a first software
program so as to change symbols of the first software
program; recording information about changes made to
symbols of the first software program during the refactoring
of the first software program; and subsequently, applying the
refactoring to a second software program dependent upon
the first software program by automatically propagating,
changes to symbols of the second software program based
on the recorded information.

In another embodiment, for example, a method of the
present 1invention 1s described for applying a refactoring to
a plurality of software modules, the method comprises steps
of: recording information about changes made to a first
software module during a refactoring of the first software
module; creating at least one symbol table entry based upon

5

10

15

20

25

30

35

40

45

50

55

60

65

6

the recorded information about changes made to the first
solftware module; 1njecting the at least one symbol table
entry 1mnto a symbol table for a second software module; and
refactoring the second software module using the symbol
table and the recorded information about changes made to
the first software module.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 1s a very general block diagram of a computer
system (e.g., an IBM-compatible system) 1n which software-
implemented processes of the present mmvention may be
embodied.

FIG. 2 1s a block diagram of a soltware system for
controlling the operation of the computer system.

FIG. 3A 1s a block diagram of a Java® development
system suitable for implementing the present invention.

FIG. 3B 1s a block diagram 1llustrating the virtual machine
of FIG. 3A 1n further detail.

FIG. 4 1s a high-level flow diagram 1llustrating the process
of performing an asynchronous refactoring of two interde-
pendent modules.

FIG. SA 1s a screenshot of the development or program-
ming interface mcluding a distributed refactorings window
provided in the currently preferred embodiment of the
present 1nvention.

FIG. 5B 1s a screenshot of the development or program-
ming interface including a refactoring history window pro-
vided 1n the currently preferred embodiment of the present
ivention.

FIG. 6 1s a flowchart illustrating the methodology of the
present mnvention for refactoring of a dependent module with
direct injection of one or more symbols mto symbol tables.

FIG. 7 1s a flowchart illustrating the methodology of the
present invention for refactoring of a dependent module with
indirect 1jection of symbols mto symbol tables.

DETAILED DESCRIPTION

Glossary

The following definitions are offered for purposes of
illustration, not limitation, in order to assist with understand-
ing the discussion that follows.

Bytecode: A virtual machine executes virtual machine
low-level code instructions called bytecodes. Both the Sun
Microsystems Java® virtual machine and the Microsofit
NET wvirtual machine provide a compiler to transform the
respective source program (1.e., a Java® program or a C#
program, respectively) into virtual machine bytecodes.

Compiler: A compiler 1s a program which {translates
source code into binary code to be executed by a computer.
The compiler derives 1ts name from the way it works,
looking at the entire piece of source code and collecting and
reorganizing the instructions. Thus, a compiler differs from
an 1nterpreter which analyzes and executes each line of code
in succession, without looking at the entire program. A “Java
compiler” translates source code written 1n the Java® pro-
gramming language into bytecode for the Java® virtual
machine. For general background on the construction and
operation ol compilers, see e.g., Fischer et al., “Crafting a
Compiler with C”, Benjamin/Cummings Publishing Com-
pany, Inc., 1991, the disclosure of which 1s hereby 1ncorpo-
rated by reference for purposes of 1llustrating the state of the
art.

Java: Java® 1s a general purpose programming language
developed by Sun Microsystems. Java® 1s an object-ori-
ented language similar to C++, but simplified to eliminate

Us 7,370,318 Bl

7

language features that cause common programming errors.
Java® source code files (files with a .java extension) are
compiled into a format called bytecode (files with a .class
extension), which can then be executed by a Java® inter-
preter. Compiled Java® code can run on most computers
because Java® interpreters and runtime environments,
known as Java® virtual machines (VMs), exist for most
operating systems, including UNIX, the Macintosh OS, and
Windows. Bytecode can also be converted directly into
machine language instructions by a just-in-time (JIT) com-
piler. Further description of the Java® Language environ-
ment can be found in the technical, trade, and patent
literature; see e.g., Gosling, J. et al., “The Java Language
Environment: A White Paper,” Sun Microsystems Computer
Company, October 1995, the disclosure of which is hereby
incorporated by reference. For additional information on the
Java® programming language (e.g., version 2), see e.g.,
“Java 2 SDK, Standard Edition Documentation, version
1.4.2,” from Sun Microsystems, the disclosure of which 1is
hereby incorporated by reference. A copy of this documen-
tation 1s available via the Internet (e.g., currently at java-
sun.com/j2se/1.4.2/docs/index.html).

XML: XML stands for Extensible Markup Language, a
specification developed by the World Wide Web Consortium
(W3C). XML 1s a pared-down version of the Standard
Generalized Markup Language (SGML), a system for orga-
nizing and tagging elements of a document. XML 1s
designed especially for Web documents. It allows designers
to create their own customized tags, enabling the definition,
transmission, validation, and interpretation of data between
applications and between organizations. For further descrip-
tion of XML, see e.g., “Extensible Markup Language
(XML) 1.0”, (2nd Edition, Oct. 6, 2000) a recommended
specification from the W3C, the disclosure of which 1s
hereby incorporated by reference. A copy of this specifica-

tion 1s available wvia the Internet (e.g., currently at
www.w3.org/ TR/REC-xml).

Introduction

Referring to the figures, exemplary embodiments of the
invention will now be described. The following description
will focus on the presently preferred embodiment of the
present ivention, which 1s implemented in desktop and/or
server soltware (e.g., driver, application, or the like) oper-
ating 1n an Internet-connected environment running under an
operating system, such as the Microsoit Windows operating
system. The present invention, however, 1s not limited to any
one particular application or any particular environment.
Instead, those skilled 1n the art will find that the system and
methods of the present invention may be advantageously
embodied on a variety of different platforms, including
Macintosh, Linux, Solaris, UNIX, FreeBSD, and the like.
Theretfore, the description of the exemplary embodiments
that follows 1s for purposes of 1llustration and not limitation.
The exemplary embodiments are primarily described with
reference to block diagrams or flowcharts. As to the tlow-
charts, each block within the flowcharts represents both a
method step and an apparatus element for performing the
method step. Depending upon the implementation, the cor-
responding apparatus element may be configured in hard-
ware, software, firmware, or combinations thereof.

Computer-Based Implementation

Basic System Hardware (e.g., for Desktop and Server
Computers)

The present invention may be implemented on a conven-
tional or general-purpose computer system, such as an
IBM-compatible personal computer (PC) or server com-

10

15

20

25

30

35

40

45

50

55

60

65

8

puter. FIG. 1 1s a very general block diagram of a computer
system (e.g., an IBM-compatible system) in which software-
implemented processes of the present immvention may be
embodied. As shown, system 100 comprises a central pro-
cessing umt(s) (CPU) or processor(s) 101 coupled to a
random-access memory (RAM) 102, a read-only memory
(ROM) 103, akeyboard 106, a printer 107, a pointing device
108, a display or video adapter 104 connected to a display
device 105, a removable (mass) storage device 115 (e.g.,
floppy disk, CD-ROM, CD-R, CD-RW, DVD, or the like),
a fixed (mass) storage device 116 (e.g., hard disk), a com-
munication (COMM) port(s) or interface(s) 110, a modem
112, and a network intertace card (NIC) or controller 111
(c.g., Ethernet). Although not shown separately, a real time
system clock 1s included with the system 100, in a conven-
tional manner.

CPU 101 comprises a processor of the Intel Pentium
family of microprocessors. However, any other suitable
processor may be utilized for implementing the present
invention. The CPU 101 communicates with other compo-
nents of the system via a bi-directional system bus (1nclud-
ing any necessary input/output (1/0) controller circuitry and
other “glue” logic). The bus, which includes address lines
for addressing system memory, provides data transfer
between and among the various components. Description of
Pentium-class microprocessors and their instruction set, bus
architecture, and control lines 1s available from Intel Cor-
poration of Santa Clara, Calif. Random-access memory 102
serves as the working memory for the CPU 101. In a typical
configuration, RAM of sixty-four megabytes or more 1s
employed. More or less memory may be used without
departing from the scope of the present immvention. The
read-only memory (ROM) 103 contains the basic input/
output system code (BIOS)—a set of low-level routines 1n
the ROM that application programs and the operating sys-
tems can use to iteract with the hardware, including reading
characters from the keyboard, outputting characters to print-
ers, and so forth.

Mass storage devices 115, 116 provide persistent storage
on fixed and removable media, such as magnetic, optical or
magnetic-optical storage systems, flash memory, or any
other available mass storage technology. The mass storage
may be shared on a network, or 1t may be a dedicated mass
storage. As shown 1n FIG. 1, fixed storage 116 stores a body
of program and data for directing operation of the computer
system, including an operating system, user application
programs, driver and other support files, as well as other data
files of all sorts. Typically, the fixed storage 116 serves as the
main hard disk for the system.

In basic operation, program logic (including that which
implements methodology of the present invention described
below) 1s loaded from the removable storage 115 or fixed
storage 116 1nto the main (RAM) memory 102, for execution
by the CPU 101. During operation of the program logic, the
system 100 accepts user mput from a keyboard 106 and
pointing device 108, as well as speech-based mput from a
volice recognition system (not shown). The keyboard 106
permits selection of application programs, entry of key-
board-based iput or data, and selection and manipulation of
individual data objects displayed on the screen or display
device 105. Likewise, the pointing device 108, such as a
mouse, track ball, pen device, or the like, permits selection
and manipulation of objects on the display device. In this
manner, these mput devices support manual user input for
any process running on the system.

The computer system 100 displays text and/or graphic
images and other data on the display device 105. The video

Us 7,370,318 Bl

9

adapter 104, which 1s interposed between the display 105
and the system’s bus, drives the display device 10S5. The
video adapter 104, which includes video memory accessible
to the CPU 101, provides circuitry that converts pixel data
stored 1n the video memory to a raster signal suitable for use
by a cathode ray tube (CRT) raster or liquid crystal display
(LCD) momnitor. A hard copy of the displayed information, or
other information within the system 100, may be obtained
from the printer 107, or other output device. Printer 107 may
include, for instance, an HP Laserlet printer (available from
Hewlett Packard of Palo Alto, Calit.), for creating hard copy
images ol output of the system.

The system 1tself communicates with other devices (e.g.,
other computers) via the network interface card (NIC) 111
connected to a network (e.g., Ethernet network, Bluetooth
wireless network, or the like), and/or modem 112 (e.g., 56K
baud, ISDN, DSL, or cable modem), examples of which are
available from 3Com of Santa Clara, Calif. The system 100
may also communicate with local occasionally-connected
devices (e.g., serial cable-linked devices) via the communi-
cation (COMM) mterface 110, which may include a RS-232
serial port, a Universal Serial Bus (USB) interface, or the
like. Devices that will be commonly connected locally to the
interface 110 include laptop computers, handheld organiz-
ers, digital cameras, and the like.

IBM-compatible personal computers and server comput-
ers are available from a variety of vendors. Representative
vendors include Dell Computers of Round Rock, Tex.,
Hewlett-Packard of Palo Alto, Calif., and IBM of Armonk,
N.Y. Other suitable computers include Apple-compatible
computers (e.g., Macintosh), which are available from Apple
Computer of Cupertino, Calif., and Sun Solaris worksta-
tions, which are available from Sun Microsystems of Moun-
tain View, Calif.

Basic System Soltware

FIG. 2 1s a block diagram of a software system for
controlling the operation of the computer system 100. As
shown, a computer software system 200 1s provided for
directing the operation of the computer system 100. Soft-
ware system 200, which 1s stored 1n system memory (RAM)
102 and on fixed storage (e.g., hard disk) 116, includes a
kernel or operating system (OS) 210. The OS 210 manages
low-level aspects of computer operation, including manag-
ing execution of processes, memory allocation, file input and
output (I/0), and device I/O. One or more application
programs, such as client application software or “programs”
201 (e.g., 201q, 2015, 201c, 2014d) may be “loaded” (i.e.,
transierred from fixed storage 116 into memory 102) for
execution by the system 100. The applications or other
software mtended for use on the computer system 100 may
also be stored as a set of downloadable processor-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., Web server).

Software system 200 includes a graphical user interface
(GUI) 215, for receiving user commands and data in a
graphical (e.g., “point-and-click™) fashion. These inputs, 1n
turn, may be acted upon by the system 100 in accordance
with instructions from operating system 210, and/or client
application module(s) 201. The GUI 2135 also serves to
display the results of operation from the OS 210 and
application(s) 201, whereupon the user may supply addi-
tional inputs or terminate the session. Typically, the OS 210
operates 1n conjunction with device drivers 220 (e.g., “Win-
sock” driver—Windows” implementation of a TCP/IP stack)
and the system BIOS microcode 230 (1.e., ROM-based
microcode), particularly when interfacing with peripheral
devices. OS 210 can be provided by a conventional operat-

10

15

20

25

30

35

40

45

50

55

60

65

10

ing system, such as Microsoft Windows 9x, Microsofit
Windows NT, Microsoft Windows 2000, or Microsoit Win-
dows XP, all available from Microsoit Corporation of Red-
mond, Wash. Alternatively, OS 210 can also be an alterna-
tive operating system, such as the previously mentioned
operating systems.

Java® Development Environment

Java® 1s a simple, object-oriented language which sup-
ports multi-thread processing and garbage collection.
Although the language 1s based on C++, a superset of C, 1t
1s much simpler. More importantly, Java® programs are
“compiled” 1nto a binary format that can be executed on
many different platforms without recompilation. A typical
Java® system comprises the following set of interrelated
technologies: a language specification; a compiler for the
Java® language that produces bytecodes from an abstract,
stack-oriented machine; a virtual machine (VM) program
that interprets the bytecodes at runtime; a set of class
libraries; a runtime environment that includes bytecode
verification, multi-threading, and garbage collection; sup-
porting development tools, such as a bytecode disassembler;
and a browser (e.g., Sun’s “Hot Java” browser).

FIG. 3A 1s a high-level block diagram illustrating a Java®
development system 300 suitable for implementing the
present invention. As shown, the Java® development system
300 includes a client 310 which employs a virtual machine
320 for executing programs. In particular, the client 310
executes a “compiled” (1.e., bytecode or pseudo-compiled)
Java® program 340, which has been created by compiling a
Java® source code program or script 305 with a Java®
compiler 330. Here, the Java® source code program 305 1s
an application program written in the Java® programming
language; the pseudo-compiled program 340, on the other
hand, comprises the bytecode emitted by the compiler 330.
The virtual machine 320 includes a runtime interpreter for
interpreting the Java® bytecode program 340. During opera-
tion, the client 310 simply requests the virtual machine 320
to execute a particular Java® compiled program.

During development of a software program, a user typi-
cally edits source listings which are displayed 1n a text editor
or stmilar editing surface of the development system. Spe-
cifically, “symbols” which comprise the source listings are
displayed on the editing surtface. The symbols are the basic
constructs which are employed for developing software
(e.g., application software). The source listings are then
compiled into a solftware program, such as application or
system software. Needless to say, a program of even modest
complexity will have numerous symbols which somehow
must be managed by the programmer. And for object-
oriented programming systems in particular, the symbols
will often comprise a complex hierarchy—one which may
be conceptually difhicult to visualize.

Compilation of source code typically involves several
related operations. First, the input stream 1s scanned to break
the source code files 1nto a sequence of tokens or meaningiul
groups ol characters. After scanning, the sequence of tokens
1s parsed to generate an abstract syntax tree or “parse tree”
representation of the source code. Every programming lan-
guage has a syntax—a set of grammar rules which specifies
how statements and expression 1n that language are correctly
written. A language’s syntax dictates how compilers and
interpreters translate programs. Knowledge about a source
language’s syntax 1s usually built into the “parser” of a
compiler. The parser controls the translation process, since
it analyzes the source program based on the syntax. The
structure of a parser’s routines 1s dictated largely from the
syntax or formal grammar of the underlying language. The

Us 7,370,318 Bl

11

syntax describes how sentences can be formed 1n a general
way. The parser’s subroutines use the grammar to build the
“parse tree” representation, which 1s a convenient way for a
computer to represent the source listings.

The parsing process also generally includes resolution of °

symbol declarations as well as semantic analysis to verily
the source code as a sequence of valid statements or expres-
s1ons 1n the applicable programming language. The compiler
also builds a symbol table and other supporting data struc-
tures for annotating each node 1n the parse tree with parse or
type information. The output from these scanning and pars-
ing operations 1s a parse tree 1 which nodes are annotated
with either type or symbol information. Following these
scanning and parsing operations, the annotated parse tree 1s
usually optimized by a code optimizer to optimize data
references globally within a program. After optimization, a
code generator generates mstructions or binary code for the
target processor. Code generation may also include addi-
tional machine-dependent optimization of the program. Fol-
lowing compilation, the object code may also be “linked” or
combined with runtime libraries (e.g., standard runtime
library functions) to generate executable program(s), which
may be executed by a target processor. The runtime libraries
include previously compiled standard routines, such as
graphics, mput/output (I/O) routines, startup code, math
libraries, and the like. The result of the above process 1s that
the high level source code files have been translated into
machine readable binary code which may then be executed.

For general background on the construction and operation
of compilers, see e.g., Fischer et al., “Crafting a Compiler
with C”, Bemjamin/Cummings Publishing Company, Inc.,
1991, the disclosure of which 1s hereby incorporated by
reference for purposes of illustrating the state of the art.

Also shown at FIG. 3A 1s the modification of the devel-
opment system 300 to implement the present invention. As
shown, a refactoring module 335 1s provided for implement-
ing the methodology of the present invention for asynchro-
nous refactoring and symbol injection. The asynchronous
refactoring operations of the system are described in detail
below.

FIG. 3B i1s a block diagram 1illustrating the virtual machine
320 of FIG. 3A 1n further detail. As shown in FIG. 3B, the
virtual machine 320 comprises a class loader 321, a byte-
code verifier 322, a bytecode mterpreter 323, and runtime
support libraries 324. The class loader 321 1s responsible for
unpacking the class file which has been requested by a
client. Specifically, the class loader 321 will unpack different
sections of a file and instantiate in-memory corresponding
data structures. The class loader will invoke 1tself recur-
sively for loading any superclasses of the current class
which 1s being unpacked.

The bytecode venfier 322 verifies the bytecode as fol-
lows. First, 1t checks whether the class has the correct access
level. Since the class will access other classes for invoking
their methods, the bytecode verifier 322 must confirm that
appropriate access 1s 1n place. Additionally, the bytecode
verifier confirms that the bytecode which comprises the
methods 1s not itself corrupt. In this regard, the bytecode
verifier confirms that the bytecode does not change the state
of the virtual machine (e.g., by manipulating pointers).

Once the bytecode has been verified, a “class imitializer”
method 1s executed. It serves, 1n eflect, as a constructor for
the class. The 1nitializer 1s not a constructor 1n the sense that
it 15 used to construct an instance of a class—an object. The
class 1nitializer, 1n contrast, initializes the static variables of

10

15

20

25

30

35

40

45

50

55

60

65

12

the class. These static variables comprise the variables
which are present only once (i.e., only one instance), for all
objects of the class.

Runtime support libraries 324 comprise functions (typi-
cally, written 1n C) which provide runtime support to the
virtual machine, including memory management, synchro-
nization, type checking, and interface invocation. At the
client machine on which a Java® application i1s to be
executed, runtime support libraries 324 are included as part
of the virtual machine; the libraries are not included as part
of the Java® application. The bytecode which 1s executed
repeatedly calls into the runtime support libraries 324 for
invoking various Java® runtime functions.

In the currently preferred embodiment, the Java® devel-
opment system 300 may be provided by Borland®
JBuilder® 10.0, available from Borland Software Corpora-
tion of Scotts Valley, Calif. Further description of the
development system 300 may be found in “Building Appli-
cations with JBuilder (JBuilder 10)” (Part No.
JIXEOO10WW21005bajb), also available from Borland Soft-
ware Corporation, the disclosure of which 1s hereby 1ncor-
porated by reference.

The above-described computer hardware and software are
presented for purposes of illustrating the basic underlying
desktop and server computer components that may be
employed for implementing the present invention. For pur-
poses of discussion, the following description will present
examples 1n which 1t will be assumed that there exists at
least one computer running applications developed using the
Java® programming language. The present invention, how-
ever, 1s not limited to any particular environment or device
configuration. In particular, use of the Java® programming
language 1s not necessary to the imvention, but 1s simply used
to provide a framework for discussion. Instead, the present
invention may be implemented in any type of system
architecture or processing environment capable of support-
ing the methodologies of the present invention presented 1n
detail below. The following description will focus on those
features of the development system 300 which are helpiul
for understanding the methodology of the present invention
for asynchronous refactoring.

Overview ol System and Methodology for Asynchronous
Refactoring

The present invention comprises a system providing
methodology for performing an asynchronous refactoring of
interdependent modules of a system. The present invention
enables users to perform a refactoring of a first module (e.g.,
a library) at one point in time and to apply the same
refactoring to another dependent module (e.g., an applica-
tion dependent on the library) at a later time. The refactoring,
process 1s automated so as to avoid manually refactoring the
dependent module, which can be tedious and error prone.
The following discussion will use examples of one or more
applications that are dependent upon a library for purposes
of 1llustrating the operation of the present invention. How-
ever, as described above this 1s only one example of depen-
dent modules with which the present invention may be
utilized. Those skilled 1n the art will appreciate that the
methodology of the present invention may be used with
various different types of interdependent components
including, for example, a client component of an application
and a server component of an application or a user interface
component of a system and a non-Ul component of a
system.

The general approach of the present invention for asyn-
chronous refactoring of two (or more) dependent modules

Us 7,370,318 Bl

13

can be summarized as follows. When an original (or first)
refactoring of a first (or “dependee”) software module (e.g.,
a first software module or program which resides 1n a {first
project) 1s performed, meta information regarding the refac-
toring 1s recorded (e.g., tracked and persistently stored). The
meta mnformation that 1s recorded about the refactoring of
the dependee includes, but 1s not limited to, any particular
“symbol(s)” being aflected by the refactoring and the spe-
cifics of the changes that are made. For purposes of this
document, the term “symbol(s)” refers to any type of lan-
guage symbol(s), including, but not limited to class symbols,
method symbols, variable symbols, and function symbols
(sometimes hereinafter referred to as ClassSymbol, Meth-
odSymbol, VariableSymbol, FunctionSymbol, respectively).
Subsequently, when one or more “dependent” module(s) are
refactored (e.g., a second software module residing 1n a
second project), the system of the present mvention per-
forms the refactoring based on the recorded meta informa-
tion. This serves to apply the corresponding changes to the
dependent module(s) necessary to maintain compatibility
with the refactored dependee module.

The recorded refactoring meta information 1s applied to
the dependent module(s) 1n two phases or sets of operations.
In the first phase, entries for or more symbols are copied (or
injected) into the symbol table (e.g., compiler symbol table)
used for building the dependent module (e.g., application)
based on the recorded refactoring meta information. In the
second phase, the actual refactoring of the dependent mod-
ule(s) 1s performed, using a conventional refactoring on the
dependent module(s) that were fixed up 1n the first phase.
Each of these phases are described below in greater detail.

In the first phase, all symbol(s) from the dependee
allected by 1ts refactoring are patched by removing and/or
injecting necessary structures that allow parsing of the
refactored symbols. The dependent application’s source
refers to “outdated” symbols that no longer exist in the
dependee (1.e., because of refactoring of the dependee mod-
ule). Accordingly, 1n this first phase a set of temporary
symbols are created to temporarily represent the “outdated”
symbols during the refactoring of the dependent application.
For example, 1t a class has been renamed, symbol informa-
tion regarding the outdated name of the class (1.¢., the name
before rename refactoring) 1s inserted in the correct
namespace. Similarly, 1 a method has been removed (or
added), or the method’s signature has been changed during
the refactoring of the dependee, the appropriate information
1s added or changed (as appropriate) so that the dependent
sources can be parsed/attributed. It should be noted that the
methodology of the present mvention does not require
actually patching all symbols to enable the dependent
sources to be parsed without error. For instance, 1n a given
situation there may be a number of refactorings to be applied
and the present invention enables these refactorings to be
performed one at a time. In some cases, such as the case
involving the mJectlon of a ClassSymbol, all symbol table
entries for the affected class may be fixed up. However, if a
program 1s refactored one method at a time, the present
invention provides for injecting a symbol table entry for
only the method that 1s being refactored.

In the second phase, the source(s) of the dependent
application are parsed/attributed and a refactoring is auto-
matically propagated (or applied) to the dependent based on
the refactoring previously performed on the dependee.
Existing tools and utilities may be used 1n the second phase
to perform the actual refactoring of the dependent applica-
tion (or module) based on the recorded information about
the refactoring of the dependee. It should be noted that either

5

10

15

20

25

30

35

40

45

50

55

60

65

14

the original refactoring of the dependee or any subsequent
refactoring of dependent module(s) can performed using the
compiler-assisted refactoring system and methodology
described 1n commonly-owned, co-pending U.S. patent
application Ser. No. 10/209,283 ftitled “System and Meth-
odology Providing Compiler-Assisted Refactoring™, the dis-
closure of which i1s hereby incorporated by reference. How-
ever, the use of this compiler-assisted refactoring system and
methodology for performing these refactorings 1s not
required, and these refactorings can also be performed using
other refactoring tools and utilities. For example, other IDEs
with refactoring support suitable for use 1n conjunction with
the present invention include Intellil] from JetBrains of
Prague, Czech Republic, Eclipse available from the Eclipse
Foundation (a non-profit, industry consortium), and Borland
Delphi (trademark) from assignee Borland Software Corpo-
ration of Scotts Valley, Calif.

The following 1s a simple example illustrating this pro-
cess. In a traditional refactoring, one starts with an existing
program (e.g., a library) which may include several classes
and methods. For example, the library may include a class
“MyNamespace::OldClass”. The refactoring of the library
may involve a rename refactoring in which the name of this
class 1s changed to “MyNamespace::NewClass”. The meth-

odology of the present imnvention provides that information
about this refactoring 1s recorded (in any form). The
recorded information 1includes that the class
“MyNamespace::OldClass” has been renamed to
ITyNamespace::NewClass™.

&6

If the above library 1s used by an application, the appli-
cation may be aflected by the refactoring of the library. For
example, the application may include references to the
“MyNamespace::OldClass™ class of the library which need
to be updated. The present invention provides for asynchro-
nous refactoring of the application to maintain compatibility
with the refactored library. When refactoring the application
as part of this process, the application will likely not compile
il run against the refactored library. The present mvention
provides for applying an asynchronous refactoring in this
situation as described below.

In applying an asynchronous refactoring to the applica-
tion, the class “MyNamespace::OldClass” 1s first injected in
the classes symbol table used by the parser/attributor. In this
tashion, the old version of the library 1s fixed up to facilitate
the refactoring of the application that 1s dependent on the
library. In this case, a symbol entry for “MyNamespace::
OldClass™ 1s temporarily inserted 1n the symbol table (e.g.,
the compiler symbol table) so that the application can be
compiled and the refactoring can be performed 1n an auto-
mated fashion. The sources of the dependent application
referring to “MyNamespace::0OldClass™ are then parsed and
a conventional refactoring 1s applied to them, so that the
class 1s renamed to “MyNamespace::NewClass”.

The present invention 1s particularly useful 1n automating,
the process of resolving and {ixing errors due to changes in
library API(s). The solution takes the refactoring paradigm
to a new level, providing a quick and easy way to react to
changes 1n a library (or other dependee source(s)) on which
a program 1s dependent. The present mmvention removes
many of the error factors and frustrations which may arise
when this process 1s performed manually. As a result, i1t can
save developer time and eflort 1n making changes during the
lifecycle of a software project, thereby increasing produc-
tivity. The present invention 1s also particularly usetul to
distributors of libraries and other such programs as 1t allows

Us 7,370,318 Bl

15

these distributors to change the public API(s) to their pro-
grams while providing an automated way for their users to

adapt to these changes.

System Components

FIG. 4 1s a high-level flow diagram 400 1illustrating the
process of performing an asynchronous refactoring of two
interdependent modules. The present invention may be used
for performing two (or more) separate refactorings of vari-
ous modules that may have mterdependencies. To 1llustrate
the operations of the present invention, the following dis-
cussion describes the asynchronous refactoring of two mod-
ules: a dependee module (e.g., a library), and a single
dependent module (e.g., an application dependent on the
library). However, the system and methodology of the
present invention may be used for performing a plurality of
refactorings of various types of iterdependent modules.
The following discussion also uses some examples of the
refactoring of a software application written 1n the Java
programming language. However, the reference to Java 1s
only to provide a framework for discussion and the system
and methodology of the present invention may also be used
for refactoring of soiftware systems written 1n a variety of
programming languages.

As shown, the process begins at 401 with the performance
of a refactoring of a first or “dependee” module (e.g., a
library). The module to be refactored may comprise one or
more source liles or listings. The source files may, for
instance, comprise a particular software library that has been
developed to perform particular tasks. The source files may
have been developed using a visual development system
such as Borland JBuilder (registered trademark) or Borland
Delphi (trademark) (both available from assignee Borland
Software Corporation of Scotts Valley, Calif.). Alternatively,
the source files may be developed using a text editor or
another type of development tool and compiled using a
compiler. The refactoring itself that 1s performed at 401 may
be performed using the compiler-assisted refactoring system
and methodology referenced above. Alternatively, the refac-
toring may be performed using another refactoring tool or
utility, as desired.

At 402, information about the refactoring of the library
(dependee) 1s recorded. When the refactoring 1s performed
(e.g., refactoring of the library using this example), meta
information about the refactoring 1s collected. Typically, the
collected information 1s written out and persisted (i.e.,
persistently stored) so that later this information can be used
for a subsequent refactoring of a dependent module. How-
ever, the collected information could alternatively be
streamed out to one or more dependent modules so that the
refactoring of the dependent modules could occur almost in
real time, 1f desired.

In the next stage, the collected information about the
refactoring 1s used for performing a refactoring of another
module (e.g., a dependent application). The system and
methodology of the present invention enables a user to apply
the same refactoring to the dependent application (module)
using the collected information. This second refactoring 1s
typically performed some period of time after completion of
the mnitial refactoring. It should be noted that this second
refactoring could be applied to another module running on
the same machine at which the original refactoring was
performed or on a different machine at a different location.
Also, the dependent module (e.g., application) may be
written using the same programming language or a diflerent
programming language than the dependee module (e.g.,
library).

10

15

20

25

30

35

40

45

50

55

60

65

16

At 403, the recorded meta information about the refac-
toring of the dependee module (e.g., the library) 1s read.
Optionally, information about the refactoring may be pre-
sented to the user at 404. In the currently preferred embodi-
ment of the present invention, a menu option 1s provided to
present a list of refactorings that have been performed in
dependee modules (e.g., 1n the library). Currently, a list of all
ol the refactorings that have been performed and those that
have also been applied to the current module (e.g., the
dependent application) 1s displayed. The user can then select
a refactoring from the list of refactorings that have already
been performed for refactoring of a dependent module. This
menu option 1s provided 1n the system user interface for the
convenience of users; however, 1t 1s not required for imple-
mentation of the present invention.

When a refactoring of the dependent module 1s 1nitiated,
the refactoring 1s performed i1n two general phases. First,
entries for one or more symbol(s) are injected (i.e., copied)
into the symbol table(s) (e.g., compiler symbol table) based
upon the recorded meta information about the original
refactoring at 405. In this example, entries for the symbol(s)
are 1njected into the symbol table(s) used by the application
based on the recorded information from the refactoring of
the library. The recorded refactoring information 1s con-
verted appropriately for the type of refactoring engine that 1s
being used. For example, the refactoring could be performed
with the assistance of the compiler or using another kind of
refactoring engine or utility. Entries for the symbols are
injected into appropriate tables so that 1t 1s possible to apply
a normal refactoring. It should be noted that the imjection of
entries for symbols into a compiler symbol table i1s not
required for implementation of the present invention. The
symbols need to be recorded, tracked, and reused, but a
different type of table can be used instead of a compiler
symbol table.

In the currently preferred embodiment of the present
invention, there are two different mechamsms provided for
injection of symbols: one for directly injecting entries for
symbols into symbol table(s) and a second for doing so 1n an
indirect fashion. The indirect approach involves creating one
or more “stub” source file(s) based on the collected refac-
toring information to represent the “outdated” version of the
dependee module (e.g., the version of the library prior to the
refactoring). When this “stub” source file(s) 1s parsed/
attributed, entry(ies) for the symbol(s) are injected 1nto the
symbol table as a side eflect. It should be noted that the
symbol table entries as well as any stub source files that are
created are only temporary and are removed when the
refactoring 1s complete.

After the injection of symbol(s), the second phase of the
refactoring process proceeds. The actual refactoring of the
application (1.e., the dependent module) 1s then performed as
illustrated at 406. The refactoring that 1s performed 1s a
conventional refactoring that 1s performed based on the
recorded refactoring information. The present invention, in
its currently preferred embodiment, employs the compiler-
assisted refactoring system and methodology described 1n
commonly-owned, co-pending U.S. patent application Ser.
No. 10/209,283 titled “System and Methodology Providing
Compiler-Assisted Refactoring”, above. However, another
tool or utility may be used for performing the refactoring, as
desired. When the refactoring i1s complete, the temporary
symbol entries mjected 1nto the table(s) are removed and the
process 1s complete.

As described above, the asynchronous refactoring meth-
odology of the present invention involves several new steps
or operations as compared to a conventional refactoring of

Us 7,370,318 Bl

17

a single module. These additional operations include col-
lecting/recording meta information about the original refac-
toring, reading the recorded meta information (e.g., at a later
time), and injecting entries for symbol(s) into symbol
table(s) based on the recorded meta information. The origi-
nal refactoring (e.g., of the library at step 401) 1s essentially
conventional except for the addition of the recording of meta
information about the refactoring. The last step (step 406) of
refactoring the application uses the meta information about
the original refactoring to ensure that the appropnate
changes are applied to the dependent module. These opera-
tions are described below 1n more detail.

Detailed Operation

The following description presents method steps that may
be implemented using processor-executable instructions, for
directing operation of a device under processor control. The
processor-executable instructions may be stored on a com-
puter-readable medium, such as CD, DVD, flash memory, or
the like. The processor-executable 1nstructions may also be
stored as a set of downloadable processor-executable
instructions, for example, for downloading and installation
from an Internet location (e.g., Web server).

Recording and Reading Meta Information Regarding
Original Refactoring

When a dependee module 1s refactored, information about
this refactoring (original refactoring) is recorded so that it
can later be applied to any dependent modules. For example,
a rename refactoring of a library may include a class
“MyNamespace::0ldClass™ as described above. The infor-
mation that 1s recorded in this case will include that the
“MyNamespace::0OldClass” class has been renamed to
“MyNamespace::NewClass™.

The writing/recording of meta information and the read-
ing back of this information are relatively straightforward. In
the currently preferred embodiment of the present invention,
meta information regarding the original refactoring that 1s
performed 1s written into an XML format. XML 1s used as
XML provides a language-independent way of representing
information that can be used with Java as well as other
programming languages. However, a diflerent format can be

used for writing (and reading) this meta information it

desired. In the presently preferred embodiment, the docu-

ment type definition (or “DTD”) for reading and writing,

refactoring information 1s 1 XML format as follows:

1: <?xml version="1.0"” encoding="UTF-8” 7>

2: <IELEMENT retactor ({(rename-packagelchange-method-
signaturelrename-methodlrename-fieldlrename-class)™®)>

- <l

ELEMENT declaring-class-name (#PCDATA)>

N o = D

<!IELEMENT rename-method (declaring-class-name,
declared-method-signature, old-method-name, new-
method-name)>

7. <!ATTLIST rename-method creation-time CDATA
#REQUIRED>

8: <!ATTLIST rename-method 1d CDATA #REQUIRED>

9: <!lELEMENT declared-method-signature (#PCDATA)>

10: <!ELEMENT old-method-name (#PCDATA)>

11: <!ELEMENT new-method-name (#PCDATA)>

12:

13:

14: <!ELEMENT rename-class (old-class-name, new-class-
name)>

15: <IATTLIST
HREQUIRED>

16: <!ATTLIST rename-class 1d CDATA #REQUIRED>

CDATA

rename-class creation-time

10

15

20

25

30

35

40

45

50

535

60

65

18

17: <!ELEMENT old-class-name (#PCDATA)>

18: <!ELEMENT new-class-name (#PCDATA)>

19:

20:

21: <!ELEMENT rename-package (old-package-name,

new-package-name)>
22: <!ATTLIST rename-package creation-time CDATA
HREQUIRED>
<!ATTLIST rename-package 1d CDATA #REQUIRED>
<!ELEMENT new-package-name (#PCDATA)>
<!ELEMENT old-package-name (#PCDATA)>

23:
24:
23:
26:
27:
28: <!ELEMENT rename-field (declaring-class-name, old-

field-name, declared-field-type, new-field-name)>
29: <!ATTLIST rename-field creation-time CDATA

#REQUIRED>

<!ATTLIST rename-field id CDATA #REQUIRED>
<!ELEMENT old-field-name (#PCDATA)>
<!ELEMENT declared-field-type (#PCDATA)>
<!IELEMENT new-field-name (#PCDATA)>

Lu' Ll

[T]

30:
31:
32:
33:
34.
33:
36: <!ELEMENT change-method-signature (declaring-
class-name, declared-method-name, old-method-signa-
ture, new-return-type?, new-parameters?)>

37. <!ATTLIST change-method-signature creation-time
CDATA #REQUIRED>

38: <!ATTLIST change-method-signature

#REQUIRED>
39: <!ELEMENT declared-method-name (#PCDATA)>
40: <!ELEMENT old-method-signature (#PCDATA)>
41: <!ELEMENT new-return-type (#PCDATA)>
42: <\ELEMENT new-parameters (parameter+)>
43. <!ELEMENT parameter (parameter-name, parameter-

type, default-value?, old-index, new-index)>
<!IELEMENT parameter-name (#PCDATA)>
<IELEMENT parameter-type (#PCDATA)>
<!IELEMENT default-value (#PCDATA)>
<!ELEMENT old-index (#PCDATA)>
<!IELEMENT new-index (#PCDATA)>

As shown above, a refactoring of a dependee module may
include refactoring operations which would be of interest 1n
the subsequent refactoring of one or more dependent
module(s). These operations include: renaming a package,
changing a method signature, renaming a method, renaming
a field, and/or renaming a class. As described above, the
methodology of the present invention provides for capturing
certain information about the refactoring of the dependee
module. The above DTD specifies the information that 1s
captured. As shown, information about the dependee module
betore and after the refactoring are recorded. For instance, as
illustrated at lines 14-18, when a class 1s renamed the old
(1.e., outdated) class name prior to the refactoring and the
new class name after the refactoring are collected. Informa-
tion before and after the refactoring 1s collected so that this
information can be subsequently used to perform a corre-
sponding refactoring of a dependent module(s).

The captured information 1s then typically stored for later
use. The captured information can be stored 1n any form, in
any media, as desired. Alternatively, the information about
the refactoring could be caught 1n real-time and streamed to
others that would be interested 1n the original refactoring. In
this respect it 1s not necessary that there be some lengthy
delay or intervening period of time between the original
refactoring (e.g., of the library) and the subsequent refac-
toring of the dependent modules (e.g., applications using the

[T] Lu' Ll

—
_‘
—
_1

id CDATA

goNesNes ey T

IL.LJ: L.I.j L.LJ' L.L

44
45:
46:
47:
48:

1

LlJ [[T Lu' Ll

LJ LJ 1] [L1]

Us 7,370,318 Bl

19

library). The information could be caught 1n real-time as the
dependee was refactored and applied almost in real time
through streaming to one or more dependent applications
(modules).

Asynchronous Refactoring User Interface

FIGS. 5A-B are screenshots of a preferred Java-based
visual development or programming interface. FIG. SA 1s a
screenshot of a development or programming interface 500
including a distributed refactorings window 510 provided 1n
the currently preferred embodiment of the present invention.
As shown at FIG. 5A, the distributed refactorings window
510 includes two tabs: a pending refactorings tab 515 and a
completed refactorings tab 520. The pending refactorings
tab 515 provides for the display of a list of the refactorings
that have occurred (e.g., 1n dependee modules). A user may
consult the pending refactorings tab 515 to obtain a list of
refactorings that have been discovered in projects (e.g.,
libraries) on which a given program or module 1s dependent
and which should possibly be applied. (No pending refac-
torings are shown at FIG. SA). It should be noted that the list

of pending refactorings that 1s displayed typically will not
include all refactorings that have been performed 1n
dependee modules. There are some refactorings that only
alflect a single file and there 1s no need to capture or display
information about that type of refactoring. For example,
renaming a local variable that 1s not visible to a client
(dependent) 1s generally not of mterest and does not need to
be captured or displayed. Other refactorings, however, may
need to be distributed into other dependent modules 1n order
to maintain compatibility.

In the presently preferred embodiment a dialog (not
shown at FIG. 5A) allows a developer performing a refac-
toring to decide whether to keep the refactoring information
and distribute 1t to others (1.¢., for possible use 1n refactoring
dependent modules). This dialog 1s provided as there are a
number of circumstances 1 which a developer might not
want to distribute information regarding a refactoring to
others. For example, the developer may know that 1t 1s not
possible for anyone to have used a particular module, so
there 1s no need to capture information about refactoring the
module. A method may, for instance, have been added 1n the
current release of a library that has not yet been distributed
to any users (e.g., applications using the library). In this
case, 1 the new method 1s renamed (rename refactored),
there 1s no need to capture/record information about the
refactoring of the new module as no one was able to use 1t
yet.

The completed refactorings tab 520 lists the refactorings
that have previously been executed that were based on
refactorings of the dependee files (library). The distributed
refactorings window 510 enables a user (e.g., application
developer) to track refactorings that may need to be per-
formed as a result of dependencies on other modules and to
determine the status of the eflort to apply those refactorings
to a given program (e.g., application).

FIG. 5B 1s another view of the development or program-
ming interface 500q¢ which now includes a refactoring
history window 550 provided in the currently preferred
embodiment of the present invention. The refactoring his-
tory window 550 displays information about refactorings
that have been performed. The process of applying a refac-
toring that has been performed on a dependee software
module to a dependent software module so as to maintain
compatibility between two (or more) mterdependent mod-
ules 1s described below 1n more detail.

10

15

20

25

30

35

40

45

50

55

60

65

20

Refactoring with Direct Injection of Symbols

As described above, refactorings of dependent modules
are facilitated by 1njecting entries for symbol(s) mnto symbol
table(s) enabling refactorings of these dependent modules to
be performed in an automated fashion. There are two
mechanisms for injection of symbols supported 1n the cur-
rently preferred embodiment of the present invention which
are referred to as “direct” and “indirect” 1njections.

FIG. 6 1s a flowchart 600 1llustrating the methodology of
the present mvention for refactoring of a dependent module
with direct injection of entries for one or more symbols 1nto
symbol tables. The process starts with a given dependent
module or application that 1s to be refactored based on a
prior refactoring that has been performed. Assume that a
refactoring has been performed that renamed a member
(e.g., renamed a method) of a class of a library on which the
application 1s dependent. For example, a method of the
library may have changed 1ts name from “oldMethodName”™
to “newMethodName”. In order to apply the same refactor-
ing to the application, the symbol 1njection methodology of
the present invention essentially provides for “faking” the
application (existing code) into thinking that the renamed
member (1.¢., oldMethodName) 1s still present in the library.
In this case of renaming a method of a class, the class still
exists 1n the library, but a class member (1.¢., the oldMethod-
Name method of the class) that may be used by the appli-
cation no longer exists in the library as 1t has been renamed.
The present invention provides for a symbol entry repre-
senting this class member (1.e., the oldMethodName) to be
injected into the symbol table so that the rest of the appli-

cation will think that 1t 1s present and will be able to use 1t
in performing a refactoring of the application.

At step 601, the refactoring of the dependent module (e.g.,
application) commences with reading meta information
about the original refactoring. In this case, this includes
determining (looking up) the name of the method before the
rename refactoring (oldMethodName) and after the rename
refactoring (newMethodName) from the meta information
about the refactoring of the library that has been previously
captured. At step 602, symbol table entry(ies) are created
based on the meta information. For instance, a symbol 1s
created for the method with the name before the refactoring
(e.g., the name oldMethodName that no longer actually
exists 1n the library). At step 603, the created symbol(s) 1s
injected (copied) into the symbol table (e.g., compiler sym-
bol table). It should be noted that this symbol table entry 1s
temporary and only exists in the symbol table for as long as
needed to perform the refactoring of the application. It 1s
removed aiter the refactoring 1s complete as provided below.

At step 604, the refactoring of the dependent module (e.g.,
application) 1s performed based on the meta information
about the original refactoring. For instance, the refactoring
of the application 1s performed in an automated fashion by
replacing instances of oldMethodName with newMethod-
Name. In the currently preferred embodiment, this refactor-
ing 1s performed by the system with the assistance of the
compiler (compiler-assisted refactoring). Every place that
the oldMethodName 1s found by the complier 1n the appli-
cation 1s 1dentified and each such instance of oldMethod-
Name 1s replaced correctly with the newMethodName.
When this refactoring of the application 1s complete, the
temporary symbol(s) injected at step 603 are removed from
the symbol table at step 605. In this case, the symbol entry
injected 1nto the symbol table to represent the oldMethod-
Name 1s removed from the symbol table.

The SymbolCreator class of the presently preferred
embodiment that creates symbols for 1injection mto symbol

Us 7,370,318 Bl

21

tables 1s as follows:

1: package com.borland.jbuilder.refactor.async;
2:
3: 1mport com.borland.primetime.util.*;
4.
5: 1mport com.borland.jbuilder.jam.*;
6: 1mport com.borland.jbuilder.java.*;
7: 1mport com.borland.jbuilder.node.*;
8:
9: 1mport com.sun.tools.javac.code.®;
10: 1import com.sun.tools.javac.code.Symbol.*;
11:
12: public class SymbolCreator {
13: private JBProject project;
14: private ClassSymbol classSymbol;
15:
16: private ClassCloner classCloner;
17:
18: Pk
19: * Constructor when a class already exists. Will lookup the
20: * classsymbol required for adding members
21: *
22: * (@param project JBProject
23: * (@param existingClass JamClass
24 *
25: public SymbolCreator(JBProject project,
26: JamClass existingClass) {
27: this.project = project;
28: classSymbol =
Memberlnjector.findClassSymbol(existingClass.getName(), project);
29: }
30:
31: e
32: * Constructor when the class does not exist and needs to be
33: * created from a cloned class
34 *
35: * (@param project JBProject
36: * (@param existingClass JamClass - this the class that will used
37: * to clone the new class
38: * (@param newClass Name String - the name of the

new class once cloned

39: o

40: public SymbolCreator(JBProject project,

41: JamClass existingClass,

42: String newClassName) {

43: this.project = project;

44 classCloner = new ClassCloner(project, existingClass,
newClassName);

45: classSymbol = classCloner.getNewClassSymbol();

46: |}

47:

48:

49:

50: public void clearSymbols() {

51: if (classCloner != null) {

52: classCloner.removeClonedClass();

53: }

54 project.getCompilerManager().purgeCompilerContext();

55: }

56:

57, [*F

58: * From method Name and methodType create a method symbol
for the

59: * class passed in the contructor

60: *

61: * (@param methodName String

62: * (@param method TypelamMethod Type

63: * (@return MethodSymbol

64 *

65: public MethodSymbol addMethodSymbol(String methodName,

66: JamMethodType methodType) {

67: classSymbol = getClassSymbol();

08:

69: String[| parameters =

Jam Util.convertlamTypeToString(method Type.getParameters());

70:

String retumType = methodType.getReturnType().toText();

5

10

15

20

25

30

35

40

45

50

55

60

65

22
-continued
71: MethodSymbol newMethod =
Memberlnjector.addMethodSymbol(classSymbol,
72: Flags. PUBLIC,
73: methodName,
74 returnType,
75: parameters,
76: EmptyArrays.STRING__EMPTY_ ARRAY,
77: project);
78: return newMethod;
79: |}
80
81: /**
82: * From fromField Name and fieldType create a new
VarSymbol for
83: * the class passed 1n the constructor
84 *

83: * (@param fromField Name String

86: * (@param fieldType JamType

R7: * (@return VarSymbol

88: ¥/

89: public VarSymbol addFieldSymbol(String fromFieldName,
JamType fieldType) {

90: classSymbol = getClassSymbol();

O1:

92: VarSymbol newField;

93: newlleld = Memberlnjector.addFieldSymbol(classSymbol,

94 Flags.PUBLIC,
95: fromFieldName,
96: flieldType.toText(),
97: project);
98: return newField;
99: |

100:

101; /**

102: * Get the class symbol found during construction of this class
103: *
104 * (@return ClassSymbol

105: *f

106: public ClassSymbol getClassSymbol() {
107: return classSymbol;

108: }

109: }

The above SymbolCreator class includes two construc-
tors. As shown at lines 25-29, a first constructor 1s used when
a class already exists. This constructor looks up the
ClassSymbol needed for adding members. The second con-
structor at lines 40-46 1s used when the class does not exist
and needs to be created from a cloned class. This constructor
calls the ClassCloner (described below) to clone the class

and gets the ClassSymbol as illustrated at lines 44-43.

As shown i1n the addMethodSymbol routine at lines
65-79, a method symbol 1s then created for the class passed
into the constructor from the methodName and methodType.
As shown, the addMethodSymbol routine of the Member-

Injector class 1s then called to inject the symbol into the
symbol table. The addFieldSymbol method at lines 89-99

creates a new VarSymbol for the class passed into t

1C

constructor based on the fromFieldName and fieldType. T
addFieldSymbol method of the Memberlnjector class
called to 1nject the symbol as shown at lines 93-97.

r

embodiment that performs the direct injection of symbols
as follows:

package com.borland.jbuilder.java;

import com.sun.tools.javac.code.Symbol.ClassSymbol;
import com.sun.tools.javac.code.Symbol.VarSymbol;
import com.sun.tools.javac.code.Symbol.MethodSymbol;

A T N S B N T

he
1S

The Memberlnjector class of the presently preferred

1S

Us 7,370,318 Bl

23

-continued
6: 1mport com.borland.jbuilder.java.filter.FilterHelper;
7: 1mport com.borland.primetime.node.Project;
&: 1mport com.sun.tools.javac.jvm.ClassReader;
9: 1mport com.sun.tools.javac.util.Name;
10: 1mport com.sun.tools.javac.util.Name.Table;
11: import com.sun.tools.javac.comp.Check;
12: 1mport com.sun.tools.javac.comp.Env;
13: 1mport com.sun.tools.javac.util.*;
14: 1mport com.sun.tools javac code.Type;
15: 1mport com.sun.tools.javac.code.Symtab;
16: 1mport com.borland.jbuilder.jam.JamMethod Type;
17: 1mport com.borland.jbuilder.jam.JamType;
18: 1mport com.sun.tools.javac.code. Type.MethodType;
19: 1mport com.borland.primetime.vis.VES;
20:
21: public class Memberinjector {
22: fHk
23: * Lookup for an existing ClassSymbol
24 * (@param fullName String Full name of the class we are
looking for.
23: * (@param project Project Projecxt used for access to
necessary context information.
26: * (@return ClassSymbol The found ClassSymbol or null.
27: *
28: static public ClassSymbol findClassSymbol(String fullName,
Project project) {
29: synchronized
(CompilerManager.instance(project). getManager(true).
30: getContextLock()) {// Alway get the JSp one (for now.)
31: return FilterHelper.lookupClass(fullName,
32: CompilerManager.instance(project).getManager(true).
33: getProjectContext()); // Alway get the JSp one
(for now.)
34: }
35: }
36:
37, [

38: * Removes a ClassSymbol from the ClassSymbol’s table. (For

cleanup purposes)

39: * (@param fullName String Full name of the class to remove from
the table

40: * (@param project Project Project for access to necessary
context information.

41: *

42: static public void removeClassSymbol(String fullName, Project
project) {

43: synchronized
(CompilerManager.instance(project). getManager(true).

44 getContextLock()) {// Alway get the ISp one (for now.)

45: Name.Table names =
Name.Table.instance(CompilerManager. instance(project).

46: getManager(true).getProjectContext()); // Alway get
the JSp one (for now.)

47: Name name = names.fromString(fullName);

48:

ClassReader.instance(CompilerManager.instance(project).getManager(
true).

49: getProjectContext()).classes.remove(name); // Alway
get the JSp one (for now.)

50: Check context =
Check.instance(CompilerManager.instance(project).

51: getManager(true).getProjectContext());

52: context.compiled.remove(name); // Alway get the ISp one
(for now.)

53: }

54. }

55:

56: [/

57: * Lookup for a Field i an owner ClassSymbol.

58: * (@param owner ClassSymbol

59: * (@param name String name of the field

60: * (@param project Project Project for access to necessary
context information.

61: * (@param env Env Used to get the Scope object on which to
perform the lookup.

62: * (@return VarSymbol The found field symbol or null.

63: *

64: static public VarSymbol find FieldSymbol{ClassSymbol owner,
String name, Project project, Env env) {

10

15

20

25

30

35

40

45

50

55

60

65

24

-continued
65: try 4
66: synchronized
(CompilerManager.instance(project).getManager(true).
67: getContextLock()) {// Alway get the ISp one (for now.)
O%: Context context =
CompilerManager.instance(project).getManager(true).
69: getProjectContext(); // Alway get the JSp one
(for now.)
70: ClassSymbol csym =
FilterHelper.lookupClass(owner.flatName(), context);
71:
72: if (csym == null){
73: return null;
74: }
75:
76: return FilterHelper.lookupVar(csym, name, context, env);
77: }
78: }
79: catch (Exception ex) {
80: return null;
81: }
82: }
83:
84: [
85: * Adds a field symbol to the “owner” ClassSymbol
86: * (@param owner ClassSymbol The ClassSymbol to which
to add the field symbol.
R7: * (@param flags long Modifiers of the field symbol
8&: * (@param varName String Name of the field symbol
89: * (@param s'Type String Type of the field symbol
90: * (@param project Project Project for access to necessary
context information.
91: * (@return VarSymbol The newly created field symbol
92: *f
93: static public VarSymbol addFieldSymbol(ClassSymbol owner, long
flags,
94. String varName, String
slype,
95: Project project) {
96: assert owner != null;
97: try {
9%: synchronized
(CompilerManager.instance(project).getManager(true).
99: getContextLock()) {// Alway get the ISp one (for now.)
100; Type type = getTypeFromString(sType, project);
101: assert type != null;
102; VarSymbol ret = null;
103: Name.Table names =
Name.Table.instance(CompilerManager.instance(
104 project).
105; getManager(true).
106: getProjectContext()); // Alway get the JSp one
(for now.)
107: Name name = names.fromString(varName);
10R:
109; ret = new VarSymbol(flags, name, type, owner);
110: owner.members().enter(ret);
111: return ret;
112: }
113: |
114: catch (Exception ex) {
115: return null;
116: }
117: }
118:
119: /**
120; * Lookup for a method in an owner ClassSymbol.
121; *
122: * (@param owner ClassSymbol
123: * (@param name String name of the method
124 * (@param retType String Return type of the method
125: * (@param parameterTypes String| | Parameter types
fror the method
126: * (@param project Project Project for access to necessary
context information.
127: * (@param env Env Used to get the Scope object on which to
perform the lookup.
128:; * (@return MethodSymbol The found method symbol or null.
129: */

Us 7,370,318 Bl

25 26
-continued -continued

130: static public MethodSymbol findMethodSymbol{ClassSymbol 188; for (int i = 0; i < parameterTypes.length; i++) {
Owner, 189: paramlypes.append(getTypeFromString(parameterTypes|i],
131: String name, String > project));
retType, 190: }
132: String| | 191:
parameterTypes, 192: for (int i = 0; i < thrownTypes.length; i++) {
133: Project project, Env 193: thr'Types.append(get TypeFromString(thrownTypes|i],
env) { project));
134: assert owner != null; 10 194: }
135: try{ 195:
136: synchronized 196: MethodType m'Type = new MethodType
(CompilerManager.instance(project).getManager(true). (paramTypes.toList(), resType,
137: getContextLock()) {// Alway get the JSp one (for now.) 197: thrTypes.toList(), owner.type.tsym);
138: Context context = 198; ret = new MethodSymbol(flags, name, mType, owner);
CompilerManager.instance(project).getManager(true). 15 199: owner.members().enter(ret);
139: getProjectContext(); // Alway get the JSp one 200: return ret;
(for now.) 201: }
140: Jam'lype| | paramlypes = newlJamlype 202: }
[parameterTypes. length]; 203: catch (Exception ex) {
141: for (int i = 0; i < paramTypes.length; i++) { 204 return null;
142: param’Types[i] = JamType.fromText(parameterTypes|[i]); 205: }
o 20 .
143: } 206: }
144: 207:
145: String signature = 208: /**
Jam MethodType.createSignature(JamType.fromText(209: * Converts a String represented parameter type to a compiler’s
146: retType), param’Types); Type.
147: MethodSymbol ret = FilterHelper.lookupFun(owner, name, 210:; * (@param s'Type String String represented type.
signature, 25 211: * (@param project Project Project used for access to necessary
14%: context, env); context information.
149: return ret; 212: * (@return Type The converted compiler Type.
150: } 213: ¥/
151; } 214: prvate static Type getTypeFromString(String sType, Project
152: catch (Exception ex) { project) {
153; return null; 30 215: Type type = null;
154 } 216:
155: | 217: Symtab syms =
156: Symtab.instance(CompilerManager.instance(project).getManager(true).
157: /%% getProjectContext()); // Alway get the ISp one (for now.)
158: * Adds a method symbol to owner class symbol 218:
159: * (@param owner ClassSymbol The ClassSymbol to which 35 219: if (sType.equals(*int”)) {// NORES
needs to add the new method symbol 220: type = syms.intType;
160: * (@param flags long Modifiers of the new method symbol 221 }
161; * (@param method Name String Name of the new method symbol 222: else if (sType.equals(“byte”)) {// NORES
162: * (@param retType String Return type of the new method symbol 223: type = syms.byteType;
163: * (@param parameterTypes String| | Parameter types for the new 224: }
method symbol 40 225: else if (sType.equals(“char”)) {// NORES
164: * (@param thrownTypes String|[| Exceptions thrown by the new 226: type = syms.charType;
method symbol 227: }
165: * (@param project Project Project for accessing necessary 228: else if (sType.equals(“short™)) {// NORES
context information. 229: type = syms.shortType;
166: * (@return MethodSymbol The newly created MethodSymbol 230; }
167: */ 231: else if (sType.equals(“long™)){// NORES
168: static public MethodSymbol addMethodSymbol(ClassSymbol 4> 232: type = syms.longType;
owner, long flags, 233: }
169: String method Name, 234 else if (sType.equals(“float™)) {// NORES
String retType, 235: type = syms.tloatType;
170: String| | 236: }
parameterTypes, 237: else if (sType.equals(“double™)) {// NORES
171: String[| thrownTypes, 50 238: type = syms.doubleType;
172: Project project) { 239: }
173: assert owner != null; 240: else if (sType.equals(“boolean™)) {// NORES
174: try{ 241; type = syms.booleanType;
175: synchronized 242; }
(CompilerManager.instance(project). getManager(true). 243: else if (sType.equals(“void™)) {// NORES
176: getContextLock()) {// Alway get the ISp one 55 244 type = syms.voidType;
(fDl‘ NOW.) 245: |
! 177: Type resType = getTypelFromString(retType, project); 246 else if (sType.indexOf(“[?) != —1) {// NORES
:h78. assert resType !=null; 247 type = syms.arraysType:

179: Context context = 248 !
CompilerManager.instance(project).getManager(true). 240
180: getProjectContext(); // Alway get the ISp one '
(for now.) 60 250: else { |
181 MethodSymbol ret = null; 251: type = findClassSymbol(sType, project).type;
182: Name.Table names = Name.Table.instance(context); 252 y
183: Name name = names.fromString(methodName); 233:
184 254 return type;
185: ListBuffer paramTypes = new ListBuffer(); 255: i
186: ListBuffer thrTypes = new ListBuffer(); 65 256: }
187:

Us 7,370,318 Bl

27

Of particular interest, the addFieldSymbol method of the
above Memberlnjector class adds a field symbol to the
“owner” ClassSymbol as provided at lines 93-117. The
method returns a VarSymbol, which 1s the newly created
ficld symbol. The Memberlnjector class also includes an
addMethodSymbol routine which performs a similar func-
tion for adding a method symbol to a given ClassSymbol.
The addMethodSymbol routine 1s shown above at lines
168-206. The routine returns a newly created MethodSym-
bol.

Refactoring with Indirect Injection of Symbols

FI1G. 7 1s a flowchart 700 1llustrating the methodology of
the present invention for refactoring of a dependent module
with indirect 1injection of symbols mto symbol tables. The
indirect injection of symbol(s) 1s similar to direct injection.
However, instead of creating a symbol table entry and
directly injecting 1t into the symbol table(s), the symbols are
injected indirectly by creating source code for the old
version (1.e., the outdated version as in eflect before the
refactoring). When this source is parsed/attributed, the sym-
bol table entries are then indirectly injected as a side eflect.

At step 701, the process begins with decompiling the class
of the dependee module (library) that was originally refac-
tored. In the currently preferred embodiment, the new class
of the dependee module (1.e., the class of the library after
refactoring) 1s decompiled. At step 702, a temporary “stub”
class 1s created based on the decompiled library class. The
“stub” class that i1s created to represent this library class
typically includes “stub” methods and “stub™ fields. This
stub class 1s created for the sake of the application “seeing”
it. The source code of the stub class 1s then used to create the
symbol table entries for the class and (indirectly) insert them
into the symbol table.

At step 703, the stub class 1s then refactored to represent
the old class (i.e., the outdated version of the class before the
original refactoring of the library) based on the collected
meta nformation about the original refactoring. In this
manner the stub class 1s revised to include the old method
names, field names, and so forth as were 1in effect before the
refactoring. In other words, the stub class 1s fixed up so that
it now represents the outdated version of the class (before
the refactoring) that does not exist anymore. In eflect, this
recreates the old (outdated) version of the class for use in
refactoring of the application.

After the stub class has been created and refactored 1t 1s
handed off to the parsing system. At step 704, the parsing
system parses/attributes the stub class and as a side eflect the
symbol(s) of the stub class are entered 1nto the appropriate
symbol table(s) as this parsing 1s performed. This serves to
indirectly mject the symbol(s) mto the symbol table(s). At
step 705, the refactoring of the dependent module (applica-
tion) 1s then performed based on meta information about
original refactoring. This refactoring 1s performed in the
same manner as described above. After the refactoring 1s
completed, clean-up operations are performed at step 706.
The clean up phase 1s similar to that described above.
However, 1n this case both the temporary symbol(s) injected
into the symbol table(s) and the stub class are removed after
the refactoring 1s complete.

The ClassCloner class of the presently preferred embodi-
ment that performs the indirect mjection of symbols 1s as
follows:

1: package com.borland.jbuilder.refactor.async;
2: 1mport java.lo.*;
3:

5

10

15

20

25

30

35

40

45

50

55

60

65

28

-continued
import com.borland.primetime.vis.*;
import com.borland.jbuilder.jam.*;
import com.borland.jbuilder.java.*;
import com.borland.jbuilder.jom.*;
import com.borland.jbuilder.node.*;
import com.borland.jbuilder.repository.®;

import com.sun.tools.javac.code.*;
import com.sun.tools.javac.code.Symbol.*;

public class ClassCloner {

private JBProject project;

private JomFile newClonedJomkFile;
private JamClass existingJamClass;

19: private String newClass Name;
20:

mﬂmm-lb-wmt—_hﬂ*@ooqmm-lh

21:

22; [F*E

23: * Will clone a class from existingJamClass and then rename the
24: * package, class and constructors based on newClassName

25: *

26: * (@param project IBProject

27: * (@param existinglamClass JamClass

28: * (@param newClass Name String

29: */

30: public ClassCloner(JBProject project, JamClass existingJamClass,

String newClassName) {

31: this.project = project;

32: this.existinglamClass = existingJamClass;

33: this.newClassName = newClassName;

34: |}

35:

36; [F*

37: * Clones the new class from existingJamClass and the

newClassName, parses
3R: * the newly create class which has the side affect of putting
it in the symbol

39: * table and then returns the ClassSymbol from the symbol table

40: *

41: * (@return ClassSymbol

42: */

43: public ClassSymbol getNewClassSymbol() {

44 createNewClass();

45: return Memberlnjector.findClassSymbol{newClassName,
project);

46: |

47:

48: private void createNewClass() {

49: if (newClonedJomFile == null) {

50: //Get an url for the new class from 1t’s name and using the
projects paths

51: Url newUrl = JomUtil. getUrlFromClassName(project,

newClass Name);
52:
53: ClassEntry ce =
project.getRepository().getClassEntry(existingJamClass.getName());
54 Url classFileUrl = ce.getFile();
55: //W1ll contain the source code for the existing class
(directly or decompiled)

56: String newSource = null;

57:

58: //Try to create by decompiling if the compiled class file
exi1sts

59: if (classFileUrl != null && VFS.exists(classFileUrl)) {

60: ClassStubSource stub = null;

61: stub = new ClassStubSource(classFileUrl);

62: newsSource = stub.toString();

63: }

64: //Else copy the source content from the source file

65: else {

66: SourcebEntry se = ce.getSource();

67: if (se != null) {

68: try{

69 NEWSOUICe = New
String(VES.getBuffer(se.getFile()).getContent());

70: }

71: catch (IOException ex) {

72: }

Us 7,370,318 Bl

29

-continued
73: }
74 }
75: if (newSource == null) {
16: return;
77: }
78:
79: //{Create a Sourcelnfo for newSource and set to newUTrl
80: Sourcelnfo s1 =

project.getSourcelnfoManager().get(newSource);

81: st.setUrl(newUrl);

R2:

83: //Create an instance of JomFile so we can fix up the class
and package

84 /fnames

85: newClonedJomFile = JomFile.instance(project, si, newUrl);

R6: if (newClonedJomFile != null) {

87: JomClass jomClass =

newClonedJomFile.getClass(existinglamClass.getType());
8EK:

89: if (jomClass != null) {

90: //Set’s the new class name (will fix up the classname
and constructors)

Ol:
jomClass.setName(JavaNames.getClassName(newClassName));

92: }

93: String newPackageName =

JavaNames.getPackageName(new(ClassName);
94 String oldPackageName =
JavaNames.getPackageName(existingJamClass.getName());
95:
96: //If the new class 1s 1n a different package than fix up
the package statement
97 if (InewPackageName.equals(oldPackageName)) {
9%:
newClonedJomFile.getPackage().setPackageName(newPackageName);
99: newClonedJomFile.addImport(new
JomImport(oldPackageName + “.*));
100: }
101: //Now commit changes which also enters the symbols mnto
the symbol table

102: //for the new class

103: newClonedJomFile.commitAndEnterSymbols(false);
104 }

105: }

106: |

107:

108; /**

109: * Removes the cloned class

110: *

111: public void removeClonedClass() {

112: try 4

113: if (newClonedJomFile != null) {

114: VIES.delete(newClonedJomFile.getUrl());
115: newClonedJomPFile = null;

116: }

117: }

118: catch (IOException ex) {

119: }

120: }

121: |

The above routine clones an existing class of a program
and then changes 1t to represent an outdated (or old) class as
in effect prior to a refactoring. As illustrated above at line 44,
a createNewClass method 1s called to create a clone based on
an existing class. As described below, the createNewClass
method clones an existing class (existingJamClass) and then
fixes 1t up. The newly created class 1s then parsed which has

the side effect of 1nserting symbols 1n the symbol table. The
ClassSymbol 1s then returned from the symbol table through
the call to the findClassSymbol method of MemberInjector

as provided at line 45.

When the createNewClass method 1s called, it gets a URL
for the new class from 1ts name and using the project’s paths
as provided at line 51. The source (newSource) for the

10

15

20

25

30

35

40

45

50

55

60

65

30

existing class 1s then obtained either directly or by decom-
piling the compiled class file. A Sourcelnio 1s created for the
newSource and set to the new URL as provided at lines
80-81. Next, an 1nstance of JomFile 1s created to enable the
class and package names of the cloned class to be fixed up.
The name and constructors of the cloned class are fixed up
as 1llustrated at lines 89-94. The package statement 1s also
fixed up if the new class 1s 1n a different package as provided
at lines 97-100. The call to the commitAndEnterSymbols
method at line 103 commits the changes made to the cloned
class which also enters the symbols mto the symbol table.

Direct and Indirect Symbol Injection

It should be noted that in the currently preferred embodi-
ment, both of the above approaches (direct and indirect
injection) are typically used for refactoring of dependent
modules. The following will described this in general terms
using a typical example of a refactoring of a dependent
module (e.g., application) based on an original refactoring of
a class of dependee module (e.g., a library). In the case of
refactoring of a dependent application based on an original
refactoring of a class of the library, the general process 1s as
tollows. First, the original version of the library class is
decompiled into source code as described above and a
“stub™ class 1s created to represent the old version of the
class (before the refactoring) as illustrated in the above
ClassCloner module. The source code for this stub class 1s
then used as the basis for indirect injection of the symbols
for the class mto the symbol table(s). Next, with respect to
members of the class (e.g., fields and methods of the class),
the injector module (Memberlnjector) 1s used for direct
injection of those symbol(s). Thus, for a refactoring of the
class both mechanisms for injecting the symbols are gener-
ally used in the currently preferred embodiment of the
present 1nvention.

While the invention 1s described in some detail with
specific reference to a single-preferred embodiment and
certain alternatives, there 1s no intent to limit the invention
to that particular embodiment or those specific alternatives.
For instance, use of the Java programming language 1s not
necessary to the invention, and the present invention may be
implemented 1n a variety of system architecture and pro-
cessing environments. Those skilled 1n the art will appreci-
ate that modifications may be made to the pretferred embodi-
ment without departing from the teachings of the present
invention.

What 1s claimed 1s:

1. A method for refactoring a plurality of interdependent
solftware modules that reside in separate projects, the
method comprising:

in response to a change that aflfects a particular symbol of

a software module that resides 1n a first project, refac-
toring the software module of the first project to
propagate the change to all instances of the particular
symbol 1n the software module;

during the refactoring of the software module of the first

project at a given point in time, recording meta data
about the refactoring that 1s required to eflect the
change; and

at a subsequent point 1n time, automatically propagating

the change to a dependent software module residing in
a second project, by refactoring the dependent software
module based on the recorded meta data about the
refactoring that occurred to the software module of the
first project; wherein the dependent soitware module 1s
refactored with assistance of a symbol table used for
resolving symbol references, and wherein said auto-
matically propagating step includes: copying symbol

Us 7,370,318 Bl

31

information about the particular symbol used for the
software module of the first project into the symbol
table used for refactoring the dependent software mod-
ule.

2. The method of claim 1, further comprising;: 5

removing symbol information about the particular symbol
used for the software module of the first project from
the symbol table used for refactoring the dependent
soltware module aifter the refactoring of the dependent

software module. 10

3. The method of claim 1, wherein said copying symbol
information step includes copying symbol imnformation into
a compiler symbol table used for refactoring the dependent

software module. Ny

4. The method of claim 1, wherein said copying symbol
information step includes creating source code based on the
recorded meta data.

5. The method of claim 4, further comprising:

parsing the source code so as to indirectly inject symbol 29
information into the symbol table used for refactoring
the dependent software module.

6. The method of claim 4, wherein said copying symbol
information step includes indirectly injecting symbol infor-
mation for a class into the symbol table by parsing the source 25
code and directly 1njecting symbol information for members
of the class mto the symbol table.

7. The method of claim 4, turther comprising;:

deleting the source code after refactoring the dependent

software module. 30

8. The method of claim 1, wherein the refactoring of the
soltware module of the first project comprises a selected one
of renaming a package, changing a method signature,

renaming a method, renaming a field, and renaming a class. 14

9. The method of claim 1, wherein said automatically
propagating step includes propagating changes to the depen-
dent software module so as to maintain compatibility with
the software module of the first project.

10. The method of claim 1, wherein said recording step 4,
includes recording meta data before and after refactoring of
the software module of the first project.

11. The method of claim 1, wherein said recording step
includes recording information in Extensible Markup Lan-

guage (XML) format. 45

12. The method of claim 1, wherein the software module
of the first project 1s 1n a first programming language and the
dependent software module of the second project 1s 1 a
second programming language.

13. A computer-readable medium having processor-ex- Y
ecutable instructions for performing the method of claim 1.

14. A downloadable set ol processor-executable instruc-
tions for performing the method of claim 1.

15. A system for automatically applying a refactoring to
a second software module based on a refactoring of a first
soltware module, the system comprising:

55

a computer having a processor and memory;

a refactoring module for refactoring the first software
module to propagate a change to all mstances of a g
particular symbol 1n the first software module in
response to the change that affects the particular sym-
bol of the first software module:

a recording module for recording meta data about changes
made to the first software module 1n a first project 65
during the refactoring of the first software module at a
given point 1n time;

32

an jector module for copying symbol information about
the particular symbol of the first software module nto
a symbol table for the second software module 1n a
second project; and

the refactoring module for automatically propagating the

change to the second soiftware module by applying a
refactoring to the second software module at a subse-
quent point 1 time using said symbol table for the
second software module and the recorded meta data
about changes made to the first software module.

16. The system of claim 15, wherein the second software
module 1s dependent upon the first software module.

17. The system of claim 16, wherein the refactoring
module applies changes to the second software module so as
to maintain compatibility of the second software module
with the first software module.

18. The system of claim 15, wherein the refactoring of the
first software module comprises a selected one of renaming
a package, changing a method signature, renaming a
method, renaming a field, and renaming a class.

19. The system of claim 15, wherein the 1injector module
creates source code based on the first software module and
the recorded information.

20. The system of claim 19, wherein said 1njector module
decompiles at least a portion of the first software module for
creating source code.

21. The system of claim 19, wherein the 1njector module
parses the source code so as to indirectly inject symbol
information into said symbol table.

22. The system of claim 15, wherein the ijector module
copies symbol information mto a compiler symbol table
used by the refactoring module 1n the refactoring of the
second software module.

23. The system of claim 15, wherein the first software
module comprises a library.

24. The system of claim 23, wherein the second software
module comprises an application using the library.

25. The system of claim 15, wherein said recording
module records information before and after refactoring of
the first software module.

26. The system of claim 15, wherein said recording
module records information in Extensible Markup Language
(XML) format.

27. The system of claim 15, wherein the first software
module runs on a first machine and the second software
module runs on a second machine.

28. The system of claim 15, wherein the first software
module 1s 1n a first programming language and the second
soltware module 1s 1n a second programming language.

29. A method for asynchronous refactoring of a plurality
ol interdependent soltware programs, the method compris-
ng:

refactoring a first software program residing in a first

project so as to change symbols of the first software
program,

recording information about changes made to symbols of

the first software program during the refactoring of the
first software program at a given point 1n time; and
at a subsequent point 1n time, applying the refactoring to
a second software program 1n a second project which 1s
dependent upon the first software program by automati-
cally propagating changes to symbols of the second
soltware program based on said recorded information;
wherein the second software program 1s refactored with
assistance of a symbol table used for resolving symbol
references, and wherein said applying step includes:
copying information about at least one symbol used 1n

Us 7,370,318 Bl

33

the first software program into the symbol table used
for refactoring the second software program.

30. The method of claim 29, further comprising:

removing said information about at least one symbol used

in the first software program from the symbol table
alter applying the refactoring of the second software
program.

31. The method of claim 29, wherein said symbol table
comprises a compiler symbol table.

32. The method of claim 29, wherein said copying infor-
mation step includes creating source code based on the
recorded information and parsing the source code so as to
indirectly 1nject symbol mformation into the symbol table
used for refactoring the second software program.

33. The method of claim 32, wherein said copying infor-
mation step includes indirectly injecting symbol information
for a class into the symbol table by parsing the source code
and directly injecting symbol information for members of
the class into the symbol table.

34. The method of claim 29, wherein said applying step
includes applying the refactoring with assistance of a com-
piler for i1dentifying and changing symbols of the second
soltware program.

35. The method of claim 29, wherein the refactoring of the
first software program comprises a selected one of renaming
a package, changing a method signature, renaming a
method, renaming a field, and renaming a class.

36. The method of claim 29, wherein the first software
program comprises a library.

37. The method of claim 36, wherein the second software
program comprises an application using the library.

38. The method of claim 29, wherein said recording step
includes recording information before and after refactoring
of the first soitware program.

39. The method of claim 29, wherein said recording step
includes recording information in Extensible Markup Lan-
guage (XML) format.

40. A computer-readable medium having processor-ex-
ecutable instructions for performing the method of claim 29.

41. A downloadable set of processor-executable instruc-
tions for performing the method of claim 29.

42. A method for applying a refactoring to a plurality of

soltware modules, the method comprising:
recording information about changes made to a first
soltware module 1n a first project during a refactoring
of the first software module at a given point 1n time;
at a subsequent point 1n time, refactoring a second soft-
ware module 1n a second project by performing sub-
steps of:
creating at least one symbol table entry based upon the
recorded information about changes made to the first
software module; wheremn said creating substep

10

15

20

25

30

35

40

45

50

34

includes creating source code based on the first
software module and the recorded information;

injecting said at least one symbol table entry into a
symbol table for a second software module; wherein
said 1njecting substep includes indirectly imjecting
symbol table entries for a class 1into the symbol table
by parsing the source code and directly injecting
symbol table entries for members of the class into the
symbol table; and

refactoring the second software module using said
symbol table and the recorded information about
changes made to the first software module.

43. The method of claim 42, wherein the second software
module 1s dependent upon the first software module.

44. The method of claim 43, wherein said refactoring the
second software module step includes applying changes to
the second software module so as to maintain compatibility
with the first software module.

45. The method of claim 42, wherein the refactoring of the
first software module comprises a selected one of renaming
a package, changing a method signature, renaming a
method, renaming a field, and renaming a class.

46. The method of claim 42, wherein said substep of
creating source code includes decompiling at least a portion
of the first software module.

47. The method of claam 42, wherein said injecting
substep includes parsing the source code so as to indirectly
inject a symbol table entry into said symbol table.

48. The method of claim 42, further comprising:

removing said at least one symbol table entry from said

symbol table after applying the refactoring to the
second software module.

49. The method of claim 42, wherein said symbol table
comprises a compiler symbol table.

50. The method of claim 42, wherein said recording step
includes recording imnformation before and after refactoring
of the first software module.

51. The method of claim 42, wherein said recording step

includes recording information in Extensible Markup Lan-

guage (XML) format.

52. The method of claim 42, wherein the first software
module runs on a first machine and the second software
module runs on a second machine.

53. The method of claim 42, wherein the first software
module 1s 1n a first programming language and the second
soltware module 1s 1n a second programming language.

54. A computer-readable medium having processor-ex-
ecutable instructions for performing the method of claim 42.

55. A downloadable set of processor-executable instruc-
tions for performing the method of claim 42.

G o e = x

	Front Page
	Drawings
	Specification
	Claims

