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SYSTEM AND METHOD FOR
CONTROLLING SIMULATION OF
HARDWARE IN A HARDWARE
DEVELOPMENT PROCESS

CROSS-REFERENCE TO RELATED
APPLICATION

The present invention 1s related to the following co-
pending and commonly assigned U.S. patent application Ser.
No. 11/047,329 titled, System and Method for Scheduling
TRS Rules, which application 1s hereby incorporated by
reference as though fully set forth herein.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This mvention relates generally to the verification and
simulation of digital circuits developed in a hardware design
process, and more specifically to the use Term Rewriting
System (TRS) rules 1n the simulation of synchronous digital
circuits.

2. Background Information

Hardware Description Languages (HDLs) have been used
for many years to design digital systems. Such languages
employ text-based expressions to describe electronic cir-
cuits, enabling designers to design much larger and more
complex systems than possible using previously known
gate-level design methods. With HDLs, designers are able to
use various constructs to fully describe hardware compo-
nents and the interconnections between hardware compo-
nents. Two popular Hardware Description Languages are
Verilog, first implemented by Phil Moorby of Gateway
Design Automation 1n 1984, and later standardized under
IEEE Std. 1364 1n 1995, and VHDL (Very High Speed
Integrated Circuit (VHSIC) Hardware Design Language),
standardized 1in IEEE Std. 1076. Both, these languages, and
other similar languages, have been widely used to design
hardware circuits.

As the complexity of digital circuits has increased, con-
ventional HDLs such as Verilog and VHDL have increas-
ingly shown their limitations. New HDLs based on Term
Rewriting System (1TRS) technology address some of the
limitations of the conventional methods. A TRS employs a
list of “terms” that describe hardware states, and a list of
“rules” that describe hardware behavior. A “rule” captures
both a state-change (an action) and the conditions under
which the action can occur. Further, each rule has atomic
semantics—that 1s, each rule executes fully without inter-
actions with other rules. This implies that, even if multiple
rules are executed on a given state, they can be considered
in 1solation for analysis and debugging purposes.

More formally, a Term Rewriting System has rules that
consist of a predicate (a function that 1s logical true or false)
and an action body (a description of a state transition). A rule
may be written in the following form:

rule 7: when z(s)=>5:=0(s)

where s 1s the state of the system, m 1s the predicate, and o
1s a function used to compute the next state of the system.
In a strict implementation of a TRS, only one rule may
execute on a given state. However, as explained further
below, concurrent application of rules 1s desirable for efli-
cient execution. Therefore, 11 several rules are applicable on
a given state, some implementations may allow more than
one rule to be selected to update the system. Afterwards, all
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2

rules are re-evaluated for applicability on the new state of
the system and the process continues until no further rules
are applicable.

While a TRS approach has been advantageously
employed 1n the design of digital circuits, improvement 1n
the verification (the proving or disproving of the correct-
ness) ol these digital circuits has lagged. As the complexity
of digital circuits increases, verification consumes an
increasingly large portion of the development process’ time
and resources, now often consuming as much as sixty or
seventy percent ol development time for a reasonably com-
plex circuit. The development of a digital circuit typically
follows an 1iterative flow, including a variety of stages of
design and verification, such that any bottlenecks at a
particular stage may typically set back the entire develop-
ment project’s completion.

FIG. 1 1s a flow diagram of an exemplary series of steps
in the development of a typical digital circuit. A typical
development cycle begins with the creation of a design
specification (step 110), an outline of the design that
describes abstractly the functionality, interface, and overall
architecture of the digital circuit. At this stage, the precise
details of the implementation are not yet considered. Next,
a behavioral description (step 120) may be created to aid 1n
analyzing functionality, performance, compliance with stan-
dards, and other high level design 1ssues. Such a behavioral
description may be created 1n Verilog or VHDL, or may be
implemented 1n a more specialized language such as Sys-
temC, an open-source kernel that extends the C++ language,
and enables hardware design. Such a behavioral description
1s then typically converted, to a Register-Transfer Language
(RTL) description (step 130) 1in which a circuit 1s charac-
terized by the values 1n registers at particular clock cycles.
In an RTL description, a digital circuit may be abstracted to
a series of mterconnected finite state machines (FSMs) that
encompass the circuit’s functionality. Such an RTL descrip-
tion may be created in Verilog or VHDL, or another suitable
language.

Next, functional verification (step 140) 1s typically per-
formed on the RTL description. Functional verification 1s a
key step 1n the development processes, where desired func-
tionality 1s checked and most functional bugs are located and
corrected through modification of the RTL code (see prior
step 130). Durning functional verification, a combination of
direct and random tests are typically employed on a simu-
lation of the digital circuit. Such a simulation generally loads
HDL code and simulates its behavior 1n a software environ-
ment adapted for testing and analysis. As digital circuit
designs become increasingly complicated, the computations
necessary for simulation have become a problematic and
time-consuming 1ssue 1n the verification process.

After functional verification, logic synthesis tools are
typically employed (step 150) to convert the RTL descrip-
tion (of step 130) to a gate-level netlist (step 160), which 1s
a description of the circuit in terms of gates and connections
between them. Logic synthesis tools (from step 150) gen-
crally attempt to produce a gate-level netlist that meets
timing, area, power and other specifications of the design
specification. Such specification factors may be checked
through logical verification (step 170). Results generated in
logical verification may be compared with results obtained
during functional verification (see step 140) to ensure cor-
rectness of operation. Again, 1f errors are found, RTL
description (from step 130) may be altered and the sequence
repeated. After successiul logical verification (see step 170),
a physical layout of the digital circuit showing the position
of gates and connecting traces 1s typically created (step 180)
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with a Place and Route tool. Such a layout 1s typically
subject to layout verification (step 190) and, 1f any 1ssues are
detected, the physical layout (from step 180) may be appro-
priately modified. Once this verification 1s complete, the
device may be fabricated onto a chip to produce a finished
hardware device 1n step 195.

As noted above, the functional verification and simulation
stage 15 a key stage 1n the hardware development process. In
more detail, functional verification typically begins with the
creation of a functional test plan, a fundamental framework
for the testing of the digital circuit. Based on this test plan,
various routines adapted to test specific functionality of the
circuit are developed. These test routines are designed to be
applied to a simulation of the digital circuit, often referred
to as the design-under-test (DUT). Commonly, a High-Level
Vernfication Language (HVL), such as VERA developed by
Synopsys, Inc., 1s employed to aid in writing test routines
and 1n creating a test environment around the DUT that
tacilitates testing. HVLs typically combine object-oriented
programming approaches with parallelism and timing con-
structs and thus are well suited for verification. HVLs may
be turther employed to create input drivers, output drivers,
data checkers, protocol checkers, coverage analysis testers,
and other devices usetul in the verification process.

The test environment interacts though an interface with
the simulation of the DUT. Generally, simulators are clas-
sified 1nto three basic types, based upon the manner in which
they perform simulation. Interpretive simulators, such as
Verilog-X, available from Cadence Design Systems Inc,
operate by reading 1 an HDL design, creating data struc-
tures 1n memory, and running a simulation interpretively.
Interpretive simulators are characterized by their compiling
of HDL code each and every time the simulation is run.

Compiled-code simulators, such as VCS available from
Synopsys, Inc, operate by reading in an HDL design and
converting it to a programming language, such as C. This
code 1s then compiled by a standard compiler to produce a
binary executable that may be executed to run the simula-
tion. Compile time may be lengthy for compiled code
simulators, but 1n general, execution speed 1s faster than
possible with interpretive simulators.

Finally, native-compiled-code simulators, such as Ver-
1log-NC available from Cadence Design Systems Inc., oper-
ate by reading 1n an HDL design and converting it directly
to binary code for a specific machine platform. Compilation
1s optimized specifically for this platform, making the simu-
lation machine specific. Due to the machine specific opti-
mizations, native-compiled-code simulators can yield sig-
nificant performance benefits compared to other types of
simulators.

Regardless of their type, HDL simulators employ a simu-
lation strategy to simulate design elements. The simplest
simulation strategy 1s termed “oblivious,” or alternately
“exhaustive,” stmulation. In oblivious simulation, the simu-
lator processes and updates state values of all elements
(modules) 1n the design, wrrespective of changes 1n signals.
That 1s, the state value of each module 1s updated every time
step (clock cycle), regardless of whether there 1s activity, or
a change 1n the state of the system that aflects the particular
module. Computing all state values for all clock cycles 1s
typically redundant and generally consumes unnecessary
computing resources. Indeed, an oblivious simulator may
perform quite inefliciently when a module is inactive, 1.e.
does not change state, for many clock cycles.

In an attempt to address this inethiciency, various schemes
have been developed for reducing the amount of computa-
tion necessary for simulation, including schemes for reor-
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4

dering, rewriting, queuing, deferring, or otherwise systems-
atically evaluating a subset of the system’s state values. One
of the most prevalent approaches to reducing computation 1s
termed “event-driven” simulation. Event-driven simulation
1s characterized by the computation of state values for
modules only when signals at the mnputs of these modules
change (herein termed an “event”). Accordingly, FIG. 2

depicts a generalized block diagram of an event-driven
simulator 200 for the simulation of an HDL design accord-
ing to a prior art implementation. In an event-driven simu-
lator, a series of modules 230, 232 and 234 are generally
interconnected to, and intercommunicate with, a simulation
core 210 that manages the simulation process. A first sofit-
ware module 230 1s executed in response to an 1nitial event
to begin the simulation cycle. This module, 1n turn, gener-
ates further events which are delivered to the simulation core
210 for transfer to other modules 232, 234. The simulation
core 210 typically maintains an event-response table 220 to
determine where events from a given module are to be
transierred. For example, as illustrated in FIG. 2, a first
event, event(1l), may cause a module 230 to generate a

second event, event(2), which i1s routed by the simulation
core 210 to two additional modules 232 and 234. Such a

process ol events-causing-further-events may continue for
many levels 1n complex designs.

When an event 1s delivered to a module 230, 232 and 234,
a child process, 240, 242 and 244 i1s called to execute the
code 1n the module. A current state 250, 252 and 254 for the
module 230, 232, 234 i1s also formed, representing an event
triggered by the child process 240, 242, 244 and the current
state of any global vaniables used as mnputs to the module.
The child processes 240, 242, 244 typically execute under
the control of an operating system until execution 1s com-
pleted. Typically, an event-driven simulator operates within
a multi-threading operating system, with each child process
240, 242, 244 representing a separate thread of execution, all
of which threads execute contemporancously within the
processor’s runtime operation.

While event-driven simulation offers significant improve-
ments over oblivious simulation, the approach still contains
notable 1nefliciencies. In event-driven simulation, when an
event 1s processed, all dependant data 1s updated, through
the triggering of additional events, to determine a new global
state of the system. Values for data that will not control the
next state transition of the system, and values for data which
1s transient, 1.¢. that will not be stored due to subsequent
logic control, are still updated, and cause events to be
triggered, even though these values are not used. For
example, consider the eflects of event-driven simulation on
a hypothetical digital circuit design which include the fol-
lowing HDL pseudo code:

reg [3:0] q;

reg |3:0] e;

wire [3:0] y=q+5;

always (@(posedge clock) begin

q<=7+2;

end

always (@((posedge clock) begin

if (controlsignal) begin

<Y,

end

clse

begin

e<=2;

end

end
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In the above hypothetical example, the value of v depends
on the value of q, which in turn depends on the value of z.

Hence, 1n an event-driven simulator, a change in the value of
z would trigger events causing the value of y and q to be
updated by child processes. Yet the values of y and g are only
needed when they control the next state transition, in this
example, only when the Boolean value controlsignal 1is
logical true. Thus when controlsignal 1s logical false, need-
less computation 1s performed by an event-driven simulator
to update values of y and g that are never used.

Again, as digital circuit designs become increasingly
complex, simulation emerges as a primary computational
bottleneck 1n the overall hardware development process,
consuming unacceptable processing time. The inefliciencies
associated with computing redundant or transient values 1n
an oblivious or an event-driven simulator merely compound
the already-computationally intensive stage of simulation. It
would be desirable for such an HDL simulator to function in
a manner that would eliminate computation of unnecessary
values that do not affect the current state of the system. An
improved simulator should address this methiciency, while
not requiring an inordinate amount of computation 1n other
areas, so that an overall performance gain may be realized.

SUMMARY OF THE INVENTION

Brietly, the present invention provides a system and
method for stmulating a digital circuit that uses scheduling,
information from Term Rewrting System (TRS) rules to
limit the computation of simulation values to only those
values used by the rules scheduled to execute on the current
state of the system. In a TRS based digital circuit design,
typically only a small subset of TRS rules are scheduled to
execute on any given state. This novel system and method
for stmulation uses scheduling information for these rules to
determine which values are needed for the executing subset
of TRS rules, and only computes these relevant values.
Since, for TRS rules, the logic for computing rule activation,
1.¢. the predicates, 1s separate from the logic for executing
the actions, 1.e. the action bodies, the simulator need only
consider a limited amount of additional information to
determine which rules are executed on a given cycle.
Broadly stated, the system and method of this invention
employs a top-down approach to device simulation (as
opposed to the bottom-up approach typically employed by
prior simulators), looking first to which rules are to be
executed, and only then, to the values needed by those rules.

The new simulation system and method may be used to
create a standalone simulation of a synchronous digital
circuit from an asynchronous circuit specification. A TRS
compiler creates executable code which models the circuit’s
functions. This executable code may be linked by a code
simulator with a runtime executable, which provides 1nput
interfaces, output interfaces, data-checking and testing tools.
The executable code may further be linked to a runtime
library of primitive objects, 1.e. gates and other logic
devices, which provide requisite timing characteristics for
the simulation.

-~

The mventive system and method avoids inefliciencies
associated with traditional techniques, such as event-driven
simulation, by avoiding computation of redundant or tran-
sient values for data that will not control the next state
transition of the system. Further, due to the mherent struc-
ture of TRS rules, the advantages of the new simulator may
be achieved with mimimal additional computations so as to
determine which rules will execute.
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0
BRIEF DESCRIPTION OF THE DRAWINGS

The mvention description below refers to the accompa-
nying drawings, of which:

FIG. 1, already described, 1s a flow diagram of an exem-
plary series of steps in the development of a typical digital
circuit according to a prior art implementation;

FIG. 2, already described, 1s a generalized block diagram
ol an event-driven simulator for the simulation of an HDL
design according to a prior art implementation;

FIG. 3 1s a flow diagram of a circuit simulation system
that accepts an asynchronous circuit specification and pro-
duces executable code that models a synchronous digital
circuit;

FIG. 4 1s a flow diagram of a Term Rewriting System

Compiler used with the circuit stmulation system to convert
an asynchronous circuit specification to executable code that

models a synchronous digital circuait;

FIG. 5§ 1s a generalized block diagram depicting the
interaction of Term Rewriting System rules with software
subroutines for simulation of a synchronous digital circuit;

FIG. 6 15 a flow diagram of the simulation of a synchro-
nous digital circuit using Term Rewriting System rules to
control execution of subroutines; and

FIG. 7 1s a block diagram 1illustrating a strategy for the
order of simulation of exemplary subroutines of a synchro-
nous digital circuit.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

FIG. 3 depicts a circuit simulation process or system 300,
according to an 1illustrative embodiment of this invention,
which accepts an asynchronous circuit specification 310 and
produces executable code 330 that models a synchronous
digital circuit. The circuit simulation system 300 1ncludes a
Term Rewriting System Compiler (TRSC) 320 that inter-
prets the asynchronous circuit specification 310 and per-
forms a series of operations described turther below. Execut-
able code 330 may therealfter be executed by a code
simulator 340 that combines the code with a runtime execu-
tive 370 that includes input interfaces, output interfaces, data
checking and testing tools suited for verification of a simu-
lation a synchronous digital circuit. Further, executable code
330 may be combined with a library 360 of primitive objects
that contains signal timing information useful for simula-
tion. Typical primitive objects include a variety common
logic gates, such as, and or gates, and operators such as add
and subtract. A visualization program 350 may thereafter
provide a user interface to a designer or other type of user.

Both TRSC 320 and code simulator 340 are software
applications that, when executed on a computer, implement
the circuit simulation approaches described below. In one
embodiment of the circuit simulation system 300, the
executable (computer-readable) programming code 330 may
take the form of C code. It should be noted, however, that the
executable code 330 may alternately be implemented 1n
another programming language, such as, for example, the
Java programming language first developed by James Gos-
ling of Sun Microsystems.

Considering this system in more detail, asynchronous
circuit specification 310 may be specified according to a
Term Rewrnting System (TRS). A Term Rewriting System
generally employs rules that have a predicate and an action
body, and may be written in the general form:

n(s)=>5:=0(s)
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where m 1s the predicate and s:=0(s) 1s the action body.
Function 6 1s used to compute the next state of the system
from the current state s. The system functions by selecting
a rule whose predicate 1s true, and then atomically (without
interaction with other rules) executing the rule’s action body.
The selecting and executing of rules continues as long as
some rule’s predicate 1s true.

Such a system 1s suited for design and verification of
complex digital systems as explained 1n Arvind and X. Shen,
“Using Term Rewriting Systems to Design and Verily Pro-
cessors,” MIT LCS Memo CSG-419, I[EEE Micro, May/
June 1999; Mithal et al., Digital Circuit Synthesis System,
U.S. Pat. No. 6,597,664; and Mithal et al., Digital Circuit
Synthesis System, U.S. patent application Ser. No. 10/264,
962, all of which are incorporated by reference herein 1n
their entirety.

In an illustrative embodiment, the asynchronous circuit
specification 310 may be specified 1n Bluespec™ System
Verilog (BSV) which implements Term Rewriting System
semantics 1n combination with other high level program-
ming constructs as described in the Bluespec™ System
Verilog Version 3.8 Reference Guide, incorporated herein by
reference. It 1s expressly contemplated, however, that other
suitable languages implementing a general form or function
of a Term Rewriting System may be employed with the
approaches described herein. If asynchronous circuit speci-
fication 310 1s a BSV specification, TRSC 320 may be a
Bluespec™ Compiler (BSC) or another suitable compiler
adapted to implement the scheduling and circuit synthesis
approaches described herein. Further, the code simulator
340 may be a Bluespec™ C simulator or other suitable
simulator adapted to implement the approaches described
herein.

To 1llustrate an example of TRS rules in hardware design,
let asynchronous circuit specification 310 characterize a
circuit for computing the greatest common devisor (GCD) of
two numbers using Euclid’s algorithm. This example 1s
chosen merely to illustrate a possible use of Term Rewriting
System rules, and 1n no way limits the type of circuit that can
be characterized by, or the syntax used in, asynchronous
circuit specification 310. In the chosen example, the exem-
plary asynchronous circuit specification 310 may read in
part:

module mkGCD (AnthlO# (int));

Reg# (int) x( );
mkReg#(0) the x (x);
Reg#(int) y( )3
mkReg#(0) the_y (y):;
rule flip (x>y&&y!=0);
X<=Y;
y<=X;
endrule
rule sub (x<=y && y =0);
Y<=Y¥-X;
endrule
method Action mput (int 1x, 1t 1y) 11 (y==0);
action
X<=1X;
y<=1y;
endaction
endmethod: mput
method 1t output( ) it (y==0);
return X;
endmethod: output

endmodule: mkGCD

Referring to the exemplary code above, the module
defines two registers, registers x and y. Further the module
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defines two rules, flip and sub, that implement Euclid’s
algorithm on registers x and y. Each rule contains a predicate
and an action body. For example in rule flip, the expression,

X<=y&&X!=0

forms the predicate and the register write statements,
X<=Y;

Y<7X,

form the action body.

If a predicate 1s omitted, the rule 1s assumed to always
apply, and 11 the action body 1s omitted the rule has no eflect.
Assuming the registers x and v have been imitialized with
input values, the rules will repeatedly update the registers
with transformed values, terminating when the register y
contains zero. At that point, the rules cease executing, and
the GCD result 1s placed 1n register x. Note that, 1n this basic
example, the two rules flip and sub are never applicable at
the same time. In more complicated examples, predicates for
multiple rules may be true for a given state. For example, the
expression “Xx>y’ may be replaced with “x>=y” in the
predicate of rule flip. In this new example, more than one
rule could apply in each cycle and a determination would
have to be made as to whether the rules conflict. Thus, the
system would have to determine whether to execute rule tlip,
rule sub, or both rules on the same state.

FIG. 4 1s flow diagram of a Term Rewriting System
Compiler used with the imnventive circuit synthesis system to
covert an asynchronous circuit specification to a stmulation
ol a synchronous circuit specification. Note that the steps 1n
FIG. 4 are not necessarily performed 1n the sequence 1llus-
trated 1n the figure, and some steps may be performed in
parallel. Therefore, any such reordering of these steps
should be considered within the scope of this embodiment.
At step 410, the TRSC 320 maps any storage elements
specified 1 asynchronous circuit specification 310 into
representations ol registers or other predefined circuit ele-
ments for use with the stmulation of the synchronous circuit.
Next, 1n step 420, the TRSC 220 models enabling logic from
the predicate, and updating logic from the action body of
cach rule. These models may take the form of subroutines,
with one or more subroutine controlling rule activation, and
other subroutines performing computations for carrying out
the actions 1n the action bodies. Note that the subroutines are
disconnected at this stage, and do not yet form an overall
simulation of a synchronous digital circuit. At step 430, the
TRSC 320 analyzes rule contlicts. That 1s, the TRSC 1den-
tifies which rules are applicable 1n the current state, and
identifies any conditions that would prevent concurrent
execution ol these rules. Next, at step 440, the TRSC
generates a schedule that triggers a particular set of appli-
cable rules to execute on a given system state. Then, 1n step
450, the TRSC 320 interconnects the subroutines for carry-
ing out the actions of rules according to the schedule. This
representation 1s then translated at step 460 into executable
code 330 that 1s functionally equivalent to a synchronous
digital circuit. Optimization operations may also be per-
formed to refine the executable code 330, and streamline its
execution.

Considering in more detail some of the steps described
above, 1n step 410 the TRSC 320 maps storage elements 1n
the asynchronous circuit specification 310 1nto a variety of
representations of actual circuit elements whose values
determine the state of the system. Asynchronous circuit
specification 310 may include data-type declarations for a
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variety of types of storage elements. If scalar storage ele-
ments are used, the mapping by the TSRC 420 may be direct
into a representation ol a register circuit. If abstract storage
clements are used, such as a register files or FIFO queues,
the TRSC 420 may map these elements 1into representations
of predefined circuit elements, for example, from a runtime
library.

In step 420, the TRSC 320 models logic for the predicate
and the action body of each Term Rewriting System rule.
Formally, for a rule 1, TRSC 320 considers expressions, 7t.(s)
and 0,(s) where the term s represents the state of the system,
1.¢., the values 1n all the storage elements.

In step 430, the TRSC 320 determines which rules may
conilict 1T they execute concurrently and which rules are free
from conflicts. Conflict-free rules are rules that can execute
simultaneously without incident, that 1s, they do not update
the same state nor update the state accessed (read) by the
other rules. Such conflicts may be thought of as two devices
attempting to access the same hardware resource, such as,
for example, a single memory port, whereby only one device
may have access at a time.

The conflict-free condition between two rules may be
stated formally as follows. Consider two rules, rule 1 and rule
J, with predicates m; and m; and next states defined by
tunctions 0, and o,. Further, let s be the state ot the system.
If m,(s) and m(s) are both true for some state s, then both
7t,(0,(s)) and m(0(s)) must also be true so that both rules
remain enabled after the state transition enabled by the other
rule. Furthermore, the effect of the updates must not depend
on the order of the updates, that 1s, 0,(0,(s)) must equal
0,(0,(5).

A variety of algorithms and data structures may be
employed to help determine which rules are free from
contlicts. One such structure 1s the Binary Decision Diagram
(BDD), a data structure commonly thought of as a rooted,
directed, acyclic graph with vertices that represent variables
and edges connecting the vertices that represent values of
the variables. Thus, a path through a BDD represents a
particular assignment of values to variables. Such a structure
may be advantageously employed to determine that two
rules may never execute on the same state and therefore may
never be 1n conflict.

In step 440 the TRSC determines a schedule that indicates
which rules should execute 1n a particular cycle of a model
ol a synchronous implementation. Such a determination may
be performed by a scheduler that implements one of a
several scheduling methods. One type of scheduler that may
be employed 1s a priority encoder which asserts one execut-
able rule 1n each clock cycle. This type of scheduler may
also include round-robin tunctionality that ensures that 1t a
rule remains applicable for a sutlicient number of consecu-
tive clock cycles then 1t will be selected for execution.
Another type of scheduler that may be employed 1s an
enumerated scheduler (also termed direct table encoder). In
an enumerated scheduler, applicable rules are listed 1n an
enumerated encoder table, a lookup table constructed to
contain an explicit listing of the rules that can execute given
a certain combination of applicable rules. Such a table 1s
constructed so that the maximum number of non-contlicting
rules execute on a given clock cycle. Preferably, a scheduler
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that implements a preference order in scheduling conflicting
rules may be used. That 1s, a scheduler may be employed that
1s adapted to schedule more preferred applicable conflicting
rules over less preferred applicable contlicting rules. In this
manner, the most preferred rule of a conflicting set 1s
scheduled to execute on a given state. Thus, where two or
more rules conflict, and only one may be chosen to execute,
the preference order 1s used to break the tie. Such preference
order may be user mputted, or generated by the TRSC. As
in other implementations, non-contlicting applicable rules
are allowed to execute concurrently with the chosen con-
flicting rule.

A schedule for TRS rules may be incorporated into a new
system and method for simulation that addresses the short-
comings and inefliciencies of prior simulation techniques.
Accordingly, mn an 1illustrative embodiment a top-down
approach to simulation 1s employed, where the simulation
system first considers which Term Rewriting System (TRS)
are scheduled to execute on the current state of the simula-
tion. .

T'hereafter only the simulation values used by those
rules are calculated. In a TRS-based digital circuit design,
typically only a small subset of TRS rules are scheduled to
execute on any given state. Thus, by limiting computation of
simulation values to only those rules active on that present
state, performance gains may be realized.

FIG. 5 1s a generalized block diagram depicting the
interaction of Term Rewriting System rules with software
subroutines for simulation of a synchronous digital circuit.
The TRSC reads 1n a series of TRS rules 500, shown as a
table of generic rule entries 502 and 3504, each of which
represents a pair that collectively defines a rule predicate
510 and a rule body 520. Predicate information 1s transmuit-
ted to the scheduler that determines which rules will execute
on each cycle. The rule bodies are then abstracted to a list of
actions 530 (entries 332), unconnected with any predicates.
These actions may be characterized as a binary tree of values
and operators that perform the functions described by the
rule. The TRSC then takes each action and translates it into
programming code. This programming code may take the
form of a series of subroutines 540 (denoted A, B C, etc.),
cach of which performs the equivalent function as that
specified by an action. That 1s, each subroutine may be an
equivalent representation of a portion of the synchronous
digital circuit being simulated. Subroutines are intercon-
nected, such that 1f one subroutine requires a value com-
puted by another subroutine, instances of the required sub-
routine will be created (instantiated) to compute this value.
To simulate the synchronous digital circuit, the schedule
produced from the rule predicates 1s combined with the
subroutines, to create a simulation executable which
executes selected subroutines each cycle of the simulation.

Operation of the simulation system and method may be
illustrated by referring to a hypothetical example of an
asynchronous circuit description including TRS rules. The
reader 1s reminded that this hypothetical example 1s merely
an 1llustration of one possible set of TRS rules the simulator
may operate upon, and 1n no way limit the function, syntax,
or other aspects of the TRS rules this invention 1s applicable
to. A hypothetical example may read:

typedef Ulnt#(51) NumTyp;
interface ArithIO_ IFC #(parameter type alyp); // alyp is a paramerized type
method Action start{(aTyp numl, aTyp num2);

method aTyp result( );

endinterface: ArithIO_ IFC
// The following is an attribute that tells the compiler to generate // separate code
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-continued

for mkGCD
(* synthesize *)
module mkGCD(ArithIO_ IFC#HNumTyp));

Reg#(NumTyp) x( );
mkReg#(?7) the  x(x);

Reg#(NumTyp) y( );
mkReg#(0) the_y(y);
rule flip (x > vy && vy 1= 0);
X <=Y,
Yy <=X;
endrule
rule sub (x <=y && y != 0);

y<=Y¥ - X,
endrule

method Action start{NumTyp numl1, NumTyp num?2) if (y == 0);
action
X <= numl;
Yy <= num?;
endaction
endmethod: start

method NumTyp result( ) if (y == 0);
result = x;

endmethod: result
endmodule: mkGCD

This hypothetical description performs the same function
as the hypothetical code discussed above in reference to
event-driven simulation. Yet, rather than compute values for
y and q for each change in z, as would be done in event-
driven simulation, the simulation system and method of this
invention works backwards from the rule predicates to

compute a minimal subset of values that are actually used to
generate the next system state. That 1s, rather than assuming
any change 1n the system may cause an indefinite number of
dependant events, and therefore computing all values depen-
dant on any value change, the new simulator can avoid
computations that are not used. Thus if, for example, the
scheduler determines that controlsignal 1s false 1n the above
example, values for q and v need not be calculated. Similarly
if the scheduler determines that rule e 1s in conflict with
another rule, and this other rule has been selected to execute
rather than rule e, then values for q and v again need not be
calculated. Only when the scheduler determines controlsig-
nal 1s true, and 1s the selected rule to execute 1 a conflict
exists, are sub-routines called to generate values for g and v.

Such a simulation system and method i1s ensured of
having worst-case performance no worse than prior event-
driven methods, since the computations 1n worst-case sce-
narios would be equivalent. In most other cases, significant
computational savings may be realized.

FIG. 6 1s a flow diagram 600 of the simulation of a
synchronous digital circuit using Term Rewriting System
rules to control execution of subroutines. The tlow diagram
depicts operations that occur to simulate one clock cycle of
the synchronous circuit. To simulate additional clock cycles,
the sequence of steps may be repeated until the entire circuit
1s simulated. The sequence of steps (600) begins at step 610,
when the simulator takes as an 1nput a list of rule predicates,
rule actions, and scheduling information. Next, at step 620,
a blocking list 1s cleared by the simulator. The blocking list
1s a data structure that may operate in conjunction with the
scheduler to 1indicate which rules are barred from execution
on the current state of the simulation of the synchronous
digital circuit. At step 630, a decision 1s made to determine
iI any unblocked rules exist. If not, the sequence terminates
at step 680. If unblocked rules exist, the predicate of a
selected unblocked ruled 1s evaluated at step 640. If the
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// here alyp 1s defined to be type Int
// X 1s the imterface to the register
// the_ x 1s the register instance

predicate 1s logical false, execution returns to decision step
630. If the predicate 1s logical true, execution proceeds to
step 660, where a subroutine for performing the actions of
the rule 1s called and executed. Finally, at step 670, the
simulation system, 1n conjunction with the scheduler, adds
any newly blocked rules, caused by contlicts with executed

rules, to the blocking list. Thereafter, execution may loop
back to step 630, and repeat.

FIG. 7 1s a block diagram 700 1llustrating a depth first
strategy for the order of execution of subroutines, that may
be used with the above described simulation system and
method. A depth-first execution strategy operates such that
a chain of related sub-routines will be evaluated to 1ts
terminal level, beftore another chain of subroutines 1s evalu-
ated.

Consider a hypothetical set of subroutines A, B, C, D, and
E, which operate to simulate the functions of a hypothetical
digital circuit. Note, this example 1s chosen merely to
illustrate a strategy for computation of subroutines, and 1n no
way limits the type of subroutines that may be used with this
simulation system. Considering the case where subroutine A
(710) requires values from subroutines B (720) and E (730),
as denoted by the branch lines therebetween. Likewise,
subroutine B (720) requires values from two instances of
subroutine C, namely C (740) and C' (750), which 1n turn
requires values from subroutine D (760). Depth-first execu-
tion would cause the subroutines to execute 1n the order: A,
B, C, D, C, E, progressing to the bottom of the subroutine
chain, before beginning the next path. Such a depth-first
technique may complement the advantages of the simulation
techniques discussed above, ensuring values are quickly
returned to the highest level of simulation.

A tfurther performance enhancing technique that may be
used with the above described simulation system and
method 1s the technique of lazy evaluation of rule predicates.
Lazy evaluation may include several strategies, one of which
1s minimal evaluation. In mimimal evaluation, an expression
1s only evaluated until the point where 1ts final value may be
determined. That 1s, execution of an expression 1s abbrevi-
ated when 1t 1s not necessary to evaluate all parts of the
expression to determine the final result. For example, con-
sider a hypothetical rule predicate (a && b). If the value of
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a 1s determined to be logical false, the value of b 1s not
needed to determine that the entire expression evaluates to
logical false. Therefore a simulator practicing lazy evalua-
tion need not run a sub-routine to evaluate the value of b in
some situations. Such a computation minimizing technique
may be advantageously employed to further reduce compu-
tations 1n the above described simulation system and
method.
The foregoing has been a detailed description of a several
embodiments of the present invention. Further modifications
and additions can be made without departing from the
invention’s intended spirit and scope. It 1s expressly con-
templated that any or all of the processes and data structures
described above can be implemented 1n hardware, software,
or a combination thereof. A soiftware implementation may
comprise a computer-readable medium containing execut-
able program instructions for execution on a computer. It
should be remembered that the above descriptions are meant
to be taken only by way of example, and not to otherwise
limit the scope of this 1nvention.
What 1s claimed 1s:
1. A method for simulating the operation of a digital
circuit comprising:
describing the digital circuit, at least partially, with one or
more Term Rewriting System (TRS) rules, wherein
ecach TRS rule includes a predicate and an action body;

creating one or more subroutines, each subroutine corre-
sponding to a TRS rule and adapted to perform func-
tions equivalent to functions of the action body of the
TRS rule, each subroutine corresponding to one or
more simulation values;

scheduling one or more TRS rules to execute on a given

clock cycle of the simulation; and

computing, in response to the scheduling, the one or more

simulation values corresponding to a subroutine corre-
sponding to a TRS rule scheduled to execute,
wherein the simulation values are not computed where the
predicate of the corresponding TRS rule 1s not true; and
selecting a first TRS rule to execute that 1s 1n contlict with
a second TRS rule on a given clock cycle;

preventing the second TRS rule from executing on the

given clock cycle.

2. The method of claim 1 wherein the scheduling of the
one or more TRS rules 1s, at least partially, 1n response to the
predicates of the one or more TRS rules.

3. The method of claim 1 wherein the step of scheduling
turther comprises:

selecting TRS rules according to a preference order.

4. The method of claim 1 wherein the step of preventing
turther comprises the step of:

adding the second TRS rule to a blocking list.

5. The method of claiam 1 wherein the one or more
subroutines are part of an executable code simulation of the
digital circuat.

6. The method of claim $§ wherein the executable code
simulation 1s a C code simulation.

7. A digital circuit simulation system comprising:

one or more Term Rewrting System (TRS) rules for

describing the digital circuit, each TRS rule including
a predicate and an action body;
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one or more subroutines, each subroutine corresponding
to a TRS rule and adapted to perform functions equiva-
lent to functions of the action body of the TRS rule,
cach subroutine corresponding to one or more simula-
tion values:
a scheduler adapted to schedule one or more TRS rules to
execute on a given clock cycle of the simulation; and

wherein, in response to the scheduler, the one or more
stmulation values corresponding to a subroutine corre-
sponding to a TRS rule scheduled to execute are
computed, and simulation values are not computed
where the predicate of the corresponding TRS rule 1s
not true; and

selecting a first TRS rule to execute that 1s 1n contlict with

a second TRS rule on a given clock cycle;
preventing the second TRS rule from executing on the
given clock cycle.

8. The digital circuit sitmulation system of claim 7 wherein
scheduling of the one or more TRS rules 1s, at least partially,
in response to the predicates of the one or more TRS rules.

9. The digital circuit stmulation system of claim 7 further
comprising;

a preference order for the selection of TRS rules.

10. The digital circuit simulation system of claim 7 further
comprising:

a blocking list adapted to store TRS rules that not selected

to execute on a given cycle of the simulation.

11. The digital circuit simulation system of claim 7
wherein the one or more subroutines are part of an execut-
able code simulation of the digital circuit.

12. The digital circuit simulation system of claim 7
wherein the executable code simulation 1s a C code simu-
lation.

13. A computer readable medium containing executable
program 1nstructions for simulating a digital circuit, the
executable program instructions comprising program
instructions for:
describing the digital circuit, at least partially, with one or
more Term Rewriting System (TRS) rules, each TRS
rule 1including a predicate and an action body;

creating one or more subroutines, each subroutine corre-
sponding to a TRS rule and adapted to perform func-
tions equivalent to functions of the action body of the
TRS rule, each subroutine corresponding to one or
more simulation values;

scheduling one or more TRS rules to execute on a given

clock cycle of the simulation;

computing, 1 response to the scheduling, the one or more

simulation values related to a subroutines correspond-
ing to a TRS rule scheduled to execute; and
preventing computation of simulation values that are not
corresponding to the subroutines corresponding to the
one or more TRS rules scheduled to execute; and
selecting a first TRS rule to execute that 1s 1n contlict with
a second TRS rule on a given clock cycle;

preventing the second TRS rule from executing on the
given clock cycle.
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