12 United States Patent

Carroll

US007370058B2

(10) Patent No.: US 7.370,058 B2
45) Date of Patent: May 6, 2008

(54) ALGORITHM FOR SORTING BIT

SEQUENCES IN LINEAR COMPLEXITY

(75) Inventor: Dennis J. Carroll, Houston, TX (US)

(73) Assignee: International Business Machines

Corporation, Armonk, NY (US)

(*) Notice: Subject. to any disclaimer{ the term of this 2003/0003565
patent 1s extended or adjusted under 35

U.S.C. 134(b) by 528 days.
(21) Appl. No.: 10/696,404
(22) Filed: Oct. 28, 2003

(65) Prior Publication Data
US 2005/0091257 Al Apr. 28, 20035

(51) Int. CL.
GO6F 7/00 (2006.01)
GO6F 17/00 (2006.01)

(52) US.CL ..., 707/102; 707/101; 707/100

(58) Field of Classification Search
707/102, 77, 704/2; 713/300, 310, 320-324,

7077/3,

2/2003 Matias et al.

4/2003 Andreev et al.

5/2003 Andreev et al.

1* 3/2002 Feldmeier et al. 707/3
10/2002 Tal et al.

11/2002 Calloooveiiiinnn., 704/2
11/2002 Wagnercceeenenen.n. 707/102
1% 1/2003 Lawdercoovevvnvienninnn..n 707/3
3/2003 Kadam et al.

5/2003 Berger et al.

6,519,593
0,553,370
0,564,211
2002/0032681
2002/0143747
2002/0165707
2002/0174130
2003/0004938
2003/0051020

o A PR
3

* cited by examiner

Primary Examiner—Sana Al-Hashemi
Assistant Examiner—Giovanna B. Colan

(74) Attorney, Agent, or Firm—Schmeiser, Olsen & Watts;
William E. Schiesser

(57) ABSTRACT

A method and associated algorithm for sorting S sequences
of binary bits. The S sequences may be integers, tloating
point numbers, or character strings. The algorithm 1s
executed by a processor of a computer system. Each
sequence includes contiguous fields of bits. The algorithm
executes program code at nodes of a linked execution
structure 1n a sequential order with respect to the nodes. The
algorithm executes a masking of the contiguous fields of the

713/330, 340, 711/4, 112, 114; 455/574 S sequences in accordance with a mask whose content is

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,128,614 A 10/2000 Mennemeler et al.
6,144,986 A 11/2000 Silver

6,381,605 Bl 4/2002 Kothur et al.
6,397.216 Bl 5/2002 Cattanach et al.

keyed to the field being masked. The sequential order of
execution of the nodes 1s a function of an ordering of
masking results of the masking. Each sequence, or a pointer
to each sequence, 1s outputted to an array in the memory
device whenever the masking places the sequence 1n a leaf
node of the nodal linked execution structure.

26 Claims, 30 Drawing Sheets

912,123, 589, 014, 512, 043, 173, 179, 577, 152, 256, 167, 561

RAW DATA

,"f-l'"l..
L3 .-
L I:l_-'I :.._
LEVEL 1 = Ezsagsi s
P AEX Y 40
¥ L]
AT [
. .

ASIL 0
4:014

LEVEL 3 —

" T ¥ I.Hl ...I.- — .‘- = '..: ':".'P-"I!I—':-r'i'_l:"-' - '..":-'-I- o ' -
a rm Loagrt ' f . . ' pa ! LI r, Pl I e L T
, e ' T T e e PRI MR et I LT AL
'''''''''''' e e I e . T I .
LIl l.. :II- Yt Thadag llrll-l"l 'I ;.'--::I-"I ..ll'.""ull-.l“‘."l'ul-.:r: .
a i R T . - .
T e e s T T R e T e e T e B e B e L LNy
vea e, e et e Ty L LR A g TN L I i T N R i M N w e T e e Ara T e e B e R e R e LR N
Lt PP I P = T T e T B R T B B L R A R T e D e N I N I L P
o e T . I e L S] R T e R e H i L e T bl
. ' . "t e LTy, L] [L I [P T T T I I e e USRI A P e T B R
. .]) arala N ST s b gttt L e T e T R I L B e B RCRF I AP P e Il L T o R et IR I I R L I
HEE L IR et S ot L T e L I e LT i A A T DT e e e L T e T T DT T -
- e e L TPy TN L T T I e e L L L I I I L e L L T e LA R el
r e e v e e T L " = e T T e e I Sy T e e e e e e T e e e e T g e
R et et T e S T et e e e Tt e e e e e T T e e] e e e S e e LT e
e i e T e I L L - R M TR L r LR B BN I D e FE L N SIS DL PR B BT AT AR AT B e T R o T I e R A L
T e T L T P P - T T NL R e L B L et I P P T S e T Tl e e P L e A
NN AT e A I T T URT B I e e RN T L Py B I T R Bl B e e P B PR It PR I R e PR L T T B T IR T el T B T I e B I A T L
' [l T T P U-L il S e Tt e e T T e T faa et e ", T T I L e N T I Nl s ey T T TR s = R e B e e T e R
e T T e T e T e L e e A e A e s U T - R e e T TR S b I T L L I S i
L L R IYRETH LRI I L I B R PP LR Pl b et T it L R L I T i P L TN A S I e I T B I A e 1L TRy T BB R et S YLt B P
LA ML . . . LI ot T Iy i T et R i A P R Bt R L LR .rl'-'.' e e Ty -_..l"..l-'r-"_J-.-l,'I.'_.l_!'.l.‘-\.!-!_-_l_:-_'l-l I BT N _:_I:h=.'l.-':':'
. ' n e v . L0 N ' . .. TR - N T R e B L I I R I Ve e T Ty Tt ke o, = il (AL T
" u:: T "'Iu l:a.""'.r ||::'I'|' Vet P Py L - TN M ::_I"'l-'a' St n.-ll'l"l"---“-". P M e i T "-:'.1'_"|".‘|'r-:'."_'lr':l'|'_|_'-- 'r_'.--\'_l:---.'_"'.'.r'_'l'".'h e L P
ir R e S LI T B I e et I T T LN TR LRt T T e T SR S PN
SR ORET P UYL R I e T T I R R AL LT il Bl e e e L I L PRI I I D M LT T - T e N T R e - A S i =R AR LT O
' 'I'.ul' T '.u far "1.1. LI "f et "'I.I'-| - ."-I.\. 'II'.I"| Pl |.|'l“l.:---lll-'lr.:---l.|-.r.:---'| .-'r":l'--liu-'l':l--alu-u-u .u-"'..'l"l"-n.l |_|:,r|..-". I:|-III|III|.|..|.I-:I "-'.-.--l.
e [' P AR I el e s L i R R Weme "= o T Tl YT I e T P DL P T
r RO Rtk L PREALR St RN Vet e Tw vem el e T e Rl e A e e e T e e e e P e e T e
Shrtara it s TR N R A I N V2 L - e W by T e e, T T A e L e e
LTk T T T I I T A TR B Y TR RPN I T Il
- ol o L e T L
________ Thaa T A I N LI I LN S i BT T R LA R R) R
' o L T T e T D T T R Y
i]
Vet n
..'-..,-r H-
l.l-"
Sl
-.._""ru -
sean
L »
—
- =
tuta F
.‘,‘l' - 'nr
1, .'Jl' "
-
-
-
-
L]

ask: 5]
| 589

MASK: 179
END:179

014 | 043 | 123 | 132

167

173

179 | 256 | 512 § 512 | 561 | 577 | 589

US 7,370,058 B2

Sheet 1 of 30

May 6, 2008

U.S. Patent

001 |

000 ¢ ONY 'L "0 SLIg 404 INIddYW — ¥ AT

G ONY % "€ SL19 404 INIddYW —-— £ TAATT

— { 1AM

= | 13N

US 7,370,058 B2

Sheet 2 of 30

May 6, 2008

U.S. Patent

@

(0)

@

e

(0)

(0)

L

@E @

(0)
0l

<<<<<<4<4

(0)
Ll

(0)
10

s e @é@@@
1110 01/10:00:(11/01

=

\4@

0

S

(INNO3)
S118

SI00N INILSIG-NON

 CTITRITOEY |

é _é _ﬁe

€ 13A31

_ 10000 SV
10 -Slld

1 :uE
@ g:s WSHiA
- £-7:5118
1 73AT1 |
000011 HSYI
R
(00L101) b
(LLLELD) 1L
(011100} bl
(110000} ¢0
(101001} T
(001101) b
(LLLLOL) 1
(001100) Al
MYNIE TYWI9IE
SINTVA T1dWYS

US 7,370,058 B2

EIEN

110000 NSYW
10 -3LIg

—

: AT
: 001100 HSYA
: £-2'SU8
S

—

79

: | 13
m 000011 Sy
: 5118
>

~

=

(INN0J)
5118

U.S. Patent

(001101) b
(LLLLL0) 1€
(101011) al
(110000) £0
(101001) T
(00L101) by
(LLL101) Ly
(001100) Al
ABYNIS TWWI30
SINTVA I1dINYS

US 7,370,058 B2

Sheet 4 of 30

May 6, 2008

U.S. Patent

a0 i

) {.‘...
L | " .
Y

-
4

t""‘-ﬁ.:' y
ol P

L]
‘l‘

i-._q
"I

y "OIA
685 | LIS EEE 052 EE o1 | 251 | szt | evo | w10

. .
) .
S ! . .
W'
™
LY

= 1M1

f—mmme memme———, - ——

e
jXL8 AN |

—{ 1M1

r

| | ¥
_ w

— T AT AI\AELE
.f.‘

ST
BRI
[o [t - [

.k,l_ 3 l.vl. -
H..mw L6

a
|

atet
--_r ts

.n__.,....w.,.. “.... ..
DR R B _ _T—._ua._

- r =
- ..- ___.. 1 .. £ . P o N 1.. . - A L ._-... P - - L. .
T ' maoa " . " L) LI 1 T - L R - T ..- . [T, * 1 .-.-I_.. . - X [. LI a . ey L .-._ e .__......l-.-_ LR) L -
L e T . - I g . "kt - . + * . LR TR . - L . " - Ty " .y r - . - a . LR
- .- -y, " e r - . - o o- - " L] - -i.u..-l.l.-. - ' |] ' - L e B R i ._l._...l .wI. [| - " By - * T 1 - LI] anm g 4 L I
r T rraa . LR P R B M_l Lt e ’ L RC L B e P ra & L ' L a" T .@.l.n lllllllllllll L I . . _w- - gk Pl R) LI I L - . s . [n. st o
S N n . - .._-_l_-__l-._.-. Tew a Ten L Y) -._..... - R ‘ 4 r wFL 1 ._.-.._...........-..- L] an] e L R .-... .] LI) - - Y Loy mt® LI B X - a
. " -
.- LI MRS P . .-.-.__ - .._....l_..i....___.- -.ll.ll. L o " . o -,k . 0 - - .ll-..ll. __-II... 1.l - . LS -l-. .”-.-.l . L . l-.f_.. L]] ™ 2 . . .- .._.._l-l.-.l B Fraa " oa
..—.” l._..-”. L a o . -l.-.l =T aF, et F ey, - ﬂ_. .H.- o ..-.1._.. M | ' __' L] !.__- I-. . e .” - .._-. i-...._. - .-. . .t LI . -, -_-_ [} H] .-1-_.-.| . ._.-_ L) -
- - - .
S " R A I TR IR M R PR TSP el S e g e i Ty . T = e T E- n) L I T ST I T R R F) R I TS R T
ML I L R * . v *y m it r b # Ty F ok she n " i - "aom] CI N & " e . " - i L L L] L] " a T PR .. *
B " e g m ¥ . . llIi- .-._-.I._. L » n * 7 -_-.__-_ ._.-_.-_I T e ow rem ¥ * e ' In. * = R . .._..._-..-. . - . " - l.__ ", a . - - .-..-.ll.- E Pl R [L] ..
. . n
-_.l LI L | L] . L T .t - - - __.-..l- LI - 1 . - L N » -, LI - "u - L] e » 1 - .“ [] L = .__.-.- ..i‘ * "] " .“ l.-.__.--nr ._r.-. - n .1.-.-. =" - ol]
L LI -k T 1 & . - - ' 1= F]] - ¥ * " -+ 1 - r - - - - LI +
- a . - .. EELEE | . e, -y . -y " ™ L] » L] = - " a F a a® g - - LI [* 'S
- L - - ry e 4 =t - . L T | - - PR] 'y v o a Fa® . " - L s - . = -7 ' *pa L = . & - - " Thy - ™ -
] L I . [] -
+ " - lJ-_ . -= .__.-. . - h._.-. L LI .._"__._..- ...-.-_.-___. L] -....l.- __.- .-_...nrl_- =1 + "an 1 + 0 4 . - L] - i.-“- LI L] m.—. I'm . LI | ..-. L] _w.__ 1.-. L ._.1] . .-] .__-__-... - 1 u ==
. ill- - .t.-..l.._-. (" a ._..l-.- g ma f . * . = LI g ____..._-.._] . . " . ¥y -k -__l.l.-.-l.I.l L™ ._.-‘._.-__ ¥ .. l.- ._..- g L + . a2 - - LI ‘ i.f . _-.-..-..r -..- it
' - - . ' . - - L] - 4 - 4
a L - - " Ll x P L fyra - a " . . * LR b] [.] - L] - . . . u * - * - e - = P r T . a
. LB T .t . . R _— ey 1 v . . e 4T . n .r . .- - - A L R I L
--.hqi-_.. I ...,-.1.,ha._..._-.__+) .-.+i| 1 -."-..r-_.. TR S f..___a....___ LA .._._..'l_.. Lr - ._-...-_r._ =1 Lo 4, = LT W e e] Jop e ﬂ_".._-._ 1y . L3 -.-..-_ 4 +h.-..- H Lo S e f;-q"... e . r .-."....._._
. - - - 1 [} - 1 = - - L] = . u - - [] L} . "L L] L] 1 [u . oa ¥ r
. [] - L] -l.__-..ul__ - a ! " = n ™ L + L] P "aom o oeR" g T - -_-r.._... £ - h ‘ ‘ L | BLY]] F] ' [L . L] - . L] e " -y - N " L L]
PR gt - T T e T B B T i ¥ LI] ar b, 1k w i = nww I, s ew_ " L P pr am® Tag .]] - T Foaoao L T iy r - 4 b | e p vt L
. . . " 4 4 . . P a 4 - ¥ l L] .- " r g] - i] a r » F_a | * » " 2T » - F [] » » '» ' e L M | L n -
- e L L -....._".._l-_.- -_-i-_-.l-_-_-__.-...-l -I._.._.-.-.- e g .rl—_.-l__i_..._.- Fa— '...._ & . L -] " L Fy __l... &g L | N o LI - ¥ L) .t P * Lma A nn .-.II o T T, UL R4 - r -_--_ L a
L] L - - " a W =aT - - - T . - . - . . - | LI L r - + - [r - LI
. e A"t - 1 f L - - . » . - -
..I- 44 ll- .-._-._.l-!1-I.-.“I.-l-_ﬂ.._.-.“n.-.-...__--....-..._I-.-l.- l.-ll"..—_l.-lq__..__-l__.--......._-.-.l-...-..__l-. =g == lil.—_l] -_-..-. lllll . - o [} ._.l * [] l+ + a e r oo aeT .-.- -_-.__ --. r .-...__ .__.-.“. __.- LI I . » - . »
e N R R e e el T T b B R T i S I T I I R I [v " LI r " LI W Y LI " b, . -, AL RS L am LN L i - - ik ¥
T T . n = * L N ’ T e e BTN e e e et - - - * = e . ' ’ L, LT . . LI L F L 4 ' Tra L 1 L -
. - . TR L . . - ...-_-_ . - et L - . " P LN T R Y g R - a'™nm y P tE -.-.._l - - gr gl L L] . T . * Fw ! i L] w "EF"F "] ¥
LR] -i{-li oy " . om + 4 . . Tk I-r.-..-Iil-.._—..-l!l- -.-l__i-li -.._.. -.i.-. T L] L ..-_-l- "y b * . [+ . ¥ - v l-li.—i L] v oa ot on LI - ! . L[] L L | LBy L} l._-] 4 -t
[- . - . .]] 1 ar v_+ - - - 1] L LL) - " - ah L] " "] - 1] » -
P __...r.n .l-.—.-l H-.. - ...-.u -1.-..- ..- * - _.__--.-._- r __..-.-....-. -" - -_...—. . L I -n..-_ 1.-__.._.- ln-_...... -- -...Hu.l-l_-.-....l.... ‘_. * " __..h.._.-.rl-._..._.._....-_._ l__- -_._..l_-ln L .ﬂ.._ - F -._-_..I_.-_ I._-_..._--_-. -_.. '-.-_l-.ﬂ ot . .._-_..l-.r -.-..m ___-.-.lur .“... A -_.r-.l.l
-] - R T gt " 4 - n o, L - n" T am 1+, " = -_ - L] - r i a Py - * - - T a - L - L * L] Y L T -y - L - " ' -
F [3 L] L - LI - L L] r 1 = d] , 4 m + F) = " » M + [] ¥ L} - +
LI - . ._..._. .+.-.—.__.___ L i T T R .'__l.._.... L] -..“. ¥ ._..-.__r._ .._-_-u...-...- r ...-._.n.._..u.._..__..-......l.__.__q._.....v. LT v”..-__..-..._. . r”-_....-..._r -~ n...n'.-_“. L] . L -_“.._..._.._f-.-.-_ --_.____._11-. - .--u.. " .._“..-.u e R L T L T L
L -....“..l |-.___|-_-.._........._.....-_.--..-.-...l..l l.-..--_'..-__..........-.v..l.l-._.._.-”....-.._ln.u rll__.-r_.... ..-.-...-l-_...._.- "a __.-_-___- P o1+ l.-lI-.__.- " -!._.._-....-..l-__.__._..-.__ll.-_i.-__-_-l._-..-..-- -....-....._-__-.__._-.._.—.._. bl EE --n.- .ll_____“ .__..-l-._._._.-_- .-I..__._.-1-|-|-...-.-..._-_.-l-.._.._...
- r . -
B ommha ._l- I""_.__....._lln_-u"__..-l._..-HH.-...__..ll....__.r._._--.....___. l__..__..”“-.u.__- i -.-_.._.v.._.l.--l.-_l-.- _..l_inl._.-_-....____.-_-...-..l-_.llI.-_-1.-.._-_l_1._ l-.._.-.”."__._-.._..___l. _...._-.-.-.._1.._.-.|1.-.l.'-1__...-+.-.-..__..-+__.-.-i.__...___l...- -..-...._-.-.- ._.._i...-___.-..-_ll._-.”"__.._...-._.-._-._.-
"] - 1 [n L ' - . .] r [+ a n " - a .
I..l-“l.r___-l-.-!-__.-.-l._.-.-.-ll”_ll.-.-_lt-.._--._'__l..- JCETAE L MR ' i...-....__.-_l-ni -.--._.._.- [] _.H__.r.._-__..--.__."-.-- .-.1._-1....-.-.._.r-!.-.n‘...-..+.-..-.--.__H-.-.l.-.1.__--lL-_...__..__.__-.-'-_nl-l.r.-l._.-.s.._--_-_.inl-...-._-1-.-._.__.._.r-.;.--.-_-.__. L T A | +-__-l.-i.._ R l-_-.-- gFran L R, --.-.”..-I_“-.-.l-.-.i-.-.._ '
n " . L) w ' - " . . . -

ll- ol - l_-..-..- .-__...__-_l- ;_._.ll.-_.._..... ._.-_-.._.-.-_-h_-.!.-._-.—..I._-i.__..-.---.-l..... i-..a_-..-._..-.-l.-_-l ' -.._l-i...-_i.‘ll...i-.. I.-_.- - F o .r..___.--.-.'.--._- ill-_.._ ot nl_l.-.- -._.-_l.-.... .-.-_.._-__.._-l-.-_' -.--.._..-.-__-.-.'.._ill.._- l-l._.-ll._-.-.._u.__..._--.'-.--.- __.-..II..-.-.--.-... .-II._-!__-_-.- ._.--... +" HI-.-_.-.-._.__.._
. - - T E . F L . -, . + . g Lt - [R . - . [e » LI " . L 4 [) . DN PP B L . + . P - F 1= M . - g a
.-.-....-_-..._ a i oy TRt s __.li-l-l_. LI T i l-_i T L T T R __.._-l-. L L L o . T R B L L T e N B B B T B T Y + " g W, .J_.-_-_-_ T L R e bl R LT UL T TR ol B
e ® * e Tt at . ra 4§ | I R R L - PRSI L A A " - . LL N NS " " o | I R L T T T L N WL B+ P LI N R t A =¥ M LI TN | QS o omw?, " P L R TR L 3 T ' - = T P I
+ T E o L - R - . ¥ w* ot * L L] 4 . " * LI - F B L -..h " . e - . - ¢ L O L R ™ aa * Ta L T T T Ty 1 AT R a B -.J_... -.r.-___l__ . rF l..J- .
L * ko . - - L - L B S LI . " . L | L T D st e" L B T I B T -’ LI LI e B T I R - R L T T TR TR B T S R T " LR I - B " yenty " - - A"y =gt - 1

a] . . o . N -
SR T-... * ol I Pl LT T TR S] +-1+1.n.‘+|.._.._-..|.....---..-.-......-__n.‘.+._..nu.........q....n.....nn-‘_-...-n__. +..___._._.1-_+...+'..._1_-........-....-.—..__..n.r..._._|¢.._._--......-.--........-*-.1-..nu_-.-.._ e P T
.-1.._...._. ++++++ I I =Ty L] .-.__- L] L N B R e . -_1__-_|..-.___-. -.r._-..._.-_.._ _._.-r..._-.-. R T R i e Y L T —....._.-_...-.-.___1.-. L O L L I T B e B Y I] -.._'-.-.-_- emp" 0 Fa - s Tip A ..__uvlu.-_......_i._..-_-_ - T,
. . . [- ¥ k » - : L] L - L] ig ¥ LI L ¥ i r L] - r R]] as w1l - P R P - ! LI P L. g2 uF L - L - - * " ap F » a a1 s n 1 - R
. - - - “m L - . [I - - m" anm L . » 1 - [| [R o a =] LI . a " a = L] . F L] - n o n -] B g o hiyg, k1" mTag, m= - L] L e N " = q L + " " m
-.l.-_- .-l.__-..._ a -.l_ s FR .. . - . - = - . N -l!...l.._..-.__... l.-_.-_.._-.r ' aq ® -..-!._.-.1 . L. 1.-.-.-....@! -l-.-n.-_ ._.—-__.__.-_-.._....l-.-..._u—.r l.-_.._.._... - l.-_..._...-. N . . ' ...i_-.-_-..-..-___-.-_ lllllll _...._ rrrrr . .__._.-l.-
.....---..__.:-._ =l aw L2 ._._..___-_- __..._-..! -..-_.._._u___..... - ._._...m.r._n.-..-_ 1.__.._- e . ‘_.'_-._.f... LI B - g trea] DI IGE -.-..-.._r __.._.-.|.-..|__..._1|._-1. e L '.-..'...r-_.._._._.__...._n .-_-_u__.__. LI _-...-.u_r..-._..._.I._...-.-.i__..-nn.r.r.-.un.-.
- LR k. W T [__..._l_-—_...-l L L R h...-l I --1__ __...l_.-.__. oy = w | . = d -I- lllll -..-_ o - T e w " . T a1y r ko .._.-_l._.- L L e LT -!-1.—..!...__._.... T L T *pr= ' o
..-.nu..__ T e T T R S H i A T I - e L R - L BT e R - L N AT s I R B I T L e L R T S PLEL I L AT _a Pl N * T a .,
. . = . -y " - - - - r_n . » .. I . Com N L. ng aE . ¥ A - 4 - 0m e “ - a4 1 . - . a - .
L T P B R T LA T .__._“....._-...-....._-..n.__.- .-_-.-_.-.._.-'v_...n.....J”....Ju...u!..i._-_n ..F O N I 1 . T A -y . L ‘arg 1Tk L T L LT .. W ..-.-.-. 1 ".__nrrr_...-_-.— LRI N) | [Il R L L A e
P . - e - - . .
L L o v f+ ok t*awtoa " _-.-__1.l.. -y " __._._-1-_.. _..-_... -..____- by pom o gy g s e .__-l.._.-_...._-.. * o - LI T “ " Ll a* e T L | s m " 2k -.-_l s’ . ¥ L™ '
A L e A R L R I L, R O o i B e R N LT = A L v Lt - - e a Ko Ty Pl Tt R e L . - - I I T a R -
L L L e L R » -..-.-—....I-_--.-.__-.- ‘u -.l.-i.__-.!- l-.l-..__..-.l.-_..] .—_-.-l...._...-_.-..-... L I N L LI N e, T .-l....-..- L -_--.__.1__. .._-I._.-ll......_ -._.1-.l.-..-__.._—_.___- e T e Ty -.l-hl--.- L - —.-_ll-..i......__.. —..-.--l.-...-..._.- -
_-.-l-l.-.-__...._..“.l-llv.._.-“.-.._-v.l__.”_-._.. —.__-.-.-._.-....__.l-.__l-.--l_.-.-.l.-l-nw_ll- lllll . “___...l-i-l__-_l-._.I-..- --_....--.-I-_.“_--ll-..-..-l-.-..-.._-.__._-._-..-_-.--.i.-f.-.-l.-_.._-!l.l“.!-..ﬂn llH.—..-”-.-__.li.-._.l- P o - M.l. + . L -.“._l-. " H lllll . .
.
" LI LI L I Y n " Fr u w ¥ a, L] I | LI e T] s m ' ®a, | L L L I LIS *Y s, - ' 1 .n LI g . TEE u - - L om L N B e L L R i L - -]
P L T R N Y TR L L I R A BN I Rl A LIS IR L] . LY LI R o, LN Il SR LI - SRR R L L R T L ™ Ay - - R ‘w.__-u___,__. - ' »
_.-..‘__.-....- ' n-- L‘_..l-.._l-. -.-._l-....-. l-._...-.—__....-___-l...-.l.._.-l.-.-.- e _-.-.-.-.__..__- -l.__.--. " . sra -.l-!- ¥ T " . b ..__-.-..-_ a2 . .y e L ™ " -I- __- -.I . - LI T ' -
-
-..-..-....n -..-.-.__n.--.. [|..|.-.-. LI I LA ..rli-...-..._-n.-.__-r-.-..._.-_“_-_- -_.--.”_-.._.._. —y -.-”..-.n- ..-.--— r -.--....__ - ¥ ... Ve, - 4 * 4 et .1.l- ¥ . . 4 - * -..._ l.._-_-i. » M [
4 ar LI = L] . = » r o] — » . * . [= - . - L B -
- -..._ _-.f..l. - ¥ b " s .._l. - '-..-r_- S T A - ¢ -.."_fh..__-.._-___] . 1|#_. R Tamr Ty e N [ToRL. N - " P o A __--. P_..__.- = L2 | el | -i1 % Ty r d =y & n.._-_.-. A L - ' " T, L] Bry +ut mty -
- N i - i N - » V.] a -]] - - a [A e [
L

196 °L91 '967 761 'LLS'6LL "ELL "EV0 TS Y10 "68S €1 TIE
viva My

U.S. Patent May 6, 2008 Sheet 5 of 30 US 7,370,058 B2

10

STORE $ SEQUENCES TO BE SORTED;
DESIGNATE S OUTPUT AREAS A1, Ay, ..., As;

SET OUTPUT INDEX P=0;
SET FIELD INDEX Q=0

11

INITIALIZE NODE Eq TO CONTAIN S ELEMENTS
ASSOCIATED WITH THE S SEQUENCES;

12

MORE THAN ONE
UNIQUE ELEMENT U
IN E?

NO

YES

FOR EACH ELEMENT IN E
P=P+1; Ap=U

DISTRIBUTE ELEMENTS OF E INTO CHILD NODES
E E; ... Eg.q (ASCENDINGLY SEQUENCED)

17
SET CHILD NODE INDEX |=0
15
YES
END OF SORT? - l

NO END

E=Ey;
EXECUTE SORT RECURSIVELY FOR NODE E;
=141

19
YES

2
RETURN TO PREVIOUS EXECUTION OF SORT

s Ak s dEEk Al Sy GEE S sk AR A ARk s hhike A ik AR O eeps A bk whs Sk ks ek A S Sy miegs sl =msis @y = e . O e S s Smia iy A R AR e O A

FIG. 5

(RECURSIVE EXECUTION)

0

_— A S S S R R S S T R S il S W I T A A IS S A A A A A R G sl ae e S BT A A AN SIS SIS G A Wi Gl el A e g e I G D NS G BN A

S E A O S A sk S S S S O S A A G A A el il s

U.S. Patent May 6, 2008 Sheet 6 of 30 US 7,370,058 B2

31
INITIALIZATION
32
MANAGE TRAVERSAL OF
NODES OF LINKED EXECUTION
STRUCTURE, VIA COUNTERS
33
VES
NG 2g END
' ESTABLISH NEXT
NODE T0 PROCESS
35
<&
NO
37
<&
NO 40 38
| ESTABLISH STORE NODE CONTENT 36
CHILD NODES INTO OUTPUT ARRAY
SET EMPTY NODE
41 39 INDICATION

SET CHILD NODES SET LEAF NODE
INDICATION INDICATION

FIG. 6

(COUNTER-CONTROLLED LOOPING)

U.S. Patent May 6, 2008 Sheet 7 of 30 US 7,370,058 B2

#Iinclude <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <time.h>

#define MAX VALS 20000000 // Maximum number of values to be sorted
fidefine MASK WIDTH 8 // Width of the mask to use by Linear Sort
#define MAX CHILDREN 256 // This should be set to 2"MASK WIDTH
#define SEED INCREMENT 473293813 // Used by the random number generator
fdefine MOD VAL 10000 // Values to be sorted range 0 - MOD VAL-1

typedef struct val type
[struct val type *next;
int value;

¥

struct val _type *root, 1nitial data[MAX VALS];

unsigned long int values mask, starting mask;

int num vals, initial rlghtmost, sortedvals[MAx VALS], target, cycles;
clock t before, after;

vold prepare data{void)
{ struct val type *tval;
int 1, seed =SEED INCREMENT%MOD VAL;

values mask=0;

starting mask=0;

cycles=0;

1nitial rightmost=0;

target=0;

// set up the values to be sorted

root=NULL;

values mask=0;

for (i=0; i<num vals; i++)

{ tva_—&(lnltlaT data(i]):
tval->next=root:
tval->valuenseed
values mask=values _mask | seed;
seed={seed+SEED INCREMENT)%MOD VAL;
root=tval;

}

for(i=0, starting mask=0; i<MASK WIDTH; i++) // Build the mask
{ starting mask=starting mask*2+1;

for(initial rightmost=1; starting mask<values mask;) // find masking start
{ initial rightmost++;
starting mask*=2;

} }

U.S. Patent May 6, 2008 Sheet 8 of 30 US 7,370,058 B2

void linear sort{struct vathype *curr, int count, unsigned long int
mask, int shift, int rightmost)

{ int i, ¢, t, children count [MAX CHILDREN]; 51
struct val type *tval, *children[MAX CHILDREN];

if ((counte¢=1) || (mask<=0))
{ for (i=0; i<count; i++)
{ sortedvals{target]=curr->value;
target++;

} leturn; 92

memset (& (children), 0, sizeof (children)}; 53
memset (&(children count), 0, sizeof(children count));

for (c=0; c<count; c++)
{ i=(curr->value & mask) >> (rightmost-1);
tval=curr;
curr=tval->next; ' 54
tval-s>next=children|[i];
children(1i] =tval;
children count [1i]++;

mask=mask>>shift; 55

rightmost-=shift;

for (c=0; c<MAX CHILDREN; c++) 514
{ if (children|c])
{ linear sort(children(c], children count[c], mask, shift, rightmost); |}

}

FIG. 7B

U.S. Patent May 6, 2008 Sheet 9 of 30 US 7,370,058 B2

void quicksort (int lo0, int hiO)
{ int lo = 1lo00;

int hi = hi(;

int pivot, t;

if (lo >= hi) { return; |
else 1f(lo == hi - 1)
{ if (sortedvals[lo] > sortedvals[hi])
{ t = sortedvals|[lo];
sortedvals[10] sortedvals [hi];
sortedvals |[hi] t;

j

return;

}

pivot = sortedvals([(lo + hi) / 2];
sortedvals((lo + hi) / 2] = sortedvals[hi];

sortedvals [hi] = pivot;

while(lo < hi)
{ while ((sortedvals[lo] <= pivot) && (lo < hi))
{ lo++; |}

?hile ((pivot <= sortedvalslhi]) && (lo < hi))
hi--;

if (lo < hi)
t = sortedvals|[lo];

sortedvals[lo] = sortedwvalsl[hil];
} sortedvals (hi] = t;
}
sortedvals [hi0] = sortedvals|[hi] ;
sortedvalsi{hi] = pivot;

quicksort (lo0, lo-1});
quicksort (hi+l, hi0);

}

U.S. Patent May 6, 2008 Sheet 10 of 30 US 7,370,058 B2

void main(void)
printf ("# Values\t\tLinear\t\t\tQuicksort\n");

for (num vals=1000000; num vals<=MAX VALS; num vals+=1000000)
{ prepare datal() ;
before=clock() ;
linear sort(root, num vals, starting mask, MASK WIDTH, 1initial rightmost);
after=clock() ;
printf ("%10d\t%10d\t%10d4\t", num vals, cycles, after-before);

build dataset();
before=clock () ;
quicksort (0, num vals);
after=clock() ;

printf ("$101\t%10d", cycles, after-before};
printf ("\n") ;

|
}
void build dataset (void)
{ int i, high, low, avg, counts[MOD VAL];

cycles=0;
sortedvals [0] =SEED INCREMENT%MOD VAL;

for (1=1; 1<num vals; 1i++)
{ sortedvals(i] = (sortedvals[i-1]+SEED INCREMENT)$MOD VAL; }

}

FIG. 7D

U.S. Patent May 6, 2008 Sheet 11 of 30 US 7,370,058 B2

The following source code sample contains both the Linear Sort and the Quicksort Algorithms.

$include <«stdio.h>

#include <stdlib.h>

#include <string.h>

#include <memory.h>

#include <time.h>

#define MAX VALS 1000000
#define TEST INCREMENT 10000
#define MAX STR LEN 20
#define MAX CHILDREN 256

/ Maximum number of values to be sorted

/ Maximum number of values to be sorted

/ Maximum length of strings to be sorted

/ 256 because the Mask Width here is 8bits

S, T, T .

typedef struct val type

{"struct val type ¥next;
char *yvalue;

struct val type *root, initial data[MAX VALS];

long num vals, target, cycles, moves, compares;

char *sortedvals [MAX VALS], raw data[MAX VALS] [MAX STR LEN];
clock t before, afterT; - - I
FILE *infile;

void prepare data(void)
[struct val type *tval;

int 1;

target=0;

// set up the values to be sorted
root=NULL;

for (1=0; 1i<num vals; 1++)

{ tval=&(initial datalil);
tval->next=root;
tval->value=&(raw data[i] [0]);
root=tval;

| }

U.S. Patent May 6, 2008 Sheet 12 of 30 US 7,370,058 B2

void linear sort(struct val type *curr, int count, int level)
{ int 1, ¢,7t, children count[MAX CHILDREN] ;
struct val type *tval, *children[MAX CHILDREN] ;

1f (count==1)

{ sortedvals[target]=curr->value;
target++;
return;

memset (&(children), 0, sizeof (children));
memset (& (children count), 0, sizeof (children count));

- — - 60
for (c=0; c<count; c++)
{ i=curr->value(levell;

cycles++;

if (1==0)

{ sortedvals[target]=curr->value;
target++;

else

{ tval=curr;
CUrr=curr->next;
tval->next=children|[i];
children[1]}=tval;
children count [i]++;

r (c=1; c<MAX CHILDREN: cC++)}
1f (children|{cl) o
{ linear sort (children[c], children count[c], level+l); }

}
fo
{
}

}

void validate_ sort(void)
{ 1int 1;

for (1i=1; i<num vals; 1++)
{ if (strcmp(sortedvals(i-1],sortedvals[i])>0)
{ printf("sort error=> %d:[%s] [$s]\n", 1, sortedvals[i-1],sortedvals[i]);
return;

printf (" OK ");

U.S. Patent May 6, 2008 Sheet 13 of 30 US 7,370,058 B2

void quicksort (int 1lo0, int hi0)
int 1o = 1lo(;
int hi = hi(;
char *pivot, *t;

if (lo >= hi) { return; }
else if(lo == hi - 1) |
if (strcmp(sortedvals[lo], sortedvals|[hi])>0)
{ t = sortedvalslIlo];
sortedvals[lo] = sortedvals[hi];
sortedvals [hi] t;

compares++;
return;

}

pivot = sortedvals[(lo + hi) / 2];
sortedvals[(lo + hi) / 2] = sortedvals|[hi];

sortedvals [hi] = pivot;

while(lo < hi)
{ while ((strcmp(sortedvals([lo],pivot)<=0) && (lo < hi))

lo++;
compares++;

j

compares++;

?hﬁle ((strcmp (pivot, sortedvals[hi])<=0) && (lo < hi))
1--;
compares++;

compares++;

if (lo < hi)
C
sortedvals [lo]

sortedvals[lo] ;
sortedvals [hi];

sortedvals [hi] t;
} moves++;
}
sortedvals[hi0] = sortedvals[hi];
sortedvals hi] = pivot;

quicksort (lo0, lo-1};
quicksort (hi+1l, hi0};

FIG. 8C

U.S. Patent May 6, 2008 Sheet 14 of 30 US 7,370,058 B2

void build dataset {(void)
{ int 1, ¢=0, m=0, p=0;

infile=fopen("strin S dat", "r");
for (i=0; 1<MAX VAL 1++)
{ fscanf{infile; "“s\n" &(raw datal(i]));

if (strlen(raw data[1])>m)
{ m=strlen(raw datai]);

p=1;
}

%close(infile);
printf ("max string length=%d at %d\n", m, p);

vold reset_dataset (void)
{ int i;
for (i=0; i<num vals; i++)
{ sortedvals[i]=&(raw datal[i] [0]); }

void dump dataset (void)

{ int 1i;
for (1=0; 1<MAX VALS; 1++)
é printf ("%d: %s\n", i, raw datal[i]); }
or (1=0: 1<MAX VALS 1++)
[printf("%d: $8\n", i, sortedvals[i]); }

}

void main{void)

build dataset()
print¥ ("\t\tQuicksort\t\t\tLinear\n");
printf ("# Values compares moves clock cycles clock\n");

for (num vals=TEST INCREMENT; num vals<=MAX VALS; num vals+=TEST INCREMENT)

{ reset dataset();
compares=0;
moves=0;
grlntf(" 510d ", num vals);
efore=clock();
quicksort (0, num vals-1);

after _clock{);
printf ("%10d $10d %6d", compares, moves, after-before);

cycles=0;

prepare data();

reset dataset()

before=clock() ;

linear sort(root num vals, 0);
after=clock() ;

printf (" %10d %éd", cycles, after-before);

printf("\n");

FIG. 8D

U.S. Patent May 6, 2008 Sheet 15 of 30 US 7,370,058 B2

QJO
— 96
. INPUT
MEMORY |
DEVICE _nm
91
INPUT OUTPUT
DEVICE PROCESSOR DEVICE
95
: 97
oo | TR |~
DEVICE |

U.S. Patent May 6, 2008 Sheet 16 of 30 US 7,370,058 B2

2 222 242==
© = = = = £ 5 5
= oo o M M 08 o o
2 & = e ==
A A T B - B
_ e = s = s = =
. | el — — — —) ol
. 00000002
- 00000061
- 00000081
. 000000}
= . 00000091
g;‘ - 0000005 |
i : ¢+ | 0000001
L - 000000€1 _
— (-
E . 00000021 =
= s 000000} &2
= | 00000001 =
g - 0000006 i.
S - 0000008
“g” -‘ 000000L
& .\ ‘ 0000008
% wige| 000000
\\|!
‘\\“ 000000%
\i‘" 0000002
%} 0000001
T § o I

SINON

U.S. Patent May 6, 2008 Sheet 17 of 30 US 7,370,058 B2

T MASK
T MASK
T MASK
T MASK
T MASK

) 2 g
—S 8 & & & & 2 %
DE L £ & oo o=
S=E3 3 3 32 33
=0 0 S 5 5 S 5 =
0ot ox F 1l
- 00000002
. 00000061
. 00000081
- 0000001
= - 00000091
=L
E”; - 00000051
T - 000000%1
—
Lil - 000000€1
—_—
= . 00000021 __
&) heded
= - 00000011 &=
=L (P
= s 00000001 2
= - 0000005 =
= i
= - 0000008 ©
= 3h
S a 000000L
=
= 0000009
%
= . 0000006
LA
— - 0000007
%
L 000000¢

| 0000002
| 0000001

|

1000000000
900000000
800000000
100000000 -
600000000
300000000
400000000
300000000
200000000
100000000

SIAOW SIHVdINGD

US 7,370,058 B2

Sheet 18 of 30

May 6, 2008

U.S. Patent

ASYW 118 ¥1/21/01/8-4V3NI
¥SVW 119 3-4VINIT

ASYIN L1 v-4VINIT
ASVIN 118 €-4VINI

ASUW 118 Z-4VaANIT
$119A0 140SXIIND

ot oF ot

00000061
00000081
000000L1
000000931

l

00000061

¢l OIA

111408 SINTVA 40 #

000000¥1
000000t 1
000000Z1
00000011
00000001
0000006
0000008
000000L
0000009
0000006
000000
000000¢
000000¢
0000001

(666°6-0 -JINYY SINTYA) SIAOW ¥O4 SLINSIY 1531

00000007

0000000%

00000003

00000008

000000001

I 000000021

~ 0000000%1

_. 000000091

SINOW

US 7,370,058 B2

Sheet 19 of 30

May 6, 2008

U.S. Patent

NSYW 118 ¥1/21/01/8-4VINIT —+—
ASVA 118 3-4VINIT —=—

ASYW 118 -dVINIT ——
NSUW 119 C-4VINIT —x

NSUW 119 Z-4VINIT —=
$113A0]HOSWIIND —C—

0000003

&L OIA

131408 SANTVA 40 #

0000005
0000007
000000¢
000000¢

(666°6—0 JINVY SINTYA) SIAQI Y04 S1INSIY 1S3L

0000001

000000002

00000000%

000000009

000000008

0000000001

0000000021

00000000¥1

0000000091

0000000081

SNOSI¥Vd0)

U.S. Patent May 6, 2008 Sheet 20 of 30 US 7,370,058 B2

et N e
3 e - " e wm D D LM
ﬁ & “D & M = «w=f ouXt
ty) = =X =X =z = E = =
— = _=— = = = e =
& = k= = = A e D
Y Mo o m 0o O O oy =
oS € e = B 6 v v wF
ﬁé’-’ o e . o O o o o
O B W M W o o ol
D s E s E s = =

00000091
00000051
00000071
000000¢1
00000041
00000011
00000001

0000006
0000008

OF VALUES SORTED

000000L
0000009
0000005

TEST RESULTS FOR TIME (VALUES RANGE: 0-9,399,999)

000000%

000000¢
000000¢
0000001

30000
25000
20000
15000
10000

3000

U.S. Patent May 6, 2008 Sheet 21 of 30 US 7,370,058 B2

—+— LINEAR-8/10/12/14 BIT MASK

—0O— (QUICKSORT CYCLES
—a— |INEAR-2 BIT MASK
—»— |INEAR-3 BIT MASK

—4%— LINEAR-4 BIT MASK
—s— LINEAR-6 BIT MASK

00000091
00000061
00000071
000000¢1
00000021
00000011
00000001
0000006

FIG. 15

0000008

OF VALUES SORTED

000000L
0000009
0000005

TEST RESULTS FOR TIME (VALUES RANGE: 0-3,939)

0000007
000000¢

0000004
0000001

120000
100000
80000
60000
40000
20000

JNiL

US 7,370,058 B2

Sheet 22 of 30

May 6, 2008

U.S. Patent

9L OIA

ASYIN 40 H1QIM 1H0S YYINIT
6| 8l LI 91 &1 %1 &1 2 1L O 6 8 L 9 & ¥

NOSINYdIN0J JIVSN AYOWIIN 140S YYINIT SASHIA LHOSHIIND

S3M1VA 0000001 LYOS OL A3SN (W) AHOWIW L4OSHIIND —=-
SINTYA 0000001 LHOS 01 G3SN (GIN) AHOWIW LYOS YYINIT —-

0l

A4

4!

9l

8l

JIVSN AJOWIW 40 SILAGVIIN

U.S. Patent May 6, 2008 Sheet 23 of 30 US 7,370,058 B2

-~ QUICKSORT MAX LEN=20
~- QUICKSORT MAX LEN=30

000°00
000°0LE

000°0¢¢

000°01¢
000082

000°052

000027

000061

FIG. 17

NUMBER OF STRINGS SORTED

000°091

QUICKSORT CLOCK CONSUMPTION

000°0€1

2550,

5 000°001

29,4

406 6.4 ¢ 9.0

0000°0L

0000°0F

0000°01

10,000
60,000
20,000
40,000
30,000
20,000
10,000

0

INTYA NOILINNA ¥I013 D,

U.S. Patent May 6, 2008 Sheet 24 of 30 US 7,370,058 B2

~i- LINEAR SORT MAX_LEN=30

—O— LINEAR SORT MAX_LEN=20

000°0Z6
000°058
000°08.
000°01L
000049
000°0LS
000°00S

000°0¢EY

FIG. 18

NUMBER OF STRINGS SORTED

000'09¢€

LINEAR SORT GLOCK CONSUMPTION

000062
000027
0007051

000°08

000°01

600
900
400
300
200
100

INTVA NOILNN XI019 1,

U.S. Patent May 6, 2008 Sheet 25 of 30 US 7,370,058 B2

Il 524288

165536

$=2000

B 64
128
1256
[1512

§ ;
131072
/5535
32768
[— 16384

8192
096
Q7
S

U.S. Patent May 6, 2008 Sheet 26 of 30 US 7,370,058 B2

$=2000

= =)
—
)
~d

I 262144

Il 32768
%) 65536

-t
o~
=
F

262144

1
=
16384
c— — 8192
4096
08
§/

U.S. Patent May 6, 2008 Sheet 27 of 30 US 7,370,058 B2

U.S. Patent May 6, 2008 Sheet 28 of 30 US 7,370,058 B2

& -t
L o 'l | e ™ -
— = €O O &4 O O M o v
— o 2= o~ e~ X N = o> o LD — P
ot o~ T e — — — — o o~ r. D —
— e~d L — o~y - oD y— e | & - — ¥ |
J E DO EECENONN
i
-3
P
~
0 o
L S —
o O
v
N
£

NIl

U.S. Patent May 6, 2008 Sheet 29 of 30 US 7,370,058 B2

Lid
-
e
Cy = oD Wl
wi oD e e W O S
= ww oD o8 0 & oM & v e~ oS
[—] o B € &~ = O [~ - T T T - B . . D - Y .. .
o = T R e — T — D —— GO 6N MH M L N ol
” D v N UD e= N = -— e D e N W A
- mH B O~ =@ B H B I BB B =
LiJ
=
[Sh—
|l
el
5
D 9
S 8
.
o - o
L |
LD

236

128
b4

E ..
£m--r—- T rewheenne e =s weeenngb

._'_ &
— I A .' *r;
N ti; e i

U.S. Patent May 6, 2008 Sheet 30 of 30 US 7,370,058 B2

Il 16384

$=100
M 32768

H 1024

. — o

-

P ¥ |

A = ﬂ"

o ¥ —
o B
v)

LED
LD

8192 N
4096 %\7‘
»

0.08
0.07
0.06
0.05

Us 7,370,058 B2

1

ALGORITHM FOR SORTING BIT
SEQUENCES IN LINEAR COMPLEXITY

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention generally relates to an algorithm for
sorting bit sequences, and in particular to an algorithm for
sorting bit sequences 1n linear complexity.

2. Related Art

In the current state of the art with respect to sorting words
(1.e., 1ntegers, strings, etc.), the fastest known algorithms
have an execution speed proportional to N - log N .. (1.e., of
order N ;. log N;,), wherein N, denotes the number of words
to be sorted. The well-known Quicksort algorithm 1s an
in-place sort algorithm (i1.e., the sorted items occupy the
same storage as the original 1tems) that uses a divide and
conquer methodology. To solve a problem by divide and
conquer on an original mstance of a given size, the original
instance 1s divided into two or more smaller 1instances; each
of these smaller instances 1s recursively solved (i.e., simi-
larly divided), and the resultant solutions are combined to
produce a solution for the original instance. To implement
divide and conquer, Quicksort picks an element from the
array (the pivot), partitions the remaining elements into
those greater than and less than this pivot, and recursively
sorts the partitions. The execution speed of Quicksort 1s a
function of the sort ordering that 1s present in the array of
words to be sorted. For a totally random distribution of
words to be sorted, Quicksort’s execution speed 1s propor-
tional to N;;-log N ... In some cases in which the words to be
sorted deviate from perfect randomness, the execution speed
may deteriorates relative to N, log N, and 1s proportional

to (N,,)° in the worst case.

(Given, the enormous execution time devoted to sorting a
large number of integers, strings, etc. for extensively used
applications such as spreadsheets, database applications,
etc., there 1s a need for a sort algorithm having an execution
speed of order less than N log N ...

SUMMARY OF THE INVENTION

The present invention provides a method, computer pro-
gram product, and associated algorithm for sorting S
sequences of binary bits 1n ascending or descending order of
a value associated with each sequence and 1n a time period
denoted as a sorting execution time, said S sequences being
stored 1n a memory device of the computer system prior to
said sorting, S being at least 2, each sequence of the S
sequences comprising contiguous fields of bits, said sorting
comprising executing program code at nodes of a linked
execution structure, said executing program code being
performed 1n a sequential order with respect to said nodes,
said executing including:

masking the contiguous fields of the S sequences 1n
accordance with a mask whose content 1s keyed to the field
being masked, said sequential order being a function of an
ordering of masking results of said masking; and

outputting each sequence of the S sequences or a pointer
thereto to an output array of the memory device whenever
said masking places said each sequence in a leaf node of the
linked execution structure.

The present invention provides a method, computer pro-
gram product, and associated algorithm for sorting S
sequences of binary bits in ascending or descending order of
a value associated with each sequence and 1n a time period
denoted as a sorting execution time, said S sequences being

10

15

20

25

30

35

40

45

50

55

60

65

2

stored 1n a memory device of the computer system prior to
said sorting, S being at least 2, each sequence of the S
sequences comprising K contiguous fields denoted left to
right as F,, F,, . . ., Fx with corresponding field widths of
W,, W,, ..., W, said sorting comprising the steps of:

designating S memory areas of the memory device as A |,
A, ... A

setting an output index P=0 and a field index Q=0;

providing a node E having S elements stored therein, said
S eclements consisting of the S sequences or S pointers
respectively pointing to the S sequences; and

executing program code, mncluding determining a truth or
falsity of an assertion that the elements 1n node E collec-

tively include or point to no more than one unique sequence
U of the S sequences, and 11 said assertion 1s determined to

be false:

then generating C child nodes from node E, each child

node including all elements 1n node E having a unique

value of field F,, , said child nodes denoted as E,,
E,...,Eq_ having associated field F , | values ot V,,
Vi,...,V~_,satdchildnodes E,E,,...,E ~_, being
sequenced such that V <V <. .. <V __,, said generat-
ing followed by incrementing Q by 1, said increment-
ing followed by 1terating from an index I=0 to I=C-1
in steps of 1, wherein 1teration I includes setting E=E,;
followed by executing the program code recursively at
a next level of recursion for the node E;

clse for each element 1n node E: incrementing P by 1, next
storing in A , etther U or the element pointing to U, and
lastly 1f the program code at all of said levels of
recursion has not been fully executed then resuming
execution of said program code at the most previous
level of recursion at which the program code was
partially but not fully executed else exiting the algo-

rithm.

The present invention provides a method, computer pro-
gram product, and associated algorithm for sorting S
sequences of binary bits in ascending or descending order of
a value associated with each sequence and 1n a time period
denoted as a sorting execution time, said S sequences being
stored 1n a memory device of the computer system prior to
said sorting, S being at least 2, each sequence of the S
sequences comprising K contiguous fields denoted leit to
right as F,, F,, . . ., F with corresponding field widths of
W,, W,, ..., W, said sorting comprising the steps of:

designating S memory areas of the memory device as A |,
A, ... A

setting an output index P=0 and a field index Q=0;

providing a node E having S elements stored therein, said
S elements consisting of the S sequences or S pointers
respectively pointing to the S sequences; and

counter-controlled looping through program code, said
looping including iteratively executing said program code
within nested loops, said executing said program code
including determining a truth or falsity of an assertion that
the elements in node E collectively include or point to no
more than one unique sequence U of the S sequences, and
if said assertion 1s determined to be false:

then generating C child nodes from node E, each child
node including all elements 1n node E having a unique
value of field F,,,, said child nodes denoted as E,,

[

E,...,E._, having associated field F , | values ot V,,
Vi,...,V._,saiddchildnodes E,, E,, ..., E _, being
sequenced such that V<V, <. .. <V __,; said generat-
ing followed by incrementing Q by 1, said increment-
ing Q followed by 1terating from an index I=0 to I=C-1

Us 7,370,058 B2

3

in steps ol 1, wherein iteration I includes setting E=E,;

followed by returning to said counter-controlled loop-

Ing;
clse for each element 1n node E: incrementing P by 1, next

storing 1n A , either U or the element pointing to U, and
lastly 11 all iterations of said outermost loop have not
been executed then returning to said counter-controlled
looping else exiting from said algorithm.

The present invention advantageously provides a sort
algorithm having an execution speed of order less than N,
log N ...

BRIEF DESCRIPTION OF THE DRAWINGS

FI1G. 1 depicts a path through a linked execution structure,
in accordance with embodiments of the present invention.

FIG. 2 depicts paths through a linked execution structure
for sorting integers, 1n accordance with embodiments of the
present invention.

FIG. 3 depicts FIG. 2 with the non-existent nodes deleted,
in accordance with embodiments of the present imnvention.

FIG. 4 depicts paths through a linked execution structure
for sorting strings with each path terminated at a leaf node,
in accordance with embodiments of the present imnvention.

FIG. 5 1s a flow chart for linear sorting under recursive
execution, in accordance with embodiments of the present
invention.

FIG. 6 1s a flow chart for linear sorting under counter-
controlled looping, 1n accordance with embodiments of the
present invention.

FIGS. 7A-7TD comprise source code for linear sorting of
integers under recursive execution, in accordance with
embodiments of the present invention.

FIGS. 8 A-8D comprise source code for linear sorting of
strings under recursive execution, 1 accordance with
embodiments of the present invention.

FI1G. 9 1llustrates a computer system for sorting sequences
of bits, 1n accordance with embodiments of the present
invention.

FI1G. 10 1s a graph depicting the number of moves used in
sorting integers for a values range of 0-9,999,999, using
Quicksort and also using the linear sort of the present
invention.

FIG. 11 1s a graph depicting the number of compares used
in sorting integers for a values range of 0-9,999,999, using
Quicksort and also using the linear sort of the present
invention.

FIG. 12 1s a graph depicting the number of moves used in
sorting integers for a values range of 0-9,999, using Quick-
sort and also using the linear sort of the present invention.

FIG. 13 1s a graph depicting the number of compares used
in sorting integers for a values range of 0-9,999, using
Quicksort and also using the linear sort of the present
invention.

FIG. 14 1s a graph depicting sort time used in sorting
integers for a values range of 0-9,999,999, using Quicksort
and also using the linear sort of the present invention.

FIG. 15 1s a graph depicting sort time used 1n sorting
integers for a values range of 0-9,999, using Quicksort and
also using the linear sort of the present invention.

FIG. 16 1s a graph depicting memory usage for sorting
fixed-length bit sequences representing integers, using
Quicksort and also using the linear sort of the present
invention.

FI1G. 17 1s a graph depicting sort time using Quicksort for
sorting strings, in accordance with embodiments of the
present mvention.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 18 1s a graph depicting sort time using a linear sort
for sorting strings, 1n accordance with embodiments of the
present 1nvention.

FIGS. 19-24 15 a graph depicting sort time used 1n sorting,
integers, using Quicksort and also using the linear sort of the
present invention, wherein the sort time 1s depicted as a
function of mask width and maximum value that can be
sorted.

(L]

DETAILED DESCRIPTION OF TH.
INVENTION

The detailed description 1s presented inira 1n three sec-
tions. The first section, 1n conjunction with FIG. 1, com-
prises an Introduction to the present invention, including
assumptions, terminology, features, etc. of the present inven-
tion. The second section, 1 conjunction with FIGS. 2-9
comprises a Sort Algorithm detailed description 1n accor-
dance with the present invention. The third section, 1n
conjunction with FIGS. 10-24, relates to Timing Tests,
including a description and analysis of execution timing test
data for the sort algorithm of the present nvention 1in
comparison with Quicksort.

Introduction

FIG. 1 depicts a path through linked execution structure,
in accordance with embodiments of the present invention.
The linked execution structure of FIG. 1 1s specific to 12-bat
words divided 1nto 4 contiguous fields of 3 bits per field. For
example, the example word 100011110110 shown 1n FIG. 1
1s divided into the following 4 fields (from left to right): 100,
011, 110, 110. Each field has 3 bits and therefore has a
“width”™ of 3 bits. The sort algorithm of the present invention
will utilize a logical mask whose significant bits (for mask-
ing purposes) encompass W bits. Masking a sequence of bits
1s defined herein as extracting (or pointing to) a subset of the
bits of the sequence. Thus, the mask may include a contigu-
ous group of ones (1.e., 11 . .. 1) and the remaining bits of
the mask are each 0; the significant bits of the mask consist
of the contiguous group of ones, and the width W of the
mask 1s defined as the number of the significant bits 1n the
mask. Thus, W 1s referred to as a “mask width”, and the
mask width W determines the division into contiguous fields
of each word to be sorted. Generally, 11 the word to be sorted
has N bits and i1f the mask width 1s W, then each word to be
sorted 1s divided into L fields (or “levels™) such that L=N/W
if N 1s an integral multiple of W, under the assumption that
the mask width W 1s constant. I N 1s not an integral multiple
of W, then the mask width cannot be constant. For example
if N=12 and W=5, then the words to be sorted may be
divided into, inter alia, 3 fields, wherein going from left to
right the three fields have 5 bits, 5 bits, and 2 bits. In this
example, L may be calculated via L=ceiling (N/W), wherein
ceiling(x) 1s defined as the smallest integer greater than or
equal to x. Thus, the scope of present invention includes an
embodiment 1n which W 1s a constant width with respect to
the contiguous fields of each word to be sorted. Alterna-
tively, the scope of present invention also includes an
embodiment 1n which W 1s a variable width with respect to
the contiguous fields of each word to be sorted. Each word
to be sorted may be characterized by the same mask and
associated mask width W, regardless of whether W 1s
constant or variable with respect to the contiguous fields.

Although the scope of the present mvention permits a
variable mask width W as in the preceding example, the
example of FIG. 1 as well as the examples of FIGS. 2-4
discussed 1nfra use a constant mask width for simplicity. For

Us 7,370,058 B2

S

the example of FIG. 1, N=12, W=3, and L=4. It should be
noted that the maximum numerical value that the N bits
could have is 2*¥-1. Thus, the maximum value that a 12-bit
word could have 1s 4095.

In FIG. 1, the linked execution structure has a root, levels,
and nodes. Assuming a constant mask of width W, the root
in FIG. 1 1s represented as a generic field of W bits having
the form xxx where x 1s 0 or 1. Thus, the width W of the
mask used for sorting 1s the number of bits (3) 1n the root.
The generic nodes corresponding to the root encompass all
possible values derived from the root. Hence the generic
nodes shown 1n FIG. 1 are 000, 001, 010, 011, 011, 100, 101,
110, and 111. The number of such generic nodes is 2%, or 8
if W=3 as 1n FIG. 1. There are L levels (or “depths™) such
that each field of a word corresponds to a level of the linked
execution structure. In FIG. 1, the 4 levels (1.e., L=4) are

denoted as Level 1, Level 2, Level 3, and Level 4.
Consider the example word 100011110110 shown 1n FIG.
1. Below the root are 8 generic nodes of Level 1, called
“child nodes” of the root. The first field of the example word
1s 100 corresponding to the 100 node 1n Level 1. Below the
100 node of Level 1 are the 8 generic nodes of Level 2,
namely the child nodes of the 100 node of Level 1. The
second field of the example word 1s 011 corresponding to the
011 node 1n Level 2. Below the 011 node of Level 2 are 1ts
8 child nodes 1n Level 3. The third field of the example word

1s 110 corresponding to the 110 node 1n Level 3. Below the
110 node of Level 3 are 1ts 8 child nodes 1n Level 4. The

tourth field of the example word 1s 110 corresponding to the
110 node 1n Level 4. Thus, the path through the linked
execution structure for the example word 100011110110
consists of the 100 node of level 1, the 011 child node of
Level 2, the 110 child node of Level 3, and the 110 child
node of Level 4.

Although not shown in FIG. 1, each node of the linked
execution structure at level i potentially has the 2" child
nodes below 1t at level 1+1. For example the 000 node at
Level 1 has 8 child nodes below 1it, and each such child
nodes has 8 child nodes, etc. Thus the maximum number of
nodes of the linked execution structure is 27 +2°"+
2P 428Y or QTP Z2)/(27-1). In FIG. 1, the total
number of nodes 1s 4680 for W=3 and L=4. Since 1t 1s not
practical to show all nodes of the linked execution structure,
FIG. 1 shows only those nodes and their children which
illustrate the path of the example word.

The actual nodes of a linked execution structure relative
to a group ol words to be sorted comprise actual nodes and
non-existent nodes. The paths of the words to be sorted
define the actual nodes, and the remaining nodes define the
non-existent nodes. Thus 1n FIG. 1, the actual nodes include
100 node of level 1, the 011 child node of Level 2, the 110
child node of Level 3, and the 110 child node of Level 4. Any
other word having a path through the linked execution
structure of FIG. 1 defines additional actual nodes.

Another concept of importance 1s a “leal node” of the
linked execution structure, which 1s an actual node that 1s
also a terminal node of a path through the linked execution
structure. A leal node has no children. In FIG. 1, 110 node
in Level 4 1s a leaf node. In the context of the sort algorithm
of the present invention, 1t 1s also possible to a leal node at
a level other than the deepest Level L. Multiple numbers to
be sorted may give rise to a given node having more than one
chuld (1.e., the paths of different numbers to be sorted may
intersect in one or more nodes). IT a given node of the linked
execution structure holds more than one unique word to be
sorted, then the algorithm must process the child nodes of
the given node. If, however, the given node of the linked

10

15

20

25

30

35

40

45

50

55

60

65

6

execution structure holds no more than one unique word to
be sorted, then the given node 1s a leal node and the sort
algorithm terminates the path at the given node without need
to consider the child (if any) of the given node. In this
situation, the given node 1s considered to be a leaf node and
1s considered to eflectively have no children.

Thus, 1t 1s
possible for a leaf node to exist at a level L., wherein L, <L.
The concept of such leal nodes will be 1llustrated by the
examples depicted 1n FIGS. 2-4, discussed inira.

The sort algorithm of the present invention has an execu-
tion time that 1s proportional to N*Z, wherein Z 1s a positive
real number such that 1 =Z=1. As stated supra, N 1s defined
as the number of bits in each word to be sorted, assuming
that N 1s a constant and characterizes each word to be sorted,
wherein said assumption holds for the case of an integer sort,
a floating point sort, or a string sort such that the string
length 1s constant. Z 1s a function of the distribution of leaf
nodes 1n the linked execution structure. The best case of Z=1
occurs 1f all leaf nodes are at level 1. The worst case of Z=L
occurs 1f all leaf nodes occur at Level L. Thus, the execution
time for the worst case 1s proportional to N*L, and 1s thus
linear 1in N with L being a constant that 1s controlled by a
choice of mask width W. Therefore, the sort algorithm of the
present mnvention 1s designated herein as a “linear sort”. The
term “linear sort” 1s used herein to refer to the sorting
algorithm of the present invention.

If the words to be sorted are strings characterized by a
variable string length, then the execution time 1s propor-
tional to 2. W N, where N, 1s a string length 1n bits or bytes
(assuming that the number of bits per byte 1s a constant),
wherein W, 1s a weighting factor that 1s proportional to the
number of strings to be sorted having a string length N.. The
summation 2 1s from j=1 to j=J such that J 1s the number of
unmique string lengths in the strings to be sorted. For example
consider 60 strings to be sorted such that 30 strings have 3
bytes each, 18 strings have 4 bytes each, and 12 strings have
5 bytes each. For this example, J=3, N,=3 bytes, W, %30,
N,=4 bytes, W, 18, N;=5 bytes, W, =12 bytes, wherein the
symbol “oc” stands for “proportional to”. Thus, the sort
execution time 1s a linear combination of the string lengths
N, (expressed 1n bits or bytes) ot the variable-length strings
to be sorted. Accordingly, the sort algorithm of the present
invention 1s properly designated herein as a “linear sort” for
the case of sorting variable-length strings.

In light of the preceding discussion, the sort algorithm of
the present invention 1s designated herein as having a sorting
execution time for sorting words (or sequences of bits),
wherein said sorting execution time 1s a linear function of
the word length (or sequence length) of the words (or
sequences) to be sorted. The word length (or sequence
length) may be a constant length expressed as a number of
bits or bytes (e.g., for mteger sorts, tloating point sorts, or
string sorts such that the string length 1s constant). Thus for
the constant word length (or sequence length) case, an
assertion herein and 1n the claims that the sorting execution
time function 1s a linear function of the word length (or
sequence length) of the words (or sequences) to be sorted
means that the sorting execution time 1s linearly proportional
to the constant word length (or sequence length).

Alternatively, the word length (or sequence length) may
be a variable length expressed as numbers of bits or bytes
(e.g., Tor string sorts such that the string length 1s variable).
Thus for the constant word length (or sequence length) case,
an assertion herein and 1n the claims that the sorting execu-
tion time function 1s a linear function of the word length (or
sequence length) of the words (or sequences) to be sorted
means that the sorting execution time 1s proportional to a

Us 7,370,058 B2

7

linear combination of the unique non-zero values of string
length (1.e., N #0) which characterize the strings to be sorted.

Note that the sorting execution time of the present inven-
tion 1s also a linear (or less than linear) function of S wherein
S 1s the number of sequences to be sorted, as will be
discussed 1nira.

Also note that an analysis of the efliciency of the sorting
algorithm of the present invention may be expressed 1n
terms of an “algorithmic complexity” mstead of in terms of
a sorting execution time, 1nasmuch as the efliciency can be
analyzed 1n terms of parameters which the sorting execution
time depends on such as number of moves, number of

compares, etc. This will be illustrated 1nfra in conjunction
with FIGS. 10-13.

As stated supra, L=N/W (I W 1s constant) and the
upper-limiting value V, ..~ that may potentially be sorted
is 2"V—1. Consequently, L=(1og,V, »»zr+1)/W. Interestingly,
L 1s thus dependent upon both W and V,,.~.» and does not
depend on the number of values to be sorted, which addi-
tionally reduces the sort execution time. Inspection of the
sort a. gorlthm shows that a larger mask width W indicates a
less eflicient use of memory but provides a faster sort except
at the very highest values of W (see FIGS. 19-24 and
description thereot). Since the sort execution time depends
on W through the dependence of L or Z on W, one can
increase the sort execution speed by adjusting W upward 1n
recognition of the fact that a practical upper limit to W may
be dictated by memory storage constraints, as will be
discussed infra.

The sort algorithm of the present invention assumes that:
1) for any two adjacent bits in the value to be sorted, the bit
to the left represents a larger magnitude effect on the value
than the bit to the right; or 2) for any two adjacent bits in the
value to be sorted, the bit to the right represents a larger
magnitude eflect on the value than the bit to the left. The
preceding assumptions permit the sort algorithm of the
present invention to be generally applicable to integer sorts
and string sorts. The sort algorithm 1s also applicable to
tfloating point sorts 1n which the tloating point representation
conforms to the commonly used format having a sign bit
denoting the sign of the floating point number, an exponent
field (wherein positive and negative exponents may be
differentiated by addition of a bias for negative exponents as
will be illustrated infra), and a mantissa field, ordered
contiguously from left to right 1n each word to be sorted. The
sort algorithm 1s also applicable to other data types such as:
other floating point representations consistent with 1) and 2)
above; string storage such that leftmost bytes represent the
length of the string; little endian storage; eftc.

The sort algorithm of the present invention includes the
tollowing characteristics: 1) the sort execution time varies
linearly with N as discussed supra; 2) the sort execution time
varies linearly (or less than linearly) with S as discussed
supra; 3) the values to be sorted are not compared with one
another as to their relative values or magnitudes; 4) the sort
execution speed 1s essentially independent of the data order-
ing characteristics (with respect to data value or magnitude)
in the array of data to be sorted; 5) the sort etliciency (i.e.,
with respect to execution speed) varies with mask width and
the sort efliciency can be optimized through an appropnate
choice of mask width; 6) for a given mask width, sort
elliciency improves as the data density increases, wherein
the data density 1s measured by S/(V,,,+~V), Wherein S
denotes the number of values to be sorted, and wherein
Vv _.and 'V, are, respectively, the maximum and mimimum
values within the data to be sorted, so that the sort execution
time may vary less that linearly with S (i.e., the sort

10

15

20

25

30

35

40

45

50

55

60

65

8

execution time may vary as S* such that Y<1); and 7)
although the linked execution structure of FIG. 1 underlies
the methodology of the sort algorithm, the linked execution
structure 1s not stored 1n memory during execution of the
sort (1.¢., only small portions of the linked execution struc-

ture are stored in memory at any point during execution of
the sort).

The linked execution structure of the present mvention
includes nodes which are linked together 1n a manner that
dictates a sequential order of execution of program code
with respect to the nodes. Thus, the linked execution struc-
ture of the present invention may be viewed a program code
execution space, and the nodes of the linked execution
structure may be viewed as points in the program code
execution space. As will be seen 1n the examples of FIGS.
2-4 and the flow charts of FIGS. 5-6, described infra, the
sequential order of execution of the program code with
respect to the nodes 1s a function of an ordering of masking
results derived from a masking of the fields of the words
(1.e., sequences of bits) to be sorted.

The Sort Algorithm

FIG. 2 depicts paths through a linked execution structure
for sorting integers, 1n accordance with embodiments of the
present invention. FIG. 2 1llustrates a sorting method, using
a 2-bit mask, for the eight integers (1.e., S=8) mitially
sequenced 1 decimal as 12, 47, 44, 37, 03, 14, 31, and 44.
The binary equivalents of the words to be sorted are shown.
Each word to be sorted has 6 bits 1identified from right to left
as bit positions 0, 1, 2, 3, 4, and 5. For this example: S=8,
N=6, W=2, and L=3. The root 1s represented as a generic
field of W=2 bits having the form xx where x 1s 0 or 1. The
generic nodes corresponding to the root are 00, 01, 10, and
11. The number of such generic nodes is 2%, or 4 for W=2
as in FI1G. 2. There are 3 levels such that each field of a word
to be sorted corresponds to a level of the linked execution
structure. In FIG. 2, the 3 levels (1.e., L=3) are denoted as
Level 1, Level 2, and Level 3. A mask of 110000 1s used for
Level 1, a mask of 001100 1s used for Level 2, and a mask
of 000011 1s used for Level 3.

The Key indicates that a count of the number of values 1n
cach node 1s indicated with a left and right parenthesis (),
with the exception of the root which indicates the form xx
of the root. For example, the 00 node of level one has three
values having the 00 bits in bit positions 4 and 5, namely the
values 12 (001100), 03 (000011), and 14 (001110). The Key
also diflerentiates between actual nodes and non-existent
nodes. For example, the actual O1 node 1in Level 1 1s a leaf
node containing the value 31, so that the nodes i Levels 2
and 3 that are linked to the leal node 01 m Level 1 are
non-existent nodes which are present in FIG. 2 but could
have been omitted from FIG. 2. Note that non-existent nodes
not linked to any path are omitted entirely from FIG. 2. For
example, the non-existent 11 node 1 Level 1 has been
omitted, since none of the words to be sorted has 11 1n bat
positions 4 and 5. FIG. 3 depicts FIG. 2 with all non-existent
nodes deleted.

-

T'he mteger sort algorithm, which has been coded 1 the
C-programming language as shown in FIG. 7, 1s applied to
the example of FIG. 2 as follows. An output array A(1),
A2), . .., A(S) has been reserved to hold the outputted
sorted values. For simplicity of illustration, the discussion
inira describes the sort process as distributing the values to
be sorted 1n the various nodes. However, the scope of the
present invention includes the alternative of placing pointers
to values to be sorted (e.g., 1n the form of linked lists),
instead of the values themselves, in the wvarious nodes.

Us 7,370,058 B2

9
Similarly, the output array A(1), A(2), . . ., A(S) may hold
the sorted values or pointers to the sorted values.

The mask at each level 1s applied to a node 1n the previous
level, wherein the root may be viewed as a root level which
precedes Level 1, and wherein the root or root level may be
viewed as holding the S values to be sorted. In FIG. 2 and
viewing the root as holding all eight values to be sorted, the
Level 1 mask of 110000 1s applied to all eight values to be
sorted to distribute the values 1n the 4 nodes (00, 01, 10, 11)
in Level 1 (i.e., based on the bit positions 4 and 5 in the
words to be sorted). The generic nodes 00, 01, 10, 11 are
ordered 1n ascending value (1.e., 0, 1, 2, 3) from left to right
at each of Levels 1, 2 and 3, which 1s necessary for having
the sorted values automatically appear outputted sequen-
tially 1n ascending order of value. It 1s also necessary to have
the 11 bits 1n the mask shifted from left to right as the
processing moves down 1n level from Level 1 to Level 2 to
Level 3, which 1s why the 11 bits are 1n bit positions 4-5 1n
Level 1, 1n bit positions 2-3 1n Level 2, and 1n bit positions
0-1 1n Level 3. Applying the mask (denoted as “MASK™) to
a word (“WORD”) means performing the logical operation
MASK AND WORD to 1solate all words having bits cor-
responding to “11” in MASK. As shown for Level 1,

the 00
node has 3 values (12, 03, 14), the 01 node has 1 value (31),
the 10 node has 4 values (47, 44, 37, 44), and the 11 node
has zero values as indicated by the absence of the 11 node
at Level 1 i FIG. 2. Note that the 10 node in Level 1 has
duplicate values of 44. Next, the actual nodes 00, 01, and 10
in Level 1 are processed from left to right.

Processing the 00 node of Level 1 comprises distributing
the values 12, 03, and 14 from the 00 node of Level 1 into
its child nodes 00, 01, 10, 11 1n Level 2, based on applying
the Level 2 mask of 001100 to each of the values 12, 03, and
14. Note that the order in which the values 12, 03, and 14 are
masked 1s arbitrary. However, 1t 1s important to track the
left-to-right ordering of the generic 00, 01, 10, and 11 nodes
as explained supra. FIG. 2 shows that the 00 node of Level
2 (as linked to the 00 node of Level 1) 1s a leaf node, since
the 00 node of Level 2 has only 1 value, namely 03. Thus,
the value 03 1s the first sorted value and 1s placed 1n the

output array element A(1). Accordingly, the 00, 01, 10, and

11 nodes of Level 3 (which are linked to the 00 node of

Level 2 which 1s linked to the 00 node of Level 1) are

non-existent nodes. FIG. 2 also shows that the 11 node of

level 2 (as linked to the 00 node of Level 1) has the two
values of 12 and 14. Theretfore, the values 12 and 14 in the
11 node of level 2 (as linked to the 00 node of Level 1) are

to be next distributed into its child nodes 00, 01, 10, 11 of

Level 3, applying the Level 3 mask 000011 to the values 12
and 14. As a result, the values 12 and 14 are distributed into
the leal nodes 00 and 10, respectively, 1n Level 3. Processing,
in the order 00, 01, 10, 11 from left to right, the value 12 1s
outputted to A(2) and the value 14 1s outputted to A(3).
FIG. 2 shows that the 01 node of Level 1 1s a leal node,
since 31 1s the only value contained in the 01 node of Level
1. Thus, the value of 31 1s outputted to A(4). Accordingly, all

nodes 1n Level 2 and 3 which are linked to the 01 node of

Level 1 are non-existent nodes.
Processing the 10 node of Level 1 comprises distributing

the four values 47, 44, 37, and 44 {from the 10 node of Level
1 1nto its child nodes 00, 01, 10, 11 in Level 2, based on

applying the Level 2 mask of 001100 to each of the values
4’7, 44, 3’7, and 44. FIG. 2 shows that the 01 node of Level

2 (as linked to the 10 node of Level 1) 1s a leaf node, since
the 01 node of Level 2 has only 1 value, namely 37. Thus,
the value 37 1s placed in the output array element A(S).

Accordingly, the 00, 01, 10, and 11 nodes of Level 3 which

10

15

20

25

30

35

40

45

50

55

60

65

10

are linked to the 01 node of Level 2 which 1s linked to the
10 node of Level 1 are non-existent nodes. FIG. 2 also shows
that the 11 node of level 2 (as linked to the 10 node of Level
1) has the three values of 47, 44, and 44. Therefore, the
values 47, 44, and 44 in the 11 node of level 2 (as linked to
the 10 node of Level 1) are to be next distributed into its
child nodes 00, 01, 10, 11 of Level 3 (from left to rnight),
applying the Level 3 mask 000011 to the values 47, 44, and
44. As a result, the duplicate values of 44 and 44 are
distributed into the leat nodes 00 in Level 3, and the value
of 47 1s distributed mto the leal node 11 in level 3.
Processing 1n the order 00, 01, 10, 11 from left to right, the
value 44 1s outputted to A(6), the duplicate value 44 1s
outputted to A(7), and the value 47 1s outputted to A(8).
Thus, the output array now contains the sorted values 1n
ascending order or pointers to the sorted values 1n ascending
order, and the sorting has been completed.

While the preceding discussion of the example of FIG. 2
considered the words to be sorted to be integers, each of the
words to be sorted could be more generally interpreted as a
contiguous sequence of binary bits. The sequence of bits
could be interpreted as an integer as was done in the
discussion of FIG. 2 supra. The sequence of bits could
alternatively be interpreted as a character string, and an
example of such a character string interpretation will be
discussed inira in conjunction with FIG. 4. Additionally, the
sequence could have been interpreted as a tloating point
number 1f the sequence had more bits (1.e., if N were large
enough to encompass a sign bit denoting the sign of the
floating point number, an exponent ficld, and a mantissa
field). Thus, the sorting algorithm 1s generally an algorithm
for sorting sequences of bits whose interpretation conforms
to the assumptions stated supra. It should be noted, however,
that 1f the sequences are interpreted as numbers (1.€., as
integers or floating point numbers) then the word length (in
bits) N must be constant. If the sequences are interpreted as
character strings, however, then the word length N 1s not
required to be constant and the character strings to be sorted
may have a variable length.

An 1mportant aspect of the preceding sort process 1s that
no comparisons were made between the values to be sorted,
which has the consequence of saving an enormous amount
of processing time that would otherwise have been expended
had such comparisons been made. The sort algorithm of the
present invention accomplishes the sorting 1n the absence of
such comparisons by the masking process characterized by
the shifting of the 11 bits as the processing moves down in
level from Level 1 to Level 2 to Level 3, together with the
lett to nght ordering of the processing of the generic 00, 01,
10, 11 nodes at each level. The fact that the output array
A(), AQ2), ..., A(8) contains sorted values 1n ascending
order 1s a consequence of the first assumption that for any
two adjacent bits 1n the value to be sorted, the bit to the left
represents a larger magnitude eflect on the value than the bit
to the right. If the alternative assumption had been operative
(1.e., for any two adjacent bits in the value to be sorted, the
bit to the right represents a larger magnitude eflect on the
value than the bit to the left), then the output array A(1),
A2), ..., A(8) would contain the same values as under the
first assumption; however the sorted wvalues 1 A(1),
A2), ..., A(8) would be 1n descending order.

The preceding processes could be mnverted and the sorted
results would not change except possibly the ascending/
descending aspect of the sorted values mm A(1), A(2), ..., (8).
Under the mversion, the generic bits would processed from
right to left 1 the ordered sequence: 00, 01, 10, 11 (which

1s equivalent to processing the ordered sequence 1, 10, 01,

Us 7,370,058 B2

11

00 from left to right). As a result, the output array A(1),
A(2), ..., A(8) would contain sorted values 1n descending
order as a consequence of the first assumption that for any
two adjacent bits 1n the value to be sorted, the bit to the left
represents a larger magnitude eflect on the value than the bit
to the right. However under the inversion and if the alter-
native assumption had been operative (1.e., for any two
adjacent bits in the value to be sorted, the bit to the right
represents a larger magnitude eflect on the value than the bit
to the left), then the output array A(1), A(2), . .., A(8) would
contain the sorted values in ascending order.

The preceding process assumed that the mask width W 1s
constant. For example, W=2 for the example of FIG. 2.
However, the mask width could be vaniable (1.e., as a
function of level or depth). For example consider a sort of
16 bit words having mask widths of 3, 5, 4, 4 at levels 1, 2,
3, 4, respectively. That 1s, the mask at levels 1, 2, 3, and 4
may be, 1mter alia, 1110000000000000, 0001111100000000,
0000000011110000, and 0000000000001111, respectively.
Generally, for N-bit words to be sorted and L levels of depth,
the mask widths W,, W,, . . ., W, corresponding to levels
1, 2, . . . , L, respectively, must satisfy: W, +
W,, + ... +W, =N. =N. It 1s always possible have masks
such that W, +W,, +...+W,=N. However, an improvement
in efliciency may be achleved for the special case in which
all numbers to be sorted have 0 in one or more contiguous
leftmost bits, as will be 1llustrated infra. In said special case,
said leftmost bits having 0 in all words to be sorted would
not be masked and consequently W,+W,, + ... +W <N.

There are several reasons for having a variable mask
width. A first reason for having a variable mask width W 1s
that 1t may not be logically possible to have a constant mask
width 11 L>1, such as for the case of N being a prime number.
For example, 11 N=13, then there does not exist an integer L
of at least 2 such that N/L i1s an iteger. In theory, 1t is
potentially possible to choose W=N even i N 1s a prime
number. However, memory constraints may render the
choice of W=N unrealistic as will be discussed next.

A second reason for having a variable mask width W, even
if 1t logically possible for W to be constant with L>1, 1s that
having a variable W may reduce the sort execution time
inasmuch as the sort execution time 1s a function of W as
stated supra. As W 1s increased, the number of levels may
decrease and the number of nodes to be processed may
likewise decrease, resulting 1n a reduction of processing
time. However, the case of sufliciently large W may be
characterized by a smallest sort execution time, but may also
be characterized by prohibitive memory storage require-
ments and may be impracticable (see mnira FIG. 16 and
discussion thereotf). Thus 1n practice, it 1s likely that W can
be increased up to a maximum value above which memory
constraints become controlling. Thus the case of L>1 1s
highly likely, and two or more mask widths will exist
corresponding to two or more levels. As will be seen from
the analysis of timing test data discussed in conjunction with
FIGS. 19-24 discussed 1nira, the sort efliciency with respect
to execution speed 1s a function not only of mask width but
also of the data density as measured by S/(V,, ,+—Vaiv).
Moreover, the mask width and the data density do not
independently impact the sort execution speed. Instead the
mask width and the data density are coupled in the manner
in which they impact the sort execution speed. Therefore, 1t
may be possible to fine tune the mask width as a function of
level 1n accordance with the characteristics (e.g., the data
density) of the data to be sorted.

Another improvement 1n sort execution timing may result
from finding the highest or maximum value V,,, . to be

10

15

20

25

30

35

40

45

50

55

60

65

12

sorted and then determine if V,,, .- 1s of such a magnitude
that N can be eflectively reduced. For example, 1f 8-bit
words are to be sorted and V, s 1s determined to have the

value 00110101, then bits 7-8 of all words to be sorted have

00 1n the leftmost bits 6-7. Therelore, bits 7-8 do not

have
to be processed 1n the sorting procedure. To accomplish this,
a mask could be employed 1n a three-level sorting scheme
having N=8, L=3, W =2, W,=2 and W,=2. The masks for
this sorting scheme are 00110000 for level 1, 00001100 for
level 2, and 00000011 for level 3. Although N=8 technically
prevails, the actual sort time will be reflective of N=6 rather
than N=8, because the masks prevent bits 6-7 from being
processed.

Similarly, one could find a lowest or minimum value
value V, ., to be sorted and then determine 1t V, ., 1s of
such a magnitude that N can be eflectively reduced. For
example, 1f 8-bit words are to be sorted and V, . 1s
determined to have the value 10110100, then bits 0-1 of all
words to be sorted have 00 in the rightmost bits 0-1.
Theretore, bits 0-1 do not have to be processed 1n the sorting
procedure. To accomplish this, a varniable width mask could
be employed 1n a three-level sorting scheme having N=8,
L=3, W,=2 W,=2 and W,=2. The masks for this sorting
scheme are 11000000 for level 1, 00110000 for level 2, and

00001100 for level 3. Although N=8 technically in this
scheme, the actual sort time will be reflective of N=6 rather

than N=8, because the masks prevent bits 0-1 from being
processed at all.

Of course, 1t may be possible to utilize both V, .- and
V. 1n the sorting to reduce the etlective value ot N. For
example, 1 8-bit words are to be sorted and V,,, . 1s
determined to have the value 00110100 and V,,, . 1s deter-
mined to have the value 00000100, then bits 7-8 of all words
to be sorted have 00 1n the leftmost bits 6-7 and bits 0-1 of
all words to be sorted have 00 1n the rightmost bits 0-1.
Theretfore, bits 7-8 and 0-1 do not have to be processed 1n
the sorting procedure. To accomplish this, a constant width

mask could be employed 1mm a two-level sorting scheme
having N=8, L=2, and W=2. The masks for this sorting

scheme are 00110000 for level 1 and 00001100 for level 2.
Although N=8 technically 1n this scheme, the actual sort
time will be reflective of N=4 rather than N=8, because the
masks prevent bits 6-7 and 0-1 from being processed at all.

The integer sorting algorithm described supra 1n terms of
the example of FIG. 2 applies generally to integers. It the
integers to be sorted are all non-negative, or are all negative,
then the output array A(1), A(2), . . ., will store the sorted
values (or pointers thereto) as previously described. How-
ever, 11 the values to be sorted are 1n a standard signed
integer format with the negative integers being represented
as a two’s complement of the corresponding positive integer,
and 11 the imtegers to be sorted include both negative and
non-negative values, then output array A(1),A(2), . . . stores
the negative sorted integers to the right of the non-negative
sorted integers. For example the sorted results in the array
A(l), A(2), ... may appear as: 0, 2, 5, 8,9, -6, -4, -2, and
the algorithm could test for this possibility and reorder the
sorted results as: -6, =4, =2, 0, 2, 5, 8, 9.

The sorting algorithm described supra will correctly sort
a set of floating point numbers 1 which the floating point
representation conforms to the commonly used format hav-
ing a sign bit, an exponent field, and a mantissa field ordered
contiguously from lett to right 1n each word to be sorted. The
standard IEEE 754 format represents a single-precision real
number 1n the following 32-bit floating point format:

Us 7,370,058 B2

13

Sign Bit (1 bit) Exponent Field (8 bits) Mantissa Field (23 bits)

IEEE 734 requires the exponent field to have a +127 (i.e.,
01111111) bias for positive exponents and no bias for
negative exponents. The exponent field bits satisty the
previously stated assumption that for any two adjacent bits
in the value to be sorted, the bit to the left represents a larger
magnitude effect on the value than the bit to the right, as may

be seen 1n the following table for the exponents of -2, -1,
0, +1, and +2.

Exponent Value Exponent Field Bits

-2 01111101
-1 01111110
0 Ol111111
1 10000000
2 10000001

The number of bits 1n the exponent and mantissa fields in the
above example 1s merely 1llustrative. For example, the IEEE
754 representation of a double-precision floating point num-
ber has 64 bits (a sign bit, an 11-bit exponent, and a 52-bit
mantissa) subject to an exponent bias of +1023. Generally,
the exponent and mantissa fields may each have any finite
number of bits compatible with the computer/processor
hardware being used and consistent with the degree of
precision desired. Although the sign bit 1s conventionally 1
bit, the sort algorithm of the present mvention will work
correctly even 1f more than one bit 1s used to describe the
sign. It 1s assumed herein that the position of the decimal
point 1s 1n a fixed position with respect to the bits of the
mantissa field and the magnitude of the word 1s modulated
by the exponent value in the exponent field, relative to the
fixed position of the decimal point. As illustrated supra, the
exponent value may be positive or negative which has the
ellect of shifting the decimal point to the left or to the right,
respectively.

Due to the manner 1n which the sign bit and exponent field
allect the value of the floating-point word, a mask may used
to define field that include any contiguous sequence of bits.
For example, the mask may include the sign bit and a portion
of the exponent field, or a portion of the exponent field and
a portion of the mantissa field, etc. In the 32-bit example

supra, for example, the sorting configuration could have 4
levels with a constant mask width of 8 bits: N=32, [.=4, and
W=8. The mask for level 1 1s 111111110,,, wherein O,
represents 24 consecutive zeroes. The mask for level 2 1s
00000000111111110, ., wherein O, . represents 16 consecu-
tive zeroes. The mask for level 3 1s 0,,1111111100000000.
The mask forlevel 215 0,,11111111. Thus the mask for level
1 includes the sign bit and the 7 leftmost bits of the exponent
field, the mask at level 2 includes the rightmost bit of the
exponent field and the 7 leftmost bits of the mantissa field,
an the mask for levels 3 and 4 each include 8 bits of the
mantissa field.

If the floating point numbers to be sorted include a
mixture of positive and negative values, then the sorted array
of values will have the negative sorted values to the right of
the positive sorted values in the same hierarchical arrange-
ment as occurs for sorting a mixture of positive and negative
integers described supra.

10

15

20

25

30

35

40

45

50

55

60

65

14

FIG. 4 depicts paths through a linked execution structure
for sorting strings with each path terminated at a leaf node,
in accordance with embodiments of the present invention. In
FIG. 4, thirteen strings of 3 bytes each are sorted. The 13
strings to be sorted are: 512, 123, 589, 014, 312, 043, 173,
179, 377, 152, 256, 167, and 561. Each string comprises 3
characters selected from the following list of characters: O,
1,2,3,4,5,6,7,8, and 9. Each character consists of a byte,
namely 8 bits. Although 1n the example of FIG. 4 a byte
consists of 8 bits, a byte may generally consist of any
specified number of bits. The number of potential children
(i.e., child nodes) at each node is 2° where b is the number
of bits per byte. Thus 1n FIG. 4, each node potentially has
256 (i.e., 2%) children. The sequence 014, 043, 123, . . . at the
bottom of FIG. 4 denoted the strings in their sorted order.

In FIG. 4, the string length 1s constant, namely 3 charac-
ters or 24 bits. Generally, however, the string length may be
variable. The character string defines a number of levels of
the linked execution structure that 1s equal to the string
length as measured in bytes. There 1s a one-to-one corre-
spondence between byte number and level number. For
example, counting left to right, the first byte corresponds to
level 1, the second byte corresponds to level 2, etc. Thus, 1f
the string length 1s variable then the maximum number of
levels L of the linked execution structure i1s equal to the
length of the longest string to be sorted, and the processing
of any string to be sorted having a length less than the
maximum level L will reach a leaf node at a level less than
L.

The mask width 1s a constant that includes one byte, and
the boundary between masks of successive levels coincide
with byte boundaries. Although the sorting algorithm
described in conjunction with the integer example of FI1G. 2
could be used to sort the character strings of FIG. 4, the
sorting algorithm to sort strings could be simplified to take
advantage of the fact that mask boundaries coincide with
byte boundaries. Rather than using an explicit masking
strategy, each individual byte may be mapped into a linked
list at the byte’s respective level within the linked execution
structure. Under this scheme, when the processing of a string,
reaches a node corresponding to the rightmost byte of the
string, the string has reached a leaf node and can then be
outputted 1nto the sorted list of strings. For example, a
programming language with uses length/value pairs inter-
nally for string storage can compare the level reached with
the string’s length (in bytes) to determine when that the
string has reached a leafl node. The preceding scheme 1s an
implicit masking scheme in which the mask width 1s equal
to the number of bits 1n a character byte. Alternatively, the
algorithm could use an explicit masking scheme 1n which
any desired masking configuration could be used (e.g., a
mask could encompass bits of two or more bytes). Thus, a
masking strategy is always being used, either explicitly or
implicitly.

In FIG. 4, the sorting of the thirteen strings 3-byte strings
are characterized by S=13, N=24 (1.e. 3 bytesx8 bits/byte),
W=8 (1.e., 1 byte), and L=3. Shown 1n each node 1s a mask
associated with the node, and the strings whose path passes
through the node. The mask in each node 1s represented as
a sequence ol bytes and each byte might may be one of the
following three unique symbols: X, x, and h where h
represents one of the characters 0, 1, 2,3,4,5,6,7,8,9. The
position within the mask of the symbol X 1s indicative of the
location (and associated level) of child nodes next pro-
cessed. The X 1s used to mask various strings, as will be
described infra, by setting X equal to the mask character;
thus 1 X 1s being used to 1solate strings having “5” 1n the

Us 7,370,058 B2

15

masked position of the strings then X="5" will characterize
the mask. The symbol “h” and its position in the mask
indicates that the strings in the node each have the character
represented by “h” 1n the associated position. The position
within the mask of the symbol “x” indicates the location
(and associated level) of the mask representative of other
child nodes (e.g., “grandchildren™) to be subsequently pro-
cessed.

The strings shown in each node in FIG. 4 each have the
torm H: s(1), s(2), . . ., wherein H represents a character of
the string 1n the byte position occupied by X, and wherein
s(1), s(2), . .. are strings having the character represented by
H 1n the byte position occupied by X. For example, in the
node whose mask 1s 0XX, the string denoted by 1:014 has
“0” m byte position 1 and “1” 1n byte position 2, and the
string denoted by 4:043 has “0” 1n byte position 1 and “4”
in byte position 2. As another example, in the node whose
mask 1s 17X, the string denoted by 3:173 has “1” in byte
position 1, “7” 1n byte position 2, and “3” 1n byte position
3, whereas the string denoted by 9:179 has “1” i byte
position 1, “7” 1n byte position 2, and “9” 1n byte position
3.

The method of sorting the strings of FIG. 4 follows
substantially the same procedure as was described supra for
sorting the mntegers of FIG. 2. The string sort algorithm,
which has been coded 1n the C-programming language as
shown 1n FIG. 8, 1s applied to the example of FIG. 4 as
follows. Similar to FIG. 2, an output array A(1),
A(2), . . ., A(S) has been reserved to hold the outputted
sorted values. For simplicity of illustration, the discussion
inira describes the sort process as distributing the values to
be sorted 1n the various nodes. However, the scope of the
present invention includes the alternative of placing pointers

to values to be sorted (e.g., 1n the form of linked lists),
instead of the values themselves, in the wvarious nodes.
Similarly, the output array A(1), A(2), . .., A(S) may hold
the sorted values or pointers to the sorted values.

First, the root node mask of Xxx 1s applied to all thirteen
strings to be sorted to distribute the strings in the 10 nodes
0Xx, 1Xx, ..., 9XX, resulting of the extraction and storage
of the strings to be sorted and their 1dentification with the
first byte 01 0, 1, 2,3, 4,5, 6,7, 8, or 9. Applying the mask
a string may be accomplished by ANDing the mask with the
string to 1solate the strings having a byte corresponding to
the byte position of X 1n the mask to 1dentify the child nodes.
As another approach, the character bytes of a string could be
pointed to or extracted from the string by use of a string
array subscript, wherein the string array subscript serves as
the mask by providing the functionality of the mask. Mask-
ing a sequence of bits 1s defined herein as extracting (or
pointing to) a subset of the bits of the sequence. Thus,
masking with X=0 1solates the strings 014 and 043 which
define child node 0Xx, masking with X=1 1solates the strings
123, 173, 179, 152, 167 which defines the child node 1Xx,
etc. Processing the Xxx root node comprises distributing the
thirteen strings into the child nodes 0Xx, 1XXx, etc. The child
nodes 0Xx, 1Xx, etc. at Level 1 are next processed on the
order 0Xx, 1XX, etc. since O<1< .. .1n character value. Note
that the characters are generally processed in the order O, 1,
2, ..., 9since O<l<2< ... 1n character value.

For the OXx node at level 1, the 0Xx mask 1s applied to
the strings 014 and 043 to define the next child nodes 01X
and 04X, respectively, at Level 2. The 01X and 04X nodes
are processed 1n the sequential order of 01X and 04X since
0 1s less than 4 in character value. Note that the characters
are always processed 1n the order 0, 1, 2, .. ., 9. The 01X
node at Level 2 1s processed, and since the 01X node

10

15

20

25

30

35

40

45

50

55

60

65

16

contains only one string, the 01X node 1s a leal node and the
string 014 1s outputted to A(1). The 04X node at Level 2 1s
next processed and, since the 04X node contains only one
string, the 04X node 1s a leal node and the string 043 1s
outputted to A(2).

For the 1Xx node at level 1, the 1Xx mask 1s applied to
the strings 123, 152, 167, (173, 179) to define the next child
nodes 12X, 15X, 16X, and 17X, respectively, at Level 2. The
12X, 15X, 16X, and 17X nodes are processed 1n the order
12X, 15X, 16X, and 17X, since the characters are always
processed inthe order 0, 1, 2, . . ., 9 as explained supra. The
12X node at Level 2 1s processed, and since the 12X node
contains only one string, the 12X node 1s a leal node and the
string 123 1s outputted to A(3). The 15X node at Level 2 1s
next processed and, since the 15X node contains only one
string, the 15X node 1s a leal node and the string 152 1s
outputted to A(4). The 16X node at Level 2 1s next processed
and, since the 16X node contains only one string, the 16X
node 1s a leal node and the string 167 1s outputted to A(S).
The 17X node at Level 2 1s next processed such that the 17X
mask 1s applied to the strings 173 and 179 to define the next
child nodes 173 and 179 at Level 3, which are processed 1n
the order of 173 and 179 since 3 1s less than 9 1n character
value. The 173 node at Level 3 1s next processed and, since
the 173 node contains only one string, the 173 node 1s a leaf
node and the string 173 1s outputted to A(6). The 179 node
at Level 3 1s next processed and, since the 179 node contains
only one string, the 179 node 1s a leal node and the string
179 1s outputted to A(7).

For the 2Xx node at level 1, since the 2Xx node contains
only one string, the 2Xx node 1s a leal node and the string
256 1s outputted to A(8).

For the 53Xx node at level 1, the 5Xx mask 1s applied to
the strings (512, 512), 561, 577, and 589 to define the next
child nodes 51X, 56X, 57X, and 58X, respectively, at Level
2. The 31X, 56X, 57X, and 38X nodes are processed in the
order 51X, 56X, 57X, and 58X, since the characters are
always processed 1n the order 0, 1, 2, . . ., 9 as explained
supra. The 512X node at Level 2 1s processed; since the node
51X does not include more than one unique string (1.e., 512
appears twice as duplicate strings), the 51X node at Level 2
1s a leal node and the duplicate strings 512 and 512 are
respectively outputted to A(9) and (10). The 56X node at
Level 2 1s next processed and, since the 56X node contains
only one string, the 56X node 1s a leal node and the string
561 1s outputted to A(11). The 57X node at Level 2 1s next
processed and, since the 57X node contains only one string,
the 57X node 1s a leal node and the string 577 1s outputted
to A(12). The 358X node at Level 2 1s next processed and,
since the 58X node contains only one string, the 58X node
1s a leal node and the string 589 1s outputted to A(13). Thus,
the output array now contains the sorted strings 1n ascending
order of value or pointers to the sorted values in ascending
order of value, and the sorting has been completed.

Similar to the mteger sort of FIG. 2, sorting the strings 1s
essentially sorting the binary bits comprised by the strings
subject to each character or byte of the string defining a unit
of mask. Thus, the sorting algorithm 1s generally an algo-
rithm for sorting sequences of bits whose interpretation
conforms to the assumptions stated supra. No comparisons
were made between the values of the strings to be sorted,
which has the consequence of saving an enormous amount
of processing time that would otherwise have been expended
had such comparisons been made. The output array A(1),
A2), ..., A(13) contains sorted strings 1n ascending order
of value as a consequence of the first assumption that for any
two adjacent bits (or bytes) in the string to be sorted, the bit

Us 7,370,058 B2

17

(or byte) to the left represents a larger magnitude eflect on
the value than the bit (or byte) to the right. It the alternative
assumption had been operative (1.e., for any two adjacent
bits (or bytes) 1n the string to be Sorted the bit (or byte) to
the right represents a larger magnitude effect on the value
than the bit (or byte) to the lett), then the output array A(1),
A(2), ..., A(8) would contain the same strings as under the
first assumption; however the sorted values in A(1),
A(2), ..., A(8) would be 1n descending order of value.

Similar to the integer sort of FIG. 2, the preceding

processes could be mverted and the sorted results would not
change except possibly the ascending/descending aspect of
the sorted strings m A(1), A(2), , (13). Under the
inversion, the bytes 0,1, 2, .. ., 8, 9 would processed from
right to left in the ordered sequence: 0,1, 2, .. ., 8, 9 (which
1s equivalent to processing the ordered sequence 9, 8,
2, 1, 0 from left to right). As a result, the output array A(l)
A(Z) A(8) would contain sorted strings 1n descending order
of value 1s a consequence of the first assumption that for any
two adjacent bits (or bytes) in the string to be sorted, the bit
(or byte) to the left represents a larger magnitude eflect on
the value than the bit (or byte) to the right. However under
the mversion and 1f the alternative assumption had been
operative (1.e., for any two adjacent bits (or bytes) in the
value to be sorted, the bit (or byte) to the right represents a
larger magnitude eflect on the value than the bit (or byte) to
the left), then the output array A(1), A(2), ..., A(8) would
contain the sorted strings i ascending order of value.

As seen from the examples of FIGS. 2-4, the linked
execution structure of the present invention includes nodes
which are linked together 1n a manner that dictates a
sequential order of execution of program code with respect
to the nodes. Thus, the linked execution structure of the
present invention may be viewed a program code execution
space, and the nodes of the linked execution structure may
be viewed as points in the program code execution space.
Moreover, the sequential order of execution of the program
code with respect to the nodes 1s a function of an ordering
of masking results derived from a masking of the fields of
the words to be sorted.

FIG. 5 1s a flow chart for linear sorting under recursive
execution, 1n accordance with embodiments of the present
invention. The flow chart of FIG. § depicts the processes
described supra in conjunction with FIGS. 2 and 4, and
generally applies to sorting S sequences ol binary bits
irrespective of whether the sequences are interpreted as
integers, floats, or strings. Steps 10-12 constitute 1nitializa-
tion, and steps 13-20 are incorporated within a SORT
module, routine, function, etc. which calls itself recursively
in step 18 each time a new node 1s processed.

In step 10 of the mitialization, the S sequences are stored
in memory, S output areas A, A,, . . ., A are set aside for
storing the sorted sequences. S may be set to a minimum
value such as, inter alia, 2, 3, etc. The upper hmlt to S1s a
function of memory usage requlrements (e.g., see FIG. 16
and accompanying description) in COIlJllIlCthIl Wlt__’l avail-
able memory in the computer system being utilized). The
output areas A, A,, . .., A correspond to the output areas
A(l), A2), ..., A(S) described supra 1n conjunction with
FIGS. 2 and 4. In addition an output index P and a field index
Q are each mitialized to zero. The output index P indexes the
output array A, A,, . .., A.. The field index Q indexes field
ol a sequence to be sorted, the field corresponding to the bits
of the sequences that are masked and also corresponds to the
levels of the linked execution structure.

In step 11 of the mitialization, the root node E, 1s
mitialized to contain S elements associated with the S

10

15

20

25

30

35

40

45

50

55

60

65

18

sequences. An element of a sequence 1s the sequence 1itself
or a pointer to the sequence masmuch as the nodes may
contain sequences or pointers to sequences (e.g, linked lists)
as explained supra.

In step 12 of the mitialization, a current node E 1s set equal
to the root node E,. The current node E 1s the node that 1s
currently being processed. Initially, the current node E 1s the
root node E, that 1s first processed.

SORT begins at step 13, which determines whether more
than one unique element 1s 1 the current node E being
processed, 1s determining whether E 1s a leat node. No more
than one unique element 1s 1n E 1f E contains 1 or a plurality
of 1dentical elements, in which case E is a leaf node. If step
13 determmes that there 1s no more than one unmique element
in E, then E 1s a leal node and steps 14 and 15 are next
executed. IT step 13 determines that there 1s more than one
unique element in E, then node E 1s not a leal node and step

16 1s next executed.

Step 14 outputs the elements of E in the A array; 1.e., for
cach element 1n E, the output pointer P 1s incremented by 1
and the element 1s stored 1mn A.

Step 15 determines whether the sort 1s complete by
determining whether all nodes of the linked execution
structure have been processed. Noting that SORT calls itself
recursively 1n step 18 each time a new node 1s processed and
that the recursed call of SORT processes only the values
assigned to the new node, 1t 1s clear that all nodes have been
processed when a normal exit from the first node processed
by SORT (i.e., the root node) has occurred. Thus step 15
ellectuates a normal exit from SORT. If said normal exit
from SORT 1s an exit from processing the root node by
SORT, then the sorting has ended. Otherwise, step 20
ellectuates a return to execution of the previous copy of
SORT that had been recursively executing. It should be
noted that step 20 1s not implemented by explicit program
code, but instead by the automatic backward recursion to the
previously executing version of SORT.

Step 16 1s executed 11 E 1s not a leal node. In step 16, the
clements of E are distributed into C child nodes: E,.
E,,...E._, ascendingly sequenced for processing purposes.
An example of this 1s 1n FIG. 4, wherein 1f E represents the
root node Xxx then the elements of E (1.e., the strings 014,
043, . . ., 577, 561) arc distributed 1nto the 4 child nodes
(1.e., C=4) of 0Xx, 1Xx, 2Xx, and 5Xx. The child nodes are
ascendingly sequenced for processing,

which means that the
child nodes are processed 1n the sequence 0Xx, 1Xx, 2XXx,
and 5Xx as explained supra in the discussion of FIG. 4.

Step 17 1s next executed 1n which the field index Q (which
1s also the level index) 1s incremented by 1 to move the
processing forward to the level containing the child nodes

E., E,, ... E~_,. Step 15 also mitializes a child index I to
0. The child index points to the child node E, (I=1, 2, .
L).

Steps 18-19 define a loop through the child nodes E,,
E,,...E. Step 18 sets the node E to E, and executes the
SORT routine recursively for node E. Thus the child node E,
of the linked execution structure 1s a recursive 1nstance of a
point 1n the program code (1.e., SORT) execution space.
When control returns (from the recursive call), the child
index I 1 incremented by 1, followed 1n step 19 by a
determination of whether the current child node E; being
processed 1s the last child to be processed (i.e., if I=C). If 1t
1s determined that I=C then execution return to the begin-
ning of the loop at step 18 for execution of the next child
node. If 1t 1s determined that I=C then all child nodes have

been processed and step 20 1s next executed. Step 20

Us 7,370,058 B2

19

cllectuates a return to execution of the previous copy of
SORT that had been recursively executing.

FIG. 6 1s a flow chart for linear sorting under counter-
controlled looping, in accordance with embodiments of the
present invention. FIG. 6 eflectuates the same sorting algo-
rithm as FIG. §, except that the procedure of FIG. 5 executes
the nodes recursively, while the procedure of FIG. 6
executes the nodes iteratively through counter-controlled
looping.

Step 31 provides mitialization which may include sub-
stantially some or all of the processes executed 1n steps
10-12 11 FIG. 5. The mitializations 1n step 31 include storing
the S sequences to be sorted, designating an output area for
storing a sorted output array, nitializing counters, etc. The
number of sequences to be sorted (S) may be set to a
mimmum value such as, iter alia, 2, 3, etc. The upper limit
to S 1s a function ol memory usage requirements 1 con-
junction with available memory 1n the computer system
being utilized.

Step 32 manages traversal of the nodes of a linked
execution structure, via counter-controlled looping. The
order of traversal of the nodes are determined by the
masking procedure described supra. The counter-controlled
looping includes iterative execution of program code within
nested loops. Step 32 controls the counters and the looping,
so as to process the nodes 1n the correct order; 1.e., the order
dictated by the sorting algorithm depicted in FIG. S and
illustrated in the examples of 2 and 4. The counters track the
nodes by tracking the paths through the linked execution
structure, including tracking the level or depth where each
node on each path 1s located. Each loop through the children
of a level 1 node 1s an 1ner loop through nodes having a
common ancestry at a level closer to the root. In FIG. 4, for
example, an mner loop through the children 173 and 179 of
node 17X at level 2 1s mner with respect to an outer loop
through nodes 12X, 13X, 16X, and 16X having the common
ancestor of node 1Xx at level 1. Thus, the inner and outer
loops of the preceding example form a subset of the nested
loops referred to supra.

Since the paths are complex and each path 1s unique, the
node counters and associated child node counters may be
dynamically generated as the processing occurs. Note that
the recursive approach of FIG. 5 also accomplishes this
tracking of nodes without the complex counter-controlled
coding required 1n FIG. 6, because the tracking 1n FIG. 5 1s
accomplished automatically by the compiler through com-
pilation of the recursive coding. Thus from a programming,
cllort point of view, the node traversal bookkeeping is
performed m FIG. 5 by program code generated by the
compiler’s implementation of recursive calling, whereas the
node traversal bookkeeping i1s performed i FIG. 6 by
program code employing counter-controlled looping explic-
itly written by a programmer. Using FIGS. 2, 4, and 5 as a
guide, however, one of ordinary skill in the art of computer
programming can readily develop the required program code
(through counter-controlled looping) that processes the
nodes 1n the same order as depicted 1n FIGS. 2, 4, and 5 so
as to accomplish the sorting according to the same funda-
mental method depicted 1n FIGS. 2, 4, and 5.

Step 33 determines whether all nodes have been pro-
cessed, by determining whether all counters have attained
their terminal values. Step 33 of FIG. 6 corresponds to step
15 of FIG. 5. I all nodes have been processed then the
procedure ends. If all nodes have not been processed then
step 34 1s next executed.

Step 34 establishes the next node to process, which 1s a
function of the traversal sequence through the linked execu-

10

15

20

25

30

35

40

45

50

55

60

65

20

tion structure as described supra, and associated bookkeep-
ing using counters, of step 32.

Step 35 determines whether the node being processed 1s
empty (1.e., devoid of sequences to be sorted or pointers
thereto). If the node 1s determined to be empty then an
empty-node indication 1s set 1n step 36 and the procedure
loops back to step 32 where the node traversal management
will resume, taking into account the fact that the empty node
indication was set. If the node 1s not determined to be empty
then step 37 1s next executed. Note that steps 35 and 36 may
be omitted if the coding 1s structured to process only
non-empty nodes.

Step 37 determines whether the node being processed 1s
a leal node (1.e., whether the node being processed has no
more than one unique sequence). Step 37 of FIG. 6 corre-
sponds to step 13 of FIG. 5. If the node 1s determined to be
a leal node then step 38 stores the sequences (or pointers
thereto) in the node 1n the next available positions 1n the
sorted output array, and a leaf-node 1ndication 1s set 1n step
39 followed by a return to step 32 where the node traversal
management will resume, taking into account the fact that a
leat node indication was set. If the node 1s not determined to
be a leal node then step 40 1s next executed.

Step 40 establishes the child nodes of the node being
processed. Step 40 of FIG. 6 corresponds to step 16 of FIG.
5

Step 41 sets a child nodes indication, followed by a return
to step 32 where the node traversal management will
resume, taking into account the fact that a child nodes
indication was set.

Note that the counter-controlled looping 1s embodied 1n
steps 32-41 through generating and managing the counters
(step 32), establishing the next node to process (step 34), and
implementing program logic resulting from the decision

blocks 33, 35, and 37.

Also note that although FIG. 6 expresses program logic
natural to counter-controlled looping through the program
code, while FIG. § expresses logic natural to recursive
execution of the program code, the fundamental method of
sorting of the present invention and the associated key steps
thereol are essentially the same in FIGS. 5 and 6. Thus, the
logic depicted 1 FIG. 6 1s merely illustrative, and the
counter-controlled looping embodiment may be 1mple-
mented 1n any manner that would be apparent to an ordinary
person 1n the art of computer programming who 1s familiar
with the fundamental sorting algorithm described herein. As
an example, the counter-controlled looping embodiment
may be implemented 1n a manner that parallels the logic of
FIG. 5 with the exceptions of: 1) the counter-controlled
looping through the program code replaces the recursive
execution of the program code; and 2) counters associated
with the counter-controlled looping need to be programmati-
cally tracked, updated, and tested.

FIGS. 7A, 7B, 7C, and 7D. (collectively “FIG. 77)

comprise source code for linear sorting of integers under
recursive execution and also for testing the execution time of
the linear sort 1n comparison with Quicksort, 1n accordance
with embodiments of the present invention. The source code
of FIG. 7 includes a main program (1.e., void main), a
function ‘build’ for randomly generating a starting array of
integers to be sorted), a function ‘linear sort” for performing
the linear sort algorithm according to the present invention,

and a function ‘quicksort’ for performing the Quicksort
algorithm. The ‘linear_sort’ function 1n FIG. 7B will be next
related to the tlow chart of FIG. 5.

Us 7,370,058 B2

21

Code block 51 1n ‘linear_sort’ corresponds to steps 13-15
and 20 i FIG. 5. Coding 52 within the code block 51

corresponds to step 20 of FIG. 5.

Code block 33 imitializes the child array, and the count of
the number of children in the elements of the child array, to
zero. Code block 53 1s not explicitly represented 1n FIG. 5,

but 1s important for understanding the sort time data shown

in FIGS. 19-24 described 1inira.

Code block 34 corresponds to step 16 in FIG. 5.

Coding 535 corresponds to I=I+1 1n step 18 of FIG. 5,
which shiits the mask rightward and has the effect of moving,
to the next lower level on the linked execution structure.

Coding block 56 corresponds to the loop of steps 18-19 in
FIG. 5. Note that linear_sort 1s recursively called in block 56
as 1s done instep 18 of FIG. 5.

FIGS. 8A, 8B, 8C, and 8D (collectively “FIG. 87) com-
prise source code for linear sorting of strings under recursive
execution and also for testing the execution time of the linear
sort, 1n comparison with Quicksort, 1n accordance with
embodiments of the present invention. The coding in FIG. 8
1s similar to the coding in FIG. 7. A distinction to be noted
1s that the coding block 60 1n FIG. 8 1s analogous to, but
different from, the coding block 54 1n FIG. 7. In particular,
block 60 of FIG. 8 retlects that: a mask 1s not explicitly used
but 1s implicitly simulated by processing a string to be sorted
one byte at a time; and the string to be sorted may have a
variable number of characters.

FIG. 9 illustrates a computer system 90 for sorting
sequences of bits, in accordance with embodiments of the
present ivention, 1n accordance with embodiments of the
present invention. The computer system 90 comprises a
processor 91, an mput device 92 coupled to the processor 91,
an output device 93 coupled to the processor 91, and
memory devices 94 and 95 each coupled to the processor 91.
The input device 92 may be, inter alia, a keyboard, a mouse,
etc. The output device 93 may be, inter alia, a printer, a
plotter, a computer screen, a magnetic tape, a removable
hard disk, a floppy disk, etc. The memory devices 94 and 95
may be, mter alia, a hard disk, a dynamic random access
memory (DRAM), a read-only memory (ROM), etc. The
memory device 95 includes a computer code 97. The com-
puter code 97 includes an algorithm for sorting sequences of
bits 1n accordance with embodiments of the present inven-
tion. The processor 91 executes the computer code 97. The
memory device 94 includes mput data 96. The mput data 96
includes 1nput required by the computer code 97. The output
device 93 displays output from the computer code 97. Either
or both memory devices 94 and 95 (or one or more addi-
tional memory devices not shown 1n FIG. 9) may be used as
a computer usable medium having a computer readable
program code embodied therein, wherein the computer
readable program code comprises the computer code 97.

While FIG. 9 shows the computer system 90 as a par-
ticular configuration of hardware and software, any configu-
ration of hardware and software, as would be known to a
person of ordinary skill in the art, may be utilized for the
purposes stated supra in conjunction with the particular
computer system 90 of FIG. 9. For example, the memory
devices 94 and 95 may be portions of a single memory
device rather than separate memory devices.

Timing Tests

FIGS. 10-24, comprise timing tests for the sort algorithm
of the present invention, including a comparison with
Quicksort execution timing data. FIGS. 10-15 relate to the
sorting of integers, FIG. 16 relates to memory requirement
for storage of data, FIGS. 17-18 relate to the sorting of

5

10

15

20

25

30

35

40

45

50

55

60

65

22

strings, and FIGS. 19-24 relate to sorting integers as a
function of mask width and maximum value that can be
sorted. The integers to be sorted 1n conjunction with FIGS.
10-15 and 19-24 were randomly generated from a uniform
distribution. The timing tests associated with FIGS. 10-23
were performed using an Intel Pentium® III processor at
1133 MHz, and 512M RAM.

FIG. 10 1s a graph depicting the number of moves versus
number of values sorted using a linear sort in contrast with
Quicksort for sorting integers for a values range of 0-9,999,
999. The linear sort was 1n accordance with embodiments of
the present invention using the recursive sort of FIG. 5 as
described supra. For counting the moves, a counter was
placed 1n the linear algorithm and 1n Quicksort at each point
where a number 1s moved. Noting that 9,999,999 requires 24
bits to be stored, the linear sort was performed using mask
widths W=2, 3, 4, 6, 8, 12, and 14 with a corresponding
number of levels L=12, 8, 6, 4, 3, 2, and 2, respectively. For
cases 1n which 24 1s not an integral multiple of W, the mask
width was truncated 1n the rightmost field corresponding to
level L (1.e., at the level turthest from the root). For example
at W=14, the mask widths at levels 1 and 2 were 14 and 10,
respectively, for a total of 24 bits. FIG. 10 shows that, with
respect to moves for a values range of 0-9,999,999, Quick-
sort 1s more eflicient than the linear algorithm for W=2, 3,
and 4, whereas the linear algorithm 1s more eflicient than
Quicksort for W=6, 8, 12, and 14.

FIG. 11 1s a graph depicting the number of compares/
moves versus number of values sorted using a linear sort in
contrast with Quicksort for sorting integers for a values
range of 0-9,999,999. For the linear sort, the number of
compares/moves 1s the same as the number of moves
depicted 1n FIG. 10 masmuch as the linear sort does not
“compare” to eflectuate sorting. For Quicksort, the number
of compares/moves 1s a number ol compares 1n addition to
the number of moves depicted 1 FIG. 10. The linear sort
was 1n accordance with embodiments of the present inven-
tion using the recursive sort of FIG. 5 as described supra. For
counting the compares, a counter was placed in the linear
algorithm and 1n Quicksort at each point where a number 1s
compared or moved. Noting that 9,999,999 requires 24 bits
to be stored, the linear sort was performed using mask
widths W=2, 3, 4, 6, 8, 12, and 14 with a corresponding
number of levels L=12, 8, 6, 4, 3, 2, and 2, respectively. For
cases 1n which 24 1s not an integral multiple of W, the mask
width 1s truncated 1n the rnightmost field corresponding to
level L. For example at W=14, the mask widths at levels 1
and 2 were 14 and 10, respectively, for a total of 24 bits. FIG.
11 shows that, with respect to compares/moves for a values
range of 0-9,999,999, the linear algorithm 1s more eflicient
than Quicksort for all values of W tested.

FIG. 12 1s a graph depicting the number of moves versus
number of values sorted using a linear sort in contrast with
Quicksort for sorting integers for a values range of 0-9,999.
The linear sort was 1n accordance with embodiments of the
present invention using the recursive sort of FIG. 5 as
described supra. For counting the moves, a counter was
placed 1n the linear algorithm and 1n Quicksort at each point
where a number 1s moved. Noting that 9,999 requires 14 bits
to be stored, the linear sort was performed using mask
widths W=2, 3, 4, 6, 8, 10, 12, 14 with a corresponding
number of levels L=7,5,4,3,2,2,2,and 1, respectively. For
cases 1n which 14 1s not an itegral multiple of W, the mask
width 1s truncated 1n the rnightmost field corresponding to
level L (1.e., 1in the cases of W=3, 4, 6, 8, 10, 12). FIG. 12
shows that, with respect to moves for a values range of
0-9,999, Quicksort 1s more eflicient than the linear algorithm

Us 7,370,058 B2

23

for W=2, 3, and 4, whereas the linear algorithm 1s more
eiicient than Quicksort for W=6, 8, 10, 12, and 14.

FIG. 13 1s a graph depicting the number of compares
versus number of values sorted using a linear sort 1n contrast
with Quicksort for sorting integers for a values range of
0-9,999. The linear sort was 1n accordance with embodi-
ments of the present mmvention using the recursive sort of
FIG. 5 as described supra. For counting the compares, a
counter was placed 1n the linear algorithm and 1n Quicksort
at each point where a number 1s compared. Noting that 9,999
requires 14 bits to be stored, the linear sort was performed
using mask widths W=2, 3, 4, 6, 8, 10, 12, 14 with a
corresponding number of levels L=7, 5, 4, 3, 2, 2, 2, and 1,
respectively. For cases in which 14 1s not an integral
multiple of W, the mask width 1s truncated in the rnghtmost
field corresponding to level L (1.e., 1n the cases of W=3, 4,
6, 8, 10, 12). FIG. 13 shows that, with respect to compares
for a values range of 0-9,999, the linear algorithm 1s more
ciicient than Quicksort for all values of W tested. Of
particular note 1s the difference 1n efliciency between the
linear sort and QQuicksort when the dataset contains a large
number of duplicates (which occurs when the range of
numbers 1s 0-9,999 since the number of values sorted 1is
much greater than 9,999). Because of the exponential
growth of the number of comparisons required by the
Quicksort, the test for sorting with multiple duplicates of
values (range 0-9,999), the test had to be stopped at 6,000,
000 numbers sorted.

FIG. 14 1s a graph depicting the sort time 1n CPU cycles
versus number of values sorted using a linear sort 1n contrast
with Quicksort for sorting integers for a values range of
0-9,999,999. The linear sort was 1n accordance with embodi-
ments of the present mvention using the recursive sort of
FIG. 5 as described supra. Noting that 9,999,999 requires 24
bits to be stored, the linear sort was performed using mask
widths W=2, 3, 4, 6, 8, 10, 12, and 14 with a corresponding
number of levels L=12, 8, 6, 4, 3, 3, 2, and 2, respectively.
For cases 1n which 24 1s not an integral multiple of W, the
mask width was truncated in the rightmost field correspond-
ing to level L (i.e., at the level furthest from the root). For
example at W=10, the mask widths at levels 1, 2, and 3 were
10, 10, and 4, respectively, for a total of 24 bits. As another
example at W=14, the mask widths at levels 1 and 2 were 14
and 10, respectively, for a total of 24 bits. FIG. 14 shows
that, with respect to sort time for a values range of 0-9,999,
999, Quicksort 1s more etlicient than the linear algorithm for
W=2, 3, and 4, whereas the linear algorithm 1s more eflicient
than Quicksort for W=6, 8, 10, 12, and 14.

FIG. 15 1s a graph depicting the sort time in CPU cycles
versus number of values sorted using a linear sort 1n contrast
with Quicksort for sorting integers for a values range of
0-9,999. The linear sort was in accordance with embodi-
ments of the present mmvention using the recursive sort of
FIG. 5 as described supra. Noting that 9,999 requires 14 bits
to be stored, the linear sort was performed using mask
widths W=2, 3, 4, 6, 8, 10, 12, and 14 with a corresponding
number of levels L=7, 5, 4, 3, 2, 2, 2, and 1, respectively. For
cases 1 which 24 1s not an mtegral multiple of W, the mask
width was truncated 1n the rightmost field corresponding to
level L (1.e., in the cases of W=3, 4, 6, 8, 10, 12. FIG. 15
shows that, with respect to sort time for a values range of
0-9,999, the linear algorithm 1s more eflicient than Quicksort
tor all values of W tested, which retlects the large number of
compares for data having many duplicate values as dis-
cussed supra 1n conjunction with FIG. 13.

FIG. 16 1s a graph depicting memory usage using a linear
sort 1n contrast with Quicksort for sorting 1,000,000 fixed-

5

10

15

20

25

30

35

40

45

50

55

60

65

24

length sequences of bits representing integers, 1n accordance
with embodiments of the present invention using the recur-
sive sort of FIG. § as described supra. Quicksort 1s an
in-place sort and therefore uses less memory than does the
linear sort. The linear sort uses memory according to the
following general formula, noting that this formula focuses
only on the main memory drivers of the algorithm:

MEM=S*M+(M 2" *[)

wherein MEM 1s the number of bytes required by the linear
sort, S 1s the number of sequences to be sorted, M ,-1s the size
of the data structure (e.g., 12) required to hold each sequence
being sorted, M. 1s the size of the data structure (e.g., 8)
required to hold a child sequence or pointer 1n the recursive
linked execution structure, W 1s the width of the mask (£1),
and L 1s the number of levels of recursion. For some
embodiments, L=ceiling(M,;/W) as explained supra.

In FIG. 16, M ;=12 and M_=8. The Quicksort curve 1n

FIG. 16 1s based on Quicksort using 4 bytes of memory per
value to be sorted. The graphs stops at a mask width of 19
because the amount of memory consumed with the linear
sort approaches unrealistic levels beyond that point. Thus,
memory constraints serve as upper limit on the width of the
mask that can be used for the linear sort.

FIGS. 17 and 18 graphically depict the sort time 1n CPU
cycles versus number of strings sorted for the linear sort and
Quicksort, respectively. The linear sort was in accordance
with embodiments of the present invention using the recur-
stve sort of FIG. § as described supra. The tests were
conducted with simple strings. A file of over 1,000,000
strings was created by extracting text-only strings from such
sources as public articles, the Bible, and various other
sources. Each set of tests was run against strings ranging up
to 20 characters 1n length (max_len=20) and then again
against strings ranging up to 30 characters in length (max_
len=30). A set of tests 1s defined as sorting a collection of
10,000 strings and repeating the sort with increasing num-
bers of strings 1n increments of 10,000. No sorting test was
performed on more than 1,000,000 strings.

(Quicksort 1s subject to chance regarding the value at the
“pivot” points in the list of strings to be sorted. When
unlucky, Quicksort i1s forced into much deeper levels of
recursion (>200 levels). Unfortunately, this caused stack
overflows and the tests abnormally terminated at 430,000
strings sorted by Quicksort. By reordering the list of strings,
Quicksort could be made to complete additional selections,
but the number of tests completed were suilicient to dem-
onstrate the comparison of the linear sort versus the quick-
sort. FIGS. 17 and 18 shows that, with respect to sort time,
the linear algorithm 1s more eflicient than Quicksort by a

factor 1n a range of about 30 to 200 11 the number of strings
sorted 1s at least about 100,000.

Another distinction between the linear sort and Quicksort
1s that 1 Quicksort the string comparisons define extra
loops, which adds a multiplier A, resulting 1n the Quicksort
execution time having a dependence of A*S*log S such that
A 1s the average length of the string. The average length A
of the string 1s accounted for 1n the linear sort algorithm as
the number of levels L.

FIGS. 17 and 18 demonstrate that the linear sort far
outperforms Quicksort for both max len=20 and max_
len=30, and at all values of the number of strings sorted. A
primary reason for the diflerence between the linear sort and
Quicksort 1s that Quicksort suflers from a “levels of simi-
larity” problem as the strings it 1s sorting become increas-
ingly more similar. For example, to differentiate between

Us 7,370,058 B2

25

“barnacle” and “break”, the string compare 1n the linear sort
examines only the first 2 bytes. However, as Quicksort
recurses and the strings become increasingly more similar
(as with “barnacle” and “barney”), increasing numbers of
bytes must be examined with each comparison. Combining
the superlinear growth of comparisons 1n Quicksort with the
increasing costs ol each comparison produces an exponen-
tial growth eflect for Quicksort. Evidence of the effect of
increasingly more costly comparisons 1 Quicksort can be
understood by noting that the number of compares and
moves made by the Quicksort are the same even though the
maximum length of strings increases from 20 to 30. How-
ever, the number of clock cycles required to perform the
same number of moves and comparisons i Quicksort
increases (see FIG. 17) as the maximum length of strings
increases from 20 to 30, because the depth of the compari-
sons 1ncreases. FIG. 18 shows that the increase from 20 to
30 characters 1n the maximum length of strings affects the
number of clock cycles for the linear sort, because the
complexity of the linear sort 1s based on the size of the data
to be sorted. The lack of smoothness 1n the Quicksort curves
of FIG. 17 arises because of the sensitivity of Quicksort to
the initial ordering of the data to be sorted, as explained
supra.

FIGS. 19-24 1s a graph depicting sort time using a linear
sort, in contrast with Quicksort, for sorting integers as a
function of mask width and maximum value that can be
sorted, 1 accordance with embodiments of the present
invention. The values of S 1n FIGS. 19-24 are significantly
smaller than the values of S used in FIGS. 10-15 and 17-18.
The linear sort was 1n accordance with embodiments of the
present invention using the recursive sort of FIG. 5 as
described supra. In each of FIGS. 19-24, Time in units of
CPU cycles 1s plotted versus MAX WIDTH and MOD_
VAL, wherein MAX WIDTH (equivalent to W discussed
supra) 1s the width of the mask, and wherein the integer

values to be sorted were randomly generated from a uniform
distribution between 0 and MOD VAL -1. Also 1n each of

FIGS. 19-24, MAX WIDTH=13 is the rightmost array
representing Quicksort and has nothing to do with a mask

width. Letting S denote the number of integer values sorted
in each test, S=2000 in FIGS. 19-20, S=1000 in FIGS.

21-22, and S=100 1n FIGS. 23-24. FIGS. 19 and 20 represent
the same tests and the scale of the Time direction differs in
FIGS. 19 and 20. FIGS. 21 and 22 represent the same tests
and the scale of the Time direction differs in FIGS. 21 and
22. FIGS. 23 and 24 represent the same tests and the scale
of the Time direction differs in FIGS. 23 and 24. A difference
between the tests of FIGS. 19-24 and the tests of FIGS.
10-16 1s that much tewer values are sorted in FIGS. 19-24
than 1n FIGS. 10-16.

FIGS. 19-24 show a “saddle” shape ell

ect 1 the three-
dimensional Time shape for the linear sort. The saddle shape
1s characterized by: 1) for a fixed MOD_VAL the Time 1s
relatively high at low values of MASK WIDTH and at high
values of MASK WIDTH but 1s relatively small at interme-
diate values of MASK WIDTH; and 2) for a fixed MASK
WIDTH, the Time increases as MOD_ VAL increases.
Letting W denote MASK WIDTH, the eflect of W on
Time for a fixed MOD VAL 1s as follows. The Time 1s
proportional to the product of the average time per node and
the total number of nodes. The average time per node
includes additive terms corresponding to the various blocks
in FIG. 7B, and block 33 1s an especially dominant block
with respect to computation time. In particular, block 33
initializes memory 1n a time proportional to the maximum
number of child nodes (2") per parent node. Let A represent

5

10

15

20

25

30

35

40

45

50

55

60

65

26

the time eflects 1n the blocks of FIG. 7B which are additive
to the time (x2") consumed by block 53. It is noted that 2"
increases monotonically and exponentially as W 1ncreases.
However, the total number of nodes 1s proportional to N/W
where N 1s the number of bits 1n each word to be sorted. It
1s noted that 1/W decreases monotomically as W 1ncreases.
Thus the behavior of Time as a function of W depends on the

competing effects of (2”+A) and 1/W in the expression
(2" +A)/W. This results in the saddle shape noted supra as W

varies and MOD VAL 1s held constant.

It 1s noted that the dispersion or standard deviation a 1s
iverse to the data density as measured by S/(V,,, v~V
wherein S denotes the number of values to be sorted, and
Vv and V, . respectively denote the maximum and mini-
mum values to be sorted. For FIGS. 19-24, V, ...=0 and
V., v=MOD_VAL-1. Thus, for a fixed data density of the
S values, the Time 1s a saddle-shaped function of a width W
of the mask. Although, FIGS. 19-24 pertain to the sorting of
integers, the execution time of the linear sorting algorithm of
the present invention for sorting sequences of bits 1s essen-
tially independent of whether the sequences of bits are
interpreted as integers or tloating point numbers, and the
execution time 1s even more eflicient for string sorts than for
integer sorts as explamned supra. Therefore, generally for a
fixed data density of S sequences of bits to be sorted, the
sorting execution time 1s a saddle-shaped function of a width
W of the mask that 1s used in he implementation of the
sorting algorithm.

At a fixed mask width W and a fixed number of values S
to be sorted, increasing MOD_VAL increases the dispersion
or standard deviation o of the data to be sorted. Increasing
O 1ncreases the average number of nodes which need to be
processed 1n the sorting procedure. However, the Time
increases as the average number of nodes needed to be
processed increases. This results 1n the increase in Time as

MOD_VAL increases while W 1s fixed. As to Quicksort,
FIGS. 19-24 show that Time also increases as MOD VAL
increases for Quicksort.

A corollary to the preceding analyses 1s that for a fixed W,
the standard deviation a decreases (or the data density
increases) as S increases, so that for a fixed W the sort
execution time may vary less that linearly with S (1.e., the
sort execution time may vary as S” such that Y<1).

FIGS. 19-24 show that for a given number S of values to
be sorted, and for a given value of MOD_VAL, there are one
or mode values of W for which the linear sort Time 1s less
than the Quicksort execution time. A practical consequence
of this result 1s that for a given set of data to be sorted, said
data being characterized by a dispersion or standard devia-
tion, one can choose a mask width that minimizes the Time
and there 1s one or more values of W for which the linear sort
Time 1s less than the Quicksort execution time.

Although FIGS. 19-24 shows timing tests data for sorting
integers, the ability to choose a mask resulting 1n the linear
sort of the present invention executing in less time than a
sort using Quicksort also applies to the sorting of floating
point numbers since the linear sort algorithm 1s essentially
the same for sorting integers and sorting floating point
numbers. Additionally, the ability to choose a mask resulting
in the linear sort executing 1n less time than a sort using
Quicksort also applies to the sorting of character strings
inasmuch as FIGS. 14-15 and 17-18 demonstrate that the
sorting speed advantage of the linear sort relative to Quick-
sort 1s greater for the sorting of strings than for the sorting
of integers. It should be recalled that the mask used for the
sorting ol character strings has a width equal to a byte
representing a character of the string.

Us 7,370,058 B2

27

While embodiments of the present mnvention have been
described herein for purposes of illustration, many modifi-
cations and changes will become apparent to those skilled 1n
the art. Accordingly, the appended claims are intended to
encompass all such modifications and changes as fall within 5
the true spirit and scope of this invention.

What 1s claimed 1s:

1. A method, comprising executing an algorithm by a
processor of a computer system, said executing said algo-
rithm comprising sorting S sequences ol binary bits in 10
ascending or descending order of a value associated with
cach sequence and 1n a time period denoted as a sorting
execution time, said S sequences being stored in a memory
device of the computer system prior to said sorting, S being
at least 2, each sequence of the S sequences comprising K 15
contiguous fields denoted left to nightas F,, F,, ..., F. with
corresponding field widths of W, W,,, W, said
sorting comprising the steps of:

designating S memory areas of the memory device as A,

A, ... A 20
setting an output index P=0 and a field mndex Q=0;
providing a node E having S elements stored therein, said

S elements consisting of the S sequences or S pointers

respectively pointing to the S sequences; and

executing program code, including determining a truth or 25

falsity of an assertion that the elements 1n node E

collectively include or point to no more than one
umque sequence U of the S sequences, and 1f said
assertion 1s determined to be false:

then generating C child nodes from node E, each child 30

node including all elements in node E having a
unlque value of ﬁeld F .1, said child nodes denoted
as E,, E,, ..., E._, having associated field FQ+l

values of VD,, V., ..., V., said child nodes E,,
E,, ..., E~; belng sequenced such that V < 353
V,<...<V_,._,, said generating followed by incre-
menting Q by 1, said incrementing QQ followed by
iterating from an 1ndex I=0 to I=C-1 1n steps of 1,
wherein 1teration I includes setting E=E; followed by
executing the program code recursively at a next 40
level of recursion for the node E;
clse for each element 1n node E: incrementing P by 1, next
storing 1n A, either U or the element pointing to U, and
lastly 11 the program code at all of said levels of
recursion has not been fully executed then resuming 45
execution of said program code at the most previous
level of recursion at which the program code was
partially but not fully executed else exiting the algo-
rithm.

2. The method of claim 1, wherein said sorting does not 50
include comparing a value of a first sequence of the S
sequences with a value of a second sequence of the S
sequences.

3. The method of claim 1, wherein the sorting execution
time 1s a linear function of a sequence length comprised by 55
cach sequence of the S sequences.

4. The method of claim 1, wherein the sorting execution
time 1s a linear or less than linear function of S.

5. The method of claim 1, wherein the sorting execution
time 1s essentially independent of an extent to which the S 60
sequences are ordered 1n the memory device, prior to said
sorting, with respect to said associated values.

6. The method of claim 1, wherein the sorting execution
time 1s a decreasing function of a data density of the S
sequences. 65

7. The method of claim 1, wherein the S elements consist

of the S pointers, wherein the node E having the S sequences

28

prior to said sorting includes a linked list that comprises the
S pointers, and wherein each child node having pointers
therein includes a linked list that comprises said pointers
therein.
8. The method of claim 1, wherein the S sequences each
represent a variable-length character string, wherein each of
the S character strings consists of the K contiguous fields,
wherein K 1s a sequence-dependent variable subject to
W, =W,= ... =W_,=one byte consisting of a fixed number
of binary bits for representing one character.
9. The method of claim 1, wherein the S sequences each
represent a fixed-length character string, wherein each of the
S character strings consists of the K contiguous fields,
wherein K 1s a sequence-dependent variable subject to
W, =W,= ... =W, =one byte consisting of a fixed number
ol binary bits for representing one character.
10. The method of claim 1, wherein the S sequences
consist of S fixed-length words such that each of the S words
has N binary bits, wherein N 1s at least 2.
11. The method of claim 10, wherein the S words each
represent an integer.
12. The method of claim 10, wherein the method further
comprises determining a leftmost significant bit position of
the S words collectively, and wherein the leftmost bit
position of field F, 1s the leftmost significant bit position of
the S words collectively.
13. The method of claim 10, wherein the S words each
represent a tloating point number having the following fields
contiguously ordered from left to right: a sign field, an
exponent field, and a mantissa field.
14. The method of claim 1, wherein generating the C child
nodes from node E comprises performing (M AND X) or (X
AND M) with a mask M for each sequence X 1in node E,
wherein the mask M 1s keyed to the field F ;. |, and wherein
the bit positions of the mask M rela‘[mg to the field ¥, , each
have a 1 bit, and wherein the remaining bit posmons of the
mask M each have a O bit.
15. The method of claim 1, wherein S 1s at least 1000, and
wherein W,, W, . . ., W, 1s such that the sorting execution
time 1s less than a Quicksort execution time for sorting the
S sequences via execution of a Quicksort sorting algorithm
by said processor.
16. A method, comprising executing an algorithm by a
processor of a computer system, said executing said algo-
rithm comprising sorting S sequences ol binary bits in
ascending or descending order of a value associated with
cach sequence and 1n a time period denoted as a sorting
execution time, said S sequences being stored 1n a memory
device of the computer system prior to said sorting, S being
at least 2, each sequence of the S sequences comprising K
contiguous fields denoted left to nnightas F,, F,, . .., Fxwith
corresponding field widths of W,, W,, ..., W, said sorting
comprising the steps of:
designating S memory areas of the memory device as A |,
Y A

setting an output index P=0 and a field index Q=0;

providing a node B having S elements stored therein, said
S elements consisting of the S sequences or S pointers
respectively pointing to the S sequences; and

counter-controlled looping through program code, said
looping including iteratively executing said program
code within nested loops, said executing said program
code including determining a truth or falsity of an
assertion that the elements 1 node F collectively
include or point to no more than one unique sequence
U of the S sequences, and 1f said assertion 1s deter-
mined to be false:

Us 7,370,058 B2

29

then generating C child nodes from node B, each child
node including all elements in node E having a
unique value of field F,, ,, said child nodes denoted

as E,, E,, . . ., E~_; having associated field For
values of V,, V,, . . ., V~_,;, said child nodes E,,
E,, ..., E., being sequenced such that V <

V,<...,<V_._,; said generating followed by incre-
menting Q by 1, said incrementing Q followed by
iterating from an index I=0 to I=C-1 1n steps of 1,
wherein 1teration I includes setting E=E; followed by
returning to said counter-controlled looping;

¢lse for each element in node E: incrementing P by 1,
next storing 1 A, either U or the element pointing to
U, and lastly if all iterations of said outermost loop
have not been executed then returning to said
counter-controlled looping else exiting from said
algorithm.

17. The method of claim 16, wherein said sorting does not
include comparing a value of a first sequence of the S
sequences with a value of a second sequence of the S
sequences.

18. The method of claim 16, wherein the sorting execution
time 1s a linear function of a sequence length comprised by
cach sequence of the S sequences.

19. The method of claim 16, wherein the sorting execution
time 1s a linear or less than linear function of S.

20. The method of claim 16, wherein the sorting execution
time 1s essentially independent of an extent to which the S
sequences are ordered in the memory device, prior to said
sorting, with respect to said associated values.

10

15

20

25

30

21. The method of claim 16, wherein the sorting execution
time 1s a decreasing function of a data density of the S
sequences.

22. The method of claim 16, wherein the S sequences each
represent a variable-length character string, wherein each of
the S character strings consists of the K contiguous fields,
wherein K 1s a sequence-dependent variable subject to
W, =W.,=...=W_. one byte consisting of a fixed number of
binary bits for representing one character.

23. The method of claim 16, wherein the S sequences each
represent a fixed-length character string, wherein each of the
S character strings consists of the K contiguous fields,
wherein K 1s a sequence-dependent variable subject to
W,=W,=. .. =W_=one byte consisting of a fixed number
ol binary bits for representing one character.

24. The method of claim 16, wherein the S sequences
consist of S fixed-length integers such that each of the S
integers has N binary bits, wherein N 1s at least 2.

25. The method of claim 16, wherein the S sequences
consist of S fixed-length floating point numbers, each of said
floating point numbers having the following fields contigu-
ously ordered from left to right: a sign field, an exponent
field, and a mantissa field.

26. The method of claim 16, wherein S 1s at least 1000,
and wherein W,, W,, . . ., W, 1s such that the sorting
execution time 1s less than a Quicksort execution time for
sorting the S sequences via execution of a Quicksort sorting,
algorithm by said processor.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

