US007363625B2

12 United States Patent
Burky et al.

US 7,363,625 B2
Apr. 22, 2008

(10) Patent No.:
45) Date of Patent:

References Cited

U.S. PATENT DOCUMENTS

(54) METHOD FOR CHANGING A THREAD
PRIORITY IN A SIMULTANEOUS
MULITTHREAD PROCESSOR

(56)

6,076,157 A * 6/2000 Borkenhagen et al. 712/228
(75) Inventors: William E. Burky, AUStinj TX ('[JS)j 6,105,051 A g 8/2000 Borkenhagen et al. 718/103
Ronald N. Kalla. Round Rock TX 6,108,683 A_ * 82000 Kamada et al. 718/103
" " 6,212,544 Bl 4/2001 Borkenhagen et al. 709/103
(US); David A. Schroter, Round Rock, 6,535,905 B1* 3/2003 Kalafatis et al. 718/108
TX (US); Balaram Sinharoy, 6,542,921 B1* 4/2003 SagEr ..eoeevveveveeennnnn. 718/108
Poughkeepsie, NY (US) (Continued)
(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US) Dermoudy, A novel approach to parenting in functional program
evaluation, ACM International Conference Proceeding Series; vol.
(*) Notice: Subject to any disclaimer, the term of this 35, pp. 217-226 , Year of Publication: 2003.*
patent 1s extended or adjusted under 35 (Continued)
U.S.C. 134(b) by 736 days.
Primary Examiner—William Thomson
(21) Appl. No.: 10/422,678 Assistant Examiner—Qing-Yuan Wu
(74) Attorney, Agent, or Firm—Casimer K. Salys; Winstead
(22) Filed: Apr. 24, 2003 PC
(65) Prior Publication Data (57) ABSTRACT
US 2004/0215945 A1l Oct. 28, 2004 An SMT system 1s designed to allow software alteration of
thread priority. In one case, the system signals a change in
(51) Int. CL. a thread priority based on the state of 1nstruction execution
GOGE 9/46 (2006.01) and 1n particular when the mstruction has completed execu-
GO6F 15/00 (2006.01) tion. To alter the priority of a thread, the software uses a
GO6F 15/76 (2006.01) special form of a “no operation” (NOP) instruction (here-
GO6F 9/30 (2006.01) after termed thread priority NOP). When the thread priority
GOGF 0/40 (2006.01) NOP 1s dispatched, its special NOP 1s decoded 1n the decode
GOGF 7/38 (2006.01) ynit of the IDU ipto an operation that writes a s'pecial code
GO6F 9/00 (2006.01) into the completion table for the thread priority NOP. A
“trouble” bit 15 also set 1n the completion table that indicates
(52) US.CL ... 718/103; 718/102; 718/107; which instruction group contains the thread priority NOP.
718/108; 712/32; 712/43;°712/205; 712/206; The trouble bit indicates that special processing 1s required
712/207;712/214; 712/218; 712/220 after instruction completion. The thread priority instruction
(58) Field of Classification Search 719/310; 1s processed after completion using the special code to

718/100, 102-103, 107-108; 712/32, 220,
712/43, 205-207, 218, 229, 214
See application file for complete search history.

change a thread’s priority.

2 Claims, 4 Drawing Sheets

Generate a thread priority
NOP instruction to alter a /301
thread prierity
Decode the thread priority 02
NOP within instruction decode

205 in IDU 232

Generate an internal operation that writes, to

the completion table, a special code entry and _'_,,.-303

sets a trouble bit in the group containing the

thread priority NOP when the thread priority
NOP is dispatched

Sigoal by a completion unit 219 that

thread priority NOP has completed
execubion

| Execute a special process when the l 305
group containing the thread priority
MOP has completed in response to the

trouble bit being set

!

Signal the thread priority selector 237 206
to alter a thread priarity itt response to
the special processing of the thread
prionty NOP

US 7,363,625 B2
Page 2

0,567,839
0,658,447
0,785,890
0,795,845
0,854,118
0,865,740
6,971,104
6,951,261
2003/0009648
2003/0018686

Bl *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
B2 *
Al*
Al*

5/2003
12/2003
8/2004
9/2004
2/2005
3/2005
11/2005
12/2005
1/2003
1/2003

U.S. PATENT DOCUMENTS

Borkenhagen et al. 718/103
Cota-Robles 718/103
Kalafatis et al. 718/108
Kalafatis et al. 718/108
Kalafatis et al. 718/108
Kalafatis et al. 718/108
Kalafatis et al. 718/108
Kalafatis et al. 718/108
Doing et al. 711/202
Kalafatis et al. 709/102

2003/0023658 Al* 1/2003 Kalafatis et al. 709/102
2003/0154235 Al* 82003 Sager 709/108

OTHER PUBLICATTIONS

Karin et al., Programming Windows NT device drivers to operate
non-interrupting embedded devices, Electrical and FElectronics
Engineers in Israel, 2002. The 22nd Convention of, Dec. 1, 2002 pp.
105-107.*

Kucuk, Gurhan “Low-Complexity Reorder Buffer Architecture”
Jun. 2002, ACM.*

* cited by examiner

U.S. Patent Apr. 22, 2008 Sheet 1 of 4 US 7,363,625 B2

134
108 _C133 -

103 1) Thread

Selector

S
Queue | | Queue
Bk
[
U 137
| Thread Prionty

Selector

Program
Counter

/140

131

11
Instruction Register
Sequencer Renaming

Instruction Issue Queue ‘

14 115 116 (117 118

FPR File
e
Buffers
8 -

fl 19
:TI D-Cache 102
Unit
101

Bus Interface Unit

BIU
/ 412~ V139 FIG. 1

410

GPR File

GP Rename
Buffers

U.S. Patent Apr. 22, 2008 Sheet 2 of 4 US 7,363,625 B2

208

" Thread Priority
Selector

205 Instrudion
Decode

Instruction sequencer

Instruction Issue Queue

Instruction Execution Units

213

231

219

Completion D-Cache 202
Unit
¢ 201

Bus Interface Unit
/ l BiU
¢,_, _—239 FIG. 2
410 l Memory |

U.S. Patent Apr. 22, 2008 Sheet 3 of 4 US 7,363,625 B2

Generate a thread priority
NOP 1nstruction to alter a 301
thread priority

Decode the thread priority 302
NOP within instruction decode
205 m IDU 232

Generate an internal operation that writes, to
the completion table, a special code entry and 303
sets a trouble bit in the group containing the
thread priority NOP when the thread priority
NOP is dispatched

Signal by a completion unit 219 that
thread priority NOP has completed
execution

304

Execute a special process when the
group contaming the thread priority
NOP has completed in response to the
trouble bit being set

305

Signal the thread priority selector 237
to alter a thread priority in response to }

the special processing of the thread
priority NOP

306

FIG. 3

US 7,363,625 B2

Sheet 4 of 4

Apr. 22, 2008

U.S. Patent

1237%

v DId

oty

JHIdVAV

dHILdVAY

AV 1dSId

SNOILVOINIANNOD

- =

AHOMLHEN

8% %

1§74

8TV

Aty

dHLdVAV O/1

NOY NdO

US 7,363,625 B2

1

METHOD FOR CHANGING A THREAD
PRIORITY IN A SIMULTANEOUS
MULITTHREAD PROCESSOR

TECHNICAL FIELD

The present invention relates 1n general to methods and

circuitry for a processor having simultaneous multithreading
(SMT) and single thread operation modes.

BACKGROUND INFORMATION

For a long time, the secret to more performance was to
execute more 1nstructions per cycle, otherwise known as
Instruction Level Parallelism (ILP), or decreasing the
latency of instructions. To execute more mstructions each
cycle, more functional units (e.g., mteger, floating point,
load/store units, etc.) have to be added. In order to more
consistently execute multiple 1instructions, a processing
paradigm called out-of-order processing (OOP) may be
used, and i1n fact, this type of processing has become
mainstream.

OOP arose because many instructions are dependent upon
the outcome of other instructions, which have already been
sent 1nto the processing pipeline. To help alleviate this
problem, a larger number of 1nstructions are stored in order
to allow immediate execution. The reason this 1s done 1s to
find more instructions that are not dependent upon each
other. The area of storage used to store the instructions that
are ready to execute immediately 1s called the reorder builer.
The size of reorder buflers have been growing in most
modern commercial computer architectures with some sys-
tems able to store as many as 126 instructions. The reason
for increasing the size of the reorder bufler 1s simple: code
that 1s spatially related tends also to be temporally related in
terms of execution (with the possible exclusion of arrays of
complex structures and linked lists). The only problem 1is
that these 1nstructions also have a tendency to depend upon
the outcome of prior instructions. With a CPU’s ever
increasing amount of required code, the only current way to
find more 1independent instructions has been to increase the
s1ze of the reorder bufler.

However, using this technique has achieved a rather
impressive downturn in the rate of increased performance
and 1n fact has been showing diminishing returns. It 1s now
taking more and more transistors to achieve the same rate of
performance increase. Instead of focusing intently upon
uniprocessor ILP extraction, one can focus upon a coarser
form of extracting performance at the mstruction or thread
level, via multithreading (multiprocessing), but without the
system bus as a major constraint.

The ability to put more transistors on a single chip has
allowed on-chip multiprocessing (CMP). To take advantage
of the potential performance increases, the architecture
cannot use these multiple processors as uniprocessors but
rather must use multiprocessing that relies on executing
instructions in a parallel manner. This requires the programs
executed on the CMP to also be written to execute 1n a
parallel manner rather than in a purely senal or sequential
manner. Assuming that the application 1s written to execute
in a parallel manner (multithreaded), there are inherent
difficulties 1n making the program written 1n this fashion
execute faster proportional to the number of added proces-
SOIS.

The general concept behind using multiple cores on one
die 1s to extract more performance by executing two threads
at once. By doing so, the two CPUs together are able to keep

10

15

20

25

30

35

40

45

50

55

60

65

2

a higher percentage of the aggregate number of functional
unmts doing useful work at all times. If a processor has more
functional units, then a lower percentage of those units may
be doing useful work at any one time. The on-chip multi-
processor lowers the number of functional units per proces-
sor, and distributes separate tasks (or threads) to each
processor. In this way, 1t 1s able to achieve a higher through-
put on both tasks combined. A comparative uniprocessor
would be able to get through one thread, or task, faster than
a CMP chip could, because, although there are wasted
functional units, there are also “bursts” of activity produced
when the processor computes multiple pieces of data at the
same time and uses all available functional units. One 1dea
behind multiprocessors 1s to keep the individual processors
from experiencing such burst activity times and instead have
cach processor use what resources 1t has available more
frequently and therefore ethiciently. The non-use of some of
the functional units during a clock cycle 1s known as
“horizontal waste,” which CMP tries to avoid.

However, there are problems with CMP. The traditional
CMP chip sacrifices single-thread performance in order to
expedite the completion of two or more threads. In this way,
a CMP chip 1s comparatively less flexible for general use,
because 1 there 1s only one thread, an entire half of the
allotted resources are 1dle and completely useless (just as
adding another processor in a system that uses a singly
threaded program 1s useless 1n a traditional multiprocessor
(MP) system). One approach to making the functional units
in a CMP more eflicient 1s to use course-grained multi-
threading (CMT). CMT improves the efliciency with respect
to the usage of the functional units by executing one thread
for a certain number of clock cycles. The efliciency 1is
improved due to a decrease 1n “vertical waste.” Vertical
waste describes situations 1n which none of the functional
units are working due to one thread stalling.

When switching to another thread, the processor saves the
state of that thread (1.e., 1t saves where nstructions are 1n the
pipeline, which units are being used) and switches to another
one. It does so by using multiple register sets. The advantage
of this 1s due to the fact that often a thread can only go for
so long before it falls upon a cache miss, or runs out of
independent 1nstructions to execute. A CMT processor can
only execute as many different threads in this way as 1t has
support for. So, 1t can only store as many threads as there are
physical locations for each of these threads to store the state
of their execution. An N-way CM'T processor would there-
fore need to have the ability to store the state of N threads.

A variation on this concept would be to execute one thread
until 1t has experienced a cache miss (usually a L2 (second-
ary) cache miss), at which point the system would switch to
another thread. This has the advantage of simplifying the
logic needed to rotate the threads through a processor, as i1t
will simply switch to another thread as soon as the prior
thread 1s stalled. The penalty of waiting for a requested block
to be transierred back into the cache 1s then alleviated. This
1s similar to the hit under miss (or hit under multiple miss)
caching scheme used by some processors, but i1t differs
because it operates on threads instead of upon instructions.
The advantages of CMT over CMP are CMT does not
sacrifice single-thread performance, and there 1s less hard-
ware duplication (less hardware that 1s halved to make the
two processors “equal” to a comparable CMT).

A more aggressive approach to multithreading 1s called

fine-grained multithreading (FMT). Like CMT, the basis of
FMT 1s to switch rapidly between threads. Unlike CMT,
however, the 1dea 1s to switch each and every cycle. While

both CMT and FMT actually do indeed slow down the

US 7,363,625 B2

3

completion of one thread, FMT expedites the completion of
all the threads being worked on, and 1t 1s overall throughput
which generally matters most.

CMPs may remove some horizontal waste in and unto
themselves. CMT and FMT may remove some (or all)
vertical waste. However an architecture that comprises an
advanced form of multithreading, referred to as Simulta-
neous Multithreading (SMT), may be used to reduce both
horizontal and vertical waste. The major goal of SMT 1s to
have the ability to run instructions from different threads at
any given time and 1n any given functional unit. By rotating
through threads, an SMT architecture acts like an FMT
processor, and by executing instructions from different
threads at the same time, 1t acts like CMP. Because of this,
it allows architects to design wider cores without the worry
of diminishing returns. It 1s reasonable for SMT to achieve
higher ethciency than FMT due to 1ts ability to share
“unused” functional units among diflering threads; in this
way, SMT achieves the efliciency of a CMP machine.
However, unlike a CMP system, an SMT system makes little
to no sacrifice (the small sacrifice 1s discussed later) for
single threaded performance. The reason for this 1s simple.
Whereas much of a CMP processor remains idle when
running a single thread and the more processors on the CMP
chip makes this problem more pronounced, an SMT pro-
cessor can dedicate all functional units to the single thread.
While this 1s obviously not as valuable as being able to run
multiple threads, the ability to balance between single thread
and multithreaded environments 1s a very useful feature.
This means that an SMT processor may exploit thread-level
parallelism (TLP) 11 it 1s present, and 11 not, will give full
attention to mnstruction level parallelism (ILP).

In order to support multiple threads, an SMT processor
requires more registers than the traditional superscalar pro-
cessor. The general aim 1s to provide as many registers for
cach supported thread as there would be for a umiprocessor.
For a traditional reduced instruction set computer (RISC)
chip, this implies 32 times N registers (where N 1s the
number of threads an SMT processor could handle 1n one
cycle), plus whatever renaming registers are required. For a
4-way SMT processor RISC processor, this would mean 128
registers, plus however many renaming registers are needed.

Most SMT models are straightiorward extensions of a
conventional out-of-order processor. With an increase in the
actual throughput comes more demands upon instruction
1ssue width, which should be increased accordingly. Because
of the alorementioned increase in the register file size, an
SMT pipeline length may be increased by two stages (one to
select register bank and one to do a read or write) so as not
to slow down the length of the clock cycle. The register read
and register write stages are therefore both broken up into
two pipelined stages.

In order to not allow any one thread to dominate the
pipeline, an effort should be made to ensure that the other
threads get a realistic slice of the execution time and
resources. When the functional units are requesting work to
do, the fetch mechanism will provide a higher priority to
those threads that have the fewest mstructions already 1n the
pipeline. Of course, 11 the other threads have little they can
do, more instructions from the thread are already dominating
the pipelines.

SMT 1s about sharing whatever possible. However, 1n
some 1nstances, this disrupts the traditional orgamization of
data, as well as 1nstruction tlow. The branch prediction unit
becomes less eflective when shared, because 1t has to keep
track of more threads with more instructions and will
therefore be less etflicient at giving an accurate prediction.

10

15

20

25

30

35

40

45

50

55

60

65

4

This means that the pipeline will need to be flushed more
often due to miss prediction, but the ability to run multiple
threads more than makes up for this deficit.

The penalty for a misprediction 1s greater due to the
longer pipeline used by an SM'T architecture (by two stages),
which 1s 1n turn due to the rather large register file required.
However, techniques have been developed to minimize the
number of registers needed per thread 1 an SMT architec-
ture. This 1s done by more eflicient operating system (OS)
and hardware support for better deallocation of registers, and
the ability to share registers from another thread context it
another thread 1s not using all of them.

Another 1ssue 1s the number of threads 1n relation to the
size ol caches, the line sizes of caches, and the bandwidth
aflorded by them. As 1s the case for single-threaded pro-
grams, 1ncreasing the cache-line size decreases the miss rate
but also increases the miss penalty. Having support for more
threads which use more differing data exacerbates this
problem and thus less of the cache 1s eflectively useful for
cach thread. This contention for the cache 1s even more
pronounced when dealing with a multiprogrammed work-
load over a multithreaded workload. Thus, 1f more threads
are 1n use, then the caches should be larger. This also applies
to CMP processors with shared L2 caches.

The more threads that are 1n use results 1n a higher overall
performance and the differences in association of memory
data become more readily apparent. There 1s an indication
that when the L1 (primary) cache size 1s kept constant, the
highest level of performance 1s achieved using a more
associative cache, despite longer access times. Tests have
been conducted to determine performance with varying
block sizes that differ associatively while varying the num-
bers of threads. As before, increasing the associative level of
blocks increased the performance at all times; however,
increasing the block size decreased performance 1f more
than two threads were 1n use. This was so much so that the
increase in the degree of association of blocks could not
make up for the deficit caused by the greater miss penalty of
the larger block size.

An SMT system may alternately load a shared pipeline
with 1nstruction addresses from two threads. Switching
between threads may normally occur on every clock.
Switching between threads in this manner would provide
cach thread with equal priority to system resources. In an
SMT system with multiple execution units, it may be
desirable to execute instruction out-of-order to better utilize
the execution units. A variety ol conditions may lead to
pipeline stalls wherein istructions from a thread cannot be
immediately executed. At other times conditions may make
it desirable to alter the priority of a given thread thereby
changing the thread selection process to vary from loading
instructions equally from each thread. Varying the priority
and thus thread selection may be due to hardware detected
conditions or from conditions that are controlled by soft-
ware.

To change a threads priority with software, an 1nstruction
1s necessary to do the alteration process. Special “no opera-
tion” NOP instructions have been defined in the SMT
architecture that allow the software to dynamically change a
thread’s priority. If a process for examining NOP 1nstruc-
tions for conditions allowing thread priority modification 1s
done incorrectly, 1t may require special processing by the
FXUs or it may slow down the processing of all NOP
instructions.

When to switch from one thread to another 1s made more
difficult by the fact that instructions are pipelined and
execution may occur out-of-order. If the condition {for

US 7,363,625 B2

S

switching threads depends on the completion of an 1nstruc-
tion, an 1n-order execution system 1s assured that an 1nstruc-
tion 1n the pipeline for a particular thread cannot complete
before any 1nstruction for that thread dispatched ahead of it
has completed. Thus, the in-order system may change a
thread’s priority by processing the NOP instruction earlier in
the pipeline with good assurances that the NOP 1nstruction
will complete. However, in an out-of-order system the
decision needs to be made at the NOP 1nstruction completion
so that the effects of altering thread priority do not occur 1t
the NOP instruction does not in fact execute. There 1s,
therefore, a need for a mechanism for a special NOP
instruction form used to alter a thread priority to only take
cllect upon the NOP 1nstruction completion without slowing
down all NOP instructions and without requiring special
NOP mstruction processing in the FXUSs.

SUMMARY OF THE INVENTION

An SMT system can alter the priority of the threads under
soltware control. In one case, the system signals a change 1n
a thread priority based on the state of instruction execution
and 1n particular when the mstruction has completed execu-
tion. To alter a threads priority, the software uses a special
form of a “no operation” (NOP) instruction (hereafter
termed thread priority NOP).

When the thread prionity NOP 1s dispatched, the special
NOPs are decoded in the decode unit of the IDU into an
internal operation that writes a special code 1into the comple-
tion table for the thread priority NOP. A “trouble” bit 1s also
set 1 the completion table that indicates which 1nstruction
group contains the special code. The completion table tracks
groups of instructions rather than individual instructions.
There 1s one special code entry for each instruction group 1n
the completion table. The trouble bit indicates that some-
thing beyond just completing the particular instruction group
1s required. In the present invention, the priority of a
particular thread having the thread priority NOP 1s changed
at completion. Thus, thread priority does not change specu-
latively since only a completed thread priority NOP executes
special processing of the special NOP form to alter a thread
priority.

The foregoing has outlined rather broadly the features and
technical advantages of the present invention in order that
the detailed description of the invention that follows may be
better understood. Additional features and advantages of the
invention will be described heremnafter which form the
subject of the claims of the ivention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, and the advantages thereotf, reference 1s now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 1s a block diagram of functional units in an SMT
processor according to embodiments of the present inven-
tion;

FIG. 2 1s a block diagram of circuitry for implementing
method steps of embodiments of the present invention;

FIG. 3 1s a flow diagram of method steps according to
embodiments ol the present invention; and

FIG. 4 1s a representative hardware environment for
practicing the present invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a thorough understanding of the present

10

15

20

25

30

35

40

45

50

55

60

65

6

invention. However, it will be obvious to those skilled 1n the
art that the present invention may be practiced without such
specific details. In other 1nstances, well-known circuits may
be shown 1n block diagram form 1n order not to obscure the
present ivention in unnecessary detail. For the most part,
details concerning timing, data formats within communica-
tion protocols, and the like have been omitted inasmuch as
such details are not necessary to obtain a complete under-
standing of the present invention and are within the skills of
persons of ordinary skill in the relevant art.

Refer now to the drawings wherein depicted elements are
not necessarily shown to scale and wherein like or similar
clements are designated by the same reference numeral
through the several views.

Retferring to FIG. 1, there are 1illustrated details of CPU
410. CPU 410 1s designed to execute multiple instructions
per clock cycle. Thus, multiple 1nstructions may be execut-
ing in any of the execution units, fixed point units (FXUs)
114, floating point units (FPUs) 118, and load/store units
(LSUs) 116 during any one clock cycle. Likewise, CPU 410
may simultaneously execute instructions from multiple
threads 1n an SMT mode.

Program counters (PCs) 134 correspond to thread zero
(T0) and thread one (T1) that have instructions for execu-
tion. Thread selector 133 alternately selects between T0 and
T1 to couple an instruction address to instruction fetch unit
(IFU) 108. Instruction addresses are loaded 1nto mnstruction
fetch address register (IFAR) 103. IFAR 103 alternately
tetches 1nstructions for each thread from instruction cache
(I-Cache) 104. Instructions are builered in instruction queue
(1Q) 135 for TO and 1Q 136 for T1. IQ 135 and IQ 136 are
coupled to 1nstruction dispatch unit (IDU) 132. Instructions
are selected and read from IQ 135 and IQQ 136 under control
of thread priority selector 137. Normally, thread priority
selector 137 reads instructions from I1Q 135 and IQ 136
substantially proportional to each thread’s program con-
trolled priority.

The mstructions are decoded 1n a decoder (not shown) 1n
IDU 132. Instruction sequencer 113 then may place the
instructions in groups in an order determined by various
algorithms. The groups of instructions are forwarded to
instruction 1ssue queue (11QQ) 131. The instruction sequencer
113 recerves instructions from both threads in program
order, but the instructions may be 1ssued from the I1QQ 131
out of program order and from either thread. The general
purpose register (GPR) file 115 and floating point register
(FPR) file 117 are used by multiple executing units and
represent the program state of the system. These hardware
registers may be referred to as the “architected” registers.
When an 1nstruction 1s put into an 1ssue queue, each archi-
tected register 1s renamed. Each architected register that 1s
being modified 1s assigned a physical register and a corre-
sponding look-up table 1dentifies physical registers that are
associated with an architected register. Therefore in the 1ssue
queue, the architected register has been renamed so that
multiple copies of an architected register may exist at the
same fime. This allows instructions to be executed out-oi-
order as long as source operands are available. Register
renaming unit 140, renames and maps the registers so that
unused physical registers may be reassigned when all
instructions referencing a particular physical register com-
plete and the physical register does not contain the latest
architected state.

Instructions are queued 1n I11Q 131 for execution 1n the
appropriate execution unit. If an mstruction contains a fixed

point operation, then any of the multiple fixed point units
(FXUs) 114 may be used. All of the execution units, FXU

114, FPU 118 and LSU 116 are coupled to completion unit

US 7,363,625 B2

7

119 that has completion tables (not shown) indicating which
of the 1ssued structions have completed and other status
information. Information from completion unit 119 is for-
warded to IFU 108. IDU 132 may also send information to
completion unit 119. Data from a store operation from LSU
116 15 coupled to data cache (D-Cache) 102. This data may
be stored 1n D-Cache 102 for near term use and/or forwarded
to bus mterface umt (BIU) 101 which sends the data over
bus 412 to memory 139. LSU 116 may load data from
D-Cache 102 for use by the execution units (e.g., FXU 114).

FIG. 2 1s a block diagram of circuit functions that icor-
porate embodiments of the present invention. IFU 208 has
queues (e.g., similar to queues 135 and 136 in FIG. 1)
providing 1nstructions 203 and 204 from threads T0 and T1
respectively. Instructions are selected and read from T0 and
T1 under control of thread priority selector 237. Normally,
thread priority selector 237 reads istructions from T0 and
T1 substantially proportional to each thread’s program con-
trolled prionty.

The 1nstructions are decoded in 1instruction decoder 205 in
IDU 232. Instruction sequencer 213 then may place the
instructions 1 groups 1n an order determined by various
algorithms. For example, in embodiments of the present
invention an instruction group comprise five instructions
from a particular thread. The instruction groups are for-
warded to 11QQ 231 which has multiple queues coupled to the
execution units 240. Instructions are queued i 11Q 231 for
execution in 1nstruction execution units 240. Execution units
240 are coupled to completion unmit 219 that has a group
completion table (GCT) (not shown) indicating which of the
issued instructions have completed and other status infor-
mation. Data from LSU units 1n instruction execution units
240 15 coupled to data cache (D-Cache) 202. This data may
be stored 1n D-Cache 202 for near term use and/or forwarded
to bus interface unit (BIU) 201 which sends the data to
memory 239. IFU 208 may receive instructions stored in
memory 231 via BIU 201.

When a thread priority NOP instruction for changing a
thread’s priority 1s dispatched, a special code 1s written to
the GCT 1n completion unit 219. Additionally, a trouble bit
in the nstruction group containing the thread NOP instruc-
tion 1s set. However, since instructions may be dispatched
speculatively, 1t 1s not known at this time whether the thread
priority NOP 1nstruction will actually execute. When the
instruction group containing the thread priority NOP 1nstruc-
tion has completed execution within instruction execution
units 240, completion unit 219 1s notified. The trouble bit in
the completed group indicates that additional special pro-
cessing 1s necessary. For the thread priority NOP instruction,
the special code 1s processed in the completion unit 219 to
change the thread priorty. The special processing indicates
what data to send to a thread priority register (not shown) in
the thread priority selector 237. There 1s a mode of operation
where the thread priority register may be written via a
execution unit (e.g., in 240) writing a value to a general
purpose register (GPR) 1n a GPR file (e.g. GPR file 115 in
FIG. 1). However, this uses execution resources and register
space. In embodiments of the present invention, thread
priority NOP 1nstructions are processed but not 1n an execu-
tion unit. As stated, this processing occurs 1n the completion
unit 219.

FIG. 3 15 a flow diagram of method steps 1n embodiments
of the present invention. In step 301, software generates a
thread priority NOP instruction to alter the pnonty of a
thread. In step 302, the thread priority NOP 1s decoded
within 1nstruction decode 205 i IDU 232. In step 303, an
internal operation 1s generated in response to the decode of

10

15

20

25

30

35

40

45

50

55

60

65

8

the thread priority NOP that writes, into the GCT 1n comple-
tion unit 219, a special code entry and sets a trouble bit for
the group containing the thread priority NOP when 1t 1s
dispatched from IDU 232. In step 304, completion unit 219
determines when the group Containing the thread priority
NOP 1nstruction has completed. A trouble bit with this group
indicates that additional processing i1s necessary in comple-
tion umt 219. In step 305, the special code entry 1n the thread
priority NOP 1nstruction 1s decoded (additional processing)
when the group containing the thread priority NOP has
completed execution 1n response to the trouble bit being set
This decode generates the data needed to set a thread priority
register 1n thread priority selector 237. In step 307, the data
1s sent to the thread prionty selector 237 to alter a thread
priority in response to the special processing of the thread
priority NOP. This guarantees that the thread’s priority 1s not
changed speculatively and 1t does not use execution
resources or register space.

A representative hardware environment for practicing the
present mvention 1s depicted in FIG. 4, which illustrates a
typical hardware configuration of a workstation 1 accor-
dance with the subject invention having central processing
unmt (CPU) 410 with simultaneous multithread (SMT) pro-
cessing and a number of other units interconnected via
system bus 412. The workstation shown in FIG. 4 includes
random access memory (RAM) 414, read only memory
(ROM) 416, and mput/output (I/0) adapter 418 for connect-
ing peripheral devices such as disk units 420 and tape drives
440 to bus 412, user interface adapter 422 for connecting
keyboard 424, mouse 426, speaker 428, microphone 432,
and/or other user interface devices such as a touch screen
device (not shown) to bus 412, communication adapter 434
for connecting the workstation to a data processing network,
and display adapter 436 for connecting bus 412 to display
device 438.

Although the present invention and 1ts advantages have
been described in detail, 1t should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the invention
as defined by the appended claims.

What 1s claimed 1s:

1. A method for dynamically changing a priornity of a
thread 1n a simultaneous multithread (SMT) processor com-
prising the steps of:

generating a thread priority no operation (NOP) instruc-

tion to change an instruction execution priority of a
thread selected from first and second threads;

decoding said thread priority NOP 1instruction;

writing a special code for modifying said instruction
execution priority of said selected thread into a group
completion table (GCT) 1n response to a dispatch of
said thread priority NOP 1nstruction;

setting a trouble bit 1 said GCT corresponding to an
instruction group containing said thread priority NOP
instruction in response to said dispatch of said thread
priority NOP 1nstruction;

determining within a completion unit that said 1nstruction
group has completed;

processing said special code to generate priority data for
setting a first priority value for said selected thread in
response to said trouble bit being set to an ON logic
state; and

sending said first priority value to a thread priority selec-
tor controlling dispatching of instructions for said
selected thread and changing said selected thread’s

US 7,363,625 B2

9

istruction execution priority after said instruction
group containing said thread priority NOP 1nstruction

has completed.
2. The method of claim 1, wherein said thread priority
selector selects imstructions from first and second thread

10

instruction queues such that numbers of dispatched first and
second thread instructions are in a proportion corresponding,
to each thread’s instruction execution priority.

	Front Page
	Drawings
	Specification
	Claims

