12 United States Patent

US007363543B2

(10) Patent No.: US 7,363,543 B2

Peebles et al. 45) Date of Patent: *Apr. 22, 2008
(54) METHOD AND APPARATUS FOR 6,108,800 A * 8/2000 Asawacccuvnnn... 714/47
GENERATING DIAGNOSTIC 6,115,393 A 9/2000 Engel et al.
RECOMMENDATIONS FOR ENHANCING 6,145,001 A 112000 Scholl et al.
PROCESS PERFORMANCE .
(Continued)
(75) Inventors: Harold L. Peebles, Acton, MA (US); FORFIGN PATENT DOCUMENTS
George Demetriou, Westiord, MA
(US); Carol S. Zimmet, Boxboro, MA EP 0831617 A2 3/1998
(US); Lori J. Davidson, Stoncham, MA .
(US); James H. Grigsby, Raleigh, NC (Continued)
(US); Nirmala Venkatraman, Primary Examiner—Yolanda L. Wilson
Westtord, MA (US) (74) Attorney, Agent, or Firm—McGuinness & Manaras
LLP
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) (57) ABSTRACT
(*) Notice: SUbjECt_ to any disclaimer,,. the term of this A diagnostic system monitors the status of other processes
patent 1s extended or adjusted under 35 over a computer network by collecting status and configu-
U.S.C. 154(b) by 224 days. ration data, analyzing the data and providing diagnostic
_ _ _ _ _ recommendations when necessary. The diagnostic system
Thl_s patent 1s subject to a termunal dis- includes a collector module, an analyzer module and an
claimer. administration client module. The collector module collects
_ statistical data and configuration data from each monitored
(21) Appl. No.: 107135,775 process and populates a plurality of source data tables or
(22) TFiled: Apr. 30, 2002 worksheets. The values (:"Jf the source data are procesged by
the analyzer module, including component algorithms,
(65) Prior Publication Data which generate a pl}lrality of ipdividual component indexes
cach associated with a specific aspect of the processes
US 2003/0204789 Al Oct. 30, 2003 performance. The component indexes are then processed
using a weighting algorithm to form a composite index
(51) Int. Cl. reflecting the overall health of the monitored process. If one
Goor 11/00 (20006.01) or more of the component index values exceed a predefined
(52) US.ClL o, 714/26j 714/47 1:h_reshc,ldgJ the indexes and Conﬁguratign data are provided 1o
(58) Field of Classification Search 714/47, an overall assessment table which identifies the process state
714/26 which 1s true and generates one or more diagnostic recom-
See application file for complete search history. mendations, the output of which is stored in memory and is
(56) References Cited directly accessible to the adminmistration client module. The
administration client module enables the display, upon user
U.S. PATENT DOCUMENTS query, ol any of the source data, configuration data, com-
| ponent and composite mdexes, and diagnostic recommen-
5,621,663 A * 4/1997 Skagerling 702/186 dations in a variety of different formats as well as searching
0,732,240 A 31998 Caccavale for the same using any number of specific queries.
5,819,028 A 10/1998 Manghirmalani et al.
5,974,237 A 10/1999 Schurmer et al.
6,085,244 A 7/2000 Wookey 33 Claims, 27 Drawing Sheets

q_nr_)

COLLECT DATA

300

| POPULAT WORKSHEETS Ixﬂﬂ!

‘ COMPUTE COMPONENT INDEXES I/m

WARNING
CONDITION 7

COMPUTE COMPOSITE INDEX

YES

INRENTIFY SERVER SITUATION AND 210
ASSOCIATED RECOMMENDATIONS
}
STORE RECOMMENDATIONS AND 812
TRANSTATIONS

| RISPLAY REQUESTED [NFO I,—*EW

US 7,363,543 B2

Page 2
U.S. PATENT DOCUMENTS 2002/0042896 Al* 4/2002 Johnson et al. 714/47
2002/0112044 Al 8/2002 Hessmer et al.

6,237,114 B1* 5/2001 Wookey et al. 714/47 2002/0133757 Al* 9/2002 Bertram et al. 714/47
6,271,845 Bl 82001 Richardson 2002/0194319 Al 12/2002 Ritchie
6,327,677 B1* 12/2001 Gargetal. 714/37 2002/0198084 Al 12/2002 Goldstein et al.
6,363,421 B2 3/2002 Barker et al. 2003/0110252 Al 6/2003 Yang-Huffman
6,377,907 Bl 4/2002 Waclawski et al. 2004/0103181 Al 5/2004 Chambliss et al.
6,425,006 Bl 7/2002 Chari et al.
6,467,052 B1* 10/2002 Kaler et al. 714/39 FOREIGN PATENT DOCUMENTS
6,557,036 B. 4/2003 Kavacheri et al.
6,643,613 B2 11/2003 McGee et al. EP 1 274 262 Al 1/2003
6,738,811 B1* 5/2004 Liangccoevvenn.... 709/224 GB 2389978 A 12/2003
6,792,460 B2 9/2004 Oulu et al.
6,900,822 B2* 5/2005 Germain et al. 715/736 * cited by examiner

US 7,363,543 B2

Sheet 1 of 27

Apr. 22, 2008

U.S. Patent

561

GOl

0L} '

161 GGl

NdO

AITI0HLNOD

ASNOW
ANV QHYOGAZIM

YITIOHLNOD
VNG

d3T1041LNOD

OV LINI
AHOMULIN

d3TTIOHLNOD

OddIA

LANYYILNI
col 091 _
Sng GEl
e HITIOHLNOD
Y3 TI0ULINOD e Sn8
310 HITIOULNOD HITIOULNOD - NSLOAS =
0S1 Sl ovl
Olt YITIOHLINOD
AAMA Msia aaxid | 3a8a wod ao | | 3aa 3avsia AJOWSW
1G1 ﬂl_ 0ct -
T 9 Ll | HITIOHLNOD
e < @ = OlanNy
‘ I\ . L6l
ZG1 Lp} g
961 ——\

U.S. Patent Apr. 22,2008 Sheet 2 of 27 US 7,363,543 B2

NETWORK INTERFACE

| | — 400
| ADMINISTRATION s
CLIENT MODULE Notes |
| 406 Database
|
' 'y |
| |
|
| COLLECTOR :
| TASK ' e
LOTUS NOTES l 220
OPERATING SYSTEM 210
HARDWARE PLATFORM 200

Figure 2

US 7,363,543 B2

Sheet 3 of 27

Apr. 22,2008

U.S. Patent

0S¢
JSVavLiva
vIlld3y

dSvY8vlivda g0¢
vIlid3dy 09¢ aSvaviva
WARAAA L. H31SVNW m m&:mhm
09t . i WPAANAS e R
<> 3SVHVYLVQ
Yalld3d
MW sl 09¢
@ .
0¢t
0S¢t

E_O |

<o_._n_mm
¢0t 3svav.iva

E @
vIlild3d

com

US 7,363,543 B2

Sheet 4 of 27

2008

b/

Apr. 22

U.S. Patent

FOWIIV

1V1S QIS

d3AH3S

10V

d3AHIS
NOY-i

20t

3 NJON
H0103T100

(popesay; 1ynw)

HIAHIS HOVI HO4 S1VLS MvY

Av3dHl 80L037100

90v

Sov

& 2Inbl

DS WHAL/LINI ZH
A1LvQAdN DIEINOD

SALVIS MSVYL HIAHIS HIAZATVNY

OTOHSAaHHL
ANV S3OIANI

(papeasy pnw)
QYa3HHL HAZ A TYNY

J99YSHIOM

sSU'Uowuto

JINAOW LNIZIMI NOILYHLISININGY

ONLLHVHO

)4

SiHOd34d
HLTV3H

viv
319V HINYL
NOLLVHNDIINOD

9lb 39Vl

SNOLLVANINWNOO3Y
SLns3ay

Sh
SF18VL H1NYL

gVv.1
ONIHOLINOW

H3AH3S

US 7,363,543 B2

Sheet 5 of 27

Apr. 22, 2008

U.S. Patent

viv

SNOLLVONaZWINOOD3H
NOLLVNLIS

F189V1 HiNdl

NOLLVEHNDIINOD

Glamppept dsapet Shelaast SSRGS ey S

X3ANI
LNINOdINOD

Viva NOILYHNOIEINOD

WHLIHODOTVY
ONLLHOIEM
311ISOdNOD

X3AaNI
U ININOdWOD

X3dNI
} LININOdJINOD

¢ ainbi4

NWHUHDOTV

SAN3T19 HONIN
NOILLYANIWNNOO3Y

NHLIHOD01V
ININOJINOD

NHLHODO1Y
ININOJNOD

ey Soluras oEEm Sk ‘sseasy O Shekegeh SEERRE O TEaene G SR AL TEEaaae YPEEEY Shkaie BNk e G R kil e oI PRI BN RS S SRl A RN apEEEms Sl

vVivd
3904dN0S

Viva
304dN0OS

viva
JOHNOS

viva
30HNOS

L.__._.._.T_._______.._..

Tha Notes Analyzar-[DOMMON.IMP]
File Edit Creats View Worksheet Tools Window Halp
Config Truth Main \ Config Truth Table Task \ Const \ Debug Rec Text \ Formula CPU \Utilization\Formuta-0isk \F-ormula-HTTE Reponse\

o2 Is Componant Enabled
& Mall 8 6 Disk B 8
450 | Utiliza- | Delivers Server | Utiliza- HTTP LDAP o (MAP |
Latency Rasponsae | tion Response | Rasponse | Response

 NeverSeen 1 | o 1] o} 00 I
 WorkstaionCPUSaturate | | 1 F 0} 1 I B
I N N R IR IR
v) I
! 1 I
 Mal-Routerenabledeot | 1 | _ f | 4 o f 000} 00|
 MaiRouerd [+ ¢+ v V0 1 0\ o
 MaiRowters 1 ¢+ | I 1 1V o 1 o 1
 Yeskwyrey o V¢ 4 4 v ot
Teskwte2 ¢+ | 4+ V. r G v
 Teskwyes | ¢ v ¢+ 1 o+« v 001
teskiops 1 [4 v 0 ot v |1
 Tesktoapr V¢ 4y o 1 0 1 ¢+ o
Teskiopz [

Task LOAP S B St S R St S

Task LDAP 4 ot 1 v |

Task IMAP | AN AN N U (N AN RO N N
Taskewap2 {1\ o 4 1 0y o 0 F 00! v @
Taskwaps V| | oV o 1 1 f] 1
TaskivaPs Vv ¢ v o o o ¢ 1 1 1

Mem Crit-AIX o+ r 4 o f oy

Term B384 ISR A A T U AN RN A N R N
| Mem Cnt-AS400 I D IO ISR ISR DUUUU AU A R

ftem B386 - ¢ o 1 4+ v]
 MemCrtSoass 1 | 1 + { | oV 1 4 ot 0 000
tomesss ! « y 0 ¢ ¢ ¥ 1 |
MemCrtNT | | o+ + ¢ I 1 4 v) 0o 000
R e W W B B) B———
 MemCrewink } 0 ¢+ F 0000} 001 001 0
Mms32 ¢ | 1 +« v ¢ ¢ 1l 0y 1 0
Memgs |] 4 0 |] oV 0 ¢ 4 0t
hemsgesy 1 + 1 1 r ot 1 {1 @0
NeedMomearx | [o+ ¢ v 4 1 Yy

e,

Naed Mem-A6400 I I B I I

Need Mem-A6400 2 ¢y oy oy 1

Need Mem-Sol -+ « v v r r 1
 NoedMem-Sot2 | | + |V V{1 1 1 0
 NeedMemNT 1 {1 4+ 1 | 1 t 1 1
NeedMemN72 1 V1 + { T I { r 0 o
 NeedMomwWinzk { T + { ¢ { O} 1 1 i

Need Mem-Win2K 2 [N DD DO AN AN A SN A NN D—

Need Men 1 e« r v r - i+ t

Need Mem 2 T s« r v i i v 1

Siuations A
| #Note: Any item namas with a "Y* in the suffix represents a *Significant/Yellow” condition

1
2 | Inenty ID, Situations{t}=1

H 3 {_In entry ID, Situations[THIS]=Situations(PREM]+1

Q 4
_ladt JofGenerw [[[] J [JowoTeSRawATa 000000

Figure 6A-1

U.S. Patent Apr. 22,2008 Sheet 6 of 27 US 7,363,543 B2

TO FIG. 8A-2

US 7,363,543 B2

Sheet 7 of 27

Apr. 22, 2008

U.S. Patent

e
Il

Formula\MAP Reponse\Formula+LOAP Rasponse\ Formyla Mait Disk

Beach group

N
s nanaan Rt

3
el AT T
A Q-
AR AR

LT
&
i R

by

L-¥3 "O1d WOYS

Addre
Utiliza

MNatwork
Utiiization

ent in

Com
Disk
Utikz ation

Delivery
Latency § Mem
tilization | Rating {hil

Cel

U

Overali

Figure 6A-2

U.S. Patent Apr. 22,2008 Sheet 8 of 27 US 7,363,543 B2

The Notas Analyzer-{DOMMON,.IMP]
File Edit Create View Workshest Tools Window Help

Config Truth Main \ Congig Truth Table Task \ Const \ \Utiization\Formula-Disk \rormula-HTTP

456
450 | AP Neod
N\ LDAP 0S |
Never Seen B R D A R
WorkstationCPU Satwrate | (8 (1 b 1 |
Db Server 5 I D R e
Db Server 4 I D A I
Mall-Router 3 N R A O A -
Mal-Routerenablednot | | | ¢+ I 11 |
Mall-Router 4 - 1t 19 v 1 1 1
Mail-Router I D R A A
Task HTTP 1 B L R R
Task HTTP 2 N K A A D
Task HTTP 3 1 12 1 ¥ 1
Task HTTP 4 - 1 18 & 11]
Task LDAP 1 sy 1 1 Jo i 1 |
Task LDAP 2 s 1 I {1+ 4 {
Task LOAP 3 s 1 1 1 {2]
Task LDAP 4 4] 1 1e I 1
Task IMAP 1 B L R e
Task IMAP 2 B D A A
Task IMAP 3 s 1 1 12 { j 1 q
Task IMAP 4 B T A e e ©
Moem Crit-AX .=— R o
Term 8384 = b --- O
Mam Cnt-AS400 --— -—-
tem B350 T 7 1 b |8
Mem Crit Sotaris T D D D P I
ltom B338 I D R D A I
Mam Crit-NT N D D P A
ltarn B390 B D A A e
Mam Crit-Win2i N R e
ltem B3g2 NI A e
tom B393 NI A
llem B394N NI D D e
Nead Mem-AIX - -t 1 1a
Need Mem-AlX 2 1 vty Ve
Need Mem-A6400 1 -y s
Need Mem-AB400 2 B D D I e
Nead Mam-Sol -t - b1 i3
Need Mem-Sol 2 v 18
Need Mem-NT N D D P e
Need Mam-NT 2 N T A I
Need Mam-Win2K l—--=-l!
Need Mem-Win2K 2 RN 2 |
Need Mem 1 T 7 rr tr 1 1 "+
Need Marn 2 N D D D A e
Situations ..
1 | /f Note: Any tem names with a *Y*® in the sulfix represents a "Significant/Yeilow® condition
2
L 3 | Inentry iD, Situationg{1}=1
] 4 { Inentry ID, Situations{THIS]=Situations(PREM|+1
Arial 9| General | | | | | | [CWOTESRG\DATA

Figure 6B-1

US 7,363,543 B2

Sheet 9 of 27

Apr. 22, 2008

U.S. Patent

b
0io olojo] |of
el 0 se LT e

3|3/8

Heponse\Formula\MAFR Reponse\Formula+LOAPRasponsel Formula Mal Disk

]

Beach group

Search Group

B

Recommendation Minor Biends

Add
Worker
9 Threads

Hi
Pag

S
M 339|938 838|818|8)5|8|3)8)3|8|8)8)8/8)3

LT
T
s =====n

k-
)
-
m

Task

Num
Spindles

MailWatD

NS

Thraads

Nead
Xier

-—__—-——m_m—m—m-m—m-m_m-m—m—m—m-

Threads

MNeed
Dalv

-89 Ot WO

Figure 6B-2

U.S. Patent Apr. 22, 2008 Sheet 10 of 27 US 7,363,543 B2

The Notes Analyzer-[DOMMON.IMP]
File Edit Create View Workshest Tools Window Halp
' Contig Truth Main \ Conlig Truth Tabla Task \ Const \ Debug Rac Text \ Foermula CPU

l'—

Search Group
%58 Racommandation Minor Biands
Too Add Disable LDAP § LTTP High
450 Many Hitp from from ! Natwork
Lisers Threads | Log QoS Q) Metric [Banawidth | Cotlision

 NeverSeen V¢ } 4 |} 4 4t 4
 WorkstationCPUSaturate } |} v ¢ b
 DbSevers V¢ v 4 1 1
EEE T D N D D D e e e
 MatRowers | | oy o0 4 4 b
| Mai-Routerenablednet | f f } o f 4 f b]
LT S N I N I R I N
WabRowers | | | |
 TaskHTTRY V¢ o} o oy Yy
G I N U T A e T e
ErTur N N D B B Y I T
RN D D I T e e e e
R R D D I D O e e
 TasktOaP2 | 4 4 v vy
RN U Y P A I D e
 TasklpAPs |} ¢+ o+ ¥ 4 ¥
R N N D e A e e
_Task IMAP 2 T D I A A e e
(Task IMAP 3 oy o
Task IMAP 4 N e 8
Mem Crit-AIX I R R R O T T g
| Term 8384 N N R A A T e e o
Mem Crt-AS400 R R Y R D D
O T R A T s e e e
MemCritSolas | ¢ o ¢ 4t ¢ 4
K D U R A P ey e
R R I I I I e e
jtemB0 | 1 4y 3 v - 1
I P D P e s
R R D A D D I P e
D A D R T P D e
R0 R D S D P e e e
| NeedMem-AX v o Vo4
NeedMemAXz [| | |
| NeedMem-agsc0 | ¢ ¢ ¢ v 4 o
| NesdMem-A64c02 | | {4 {4 4 4]
| NeedMem-S94 V| 1 ¢+ oV } 1 O
 NeedMemSolz o oV 4
MNeedMem.Ny | | v ¢ ot ¢ o4 0t

 NeedMemNT2 | o+ o [o v 1 4
[NeedMemWink {1 1 ¢ 1 ¢ b
 NeedMomWineke +) | v 0t}
 NeecMemt {1 | oV 44}
NeedMem2 | { } 4 v v i 4

Siuations | | |
]

I Note: Any item names with & *Y* In the sulfix represents a "Significant/Yellow’ condlition

1
2 1 Inentry (D, Situations{1} =1

J 3 | Inentry 1D, Sitvations{THIS]=Situations[PREM]+1

), 4

Anai (9] General | | | | [| |CWOTESRGWATA

Figure 6C-1

AT

U.S. Patent Apr. 22, 2008 Sheet 11 of 27 US 7,363,543 B2

minje
Qg
m]s|mjw

———
Recommendation Codas o

Shart Temm - 460 -

Code2 | Coded | Codod Code 8

Over 100%
. Notwork More View
Bandwidth | Rebuild
Uil

EIEIEEE
=18|8
el

ﬁﬁﬁﬁﬁﬁﬁﬁﬁaﬁﬁﬁﬁﬁﬁﬁ

204 03

FROM F1G. 6C1

-
y N

o
G2

vt jeer feoe Y8 | 0 |

A
iﬁ
o

1t jeet j2o3 j2o6 | 0)]]
oyt Yeoy Jeee joos | 1 1
v {201 j203 28 | 0§ 1
o l=2o1 22 jees | o 1
oy p o Jeot J203 J2oe [203 | 0 |
ot Y201 Y202 jzo4 j208 | 0 0
(1t o jear l204 Tz f205 | O
v jeon Jeoz o3 f206 | |
v v leot t=ea T O} i 1
1 Jootr J22 Jooa 28 | i |
1 v yeer jees J) | 1

T T Ten feee s (e |
T T e Jes | |
I N AR T I 0 0 T R R
I I N EC I I I I R
R N 202 203 Y28 | 0 f
SN S Y N - A 0 B SO B S =

(]
M (=] B =] [w] =]

Figure 6C-2

U.S. Patent Apr. 22, 2008 Sheet 12 of 27 US 7,363,543 B2

The Notas Analyzer{DOMMON.IMP)
File Edit Create View Workshee! Tools Window Help
Config Truth Main \ Config Truth Table Task \ Const \ Debug Rec Text \ Formula CPU

462

o
—
e
&

e

N Code 8] Code7

Naver Saen

Workstailon CPU Saturate
Db Servar 5

Db Server 4

Mail-Router 3

Mail-Router gnabled not
Mall-Router 4

Mail-Router 5

Task H1TP 1

Task HTTP 2

Task HTTP 3
Task HTTP 4
Task LDAP 1
Task LDAP 2
Task LDAP 3
Task LDAF 4
Task IMAP 1

Task IMAP 2

Task IM#}_P 3
Task IMAP 4

Mem Cril-AlX
Tarm B384

Mem Cnt-AS400
Hem B38H

Mem Cnt Solarig
item B388

Mem Crit-NT

item B390

Mem Crit-Win2K
item B392

Hem B303

item B394N

Need Mem-AlX
Need Mem-AlX 2
Need Mam-AG400
Need Mam-A64Q0 2
Need Mem-Sol
Need Mem-Sol 2
Need Mem-NT
Need Mem-NT 2
Nasd Mem-Win2K
Need Mem-Win2K 2
Nesd Mem 1
Naed Mem 2

Situations -.

/! Note: Any item names with a *Y* in the suffix represents a 'Signi{icanwgllow'ﬂcﬁnditim

LT
LT

e

L e

TO FIG. 6D-2

tn

]
2 { inentry iD, Situations{1]=1

" 3 | tnentry 1D, Situations[THIS]=SltuationsiPREM}+1
| 4

=
[l (9] Geneal [J | | | | ICWOTESRGIDATA

Figure 6D-1

U.S. Patent Apr. 22, 2008 Sheet 13 of 27 US 7,363,543 B2

Doog
Recommandation Codes =]
You Have 466 =
| 484
Reason
for this
Code 8 | Stats Codaet| Code2) Coda 3| Codad | Codab | Codaé

IEKCZ2NR I N AN N SN R N D
2000) 1t v v i}
IREZ 300 IR PRV SN VRN DR S N
IEZZEE R A N AN DU D N N
te88 |V v 4 1 q v
IREC N N AR N N S D N .
e | 1y r r t t f

K73 NN I N IV A A U N
2.0 N N N R U NRN N AL
SRKECJS00S HN NN AN AU (SRR NN N A
SKEIC I IS N AN SN ANV SRR NN O NN
72 R DN A S N A RN N
IKZEC2N I NN S AN ISR AU N ———
| 1112 | 10201 | 10204 } 10204 | 10208 [10208 [10207 | | | |
11tz | 10201] 10204 | 10203 | 70208 Jtogo7 | 0} 1 |
112 110201 fioe08 jo03 pvoeo7 | 0 F 0 f 4 oV
1112 _jtopor foe03 Jvoeos |l 0V 1 1, 0}
M2 [10201 | voco8 [10207 [10204 0 01 041 |
1112 toeor ffo208 { f 4 1 1l]
1112 weor |} Y
10201 | 10208

FROM FIG. 6D-1

1112 A T N .

1112

10207 jto2o7 | 0 F] 1 |
1112 102
112 Jtoeor ftogo7 { 1} b} Vo
o2
02

1112 1
1112 1

112 | 10201 10203 10208 | [1 4 | " 4 "
1112 Jtoe01 Jrozo3 | (| 1 ¢] 1
1112 | 10201 J 10208 10204 F o 0} OV 1
1142 10201 o204 | { ot 1 & 1 "
1112 | 10201 P 10202 [to208 | %+ & it 1
1112 10202 | | R .

1112 {1201 10202 [so208 | +] 1 ' 1 ']

112 Jresot jtoee2 | v 1 |t 1
12 fyopot {voeos |] 0} 1 1 ["

2 fwoeor | (0t [1 1 O
0
0

L

W
RN

Figure 6D-2

US 7,363,543 B2

Sheet 14 of 27

Apr. 22, 2008

U.S. Patent

TO FIG. 7A-2

OlOIOIQIOIOIO|IOIOIOI0]O

odsay
dvAll 8

L-v/Z 94nbl4
vivausaUONO] | | | [| [reeuen f6] 000 iewv|

jeuld epoD 8BS peuiquio) - ojoid = Buney §eeAo [yt

G
SUOHeNniS
IR I A N Y AN [N S R
oo v v v e v o v SIS
o fo fv fe fr fo fr o lo Jr | SSONXINNASISIML
oo [+ _Jo _Jo _Jo o o o | swuosisemsun
o Jo Jt+ Jo jo Yo Jo Jo o | sSONXINnASSES
o to fv fr Jo fo v o v
o jo v v lv o fo Jv fo |t | SeONXINnbuem
o fo pv Jv v o Jo Jr Jo]V | Sisujuory
o o 4+ fo jo to jo to o sui/uoideld
o fo Jo to tv to f+ 1o [V | SISU/G9D
0o o o o To Jo Jo o | swoudnud
odsey | odsey | ewepN odse
dval | dLH | OduN E vl sones H Rl
3 a e 3

pa|geud jusuodwao)) st

00 e|nuuo4 \IB JInsey \asuodsay JoAleg gjnulio4 08 \AUOWS\ BInULO4 984 3SI BjnwioH 98H \Ndd Binwio4 J8-\pauiquo)) aj140id

dioH MOPUIN {001 189USHIOMN MSIA Seald 1p3 9l
[dNIPZL-121-"020° Q9D dl - HAZATYNY SILON JHL

U.S. Patent Apr. 22, 2008 Sheet 15 of 27 US 7,363,543 B2

DDDH llll
030 ®
n|=]{® Z
[a8
58

LDAP
Response

e —— T Uy e e
- FROM FIG. 7A-1

E
L

Lookup | Response

Component {dicies
Netwok
Utilization

Disk
Utilization

Response
Figure 7A-2

Server

Utilization

Delivery | Memory

Key Group
CPU
Utilization

Host & Server Doc\

US 7,363,543 B2

Sheet 16 of 27

Apr. 22, 2008

U.S. Patent

TO FIG. 7B-2

L-g/ @inbid
vivawasatono] | [[] [[mewo 6] e[

jeuly epoD elelS peuiquod - 8oid =Buney eseAo [rL

CR—

SUORENIS

S1sMUi/SHGY
SOION/XINMN/ABISIM L

SU/WOD s SIapnNsyd
SOION/XINN/iosel]

SBION/XINN/elbueim

Sl SupuoIey

-

sujuoide|d
S14/UOISNOH

S1S1|/qqoD
jepioysde|d

adAl g0 | 1ewnoy 1IBAISG 1PAIBS 19A19G
dllH
S$OJeIS ¥Se] 1aAeS 0LV
A

uMouN U

UMOUNU

uMouNuUN
speaiy] | spesiy]

193X Ale(d
PoaN POEN

UMOUNU
UMOUNU
uMowuUN

I

xoq‘|iew
PoaN

\IlE Jinsay \esuodsey JeAIes BiNWLO-] 98 \AIOWS BINULIOS 98Y Y3SI(BINWLO Y 994 \Nd(G BINUWIO 08H\PaUIqQWO?) B}1j0id

dieH MOpUIM 0O 198USHIONM MeIA 8leel) Up3 8|l
[dWIFZ1-121-020 D Al - HIZATVNY SALON IHL

U.S. Patent Apr. 22, 2008 Sheet 17 of 27 US 7,363,543 B2

e —
oot T T I T T T T 18
O 3
O a
53
TG
Dll'l'llllllll
Q.
O
3
=

&
& =,
T I

FROM FIG. 7B-1

-
.
=
@
=

Add

Db
Cache
Status

Recommendations Minor Blends -~ 478
Bufie
Pool
Status
Figure 7B-2

Busiest
Task

Key Group

Formula Doc Haost & Server Doc\

‘s,
Z
-
®©
=

Mai!

L-0Z 84nbl]
Vivanous3LONO| | | | | | Jrewevweo fe] 0000 weuv|

Ul BPOY BIEIS POUIqUIOD - Bilj0ld = Dulley [leIerO |pL

US 7,363,543 B2

N
suollenys
o~y 4y 1V Jo T T 1 ¥ 1t
oAl o 1 1 1T "1 SLSHI/SHay
2 I IS N I S R N S R IV
S oAl T T swower
. oAl T o T | osewsien
: SAl | o
o
. oA 1 o T swpew
g] IO Y I A A NN N N F I B T
Z) N0 R IR R N S N I I S S
> oAl 1t b To b T sea | siiuoden
= NS I S IS N S N N N N BT
< e T T T T T seweeo
= O N S I N R S N N S S
] 4| HOWON } UOISHIOD |upimpueR) o0 | 80D | 800 | B07 |speesyy| siesn
. PINGSW | IN%001 | HOMIBN | SHomieN] Woi | woy d| dLlH| Auvenw /
Ml MBI\ SAOW uGiH PPY dllH [dval | LIH PPY 00}
SpUs|g I0UIYN UOHBPUSWIWIOIDH ocv

dnoix) Aoy 8Ly

\I'B)INSBY \Bsuodsay JaA1ag InULIO 99 \LIOWS|A BjnLLIO J9Y %SIQ Bjnuio 4 98Y \Nd(BiNUIo 4 29H\PSUQUIO)) 8{1joid
dio MOPUIA |00 188USHIOM MBIA 81e8)) 1Ipg 9|
[dNIPEL-121-70207aD Al - HIZATYNY STLON JHL

U.S. Patent

U.S. Patent Apr. 22, 2008 Sheet 19 of 27 US 7,363,543 B2

EIE-IIIIIIIIIIIII II

§ IIII i

FROM FIG. 70

0100
(103163
0]

Code6!| Code7 | Code8

Code 5

Recommendations Codes

Figure 7C-2

Code 4

-
3,
<
i
&)
@
S
&
E
@
b
T
o
£
s

Code 3
1001

Formula Doc Host & Server Doc\
Code 2

Code 1

U.S. Patent Apr. 22, 2008 Sheet 20 of 27 US 7,363,543 B2

TO AG. 7D-2

Ty
BT
2
AR
AR
AR
EIEHEHEN
Q

2|8|2|818|81R|8|8|8|8
g o fd B B ol bl Bt B B
v u
R
A
3
E

You Have C

Component

Recommendation Codes
Primary

Reason

Figure 7D-1

ode6 | C

Profile Combined\Rec Formula DPU\ Rec Formula Disk Rec Formula Memory\ Rec Fomula Server Response\ Hesult Maill Fostaula Doc Host & Server Doc\

.

o

clE
o O
2 HE
sz | |2 i
a2 = 0 B
z|3 = 8 o
éﬁ < 8 5
E ;:) ol
1< %E
| ® %
1B Q@ W1
c |3 | E
N> 0
)— ‘ -y
<[5 S 5 . s
) | = Bﬂ-“é.tﬂﬂi E:E. Z|» o
S| o Eﬁgié-egﬁgéfé 51"
== ﬁgéﬁégggﬁigé 8l |

U.S. Patent Apr. 22, 2008 Sheet 21 of 27 US 7,363,543 B2

DDD (] .
2381 ey
0 1% 582]
k: £3
s g
0=
§:>

Long Rec
Value 1}

FROM FIG, 701

Rec Values

Swavas | egvas | IO

Rec \:alua Rec Value
Figure 7D-2

488
Entry 1D

Code G

US 7,363,543 B2

Sheet 22 of 27

Apr. 22, 2008

U.S. Patent

TOFIG. 7E-2

[-3/ @4nbl4
VIvaWESILONO] | [| | [[Powe [6] v] |

jeuly 6poD elelg PauiquIo) - Sjoid = Bulley JeseA0 [y |

Ca—
I N (U A DU RO A N —
-
o Je Jv Jo fo To Jo o SLSUI/SHA
| Jv Je To Jo Tor o5 oos | seloNXINNASISImL
e v 1o o o oo | swucoswsiepnsu
e v o o o o [0 | seonxiNnsess
= 1T o o o e [ee | swbow
1 v Tr To To To To [o [seonxiNnebuem
_Jr 1z Jo o To To o — Sui/uoIderg
1 le e To To To To fsir | — suyuosnon_
1 Jv Jr To Jo To To To T sisuygqed_
1o Jo o Jo To o Jo | iepousoeid_
adAy Buney | 9 ONBA | canea | ¥ onea | £eniea | z anjep
) dLIH W | cyge {IBBAQOQe| ©OABH | aney| erey | eneq | eney /
uew oot | Auew 00j NOA NOA NOA NOA NOA
QLY
06t

SaNjeA OABH NOA

\IBW }nS8Yy \esuodsey 1oA18S gjnuwiio ooy \Aiowepy Bjnwio- 08y %SIQ BNwio4 98Y \Ndg BINWI0H 29H\pauiquwio)) ajijoid

dieH MOPUIM [00] 198USHIOM MaIA 8less) 1P ol
[dWIP2L-121-7020 a9 dl - HAZATYNVY SILON JHL

U.S. Patent Apr. 22, 2008 Sheet 23 of 27 US 7,363,543 B2

o/ Elm-lllllllllllll
] g 8

2 3 E
ﬁ Q

Directory

! I

FROM FIG. 7E-1

b
o
D
i
Q
e

Need

T
o g
3 %
< O

Figure 7E-2

Absurd ltems - 492
AsData | Stats

Absurd Conditions

TransLog
Disk

Formula Doc Host & Server Doc\

High
Bufter
Pool

US 7,363,543 B2

Sheet 24 of 27

Apr. 22, 2008

U.S. Patent

V8 ainbi4

d 26:60-G0-NV 2¥-10-01

uoeinbyuon | uoneoydey EEE sdnoJr) 3 eidosd

US 7,363,543 B2

Sheet 25 of 27

Apr. 22, 2008

U.S. Patent

Wd ZE0 L00SE0/S0 6'G JeULION stf/1auuniAeQ
WNd &40 LO0ZE0/SO £'9 [EULION sUyWIY
Wd ££%0 L00ZE0/S0 56 |BULION Si1)/UO}SNOH
Wd Z£:%0 1002E0/S0 L09 ueoiubis suyfpug . o
oLz _muzt,,o asuodsey} JoABS O
1'G [BULIONION dmyoo sweN DduN
00 [eUUON uonezinn Aowan
000} [eoliD fouee] Aienjeg ey o
0001 eonlD gsuodsey dval o
06 JeULION esuodsay 41 I H PIOySeNy]. Xepy) [}
0001 eonuy uogezinn ¥s!ig o Selljo1g JOMSS [
9'9 jueoyubis uolieZiin Ndd © uoneinByuo [
Nd SO:€0 LODZE0/SO 0°00L rean) suyuoyde}y o Lode [EIOISIH [

Wd LE%0 1002E0/S0 0001 [eoulQ SHyIllY O suoday uaLNg]

MBIA UsSaleYy O B Buyonuow Yieay

US 7,363,543 B2

Sheet 26 of 27

Apr. 22, 2008

U.S. Patent

08 ainbi4

sasedgele SSIoN 1oedwion) Msiq O

(shisip oA juswbesaq HNsia o

Sajij outwoq InoA efiuelle 0) moy suiuLs)ep 0} |00} spudlL, 8yl 8sn Nsig ©
3si(] epeibdn HMsig ©

suoisabbng unaj Huo
Buibb07 JeAleg il XS o

:S8|puLds }SIp 0 1Isquinu ey} spiacid sesjd "ubiy Ajlewesixs oq o) sieaddy uonezijiin 3siq Mstq O
Buijles eyoenqq oY) esesidu] s o

suolsabbng wis] Hoys
1eolN :Buney Jusuissassy YjeaH oA1es
001 :XOpuU| JUSWISSassy YljeoH Janles
suyuoyde|n :DWEN JaAIg

uonewloju] YjleoH 1oAIaS

U.S. Patent Apr. 22, 2008 Sheet 27 of 27 US 7,363,543 B2

START

908

WARNING
CONDITION ?

INDENTIFY SERVER SITUATION AND 910

ASSOCIATED RECOMMENDATIONS

STORE RECOMMENDATIONS AND 0912
TRANSTATIONS

DISPLAY REQUESTED INFO 914

Figure 9

US 7,363,543 B2

1

METHOD AND APPARATUS FOR
GENERATING DIAGNOSTIC
RECOMMENDATIONS FOR ENHANCING
PROCESS PERFORMANCE

RELATED APPLICATIONS

This application 1s one of three related applications filed
on an even date herewith and commonly assigned, the
subject matters of which are incorporated herein by refer-
ence for all purposes, including the following:

U.S. patent application Ser. No. 10/135,557, entitled
“METHOD AND APPARATUS FOR DISPLAYING
DIAGNOSTIC RECOMMENDATIONS FOR MONI-
TORED PROCESSES”; and

U.S. patent application Ser. No. 10/135,598, entitled
“SYSTEM FOR MONITORING PROCESS PERFOR-
MANCE AND GENERATING DIAGNOSTIC RECOM-
MENDATIONS”.

FIELD OF THE INVENTION

This mvention relates, generally, to data processing sys-
tems and, more specifically, to a technique for monitoring,
and diagnosing problems 1n processes over a computer
network.

BACKGROUND OF THE INVENTION

Data processing systems have been 1in ever-increasing use
over the past half century. One challenge facing operators
and system administrators of such systems 1s how to detect
and diagnose performance problems with the system before
such problems reach a critical stage and cause a system
fallure. Numerous patents have addressed the problem of
performance monitoring of various components or processes
within a computer system. Some disclose processes of
taking athrmative actions, such as band-width throttling, to
adjust the resources of a system. For example, U.S. Pat. No.
5,732,240 discloses a technique for real-time adjustment of
cache size i a computer system. However, few, 11 any,
attempts have been made to diagnose the status of a process
or system and make recommendations to a system admin-
1strator on how such problems may be resolved bases on the
current health thereof. This 1s particularly true with more
sophisticated processes such as server processes coupled to
a computer network.

One of the impediments to designers of such systems has
been the 1nability to convert the large amount of data relating,
to the status of a system nto a meaningtul recommendation
which accurately 1dentifies the source of a problem. Accord-
ingly, a need exists for a technique 1n which data represent-
ing the status of a system can be analyzed and a recommen-
dation generated for resolving new problems reflected 1n the
data.

In addition, a further impediment to designers of diag-
nostic systems 1s the need to compensate for differences in
system resources and platform configurations. For example,
the hardware configuration and operating system perfor-
mance have a direct influence on the performance of a server
application, particularly with resource considerations such
as available memory, processor speed, and network interface
bandwidth. In addition, other dynamic factors may influence
the performance of a process, such as the number of other
processes simultaneously executing on the same system.
Accordingly, a need exists for a technique 1n which perfor-
mance criteria may be meaningiully applied to a plurality of

10

15

20

25

30

35

40

45

50

55

60

65

2

processes executing on different platforms and in different
load environments. A further need exists for a technique both
compensates for such diflerences and can generate accurate
diagnostic recommendations based on the disparate data
collected among a plurality of processes.

In addition, once data has been collected about the status
of a plurality of different processes 1t 1s often diflicult to
display such data in a format that allows a system admin-
istrator to easily track the status of a plurality of monitored
processes and to understand any accompanying diagnostic
recommendations. Accordingly, a further need exists for a
technique 1n which status data and diagnostic recommenda-
tions for a plurality of different processes are displayed in a
format that allows a system administrator to easily under-
stand.

SUMMARY OF THE INVENTION

A diagnostic system according to the present immvention
monitors the performance health of other processes over a
computer network by collecting status and configuration
data, analyzing the data and providing diagnostic recom-
mendations, when necessary. The diagnostic system
includes a collector module, an analyzer module and an
administration client module. The collector module collects
statistical data and configuration data from each monitored
process and populates a plurality of source data tables or
worksheets. The values of the source data within these tables
are processed by the analyzer module, including component
algorithms, which generate a plurality of individual compo-
nent mdexes, each associated with a specific aspect of the
processes performance. The component indexes are then
welghted to form a composite index retlecting the overall
health of the monitored process. If one or more of the index
values exceed a predefined threshold, the indexes and con-
figuration data are provided to an overall assessment table
which identifies the process state situation which 1s true and
generates one or more diagnostic recommendations, the
output of which 1s stored in memory and 1s directly acces-
sible to the administration client module. The administration
client module enables the display, upon user query, of any of
the source data, configuration data, component and compos-
ite indexes, and recommendations 1n a variety ol different
formats as well as searching of the same using any number
of specific queries.

According to one aspect of the present mvention, 1 a
computer system operatively coupled to at least one other
computer system over a computer network, a method diag-
nosing the source of the other computer comprises: (A)
obtaining source data from the momtored computer system,
the source data defining configuration settings and current
values for a plurality of performance parameters of the
monitored computer system; (B) deriving one or more
indices from the source data, each index having a value
within a predefined range of values and associated with a
performance parameter of the monitored computer system;
(C) using the value of the at least one 1index and at least a
portion of the source data to identify one of a plurality of
states as true, selected of the states having a diagnostic
recommendation associated therewith; and (D) providing
access to the diagnostic recommendation associated with the
identified state. In one embodiment, the method of deriving
one or more 1ndices from the source data comprises deriving
a plurality of component indices from the source data; and
deriving a composite index from the plurality of component
indices; and using the composite mndex as a reference to a
compilation of diagnostic recommendations.

US 7,363,543 B2

3

According to a second aspect of the present invention, a
computer program product for use with a computer system
operatively coupled to at least one other computer system
over a computer network, comprise a computer useable
medium having embodied therein program code comprising;:
(A) program code for obtaiming source data from the moni-
tored computer system, the source data defining a current
value for a plurality of performance parameters of the
monitored computer system; (B) program code for deriving,
one or more indices from the source data, each index having
a value within a predefined range of values and associated
with a performance parameter of the monitored computer
system; (C) program code for using the value of the at least
one index and at least a portion of the source data to identily
one of a plurality of states as true, selected of the states
having a diagnostic recommendation associated therewith;
(D) program code for providing access to the diagnostic
recommendations associated with an i1dentified state.

According to a third aspect of the present mnvention, an
apparatus for use with a computer system operatively
coupled to at least one other computer system over a
computer network comprises: (A) program logic for obtain-
ing source data from the monitored computer system, the
source data defining a current value for a plurality of
performance parameters associated with the monitored com-
puter system; (B) program logic for deriving one or more
indices from the source data; (C) a memory for storing a
plurality of process state situations entries, selected of the
state situation entries having a diagnostic recommendation
associated therewith; (D) program logic for using the value
of the at least one 1index and at least a portion of the source
data to 1dentity one of a plurality of state situations as true;
and (E) program logic for providing access to the diagnostic
recommendations associated with an 1dentified state situa-
tion. In one embodiment, the plurality of tables comprises a
configuration truth table and a diagnostic recommendations
table.

According to a fourth aspect of the present invention, a
memory for storing data to be processed by a data processing,
system 1ncluding an apparatus for monitoring and analyzing
the performance of a process operatively coupled to a data
processing system, the memory comprises a data structure
stored 1n the memory and usable to 1dentily recommended
diagnostic actions for affecting the performance of a process,
the data structure comprising: (a) identification data i1denti-
tying one of a plurality of processes monitored by the data
processing system, and (b) a plurality of process state
situations associated with a monitored process identified by
the 1dentification data, each process state situations having,
associated therewith: (1) an imndex having a value within a
predefined range of values and associated with a perfor-
mance parameter of the monitored process identified by the
identification data, (11) configuration data identifying a con-
figuration parameter of the monitored process 1dentified by
the 1dentification data, and (111) recommendation data 1den-
tifying at least one recommended to aflect performance of a
parameter of the monmitored process i1dentified by the 1den-
tification data.

According to a fifth aspect of the present invention,
memory for storing data to be processed by a data processing
system 1ncluding an apparatus for monitoring and analyzing
the performance of a process operatively coupled to a data
processing system, the memory comprises a data structure
stored 1in the memory and usable to 1dentily the performance
health of a process, the data structure comprising;

(a) 1dentification data identifying one of a plurality of
processes monitored by the data processing system, (b) a

10

15

20

25

30

35

40

45

50

55

60

65

4

plurality component indexes, each of the component indexes
having a value within a predefined range of values and
associated with a performance diflerent parameter of the
monitored process 1dentified by the identification data; and
(c) a composite index derived from the plurality of compo-
nent indices and indicates the overall performance health of
the monitored process identified by the 1dentification data. In
one embodiment, the component indexes are associated with
performance parameter of the monitored process selected
from the group consisting of processor utilization, memory
utilization, disk utilization, network utilization, mail deliv-
ery latency performance, address resolution performance,

server response, HTTP response, LDAP response, and
IMAP response.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and turther advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings 1n which:

FIG. 1 15 a block diagram of a computer systems suitable
for use with the present invention;

FIG. 2 illustrates conceptually the relationship between
the components of the diagnostic system in which the
present invention may be utilized;

FIG. 3 illustrates conceptually a computer network envi-
ronment in which the present invention may be utilized;

FIG. 4 1llustrates conceptually the relationship between
the components of the diagnostic system in which the
present invention may be utilized;

FIG. 5 1llustrates conceptually the relationship between
source data and various indexes and recommendations;

FIGS. 6 A-D illustrates conceptually a configuration truth
table 1n accordance with which the present invention;

FIGS. 7A-E illustrates conceptually a recommendation
table 1n accordance with which the present invention;

FIGS. 8A-C illustrate conceptually various graphic user
interfaces used to present data 1n accordance with which the
present invention; and

FIG. 9 illustrates conceptually form a flow chart 1llustrat-
ing the process steps performed by the diagnostic system of
the present invention.

DETAILED DESCRIPTION

FIG. 1 1illustrates the system architecture for a computer
system 100, such as an IBM PS/2® computer on which the
invention can be mmplemented. The exemplary computer
system of FIG. 1 1s for descriptive purposes only. Although
the description below may refer to terms commonly used 1n
describing particular computer systems, such as an IBM
PS/2 computer, the description and concepts equally apply
to other systems, including systems having architectures
dissimilar to FIG. 1.

The computer system 100 includes a central processing
umt (CPU) 105, which may include a conventional micro-
processor, a random access memory (RAM) 110 for tempo-
rary storage of information, and a read only memory (ROM)
115 for permanent storage of information. A memory con-
troller 120 1s provided for controlling system RAM 110. A
bus controller 125 1s provided for controlling bus 130, and
an interrupt controller 135 1s used for receiving and pro-
cessing various interrupt signals from the other system
components. Mass storage may be provided by diskette 142,
CD ROM 147 or hard drive 152. Data and software may be
exchanged with computer system 100 via removable media

such as diskette 142 and CD ROM 147. Diskette 142 1is

US 7,363,543 B2

S

isertable into diskette drive 141 whaich 1s, 1n turn, connected
to bus 130 by a controller 140. Similarly, CD ROM 147 1s
insertable into CD ROM drive 146 which 1s connected to bus
130 by controller 145. Hard disk 152 1s part of a fixed disk
drive 151 which 1s connected to bus 130 by controller 150.

User mput to computer system 100 may be provided by a
number of devices. For example, a keyboard 156 and mouse
157 are connected to bus 130 by controller 155. An audio
transducer 196, which may act as both a microphone and a
speaker, 1s connected to bus 130 by audio controller 197, as
illustrated. It will be obvious to those reasonably skilled 1n
the art that other mput devices such as a pen and/or tablet
and a microphone for voice mput may be connected to
computer system 100 through bus 130 and an appropriate
controller/software. DMA controller 160 1s provided {for
performing direct memory access to system RAM 110. A
visual display 1s generated by video controller 165 which
controls video display 170. In the 1llustrative embodiment,
the user interface of a computer system may comprise a
video display and any accompanying graphic use interface
presented thereon by an application or the operating system,
in addition to or in combination with any keyboard, pointing
device, joystick, voice recognition system, speakers, micro-
phone or any other mechanism through which the user may
interact with the computer system.

Computer system 100 also includes a communications
adapter 190 which allows the system to be interconnected to
a local area network (LAN) or a wide area network (WAN),
schematically 1illustrated by bus 191 and network 195.

Computer system 100 1s generally controlled and coordi-
nated by operating system software, such the OS/2® oper-
ating system, available from International Business
Machines Corporation, Armonk, N.Y., or Windows® oper-
ating system, available from Microsoit Corporation, Red-
mond Wash. The operating system controls allocation of
system resources and performs tasks such as process sched-
uling, memory management, and networking and I/O ser-
vices, among other things. In particular, an operating system
resident 1n system memory and running on CPU 103 coor-
dinates the operation of the other elements of computer
system 100. The present invention may be implemented with
any number of commercially available operating systems
including AIX, UNIX and LINUX, DOS, etc. One or more
applications 220 such as Lotus Notes or Lotus Sametime,
both commercially available from International Business
Machines Corp., may execute under control of the operating
system. I operating system 210 i1s a true multitasking
operating system, multiple applications may execute simul-
taneously.

In the illustrative embodiment, the present invention may
be implemented using object-oriented technology and an
operating system which supports execution of object-ori-
ented programs. For example, the mventive code module
may be implemented using the C++ language or as well as
other object-oriented standards, including the COM speci-
fication and OLE 2.0 specification for MicroSoit Corpora-
tion, Redmond, Wash., or, the Java programming environ-
ment from Sun Microsystems, Redwood, Calif.

In the illustrative embodiment, the elements of the system
are 1mplemented 1n the C++ programming language using
object-oriented programming techniques. C++ 1s a compiled
language, that 1s, programs are written in a human-readable
script and this script 1s then provided to another program
called a compiler which generates a machine-readable
numeric code that can be loaded 1nto, and directly executed
by, a computer. As described below, the C++ language has
certain characteristics which allow a software developer to

5

10

15

20

25

30

35

40

45

50

55

60

65

6

casily use programs written by others while still providing a
great deal of control over the reuse of programs to prevent
their destruction or improper use. The C++ language 1s
well-known and many articles and texts are available which
describe the language 1n detail. In addition, C++ compilers
are commercially available from several vendors including
Borland International, Inc. and Microsoit Corporation.
Accordingly, for reasons of clarity, the details of the C++
language and the operation of the C++ compiler will not be
discussed further in detail herein.

As will be understood by those skilled in the art, Object-
Oriented Programming (OOP) techniques involve the defi-
nition, creation, use and destruction of “objects”. These
objects are software entities comprising data elements, or
attributes, and methods, or functions, which manipulate the
data elements. The attributes and related methods are treated
by the software as an enftity and can be created, used and
deleted as 1f they were a single item. Together, the attributes
and methods enable objects to model virtually any real-
world entity 1n terms of 1ts characteristics, which can be
represented by the data elements, and 1ts behavior, which
can be represented by 1ts data manipulation functions. In this
way, objects can model concrete things like people and
computers, and they can also model abstract concepts like
numbers or geometrical designs.

Objects are defined by creating “classes” which are not
objects themselves, but which act as templates that instruct
the compiler how to construct the actual object. A class may,
for example, specily the number and type of data variables
and the steps involved 1n the methods which manipulate the
data. When an object-oniented program i1s compiled, the
class code 1s compiled into the program, but no objects exist.
Theretfore, none of the variables or data structures in the
compiled program exist or have any memory allotted to
them. An object 1s actually created by the program at
runtime by means of a special function called a constructor
which uses the corresponding class definition and additional
information, such as arguments provided during object cre-
ation, to construct the object. Likewise objects are destroyed
by a special function called a destructor. Objects may be
used by using their data and invoking their functions. When
an object 1s created at runtime memory 1s allotted and data
structures are created.

Network Environment

FIG. 2 1s illustrates conceptually the relationship between
the components of the system in which the present invention
may be utilized. The illustrative embodiment of the iven-
tion 1s implemented as part of Lotus Notes ®, commercially
available from International Business Machines Corpora-
tion, Lotus Brand Software, Cambridge, Mass., however, 1t
will be understood by those reasonably skilled 1n the arts that
the inventive functionality may be integrated into other
applications as well as the computer operating system.

International Business Machines Corporation had previ-
ously made an administrative client process available which
was capable of collecting and presenting status and configu-
ration data from Lotus Notes Domino applications, however
no functionality for diagnosing problems or making recom-
mendations to resolve such problems was included. To
implement the functionality of the present invention, a
diagnostic system 400, including an improved administra-
tive client 1s implemented within the Lotus Notes Domino
application and interacts with the existing functionality,
routines and commands of Lotus Notes. As shown 1n FIG. 2,
diagnostic system 400 1s mtegrated into Lotus Notes appli-
cation 220 and may execute under the control of operating
system 210 which, 1n turn, executes within the hardware

US 7,363,543 B2

7

parameters of hardware platform 200, which may be similar
to that described with reference to FIG. 1.

Monitored Processes

FIG. 3 illustrates a network environment in which the
invention may be practiced, such environment being for
exemplary purposes only and not to be considered limiting.
Specifically, a packet-switched data network 300 comprises
a servers 302-310, a plurality of Notes processes 310-316
and a global network topology 320, 1llustrated conceptually
as a cloud. One or more of the elements coupled to global
network topology 320 may be connected directly or through
Internet service providers, such as America On Line,
Microsoit Network, Compuserve, etc. As illustrated, one or
more Notes process platforms may be located on a Local
Area Network coupled to the Wide Area Network through
one of the servers.

Servers 302-308 may be implemented as part of an all
software application which executes on a computer archi-
tecture similar to that described with reference to FIG. 1.
Any of the servers may interface with global network 320
over a dedicated connection, such as a T1, T2, or T3
connection. The Notes processes 312, 314, 316 and 318 may
likewise be implemented as part of an all software applica-
tion that run on a computer system similar to that described
with reference to FIG. 1, or other architecture whether
implemented as a personal computer or other data process-
ing system.

In the illustrative embodiment, servers 302-310 are the
monitored processes and may be implemented within the
Lotus Notes Domino server application. A Domino server
application 1s a collection of server applications and ser-
vices, such as an HTTP server, a database server, an IMAP
mail server, an LDAP server, and a router, which collectively
may be viewed as a single server task that interacts with the
existing functionality, routines or commands of Lotus Notes,
most of which are publicly available. Each Domino server
includes a server side statistics package 401, here the
Domino statistics package, which 1s publicly documented
with every version of a Domino server. This information
includes performance and configuration data and 1s updated
periodically. Such information resides 1n a database of the
server, such as database 350.

In the illustrative implementation, the Domino servers
302-310 “push™ data, 1.e. transmit data from the server
process being monitored to the administrator client 406. The
data used to make the diagnostic analysis may be either
pulled, 1.e., recetved upon queries generated from the admin-
istrator server client 406 or pushed, 1.e. transmitted from a
server process being monitored to the administrative client
406, or a combination of both.

Diagnostic System

FIG. 4 illustrates conceptually the components of the
inventive diagnostic system 400. In the illustrative embodi-
ment system 400 may be implemented with an all software
application that comprises an administration client module
406 and a collector task 405. As explained hereafter in
greater detail, administration client module 406 1s user to
initiate operation ol collector task 405 which comprises
collector module 402 and analyzer module 404. Collector
module 402 1s primarily responsible for the collection of
source data from each of the monitored server processes.
The analyzer module 404 applies the collected source data
to a plurality of spread sheets, referred by to herein as
worksheets 412 which, using various algorithms defined
hereafter, generate component indexes and a composite
index reflecting the overall performance health of a moni-

10

15

20

25

30

35

40

45

50

55

60

65

8

tored process. The component and composite indexes, as
well as certain configuration data, are used as indexes into
configuration table recommendation tables. The administra-
tion client module 406 servers primarily to allow the source
data, component and composite indexes and recommenda-
tions to be presented to a system administrator, along with
other relevant data 1n a vanety of diflerent formats. Each of
these modules 1s described below 1n greater detail.

Collector Module

The primary function of collector module 402 1s to collect
data from monitored server processes. The collector module
402 uses multiple threads to collect the statistic data from a
plurality of different of server processes simultaneously. The
various types ol statistical data are collected or may be
collected with different frequencies. For example, informa-
tion from the Notes.INI file on servers 302-310 may be
transmitted directly to the analyzer module 404. Configu-
ration information is pulled from a Domino directory on
cach of servers 302-310 to the analyzer module 404 at
regular interval, e.g. once every four hours. Such configu-
ration information may include comprise memory size,
number of CPUs available on a platform, CPU/disk utiliza-
tion, page faults, queue lengths, etc. Other run-time specific
statistical data such as number of messages sent, etc., may
be pulled from the Domino statistics package 401 on each
server 302-310 at regular intervals, e.g. once a minute. In the
illustrative embodiment, the administration client module
406 requests multiple values from a process and then
discards any values which are not relevant. In the illustrative
embodiment, the collector module pulls statistical data and
configuration mnformation from each monitored server pro-
cess. However, the data used to make the diagnostic analysis
may be either pulled, 1.e., recetved upon queries generated
from the administrator client or pushed, 1.e. transmitted from
a process being monitored to the administrator client. In the
illustrative embodiment of the present invention, there is
specific C code may be used to prepares incoming data from
the collector module 402 for the Analyzer Module APIs and
passes result data from the Analyzer module APIs to the
database 418.

In an alternative embodiment, the collector task further
comprises a parser module which parses the statistical data,
compares the parsed values to predefined threshold values,
and, 1ssues alarms 11 certain values are beyond a predefined
threshold. In addition the collector module writes the data,
as received, to database 418.

Analyzer Module

The Analyzer Module 402 includes algorithms which may
be written 1n the C++ programming language that generate
from the source data one or more recommendations relating
to the health of a monitored process. Specifically, Analyzer
Module 402 fetches configuration data, such as server list
from the NAB, diagnostic threshold values, etc., and
receives mcoming data, such as server statistics, task states,
etc. Analyzer Module 402 further fetches other input data
such as notes.ini settings. Given all or a subset of the above
data, referred to herein as “source data”, analyzer module
402 populates a plurality of worksheets 412 which process
the source data values, as described hereafter. Analyzer
Module 402 writes the results of the evaluations to memory,
¢.g. the admin client statistics package, and writes other
results to Notes documents 419, which reside in Notes
databases, dommon.nsi database 418, as necessary.

Analyzer Module 404 runs as a multithreaded task within
the collector tack 405. A trigger may be set by default or user
configuration to deliver Domino raw statistics from Collec-

US 7,363,543 B2

9

tor Module 402 to the Analyzer Module 404. Analyzer
Module 404 uses algorithms associated with one or more of
the worksheets 412, as described hereafter, to calculate the
component indexes. These blended statistics may be stored
along with the raw Domino statistics i database 418.
Accordingly, the blended statistics are treated like any other
Domino statistics and can take advantage of an events and
notifications database as well as the user interfaces and
teatures for displaying statistics within the administration
client module 406.

In the illustrative embodiment, the server health assess-
ment and recommendation logic for system 400 1s defined in
an .1mp file of the Analyzer module 404. The file, called a
model, 1s a collection of worksheets 412, truth tables,
look-up tables, queries and reverse queries. The worksheets
412 comprise a plurality of spreadsheets and associated
formulas used to compute the component indexes. The
queries facilitate mput mapping from source data stores
compiled by the collector module 402, as well as other
inputs from dommon.nsi. The reverse queries Tfacilitate
output mapping from worksheets within the analyzer mod-
ule 404 to destination data stores, such as administration
client status database 418.

Component Indexes

Since no one statistic predicts the health of a server
process, system 400 uses process and operating system
statistics to help predict the health of a particular process.
System 400 generates a composite index or health profile of
cach monitored process 302-310 from a plurality of
“blended” statistics or component imdexes, each having a
value within a predetermined range, e.g. between 0 and 100.
The imndexes are created by applying a plurality of algorithms
or rules to the raw statistics from a server process and 1ts
respective operating system, as well as configuration infor-
mation about those processes. The resulting component
indexes are weighted using an algorithm to determine the
importance of each statistic as a part of an overall composite
index used to 1ndicate the health of the server process. The
component and general indexes are stored 1n client status
database 418 and 1n a admin client statistics package each
time a new time terval of data 1s logged. It 1s contemplated
in the present invention that system administrators may
configure how often data 1s captured and new indexes are
created for the respective monitored processes.

There are a plurality of component indices that make up
the health profile of a monitored process, each of which may
have one or more algorithms associated with the respective
index, as described hereafter i prose and pseudocode.

1. CPU Utilization—A blended statistic retlects the over-
all CPU utilization of the server process. The CPU Utiliza-
tion component appears in the a server health monitor report
if the Domino version 3.0.2 or greater, platform statistics are
supported and enabled on the server process and the server’s
operating system 1s Windows NT/2000, Solaris, AIX or
0S/400. The CPU Utilization component index takes into
account both percent processor utilization and the CPU
Queue length. Such metric 1s provided in the Domino
Platform statistics. For Domino Release 35.x, the percent
processor utilization statistic 1s named Platfform.System.To-
talUtil. For Domino Release 6, the statistic name was
changed to Platform.System.PctCombinedCpuUtil.

Define:
CPU Total Util=Platform.System.TotalUtil. (for R3.x) or
Platform.System.PctCombinedCpulUtil (for R6)
The Server health component thresholds are the values at
which a component reading 1s considered Warning (Yellow)

5

10

15

20

25

30

35

40

45

50

55

60

65

10

and Critical (Red). The CPU Utilization thresholds, are
initially set to platform-specific defaults, but are modifiable
(per-platiform) by the Admainistrator. For the purpose of t his
document, let us 1dentily the percent CPU utilization thresh-
olds as YellowU and RedU. Sample threshold values are 75
and 85 (1.e. 75%<=Warning<835%, and Crtical>=85%). For
UNIX platforms (Solaris and AIX) running Release 6, the
system 400 also considers the Run Queue statistic. Note that
the “CPUQueuelength” statistic 1s also provided on Win32
platforms, but 1ts value 1s considered unreliable.

Define:

RunQueue=Platiorm.System.CPUQueuelength/Serv-
er.CPU.Count

The threshold values for CPU RunQueue are: Yellow(Q)
(Warning)=3, RedQ(Critical)=3. These values are based on
the experience of running performance tests, such as the
WebMail test described below, various Domino UNIX serv-
ers and examining Run Queue values as the load on the
server 1s increased. In this case the CPU Run Queue metric
primarily indicates a Warning condition, while the CPU %
Utilization metric 1s unmistakably Critical.

In order to normalize this Run Queue value to a 0-100
based value that 1s compatible with the threshold settings for
percent Processor Utilization, this metric undergoes a num-
ber of adjustments:

CPU RunQueue =
RunQueue * YellowU/Yellow(Q)
if RunQueue <= Yellow(Q) GREEN
YellowU + ({(Red U - YellowU) * (RunQueue — YellowQ)/(Red(Q —
Yellow(Q))
if Yellow(Q < RunQueue < Red(Q) YELLOW
MIN(100, RedU + ((RunQueue — RedQ) * RedU)/RedQ
if RunQueue > RedQ RED

The table below lists the RunQQueue ratings based on the
formulas and thresholds defined above:

RunQueue (per CPU) CPU RunQueue

0 0

S 12.5
1 25
1.5 37.5
2 50
2.5 62.5
3 75
3.5 77.5
4 80
4.5 82.5
5 85
5.5 93.5
6 100

The formula for CPU Utilization 1s defined as tollows:
for Win32 Plattforms:

CPU Utl=CPU Total Util
for UNIX Platforms:
CPU Util=MAX(CPU Total Util, CPU RunQueue)

The CPU utilization component should minimize the

cellect of a CPU data spike. One very high CPUreading
should not by itself lead to a high overall CPU rating. One
approach toward this objective 1s to use an average of a

US 7,363,543 B2

11

series of CPU util values. In general, tracking the most
recent ‘N” CPU Util readings, the formula 1s as follows:

CPU Utilization=Average of last 5 readings of CPU
Util

Currently the system uses a hard-coded value of 5 read-
ings. This value 1s configurable.

EXAMPLE

The most recent five Platform CPU Util are being used,
and are: 25, 40, 20, 15, 90.

CPU Utilization=(25+40+20+15+90)/5=38.

If the CPU area 1s assigned a weighting of 20%, then the
overall contribution of CPU to the blended statistic 1s:

38%20%=7.6

The Shiding Scale 1s a mechamism that 1s used to “exac-
erbate” a weighted reading when conditions warrant. The
generalized sliding-scale formula for CPU Utilization 1s as
follows:

Define: w=weighting

tamber=amber trigger
tred=red trigger

Sliding Scale CPU Utilization =
w * CPU (1f CPU < tamber) GREEN
(w * tamber) + ((100 — (w * tamber)) * (CPU - tamber))/(tred -
tamber)
AMBER
RED

(1f tamber <= CPU <= tred)
100 (1f CPU > tred)

EXAMPLE

w=20%=0.20, tamber=75, tred=85

Sliding Scale CPU Utilization =
0.20 * CPU (if CPU <= 75) GREEN
As CPU from 0 to 75, Weighted CPU varies from 0 to 15
15 + (85 * (CPU - 75)/10) (1f 75 <« CPU < 85) AMBER
As CPU varies from 75 to 85, Weighted CPU varies from 15 to 100

100 (if CPU »= 85) RED

Exemplary Results:

CPU SlidingScale CPU
25 0.2 %25 =5
50 0.2 * 50 =10
70 0.2 70 =14
75 0.2 75 =15
77 15 + (85 * 2)/10 = 32
80 15 + (83 * 5)/10 = 537.5
83 15 + (B3 * 8)/10 = 83
&5 15 + (85 * 10)/10 = 100
90 100

100 100

2. Mail Delivery Latency—The mail delivery latency
formula 1s based on the Mail. TotalPending, Mail. Waiting,
Mail.Dead, and Mail.Hold statistics of a Domino server
process. Mail. Waiting 1s dependent on the router task; if the
router 1s not running, then Mail. Waiting 1s not updated.

10

15

20

25

30

35

40

45

50

55

60

65

12

Mail. TotalPending 1s updated by the server task to reflect the
current number of messages that are pending delivery. Note:
As points of information, Mail.Dead represents mail that
cannot be delivered and could not be returned to the sender.
Mail.Hold 1s mail that 1s being held pending delivery to an
external site. The Mail. TotalPending count includes both
Dead and Held mail, while the Mail. Waiting figure does not
include these 1tems. The absence of Pending/Waiting mail,
1.e. Mail. TotalPending=0, Mail. Waiting=0) 1s an indication
of a healthy mail router. For the purpose of this disclosure

define:

MailToDo=MAX{(Mail.Waiting, Mail. TotalPending—
Mail.Dead—Mail.Hold)

The Mail Delivery Latency algorithm should take into
account situations where a backlog of a few mail items 1s a
normal condition. Therefore, a threshold of 20 “ToDo”
messages has been established, below which the health 1s
considered normal. Furthermore, a single aberrant “ToDo”
value should not by 1tself cause a critical condition. There-
fore, the algorithm i1s based on a sernies of MailToDo
readings, and evaluation of the differences 1n readings. An
average of a series of “deltas” or “diflerences” 1n MailToDo
should return a result that diminishes the effect of an
individual data spike.

“Average Delta” Calculation:
(Given N=the number of most recent readings for Mail-
ToDo
M=sampling interval (in minutes),
Calculate the N-1 “Delta Mail.Waiting” values, and
define a “per-minute” average change 1n MailToDo as
follows:

AverageDeltaMailToDo=Sum of “Delta Mauil
ToDos™/((M)*(N=1))
(if the Average<0, set 1t=0)
This formula happens to reduce to the simpler form:

AvgDeltaMailToDo=(MailToDo[newest|-Mail. ToDo
[oldest])/(M*(N-1))

The Mail Delivery Latency formula can now be defined as:
MailDeliveryLatency=

0 11 MailToDo<20 OR AverageDeltaMailToDo<=0

S50*AvgDeltaMailToDo
11 O<AverageDeltaMailToDo<=2

97 11 AverageDeltaMailToDo>=1

98 1f the HTTP server task 1s running, but 1s reporting,
tatal errors

Example 1

For MailToDo values (oldest to newest) of 25, 20, 30, 20,
25, 20, and sampling interval=1 minute, then
MailToDo[newest]=20
MailToDo[oldest]=25

M=sampling interval=1

N=sample s1ze=6

AvgDeltaMail ToDo=(20-235)/(1*5)=-1, which 1s <=0
Therefore, MailDeliveryLatency=0

Example 2

For MailToDo values (oldest to newest) of 40, 50, 45, 38,
41, 44, and sampling interval=1 minute, then
MailToDo[newest]=44

MailToDo[oldest]=40
M=sampling interval=1

US 7,363,543 B2

13
N=sample size=6
AvgDeltaMailToDo=(44-40)/(1*5)=0.8
Therefore, MailDeliveryLatency=40

Example 3

For MailToDo values (oldest to newest) of 20, 35, 35, 55,
50, 75, and sampling interval=1 minute, then
MailToDo[newest]=75
MailToDo|oldest]=20
M=sampling interval=1
N=sample s1ze=6

AvgDeltaMailToDo=(75-20)/(1*3)=11, which 1s >=2

Therefore, MailDeliveryLatency=100

If the Mail. TotalPending stat does not exist (e.g. for
releases of Domino prior to version 5.0, then use Mail. Wait-
ng.

The “AverageDeltaMaillWaiting” value 1s ailected by the
interval between which Mail.Waiting 1s captured. I Mail-
Wating 1s increasing, a narrow interval (e.g. 1 minute)
would probably generate a smaller DeltaMailWating value,
and hence a smaller Mail Delivery Latency value than a
large interval (e.g. 15 minutes). One solution for this situ-
ation 1s to account for the data capture interval with a scaling
tactor (SF), so that 1f data 1s captured every 15 minutes,
divide the scaling factor by 15, a 5 minute capture interval
would result 1n a division by 35, etc.

If Mail. Waiting 1s increasing over time, the following are
suggested actions:

1. Increase the number of mailboxes (mail.box files) via
the Server’s Domino Directory:
Configurations->Router/SMTP->Basics->Number

mailboxes

2. Increase the number of Delivery and/or Transier
threads.

Check whether the Router 1s using all of 1ts allocated
Delivery and/or Transfer Threads.

Issue “Tell Router Status™ status at the Domino con-
sole.
Transter Threads
Max=Number of transfer threads allocated
Total=Number of transier threads currently 1n use
Delivery Threads
Max=Number of delivery threads allocated
Total=Number of delivery threads currently 1n use

If the router 1s being utilized on Delivery and/or Transier
threads, and the server has the available memory and CPU
to accommodate additional threads, then it may be worth
increasing the number of Router Delivery and/or Transfer
Threads. These settings can be modified 1 the Server’s
Domino Directory by accessing:

Configurations->Router/SMTP->Restrictions and Con-

trols->Delivery Controls->Maximum Delivery Threads

Configurations->Router/SMTP->Restrictions and Con-

trols->Transfer Controls->Maximum Transfer Threads

However, 11 these thread settings are made arbitrarily
high, excessive contention on the mailbox file(s) and there-
fore high resource utilization may result.

A shiding scale algorithm defines the conditions under
which the designated weighting 1s applied to the statistic, as
calculated by the formula defined above, and the conditions
under which the weighting mechanism 1s abandoned 1n favor
ol another method to “escalate” the metric.

Define:

w=weilghting
tamber=amber trigger
tred=red trigger

of

10

15

20

25

30

35

40

45

50

55

60

65

14

Sliding Scale MailDeliveryLatency =
w * MailDeliveryLatency
if MailDeliveryLatency <= tamber HEALTHY
(w * tamber) + ((97 - (w * tamber)) * (MailDeliveryLatency - t
amber))/(tred — tamber)
if tamber < MailDeliveryLatency < tred WARNING

100 1if MailDeliveryLatency »>= tred CRITICAL

EXAMPL

L1

w=10%, tamber=40, tred=60

Sliding Scale MailDeliveryLatency =
0.10 * MailDeliveryLatency
if MailDeliveryLatency <= 40 HEALTHY
4 + 93 * (MailDeliveryLatency — 50)/50
if 40 < MailDeliveryLatency < 60 WARNING

97 if MailDeliveryLatency >= 100 CRITICAL

Exemplary Results:

AvgDeltaMailWaiting MailDeliveryLatency Sliding-Scale

<=0 0 0
0.1 5 0.5
0.2 10 1.0
0.5 25 2.5
0.8 40 4
0.9 45 27.25
1.0 50 50.5
1.1 55 73.75
1.2 60 97
2.0 97 97

3. Memory Utilization—A blended statistic retlects the
memory utilization of the server process. The Memory
Utilization component index appears 1n the Health Report 1
the platform platform Statistics are enabled and the operat-
ing system 1s nay of Windows NT1/2000, AS/400, Solaris,
AIX. Note: For Solaris version 5.8, the Memory component
may always equal zero because the Scan Rate metric used in
Memory analysis appears to always equal zero. The statistics
used to calculate the memory utilization component index:

Amount of Free/Available Memory
Platform.Memory. KBFree

Platform.Memory.RAM.AvailMBytes
Amount of Installed Memory
Mem.PhysicalRAM

Platform.Memory.RAM.TotalMBytes

Note, for Win32 operating system platiforms, the Memory
Utilization component of the composite index 1s based on
available physical memory. For the sake of simplicity, call
the Free Memory statistic “RAM. Available” (in MB) and the
Installed Memory stat “RAM.Total” (also 1n MB). For a
system with RAM.Total>2 GB, the maximum usable
amount of Memory 1s actually about 2.1 GB, in which case,

the reported RAM.Usable 1s misleading. For example, a
system with 8 GB RAM, and 1.9 GB used, will report
RAM.Usable=8 GB-1.9 GB=6.1 B, but on a small amount

of the 6.1 GB (~200 MB) 1s really usable. So, 11 the reported

US 7,363,543 B2

15

RAM.Total>2.1 GB, the system adjusts RAM.Available as
follows:

RAM.Available=2150-(RAM.Total-RAM.Avail-
able)).

Memory Utilization Rating =
0 if RAM.Available »>= 100 MB
100 - RAM. Available if RAM. Available « 100 MB

Memory Utilization =
0 if RAM.Usable = 100 MB
100 - RAM.Usable if RAM.Usable <« 100 MB

Server health component thresholds are the values at
which a component reading 1s considered Significant (Yel-
low) and Critical (Red). The Memory Utilization thresholds
may be predefined. These values are 1nitially set to platiform-
specific defaults, but are modifiable (per-platform) by the
Administrator. For the purpose of this disclosure, let the
Memory Utilization thresholds be defined as YellowU and
RedU. Therefore, given threshold Memory Utilization val-
ues of 50 and 90, which translates to 50 MB available/usable
and 10 MB available/usable, results 1n:

0 MB Usable<=Critical<10 MB Usable<=Warning<50

MB Usable

For Solaris, a more useiul metric for Memory analysis may
be the “Scan Rate”, which s provided in the Domino
Platform Statistics for Solaris under the name Platiorm-
Memory.ScanRatePagesPerSec. The threshold values for
Scan Rate are YellowS(Significant)=200, RedS(Critical)
=400. These values are based on the experience of running
performance tests,and examining Scan Rate values as the
load on the server 1s increased.

In order to normalize the Scan Rate to a 0-100 based value
that 1s compatible with the threshold settings for Memory
Utilization, this metric undergoes a number of adjustments
as follows:

Memory Utilization =
ScanRate * (YellowU/YellowS)
if ScanRate <= YellowS (GREEN)
YellowU + ({(RedU - YellowU) * (ScanRate — YellowS)/
(RedS - YellowS))
if YellowS < Scan Rate < RedS (YELLOW)
MIN(97, RedU + ((ScanRate — RedS) * RedU)/RedS
if Scan Rate >= RedS (RED)

Examplary Results:

Scan Rate Memory Utilization Condition
0 0 * (50/200) =0 Healthy
100 100 * (50/200) = 25 Healthy
200 200 * (50/200) = 50 Warning
300 50 + (90 = 50) * (300 — 200)/(400 — 200) =70 Warning
400 mn(97, 90 + (400 — 400) * 90/400) = 90 Critical
500 min(97, 90 + (500 — 400) * 90/400) = 97 Critical

For the AIX operating system, a more useful metric for

Memory analysis may be the ratio of “Scan Rate” to

10

15

20

25

30

35

40

45

50

55

60

65

16

“PagesFreedRate”, both of which are provided in the Rnext
Domino Platform Statistics for AIX:
Platform.Memory.ScanRatePagesPerSec and Platform-
Memory.
PagesFreedRatePerSec.

For simplicity, this ratio 1s referred to as the “Scan Ratio”.
The threshold values for Scan Ratio are YellowS(Signifi-

cant)=5, RedS(Critical)=9.
In order to normalize the Scan Ratio to 0-100 based value
that 1s compatible with the threshold settings for Memory
Utilization, this metric undergoes a number of adjustments:

Memory Utilization =
ScanRatio * (YellowU/YellowS)
if ScanRatio <= YellowS (GREEN)
YellowU + ((RedU - YellowU) * (ScanRatio — YellowS)/
(RedS - YellowS))
if YellowS < Scan Ratio < RedS (YELLOW)
MIN(100, RedU + ((ScanRatio — RedS) * RedU)/RedS
if Scan Rate >= RedS (RED)

Exemplary Results:

Scan Ratio Memory Utilization Condition
0 0* (50/5)=0 Healthy
2 2 * (50/5) =20 Healthy
4 4 * (50/5) = 40 Healthy
6 50 + (90 = 50) * (6 — 5)/(9 - 5) =060 Warning
8 50 + (90 - 50) * (8 = 5)/(9 - 35) =80 Warning
9 mim(97, 90 + (9 - 9) * 90/9) = 90 Critical
9.5 min{97, 90 + (9.5 - 9) * 90/9) = 95 Critical
10 mm({97, 90 + (10 — 9) * 90/9) = 97 Critical

4. Server Response—The Server Response component
index 1s entirely dependent on the Domino Server. Availabil-
ity Index (SAI) and the disposition of the database server
task. The SAI values range from 100 (fully available) to O
(not available). Such index may be quite volatile, so in order
to minimize the eflect of a spike i the SAI, the Sever
Response, i the illustrative embodiment, 1s based on the
average of a series of observed values for SAI. In general,
the most recent five SAI readings, averaged, with the
algorithm used to generate the component 1s shown below:

ServerResponse=100-{Average of last five readings
of server.Availabilitylndex)

EXAMPL

L1l

The most recent five SAI readings are: 93, 90, 80, 85, 90.

ServerResponse=100-((95+90+80+85+90)/5)=100-
88=12

The sliding scale value 1s used only for purposes of
determining the Composite Index, as described herein. To
calculate the generalized Sliding Scale formula for Server
Response the following algorithm 1s used:

Define: w=weighting

tamber=Warning Threshold
tred=Crntical Threshold

Weighted ServerResponse=w*ServerResponse

(if ServerResponse<=tamber) HEALTHY

(w*tamber)+((100—-(w*tamber))* (ServerResponse—
tamber))/(tred—tamber)

US 7,363,543 B2

17

(1f tamber<ServerResponse<tred) WARNING
100 (af ServerResponse>=tred) CRITICAL

EXAMPLE
w=20%=0.20
tamber=amber trigger=30 (1.e. S0<Server. AvailabilityIn-
dex<70)

tred=red trigger=>50 (1.e. Server. AvailabilityIndex<=350)

Sliding Scale ServerResponse=0.20*ServerResponse

if ServerResponse<=30 HEALTHY

6+((94* (ServerResponse—30))/20)

if 30<ServerResponse<50 WARNING
100 ServerResponse>=50 CRITICAL

Exemplary Results:

SAI ServerResponse SlidingScale Server Response
100 0 0
95 5 0.2%5=1.0
90 10 0.2 %10=2.0
83 15 0.2 *15=3.0
80 20 0.2 *20=4.0
70 30 0.2 *30=56
65 35 6 + (94 * 5/20) = 29.5
60 40 6 + (94 * 10/20) = 53
55 45 6+ (94 * 15/20) = 76.5
50 50 100
40 60 100

In the Server Health Monitor Health Report, the Server
Response component rating value 1s unweighted, and with-
out sliding scale factoring. The Server Response component
appears 1n the Health Report displayable through the user
interface of the Administrative client module 406.

5. Disk Utilization—This blended statistic requires user
input at configuration time in order to know the disk
configuration. Disk Utilization Rating component 1s appli-
cable only on systems where the Domino Platform statistics
are available and enabled. Therefore this metric 1s supported
if each of the following is true 1f the Domino version 1is
R5.0.2 or greater, the Platform Stats are FEnabled, and the
operating system for the server being monitored 1s Windows
NT/2000, as long as Disk counters areenabled (diskpert),
AS/400, Solaris, AIX. At configuration time first, define

AvgDiskQueuelLength =
Platform.LogicalDisk. Total.1._ Total.1.AvgQueueLength for
an R5.x server

Platform.LogicalDisk.#. AvgQueuelen
server

for an R6

where #=1, 2, 3, . ..

For R6, the “most active” disk 1s detertmined by finding
the highest value of

Platform.LogicalDisk.# AvgQueuelen
where #=1, 2, 3, . ..

Assuming that N 1s the value of #, the name of the most

active disk 1s given by
Platform.LogicalDisk.N. AssignedName

10

15

20

25

30

35

40

45

50

55

60

Actually, the average of the last 5 observed values of 65

AverageDiskQueueLength 1s taken 1n order to minimize the
ellect of a single aberrant reading.

18

The AvgQueuelLength 1s multiplied by 100 to give an
initial “0 to 100 based rating:

Disk Utilization Rating=100*AvgDiskQueuelength

If the number of spindles (NumSpindles) for the disk 1s
known, we should then divide by this value:

Disk Utilization Rating=100%* AvgDiskQueuelLength/
NumSpindles

Note that If we define the default Warning/Critical thresh-
olds to be 80 and 100, then we would have a Warning
condition 1f the AvgQLen>0.8 and Crtical if AvgQLen>1.0.
However, there may be environments where a 1.0 AvgQLen
1s perfectly acceptable, in which case the administrator
would want to be able to adjust the threshold settings so that
an unhealthy condition would not be flagged at that point.
Since this rating 1s based on 0-100, this formula does not
provide any upward adjustment of the red value beyond 100.
Therefore, to allow the administrator more flexibility 1n
setting thresholds, the formula was adjusted, 1n essence the
rating 1s halved, giving:

Disk Utilization Rating=50* AvgDiskQueuelLength/
NumSpindles

where AvgDiskQueuelength 1s as defined above

NumSpindles=# disk spindles reported by Administra-
tor 1n RedZone configuration

The default value for NumSpindles 1s 1.

In this way, a reading of 100 1s achieved when the Avg
Queue Len reaches 2. If the default thresholds are now

redefined to be 40 and 50, we continue to have an environ-
ment where the WARNING threshold 1s reached with a

QLen=0.8 and CRITICAL 1s reached with a QLen=1.0.
However, in those environments where a 1.0 QLen 1s
acceptable, the administrator can adjust the thresholds to,

say, 70 and 90 (QLen=1.4 and 1.8)

For Solaris, the disk utilization formula 1s based on the
Platform statistics, PctTime and ServiceTime, where

PctTime=percentage of time that the disk 1s being
accessed,

ServiceTime=the time 1n milliseconds to service a disk
request.

PctTime=Platform.LogicalDisk._Total.1._Total.1.PctTime
(R5.x)

Platform. LogicalDisk.#.PctUtil for an R6 server
where #=1, 2, 3, . ..

Service Time=Platiorm.LogicalDisk._Total.1._Total.l.
ServiceTime (R5.x)

Platform.LogicalDisk.#.ServiceTimeinmsecs (R6)

where #=1, 2, 3, . ..

Disk Utilization Rating =
PctTime if PctTime < 20

min(100, max(20, ServiceTime)) if PctTime >= 20

For R6, the “most active” disk 1s detertmined as follows:

For each disk (1, 2, 3, . . .), given 1ts Pctlime and
Service Time metrics,

a Disk Utilization Rating 1s generated

The disk (call 1t N) which has the highest Disk Utilization
rating 1s designated as

the most active disk, and 1ts name 1s obtained from
Platform.LogicalDisk.N.AssignedName
default thresholds: AMBER=40, RED=50

US 7,363,543 B2

19

Cannot obtain Disk Utilization for the Notes data drive
because there 1s no way to identity which of the Platform
Disk Stats for individual drives corresponds to the Notes
data drive

For AIX, only the PctTime metric 1s available, so we have

Disk Utilization Rating=max
(Platform.LogicalDisk.#.PctUtil)

where #-=1, 2, 3, . ..
The “most active” disk 1s determined given the value of

corresponding to the highest value of
Platform.LogicalDisk.#.PctUtil. The disk (call 1t N) which

has the highest Disk Utilization rating 1s designated as the
most active disk, and 1ts name i1s obtained from

Platform.LogicalDisk.N. AssignedName
default thresholds: AMBER=40, RED=50
For AS/400, only the PctTime metric 1s available, therfore

Disk Utilization
Rating=Plaflorm.LogicalDisk._Total.1._Total.1. PctTime

default thresholds: AMBER=40, RED=50

It the Disk Utilization Rating becomes critical, the fol-
lowing are suggested actions:

1. If this server 1s being used for messaging,

Increase the number of mailboxes (mail.box files) via
the Server’s Domino Directory:
Configurations->Router/SMTP->Basics->Number

of mailboxes

2. Use file links to distribute Notes databases among
multiple logical disk units

3. Be sure that the page file 1s on a separate disk from the
Notes data.

4. Be sure that the Notes transaction log file 1s on a
separate disk from the Notes data.

5. Use hardware RAID to create stripe sets with multiple
drives.

Generalized Sliding Scale formula for Disk Utilization 1s
a s follows:

Define: w=weighting
twarning=warning threshold
tcritical=critical threshold

Sliding Scale DiskUtilization =
w * DiskUtilization
(1f DiskUtilization <= tamber) HEALTHY
(w * tamber) + ((100 — (w * tamber)) * (DiskUtilization — t
amber))/(tred — tamber)

(1f tamber < DiskUtilization < tred) WARNING
100
(1f DiskUtilization >= tred) CRITICAL

EXAMPLE

w=10%=0.10, tamber=40, tred=50

Sliding Scale Disk Utilization =
0.1 * DiskUtilization 1f DiskUtilization <=
HEALTHY
4 + 96 * (DiskUtilization — 40)/10
DiskUtilization < 50, WARNING
100 1f DiskUtilization »= 50
CRITICAL

40,
if 40 <«

5

10

15

20

25

30

35

40

45

50

55

60

65

20
Exemplary Results:

DiskUtilization Sliding Scale DiskUtilization

10 1
20 2
30 3
40 4
42 23.2
45 52
48 80.8
50 100

100 100

6. Network Utilization—A blended statistic reflects the
performance of a process with regard to a network connec-
tion. The algorithm for the mndex 1s used to collect error and
collision rates and bandwidth information. The algorithm
used to generate the component 1ndex 1s described hereaftter.
Network Utilization index 1s supported by Domino 6.0 and
Win32, Solaris, and AIX servers. Define the following
formulas for Network Utilization:

NetBandwidthUtil=Plattorm.
Network #.PctUtilBandwidth

where # (1, 2, 3, . . .) 1s the instance of the “busiest”
Network Adapter

For a system with only one adapter, there 1s only one
instance. However, for a server with more than one adapter,
the system examines the utilization of each adapter and
reports on the one with the highest value of percent utilized
network bandwidth. A NetBandwidthUtil value of 30%
should be signaled as a warning, and a value of 40% may be
flagged as critical. These threshold values are defaults and
may be modified by the Admimstrator. For the purpose of
this example set

twarn=30
terit=40

Warning Threshold
Critical Threshold

The network collision rate 1s given by the Domino sta-
tistic:
Platform.Network.#.PctCollisionRate
where # (1, 2, 3, . ..) 1s the instance of the “least healthy”
Network adapter. For a system with only one adapter,
there 1s only one 1nstance. However, for a server with
more than one adapter, the system examines the statis-

tics of each adapter and reports on the one with the
highest collision rate.

“Collision Rate”=proportion of packet collisions. A

5%-10% collision rate implies saturation. So, define the
Warning and Critical thresholds as 5% and 10%.

A formula that maps to the Bandwidth Utilization formula
1s defined so that

a 5% PctCollision Rate results in a rating of 30, which 1s
the Warning threshold

a 10% PctCollision Rate results in a rating of 40, which
1s the Critical threshold

NetCollision=twarn*Platform.Network #.PctCollisionR ate/5
if Plafform.Network #.PctCollisionRate<5

twarn-+(tcrit—twarn)*
(Platform.Network.#.PctCollisionRate-5)/5

if 5<=Plattform.Network.#.PctCollisionRate<10

US 7,363,543 B2

21

min(97, terit* Plattorm.Network #.PctCollisionRate/
10)

if Plafform.Network.#.PctCollisionRate>10

On servers that provide both Bandwidth Utilization and
Collision Rate, the system will report the value of the “less
healthy” metric.

Formula Definition:

NetUtil=MAX(NetBandwidthUtil, NetCollision) other-
wise (on Win32) we have

NetUtil=NetBandwidthUtil

Generalized Shiding-Scale Formula for Network Utilization:
Define: w=weighting
twarn=warning threshold
tcrit=critical threshold

Sliding Scale Network Utilization =
w * NetUtil (1f NetUtil < twarn) HEALTHY
(w * twarn) + ((100 — (w * twarn)) * (NetUtil - twarn))/(tcrit
t — twarn)
(1f twarn < NetUtil < terit) WARNING
100 (1f NetUtil >= tcrit) CRITICAL

EXAMPLE

w=5%=0.03, twarn=30, tcrit=40

Sliding Scale NetUtil = 0.05 * NetUtil
(if NetUtil <= 30) GREEN
1.5 + (98.5 * (NetUtil - 30)/10) (if 30 < NetUtil < 40) WARNING
100 (if NetUtil »= 40) CRITICAL

Exemplary Results:

NetUTtil SlidingScale NetUtil

10 0.05 * 10 = 0.5

20 0.05 * 20 =1.0

30 0.05 * 30 =1.5

32 1.5 + (95.5 * 2/10) = 20.6
35 1.5 + (95.5 * 5/10) = 49.25
38 1.5 + (95.5 * 8/10) =77.9
40 1.5 + 95.5(10/10) = 97

50 97
100 97

7. Addressee Resolution Efliciency (NRPC Name Lookup

Response) 1s a component index that indicates the average
name lookup time for the current observation interval i1s
determined by dividing the difference in total lookup time by
the difference 1n total number of lookups. Given the follow-
ing domino server process statistics:

Database NAMELookupTotal//total # of Name Lookups

Database NAMELookupTotalLookupTime//aggregate
lookup time (ms)
define:

deltalookups=diilerence i # ol Lookups performed
between measurements

deltalL.ookupTime=difference in Total Lookup Time
between measurements

5

10

15

20

25

30

35

40

45

50

55

60

65

22

so that,

AvgNameLookupTime=deltal.ookupTime/deltal.ook-
upTotal

(11 deltaL.ookupTotal>0)
0 (1f deltaL.ookupTotal==0)

In either case, given an Average Name Lookup Time (i.e.
vgNameLookupTime), define

NRPC Name Lookup=AvgNamelookupTime/20

1f AvgNameLookupTime<1940 ms
97 1f AvgNameLookupTime>=1940 ms

Exemplary Results:

AvgNameLookupTime (ms) NRPC Name Lookup

00 3
100 5
200 10
500 25
800 40

1000 50
1200 60
2000 100
5000 100

Given defined predefined default threshold values of 40
and 60. When the NRPC Name Lookup rating reaches 40
(equivalent to an 800 ms lookup time), a warning condition
results. IT the rating reaches (1200 ms lookup time), the
condition becomes critical.

As an alternative, the “change” 1n the average lookup time
from the previous reading to the current reading can be
examined in order to detect a recent degradation. For
example, 11 given:

AvglLookupTime(Prev) and Avgl.ookupTime(Current),

Define DeltaAvglookupTime=AvglookupTime
(Curr)-AvglLookupTime(Prev)

Theretfore, a positive DeltaAvglLookupTime may be a sign
of performance degradation.

The generalized algorithm for NamelLookup 1s as follows:
Define: w=weighting
twarn=warning threshold
tcrit=critical threshold

Sliding Scale NameLookup =
w * NameLookup
(if NameLookup <= twam) HEALTHY
(w * twarn) + ((100 — (w * twarn)) * (NameLookup - twam))/
(tcrit — twarn)
(1if twarn < NamelLookup < tcrit)
97 (if NameLookup >= tcrit)

WARNING
CRITICAL

EXAMPL

L1

w=20%=0.20, twarn=40, tcrit=60

Sliding Scale NameLookup = 0.20 * NamelLookup

(1f NameLookup <= 40) HEALTHY
8 + 92 * (NameLookup - 40)/20

(1f 40 <« NameLookup < 60) WARNING
97 (if NameLookup >= 60) CRITICAL

US 7,363,543 B2

23
Exemplary Results:

AvgNameLookupTime(ms) Name Lookup Rating Sliding-Scale

100 5 1

250 12.5 2.5

400 20 4

800 40 8

900 45 8 + 92 * 5/20 = 31
1000 50 8 + 92 * 10/20 = 54
1100 55 8 + 92 * 15/20 =77
1200 60 100
2000 100 100

8. HT'TP Response—A component index used to measure
the hypertext transport performance 1f the server process
complies with the HyperText Transport Protocol. The HT'TP
Response rating i1s based on average time to process an
HTTP request. For Rev 6.0 servers, the Domino stats for
HTTP Requests processed and Request Time are used. For
Rev 5.x or earlier servers Domino servers, with no such
statistics available, the HTTP response component 1s gen-

crated only 1f the QOS HTTP Probe (self-probe) 1s config-
ured.

1. Domino 6 Servers
The following Domino stats (supported in Domino 6
only) are used 1n evaluating HT'TP Response

Http. Worker.Total.RequestsProcessed (aggregate number
of HTTP requests)

Http. Worker. Total. TotalRequestTime (aggregate process-

ing time (ms) for the HTTP requests)

These statistics represent the total values since the server
has been running. Since the system objective 1s to determine
the “recent” average request processing time, the difference
between the most recent observations of these statistics 1s
taken as follows:

Define
deltaRequests=# of Requests Processed in the most
recent monitoring interval

deltatime=Total Request Time within the most recent
monitoring interval

so that, an average request processing time (1n millisec-
onds) 1s obtained:

AvgTime=deltaTime/deltaRequests (i1f deltaRe-
quests=>0)

0 (if deltaRequests=
2. Rev. 5 and F

:O)

Earlier Domino Servers

The HT'TP Response component 1s provided only 1f the
QOS HTTP Probe self-probe) 1s configured for that server.

In this case:
AvgTime=QOS Time

where QOS Time 1s the average of (up to) the last 5
observations of the server’s reported QOS HTTP
response time (in milliseconds). In either case, define

HTTP Response =
99 if the HTTP server task is
running, but i1s not responding to the Server Health Monitor
98 if the HTTP server task 1s running, but is reporting
fatal errors
min(97, AvgTime/40) if the HTTP server task 1s
running and at least one HTTP lookup has been recently issued

10

15

20

25

30

35

40

45

50

55

60

65

24

-continued

1 if the HTTP server task 1s running and no HTTP lookups
have been recently issued

The HTTP Response component carries a 5% weight

toward the composite index. The default Warning and Criti-
cal thresholds for HT'TP Response are 40 and 60, which

leads to the following exemplary results:

AvgTime (Ims) HTTP Response Condition
400 10 Healthy
800 20 Healthy

1200 30 Healthy
1600 40 Warning
1800 45 Warning
2000 50 Warning
2200 55 Warning
2400 60 Critical
3000 75 Critical
3600 90 Critical
>=3880 97 Critical

1. Disable HTTP Server Logging (to domlog.nst and/or text
file)

This recommendation 1s generated only 11 the system 400
determines that either of the logging options 1s enabled.

2. Offload Users to Another Server

Generalized sliding-scale formula for HT'TP Responseis a s
follows:
Define: w=weighting
tamber=amber trigger
tred=red trigger

Sliding Scale HTTP Thread Utilization =
w * HTTP Response 1f HTTP Response < tamber HEALTHY
(w * tamber) + (97 — (w * tamber)) * (HTTP Response — tamber))/
(tred — tamber)
if tamber <= HTTP Response <= tred WARNING

97 if HTTP Response > tred CRITICAL

EXAMPL

L1

w=5%=0.05, tamber=40, tred=60

Sliding Scale HTTP Response =
0.05 * HI'TP Response (if HTTP Response < 40) HEALTHY
2+ (95 * (HTTP Response — 40)/20) (if 40 <= HTTP Response <
60) WARNING
97 (if HTTP Response >= 60) CRITICAL

Exemplary Results:

HTTP Response SlidingScale HT'TP Response

10 0.05 * 10 = 0.5
20 0.2 %20 =1.0
30 02*30=1.5

US 7,363,543 B2

25

-continued

HTTP Response SlidingScale HI'TP Response

40 2
45 2 + (95 * (45 - 40)/20) = 25.75

50 2 + (95 * (50 — 40)/20) = 49.5
55 2 + (95 * (55 — 40)/20) = 73.25
60 97

100 97

9. LDAP Response—A component index used to measure
the directory access performance 11 the server process com-
plies with the Lightweight Directory Access Protocol. It the
server being monitored 1s running the LDAP process, the
system 400 will report on the health of this component. If the
server 1s not running the LDAP process, the system 400 waill
not provide a report on this component. The value of the
LDAP component can be taken from the LDAP response
statistic as follows:

Given the Following Domino Statistics

LDAP. Total LDAP Searches //total # of Name Lookups

LDAP.Total LDAP Search time //aggregate lookup time
(ms)

define

deltal_.ookups=difierence 1n # of Lookups performed
between measurements

deltalL.ookupTime=difference in Total Lookup Time
between measurements

so that,

AvgNameLookupTime=deltal.ookupTime/deltal.ook-
ups

(1 deltalLookupTotals>0)
0 (1f deltaLookups==0)

LDAP Response =
99 if the LDAP server task is
running, but is not responding to the Server Health Monitor
98 if the LDAP server task is
running, but is reporting fatal errors
min(97, AvgNameLookupTime/20) if the LDAP server task is
running and at least one LDAP lookup has been recently issued
1 if the LDAP server task is
running and no LDAP lookups have been recently issued

EXAMPLE
AvgNameLookupTime LDAPResponse

50 2.5
100 5.0
250 12.5

500 25

1000 50

2000 100

As an alternative, we could examine the “change” in the
Average Lookup time from the previous reading to the
current 1n order to detect a degradation. For example, 11

10

15

20

25

30

35

40

45

50

55

60

65

26

AvglLookupTime (Prev) and Avg LookupTime(Current),
define

DeltaAvgl.ookupTime=AvglLookupTime(Curr)-Av-
gl.ookupTime(Prev)

Therelore, a positive DeltaAvglL.ookupTime may be a sign
of performance Degradation. The generalized formula for
LDAP Response 1s as follows:

Define: w=weighting that this component contributes to
the Overall Health Index

twarn=warning threshold=rating above which the com-
ponent 1s 1n a Warning state

tcrit=critical threshold=rating above which the compo-
nent 1s 1 a Critical state

Sliding Scale LDAP Response =
w * LDAP Response
(if LDAP AddresseeResolutionEfliciency <= twarn)
HEALTHY
(w * twarn) + ((97 - (w * twarn)) * (LDAP Response- twarn))/(t
crit — twarn)
(if twarn < LDAPAddresseeResolutionEfliciency < terit)
WARNING
97 (if LDAPAddresseeResolution Efficiency >= tcrit)
CRITICAL

EXAMPL

L1l

w=20%=0.20
twarn=warnming threshold=40
tcrit=critical threshold=60

Sliding Scale LDAP Response =
0.20 * LDAP Response

(1f LDAP Response <= 40) HEALTHY
8 + 89 * (LDAP Response — 40)/20

(1f 40 < LDAP Response < 60) WARNING
100 (1f LDAP Response >= 60) CRITICAL

LDAPAvgl.ookupTime(ms) LDAP Response Sliding-Scale

100 S 1

500 25 S

750 37.5 7.5

800 40 8

900 45 & + 89 * 5/20 = 30.25
1000 50 8 + 89 * 10/20 = 52.5
1100 55 8 + 89 * 15/20 = 74.75
1200 60 97
1500 75 97
2000 97 97

10. IMAP Response—A component statistic used to mea-
sure mail access performance 1f the server process complies
with the Internet Mail Access Protocol. IT the server being
monitored 1s running the IMAP process, the Server Health
Monitor will report on the health of this component. It the
server 1s not running the IMAP process, the system will not
provide a report on the IMAP Response component. The
value of the IMAP component can be taken from the IMAP
response statistic as follows:

US 7,363,543 B2

27

IMAP Response =
99 if the IMAP server task 1s running, but is
not responding to the Server Health Monitor

98 if the IMAP server task 1s running, but is
reporting fatal errors

min{97, QOSTime/20) if the IMAP server task 1s running and the
QOS IMAP Self-Probe 1s configured for the server

1 if the IMAP server task 1s running and the
QOS IMAP Self-Probe 1s not configured for the server

QOSTime 1s the average of (up to) the last 5 observations
of the server’s reported Quality of Service (QOS) IMAP
response time (in milliseconds). The IMAP Response com-
ponent carries a 5% weight toward the blended/overall
server health value. The default Warning and Critical thresh-

olds for IMAP Response are 40 and 60, which leads to the
tollowing exemplary results:

Average IMAP Response Time (ms) IMAP Response Condition

200 10 Healthy
400 20 Healthy
600 30 Healthy
800 40 Warning
900 45 Warning
1000 50 Warning
1100 55 Warning
1200 60 Critical
1500 75 Critical
1800 90 Critical
>=1940 97 Critical

Composite Index

Given the values of the relevant component indexes listed
above, a composite index 1s generated by analyzer module
404 using a weighting algorithm. The Composite Index
serves as an overall health index for the momtored process
and 1s the composite rating derived from the individual
component ratings. Each individual rating 1s calculated via
its corresponding algorithm described herein. In each case,
the algorithm generates a value between 0 (GOOD) and 100
(BAD). This value 1s multiplied by the relative weight
assigned to that area to give a weighted rating. For example,
if the “Server Response” rating 1s 45, and it 1s assigned a
relative weight of 20%, its weighted rating would be
45%0.20=9.0. The sum of the 10 weighted ratings 1s the
Composite Index, a value between 0 (GOOD) and 100
(BAD). For example, given the indicated ratings and weight-
ings for each area below, the weighted ratings are calculated
and totaled to obtain the Composite Index as follows:

Component Rating Weighting WeightedRating
Server Response 45 20% 9.0
CPU Utilization 34 15% 5.1
Disk Utilization 42 15% 6.8
Memory Utilization 14 15% 2.1
Mail Delivery Latency 2 10% 0.2
Network Utilization 28 5% 1.9
LDAP Response 6 5% 0.3
HTTP Response 24 5% 1.2
IMAP Response 4 5% 0.2
TOTAL 28.2

10

15

20

25

30

35

40

45

50

55

60

65

28

Accordingly, the composite index for the above example
would have a value of 28.2. Special consideration 1s given
to circumstances when a particular component 1index has
become critical. Two examples of a critical condition are: 1)
percent CPU Utilization exceeds 85%; and 2) Available
Memory falls below 1%. In the case of a “critical condition™
for an individual component, the relative weight that is
normally assigned to the area may be abandoned in favor of
a value that will trigger a CRITICAL “Overall” rating,
regardless of the healthy status of the other components. For
example, 11 CPU utilization 1s 100%, the normal 0.20 weight
would result 1n a weighted statistic of 20, which, 11 no other
arcas are 1n a critical state, would likely not result 1 a
critical Overall Rating 1if the individual weighted ratings
were added. To handle such a situation, the 0-100 range of
cach component value 1s subdivided into three zones:
HEALTHY, WARNING, and CRITICAL. The range for
cach of the three zones 1s delineated by two thresholds: 1)
the Warning threshold 1s the rating value above which the
focus area becomes significant; and 2) the Critical threshold
1s the value above which the focus area 1s critical. For
example, the CPU Rating has a Warning threshold of 75 and
Critical threshold point of 853. In such case a Rating at or
below 75 1s HEALTHY, a Rating between 75 and 85 1s
WARNIING, and a Rating above 85 1s CRITICAL. If the
Rating 1s 1n the HEALTHY zone, the component’s Sliding
Scale Rating 1s simply the Rating multiplied by the assigned
weighting. If the Rating 1s 1n the CRITICAL zone, the
Sliding Scale Rating 1s set equal to the maximum possible
value, e.g. 100. If the Rating 1s in the WARNING zone, the
Sliding Scale Rating 1s an intermediate value and must be
escalated beyond a simple weighting, but not to the point of
signaling a critical condition.

Therefore, using the original formula, a weighting, and
trigger points, the “Sliding Scale” may be defined with the
following algorithm:

Generalized Sliding Scale:
Define:

Rating=the value (0-100) obtained from the formula
(without weighting)

w=Weighting that the component contributes to the Over-
all Health Index

twarn=Warning threshold=rating above which the com-
ponent 1s 1n a

Waning state

tcrit=Critical threshold=rating above which the com-
ponent 1s 1 a Critical state

Sliding Scale Rating:
w * Rating (if Rating <= tamber) HEALTHY
(Simply apply the specified weight)
(w * tamber) + ((100 — (w * tamber)) * (Rating — tamber)/(tred —
tamber))
(1f tamber < Rating < tred) WARNING

100 (if Rating >= tred) CRITICAL.

For example, consider the CPU Utilization Rating (CPU),
and assume that it has a 20% weighting, the Amber trigger
point 1s 75, and the Red trigger point 1s 85:

w=20%=0.20
tamber=Warning threshold=75
tred=Critical threshold=85

and the Weighted Overall CPU Utilization=0.20*CPU
(if CPU<=75) HEALTHY

US 7,363,543 B2

29

15+((100-15)*(CPU-75)/(85-75))=15+(85*(CPU-
75)/10)

if 75<CPU<85) WARNING
100 (af CPU>=85) CRITICAL

30

If the CPU Utilization component index carries a 20%

weighting and 1s unavailable, then the other component
indexes must be increased by a factor of 100/(100-20)=1.25,

grving yielding the following weightings:

at 25% CPU, the weighted utilization=5 5
at 60% CPU, the weighted utilization=12
at 75% CPU, the weighted utilization=15
at 80% CPU, the weighted utilization=15+42.5=57.5 TSVIE“I DSHWWUL?—F@H?Y = ;g i g; 120
at 90% CPU, the weighted utilization=100 erver.Lsers Ulllization = e e
) . _ _ Memory Utilization = 1.25 * 12 =15
In the light of the above, 1if one component index 1s 10 Server Response = 175 % 6 =75
CRITICAL then the overall index statistic 1s critical, and, 1f Disk Utilization = 1.25 * 22 = 27.5
none of the individual component indexes are CRITICAL, Network Utilization = 1.25 % 2 =2
then the composite index will not be critical. Addressee Resolution = 125 ™2 = 2.5
: : TOTAL = 1.25 * 84 = 105 = RED
There are scenarios when one or more component index
cannot be calculated. In the illustrative embodiment, the 13
weighing algorithm, as described hereafter, accounts tor the In this manner, server processes which do not adhere to
presenclte Or absilllce (tjlf specific C‘i’lmp‘jl;ﬁm lélgleji ‘{?tl}llfas'tl_:or certain protocols, such as HTTP, LDAP, or IMAP, will not
CAAIMPIC, COTSIGEL TIE Cdse WAL LIe HZatOn have the corresponding component indexes associated with
component index cannot be obtained (e.g. because the . .
. ,o those protocols factored mnto the overall composite mndex
platiorm statistics are not supported or enabled), and assume |
that the weighting for CPU toward the blended statistic 1s vaue.
20%. In this case the value of each of the remaining statistics The algorithm for the composite index turther compen-
would be adjusted by that factor. For example, the following sates for the scenario when a component with a lesser
welghted/sliding-scale ratings were calculated: weighting becomes critical, e.g. should the condition where
2 a component with a 5% weighting becomes critical be
considered equivalent to one where a component with a 20%
CPU (unavailable) = 0 welghting becomes critical? The following 1s the formula
Mail Delivery Latency = 8 used to calculate the final major blend, based on the final
Setver.Users Utilization = 32 s state of the process (GREEN, YELLOW, or RED), and the
Memory Utilization = 12 S~ _
Server Response = 6 overall blended statistic=sum of the minor blends, (capped
at 100):
1f (Final State = 0, // GREEN
Final Value = Overall Value // guaranteed to be in GREEN range
else
if (Final State = 1) // YELLOW
if (Overall Value > Yellow Threshold)
if (Overall Value < Red Threshold)
// OK - the overall value is 1n the yellow range
Final Value = Overall Value
else
// YELLOW state, but overall value in Red Range ——> adjust
if (Red Threshold < 100)
/f “high yellow”, interpolate into upper half of yellow zone
Final Value = Yellow Threshold
+ 0.5 * (Red Threshold - Yellow Threshold)
* (1 + (Overall Value — Red Threshold))/(100 — Red Threshold)
else
// “no red range”, set = 95% into the vellow range
Final Value = Yellow Threshold
+ .95 * (Red Threshold - Yellow Threshold)
else
// YELLOW state, but overall value is in Green Range —-> adjust
/1 “low yellow”, interpolate into lower half of yellow zone
Final Value = Yellow Threshold + 0.5 * (Red Threshold — Yellow Threshold) * Overall
Value/Red Threshold)
clse
// other than GREEN or YELLOW, assume RED (or BLACK)
Final Value = Overall Value //guaranteed to = 100
60 As will be understood from the above, the thresholds by
-continued which the values of the component indexes are analyzed
Disk Utilization = 22 may be defined by the particularities of the operating system
Network Utilization = 2 _ _ _ _
Network Utilization = , and other configuration data with which the monitored
TOTAL = 84 = AMBER 63

process 1s executing. For example, a component index value

tor CPU utilization may be categorized as *“‘caution” with

US 7,363,543 B2

31

one operating system given the platform resources but may
be considered “normal” for another operating system given
the same platform resources.

Recommendation minor blends may be used 1n conjunc-
tion with the component and composite indices described
herein to build recommendations when server processes are
showing poor performance. Most recommendation minor
blends algorithms generate recommendations based on a
specific value of a statistic 1n the source data or by com-
parison of a specific value of a statistic 1n the source with a
predefined threshold, as explained hereafter with reference
to column group 485 of table 414.

Recommendations

System 400 provides recommendations to administrators
depending on the determined health of a monitored server
process. System 400 presents to the user with a composite
index value representing the overall server process health,
the component index values representing the health of a
particular performance aspect, one or more recommendation
minor blends and a package of recommendations based on
the foregoing. The mventive process utilizes the following
assumptions. First, the state of every server process 1is
determined, including the status of specific server tasks,
server notes.ini settings, component mndex blended statistics,
¢.g. assessment of server health, and recommendation minor
blended statistics, e.g. additional assessment of server state
required to determine a recommendation. Second, the state
of every server process 1s associated with one of a set of
predetermined “‘server situations”. A server situation 1s
defined as a state that 1s supported by system 400. An entry
situation 1s a server task state, an notes.in1 setting (configu-
ration setting), a component mdex or a recommendation
minor blend result. Each server situation has a one-to-one
correspondence with entries 1n a configuration truth table of
situations. Third, the know situation for every server process
1s located 1n the configuration truth table, recorded in the
recommendations worksheet, stored 1n the dommon.nst and
1s presentable via the user iterface of Administration Client
module 404.

Analyzer module 404 utilizes multiple tables or work-
sheets stored 1n memory to convert the source data mnto a
package of recommendations, including Configuration Truth
Table 414, a Recommendations Table 416, a Comments
Truth Table 415, worksheet for each component index, a
worksheet for the minor recommendation blends, and vari-
ous intermediate worksheets. The algorithms for the work-
sheets having been previously described, the orgamization
and function of the major tables 1s described hereafter 1n
greater detail.

Configuration Truth Table

Configuration Truth Table 414, illustrated in FIGS. 6 A-D
1s stored 1n memory and comprises a compilation of cell
used as a lookup mechanism to hold the “umiverse™ of all
possible server health conditions supported by the diagnostic
system 400. Configuration Truth Table 414 1s defined with
two categories: one category for every entry in a server
situation (rows of the table) and one category for every detail
of the situation understood (the columns). FIGS. 6A-D
illustrates an exemplary Configuration Truth Table 414 1n
accordance with the present invention. Since Configuration
Recommendation Table 414 has numerous columns, mul-
tiple figures are use to display the various columuns, although
the table may be considered a single entity 1n memory. In
FIGS. 6A-D, blank cell values at a particular row and
column intersection indicate that the cell value 1s not rel-
evant for that particular entry.

10

15

20

25

30

35

40

45

50

55

60

65

32

Each row of table 414 represents a combination of server
conditions, based on the value(s) set 1 each of the columns.
Some of the rows have been identified 1n first column 450
with a particular condition, e.g. Workstation CPU saturated,
Mail Router enabled but not running, Memory Critical—
AS400, etc. However, for the most part the rows are
described suthliciently to distinguish between them.

For the most part, the columns of table 414 are grouped
under a specified category, the name of which 1s listed above
the column name. The following category/group names are
listed below, along with a description of each of its “mem-
ber” columns. Column 450 indicates in each different row
thereol the name of the item(s) momtored and represents
cach possible items monitored by system 400 with respect to
a specific process. As such this column 1s displayed 1n each
of FIGS. 6 A-D. The columns 1n group 4352 of table 414, *“Is
Component Enabled”, indicate whether the particular com-
ponent 1s currently enabled for momtoring. A value of one
(1) 1n the cell in the Truth Table 1indicates that the component
1s “enabled” while a zero (0) indicated that the component
1s not enabled. The following items comprise the columns of
group 452:

¢ CPU Utilization

¢ Mail Delivery Latency
¢ Memory Utilization

e Server Response

¢ Disk Utilization

¢ Network Utilization

¢ NRPC Name Lookup
¢ HI'IP Response

¢ LDAP Response

¢ IMAP Response

The following items comprise the columns of group 454,
“Component Indices™ of table 414:
CPU Utilization

Mail Delivery Latency
Memory Utilization
Server Response

Disk Utilization
Network Utilization
NRPC Name Lookup
HTTP Response
LDAP Response

IMAP Response

The values 1n the columns of group 454 of table 414,
“Component Indices™ are used to indicate the state of the
particular component listed in column where:

O=never seen,

1=healthy,

2=warning,

3=critical,

4=fatal,

S>=not responding,

6=not yet evaluated,

7=Admin Client CPU saturated
8=server down

The following items comprise the columns of group 456
of table 414, “Server Task States,” and represent the tasks
for which state information 1s monitored:

DB Server
HTTP Web Server
IMAP Mail Server

LLDAP Server
Router

US 7,363,543 B2

33

The values 1n the columns of group 456 of table 414 are
used to indicate the state of selected server tasks as follows:

O=task has never been seen running

1=task 1s currently not running,

2=task 1s not responding,

3=task 1s running,

4=task 1s running but generating warning messages,

S=task 1s running, but reporting failure conditions,

6=task 1s running, but reporting fatal conditions,

The following 1tems comprise the columns of group 4358
of table 414, “Recommendation Minor Blend,” and repre-
sent various server conditions or attributes which factor into
the server health monitor recommendations, for each col-
umn item described, the possible values are provided in
parentheses:

OS Type—A number representing the operating system
that the server i1s running where: (1=NT, 2=Win2K,
3=Solaris, 4=AIX, 35=Linux, 6=0S400, 7=0S/2,
8=HP_UX, 9=NetWare, 10=085390).

Need Mail.Box—This server should be configured with
an additional mail. box (Yes)

Need Delv Threads—This server should be configured
with additional mail delivery threads (Yes)

Need Xifer Threads—This server should be configured
with additional mail transfer threads (Yes)

Ma1lWaitDNS—This server has mail that 1s waiting for
resolution of an external address (Yes)

NeedNumSpindles—The Server Health Monitor needs
disk spindle information to be provided in order to
properly analyze Disk Utilization on the server (Yes)

Busiest Task—(NO LONGER USED)

Bufler Pool Status—The amount of allocated builer pool
for Domino 1s excessive (High)

DbCacheStatus—The Domino database cache 1s msufli-
cient (Low)

Add Memory—Additional memory i1s recommended for
this server (Yes)

High Paging—The system page file utiliation 1s excessive
(Yes)

Add Worker Threads—This server should be configured
with additional worker threads (Yes)

Add CPU—An additional processor 1s recommended for
this system (Yes)

High CPU Queue—The server has an extremely high
processor queue length. (Yes)

TooManyUsers—(INO LONGER USED)

AddHTTPThreads—(NO LONGER USED)

DisableHTTPLog—The server’s performance may be
improved 1f HTTP logging were disabled.(Yes)

LDAPIromQOS—The Server Health Monitor’s analysis
of LDAP Response 1s based on Qualiy of Service
(QOS) statistics reported from the process.

HTTPiromQOS—The Server Health Monitor’s analysis

of HITP Response 1s based on Qualty of Service
(QOS) statistics reported from the process.

Disk Metric—A numeric value representing the type of
disk statistic used 1n analysis of Disk Utilization (1=Disk
Queue Length of Busiest Disk where Disk Queue
Length=avg number of disk requests waiting to be pro-
cessed; 2=Queue Length of Notes Data Disk, 5=Sum of
Queue Lengths of all disks, 11=%Disk Time=% of the time
that the disk 1s being accessed, 21=Disk Service
Time=average time taken to process a disk request)

Add Network Bandwidth—This server’s performance

would be mmproved 1t the network bandwidth were
increased(Yes)

10

15

20

25

30

35

40

45

50

55

60

65

34

High Network Colliston—A high network collision rate
has been seen on this server (Yes)

Over 100% Network Bandwidth Util—This server’s net-
work configuration must be corrected and/or i1ts net-
work adapters and drivers must be updated.(Yes)

Move View Rebuild Dir—The current location assigned
for rebuilding Domino views should be changed to

another disk(Yes)

The values of the Recommendation Minor Blend statistics
described above for the most part are determined directly
from the source data collected by collector module 402. To
the extent that any values need to be calculated, such
calculation are performed by analyzer module 404 and are
within the scope of those skilled in the arts, given the
descriptions contained herein.

The columns of group 460 of table 414, “Short Term,” and
contain numeric codes under columns Code 1 through Code
8 which represent a plurality of short term recommendations
to 1improve server health. Similarly, the columns of group
462, “Long Term,” and contain numeric codes under col-
umns Code 1 through Code 8 which represent a plurality of
long term recommendations to improve server health.

Column 464 of table 414 of table 414, “Reason for this
State” contains a numeric code that represents a statement
that summarizes the current overall state of the server item
identified 1n a row of column 450, ¢.g. Code 1349 from row
3 of column 1450 when mapped to table 416 1s translated
into “The Database Server task 1s loaded but not respond-
ng.”

The columns of group 466 of table 414, “You Have”
contain numeric codes under columns Code 1through Code
6 that represents plural information pieces regarding a
current server setting or a statistic that substantiates the
reported unhealthy server condition. For example, code
10201, which appears in row 21 under the Code 1 column
of group 466 when mapped to table 416 is translated into
“Amount of Installed RAM (MB).” Similarly, code 10202,
which appears 1n row 21 under Code 2 column of group 466
1s translated into “Amount of Available RAM (MB).” For a
server that 1s low on memory, the Health Report presented
by a Ul of Administration client module 406 would include
the amount of installed memory and latest observed avail-
able memory, as evidence that there 1s a problem.

Column 468 of table 414 represents the row number of the
truth table 414, and 1s used to cross reference the results with
a particular truth table lookup entry.

Recommendation Table

The Recommendations Table 416 displays the current
state ol every server process, 1.e. the situation of every
server. Included for each server are the current state of tasks,
notes.im settings, and the current results of minor blended
statistics and recommendation minor blended statistics
blends. Recommendations table 416 worksheet 1s defined
with two categories: one category for every entry 1n a server
situation and one category for every server being momtored.
FIGS. 7A-E 1illustrates an exemplary Results Recommenda-
tions Table 416 in accordance with the present invention.

FIGS. 7A-E illustrate the Recommendation Table 416.
Like Configuration Table 414, since Recommendation Table
416 has numerous columns, multiple figures are use to
display the various columns, although the table may be
considered a single entity 1n memory. As illustrated 1n 7A,
Recommendation Table 416 consists of a first column 470
which includes a row for each monitored server, the name of
the server being listed 1n the row. The remaining column

groups 472, 474, 476, 478, 480, 482, 484,486 and 488 of

US 7,363,543 B2

35

table 416 have the same columns titles and definitions as
column groups 452, 454, 456, 438, 460, 462, 464, 466 and
468, of table 414, respectively, and will not be described 1n
further detail. In Recommendation table 416, the values in
column group 480 “Short Term Codes” and 482 “Long Term
Codes” are determined by finding the row from the Truth
Table 416 that matches the condition 1n Configuration table
414 and then copying the appropriate recommendation
codes from table 414 the matching row entry into the
columns under the “Short Term Codes” and “Long Term
Codes” 1n table 416. In this manner configuration table 414
1s used as a universal reference look-up table to fill in the
appropriate recommendation code entries which match the
situations of specific server entries 1n recommendation table

416.

The pertinent statistics/settings that correspond to an
unhealthy condition are copied from the various algorithm
worksheets 412 utilized by analyzer module 404 into the
multiple column group 486 “You Have Codes.” In addition,
recommendation table 416 further comprises a column
group 490 “You Have Values.” The You Have Codes are
numerical values that represent a descriptive label for a
statistic while You Have Value 1s the actual value of the
statistic. For example, 1n row 7 of column 470 of table 416
corresponding to the server named “Frog/Irnis” 1 FIG. xD,
the value under the Code 1 column of the You Have Codes
group 486 equals 10201, which when translated via com-
ments table 415 produces the label “Amount of Installed
RAM (MB):” The data under the Value 1 column of the You
Have Values group 490 equals 512. Accordingly, a health
report presented by administration client 406 regarding the
server named Frog/lris will include the statement: “Amount
of Installed RAM (MB): 512.” In this manner the actual
values and an associated text description of a particular
statistic may be presented to a system administrator to
turther enhance the value of the information presented by
system 400.

The remainder of Recommendation Table 416 includes
the optional column group 492 headings “Absurd Items”.
These columns represent various server configuration set-
tings that the system 400 checks to determine 11 one or more
items should be brought to the attention of the system
administrator. As illustrated 1n FIG. 7E these items include
such data as determining whether certain server platiorm
statistics are enabled and checking that the Admimstrator
has console access to a server. Any other columns or fields
of table 416 not described herein are optional and left to the
designers discretion.

The Comments Truth Table 415 1s a look-up table for
translating recommendation code into text phrases that are
understandable by a human system administrator.

It will be obvious to those skilled in the arts that the
number of tables, the arrangements of data therein and the
types of data structures utilized for storing and maintaining,
the information described herein may vary without changing,
the results of the inventive process.

Administration Client Module

Admimstration Client Module 406 functions primarily to
tacilitate the presentation, typically visually, of source data,
recommendations, indices, etc. to assist a human system
administrator in determining that status of a server and how
the health of the serer performance may be improved. As
illustrated in FIG. 4, Administration Client Module 406
comprises server monitor tab user interface module 442,
health report user interface module 444, charting user inter-
face module 446, and an indices and threshold user interface

10

15

20

25

30

35

40

45

50

55

60

65

36

module 448. These user interface modules allow a human
system administrator to display any of the diagnostic rec-
ommendations, indices, source data and configuration set-
tings associated with a monitored process, as illustrated
herein. Such user interface modules, using known tech-
niques, may be implemented 1n a Notes Template File as a
collection of Notes forms, views and content documents like
the recommendation code to text mapping documents. Such
data may be displayed through the various user interface
modules of Administration Client 406 as status in the server
monitor page, server statistic graphs, a hierarchical display,
such as a drill down table which may be implemented as a
Notes view or a “C tree” display, and a Notes views and
documents, e.g. configuration interface for threshold, etc. In
addition, database 418 provides information to the admin-
istration client user interfaces for both current and historical
data.

Administration Client Module 406 may generate several
other user interfaces. The administrator can choose the
server monitor tab user interface module 442 to see the
status of all monitored server process, as illustrated 1n FIG.
8A. In FIG. 8A, the condition of a particular statistic is
represented 1conically along with the name of the server
process, an over health index (composite index),etc. FIG. 8B
illustrates an alternative user interface presentation of the
same type of information 1 a text format. The system
administrator can access the system 400 drill down tables
which will provide more detailed analysis of the blended and
discrete statistics are part of database 418. Such drill down
tables contain information about the blended statistics, the
raw Domino statistics that comprise the blended statistics,
the weights used to blend the statistics, threshold values and
dynamic and static recommendations for tuning. These drill
down tables display how major blends are made from minor
blends, which are then made from raw server statistics as a
combination of discrete and composite statistics. In addition,
a user may choose to see the historical statistics chartered via
charting module user interface 446.

Having described the components of diagnostic system
400 used to collect the source data, generate a composite
index and any recommendations, and present the same to a
system administrator, the overall process performed by
system 400 1s described with reference to the flowchart of
FIG. 9 and the conceptual diagram of FIG. 5. Specifically,
FIG. 9 discloses the process steps performed by diagnostic
system 400 and 1ts component module 1n accordance with
the present invention for each of the processes monitored in
the network environment. It 1s contemplated within the
present imvention that multiple threads may be utilized to
achieve the desired frequency of evaluation based on the
number of processes to be monitored.

First, a system administrator designates, typically through
the user interface of server monitor tab module 428, that
he/she desires to monitor the health of one or more desig-
nated server processes. Collector task 405 will then be
initiated and collector module 402 begins to collects the
source data from a monitored process, as indicated 1n step
900. As described previously, the process of collecting
source data may mvolve eirther pulling data from the moni-
tored process by modules 402, and/or pushing of data from
the monitored process to modules 402. Next, the collected
source data 1s stored 1n memory and used to populate the
plurality of worksheets 415 used by analyzer module 404, as
indicated by step 902. Thereafter, the algorithmic formulas
associated with the worksheets 412 are used to compute the
individual values of all relevant component indexes, as
indicated by step 904. Thereafter, given the values of the

US 7,363,543 B2

37

component indexes, the value of a composite index 1is
generated using a weighing algorithm, as indicated by step
906. Next, 11 one or more of the component indexes indicates
a warning condition for the monitored server process, as
determined 1n decisional step 908, the values of the com-
ponent and composite indexes, as well as data identifying,
the monitored process and configuration data are applied to
the configuration truth table 414, as illustrated 1n step 909.
Next the recommendation codes identified by any true
conditions 1n configuration truth table 414 for the server
process 1n question are written into recommendation table
416 to identity a known condition and any associated
recommendations for resolving the known condition, as
indicated by step 910. Next, to the extent not already done
previously, the values of the relevant source data, configu-
ration data, composite and component indexes, and recom-
mendations, are stored 1n one or more memories or data-
bases for access by the administrative client module 406, as
indicated by step 912. Process steps 908-912 are repeated for
any warning conditions present in the configuration source
data, as well, although not shown in FIG. 9. Thereaiter, the
administration client module 406 responds to interactive
commands and queries through the various graphic user
interfaces generated thereby to present in a variety of
different displayed formats data relating to one or more of
the monitored servers, as indicated by step 914. 11 the system
administrator generates a health report for a specific server,
any recommendation codes within recommendation table
416 for the server process 1n question will be applied to the
comments truth table 415 and the corresponding text pre-
sented as part of the server health report or display.

It will be obvious to those reasonably skilled 1n the arts
that the various processes for collecting, computing, storing,
and displaying source data and recommendations, as
described herein, may be reordered without substantially
aflecting the results of the process.

A software i1mplementation of the above-described
embodiments may comprise a series of computer instruc-
tions either fixed on a tangible medium, such as a computer
readable media, e.g. diskette 142, CD-ROM 147, ROM 115,
or fixed disk 152 of FIG. 1A, or transmittable to a computer
system, via a modem or other interface device, such as
communications adapter 190 connected to the network 195
over a medium 191. Medium 191 can be either a tangible
medium, including but not limited to optical or analog
communications lines, or may be implemented with wireless
techniques, including but not limited to microwave, inirared
or other transmission techmques. The series of computer
instructions embodies all or part of the functionality previ-
ously described herein with respect to the invention. Those
skilled 1n the art will appreciate that such computer instruc-
tions can be written 1n a number of programming languages
for use with many computer architectures or operating
systems. Further, such instructions may be stored using any
memory technology, present or future, including, but not
limited to, semiconductor, magnetic, optical or other
memory devices, or transmitted using any communications
technology, present or future, including but not limited to
optical, infrared, microwave, or other transmission technolo-
gies. It 1s contemplated that such a computer program
product may be distributed as a removable media with
accompanying printed or electronic documentation, e.g.,
shrink wrapped software, preloaded with a computer system,
e.g., on system ROM or fixed disk, or distributed from a
server or electronic bulletin board over a network, e.g., the

Internet or World Wide Web.

10

15

20

25

30

35

40

45

50

55

60

65

38

Although various exemplary embodiments of the inven-
tion have been disclosed, 1t will be apparent to those skilled
in the art that various changes and modifications can be
made which will achieve some of the advantages of the
invention without departing from the spirit and scope of the
invention. For example, although the concepts of collecting
configuration and statistical data, analyzing the data and
providing recommendations have been described with ref-
erence to Domino server processes, such concepts may be
equally applicable to a client/server system in which the
server monitors the health of the client processes or 1n a
peer-to-peer system of servers or clients.

Further, many of the system components described herein
have been described using products from International Busi-
ness Machines Corporation. It will be obvious to those
reasonably skilled 1n the art that other components perform-
ing the same functions may be suitably substituted. Further,
the methods of the imnvention may be achueved in either all
soltware implementations, using the appropriate processor
instructions, or 1 hybrid implementations which utilize a
combination of hardware logic and software logic to achieve
the same results. Such modifications to the mventive con-
cept are mtended to be covered by the appended claims.

What 1s claimed 1s:

1. In a computer system operatively coupled to at least
one other computer system to be monitored, a method
diagnosing the performance health of the monitored com-
puter system comprising:

(A) obtaiming source data from the monitored computer
system, the source data defining configuration settings
and current values for a plurality of performance
parameters of the monitored computer system;

(B) deriving one or more indices from the source data,
cach imndex having a value within a predefined range of
values and associated with a performance parameter of
the momtored computer system;

(C) using the value of the at least one index and at least
a portion of the source data to 1dentify one of a plurality
of states as true, selected of the states having a diag-
nostic recommendation associated therewith; and

(D) displaying the diagnostic recommendation associated
with the identified state and the one of the indices.

2. The method of claim 1 wherein (A) comprises:

(A1) querying the monitored computer system for source
data.

3. The method of claim 1 wherein (A) comprises:

(A1) recerving source data from the momtored computer
system.

4. The method of claim 1 wherein (B) further comprises:

(B1) deniving a plurality of component indices from the
source data; and

(B2) deriving a composite index from the plurality of
component indices.
5. The method of claim 4 wherein (C) further comprises:

(C1) using the composite index as an mput condition mnto

a compilation of states.

6. The method of claim 1 wherein (D) further comprises:
(D1) providing access to the one or more of the indices.
7. The method of claim 1 wherein (D) further comprises:
(D1) providing access to the source data.

8. The method of claim 1 wherein (D) further comprises:
(D1) displaying any of the source data and configuration
settings associated with a monitored computer system.

9. The method of claam 1 wherein the compilation of
states comprises: a plurality of tables, each table comprising
a plurality of entries.

US 7,363,543 B2

39

10. The method of claim 9 wherein the plurality of tables
COmMprises:

a configuration truth table; and

a diagnostic recommendations table.

11. A computer program product for use with a computer
system operatively coupled to at least one other computer
system to be momtored, the computer program product
comprising a computer useable medium having embodied
therein program code comprising:

(A) program code for obtamning source data from the
monitored computer system, the source data defining a
current value for a plurality of performance parameters
of the monitored computer system:;

(B) program code for deriving one or more indices from
the source data, each index having a value within a
predefined range of values and associated with a per-
formance parameter of the monitored computer system;

(C) program code for using the value of the at least one
index and at least a portion of the source data to identity
one of a plurality of states as true, selected of the states
having a diagnostic recommendation associated there-
with;

(D) program code for providing access to the diagnostic
recommendations associated with an identified state
and the one of the indices.

12. The computer program product of claim 11 wherein

(A) comprises:

(Al) program code for querying the at least one other
computer system for source data.

13. The computer program product of claim 11 wherein

(A) comprises:

(Al) program code for receiving source data from the
monitored computer system.

14. The computer program product of claim 11 wherein

(B) further comprises:

(B1) program code for deriving a plurality of component
indices from the source data; and

(B2) program code for dertving a composite mndex from
the plurality of component indices.

15. The computer program product of claim 14 wherein

(C) further comprises:

(C1) program code for using the composite index as an
input condition 1nto the compilation of states.

16. The computer program product of claim 11 wherein

(D) turther comprises:

(D1) program code for providing access to the one or
more of the indices.

17. The computer program product of claim 11 wherein

(D) turther comprises:

(D1) program code for providing access to the source
data.

18. The computer program product of claim 11 wherein

(D) further comprises:

(D1) program code for displaying any of the source data
and settings associated with a monitored computer
system.

19. The computer program product of claim 11 wherein

the compilation of states comprises:

a plurality of tables, each table comprising a plurality of
entries.

20. The computer program product of claim 19 wherein

the plurality of tables comprises:

a configuration truth table; and

a diagnostic recommendations table.

21. Apparatus for use with a computer system operatively
coupled to at least one other computer system to be moni-
tored, the apparatus comprising:

10

15

20

25

30

35

40

45

50

55

60

65

40

(A) program logic, stored 1n a memory of said apparatus,
for obtaining source data from the monitored computer
system, the source data defining a current value for a
plurality of performance parameters associated with the
monitored computer system;

(B) program logic, stored in the memory, for deriving one
or more indices from the source data;

(C) the memory further storing a plurality of state situa-
tions entries, selected of the state situation entries
having a diagnostic recommendation associated there-
with;

(D) program logic, stored in the memory, for using the
value of the at least one index and at least a portion of
the source data to identify one of a plurality of state
entries as true; and

(E) program logic, stored in the memory, for displaying
diagnostic recommendations associated with an 1den-
tified state situation entry and the one of the indices.
22. The apparatus of claim 21 wherein (A) comprises:
(Al) program logic, stored 1in the memory, for querying

the at least one other computer system for source data.

23. The apparatus of claim 21 wherein (A) comprises:

(Al) program logic, stored 1in the memory, for receiving
source data from the monitored computer system.

24. The apparatus of claim 21 wherein (B) further com-

Prises:

(B1) program logic, stored in the memory, for deriving a
plurality of component indices from the source data;
and

(B2) program logic, stored in the memory, for deriving a
composite index from the plurality of component 1ndi-
ces.

25. The apparatus of claim 24 whereimn (D) further com-

Prises:

(D1) program logic, stored 1in the memory, for using the
composite index as an mput condition mto a compila-
tion of states.

26. The apparatus of claim 21 wherein (E) further com-

Prises:

(E1) program logic, stored 1n the memory, for providing
access to the one or more of the indices.

277. The apparatus of claim 21 wherein (E) further com-
Prises:

(E1) program logic, stored 1n the memory, for providing
access to the source data.

28. The apparatus of claim 21 wherein (E) further com-
Prises:

(E1) program logic, stored in the memory, for displaying
any ol the indices, source data and configuration set-
tings associated with a monitored computer system.
29. The apparatus of claim 25 wherein the compilation of

states comprises:

a plurality of tables, each table comprising a plurality of

entries.

30. The apparatus of claim 29 wherein the plurality of
tables comprises:

a configuration truth table; and

a diagnostic recommendations table.

31. A memory for storing data to be processed by a data
processing system including an apparatus for monitoring
and analyzing the performance of a process operatively
coupled to a data processing system, the memory compris-
ng:

a data structure stored in the memory and usable to
identily recommended diagnostic actions for aflecting
the performance of a process, the data structure com-
prising:

US 7,363,543 B2

41

(a) identification data identifying one of a plurality of
processes monitored by the data processing system, and

(b) a plurality of process state situation entries associated
with a monitored process identified by the i1dentifica-
tion data, each state situation entry having associated
therewith:

(1) an index having a value within a predefined range of
values and associated with a performance parameter
of the monitored process 1dentified by the i1dentifi-
cation data,

(11) configuration data identifying a configuration
parameter of the monitored process 1dentified by the
identification data, and

(111) recommendation data identifying at least one rec-
ommended diagnostic action to affect performance
ol a parameter of the monitored process 1dentified by
the identification data; and

program logic, stored in the memory, for displaying the
recommended diagnostic action i1dentified by the rec-
ommendation data and the index.

32. A memory for storing data to be processed by a data

processing system including an apparatus for monitoring,
and analyzing the performance of a process operatively

coupled to a data processing system, the memory compris-

ng:

a data structure stored in the memory and usable to
identify the performance health of a process, the data
structure comprising;:

5

10

15

20

25

42

(a) i1denftification data identifying one of a plurality of
processes monitored by the data processing system,

(b) a plurality component indexes, each of the component
indexes having a numeric value within a predefined
range ol values and associated with a performance
parameter of the monitored process 1dentified by the
identification data; and

(c) a composite index derived from the plurality of
component indices and indicating the overall perfor-
mance health of the monitored process 1dentified by the
identification data; and

program logic, stored in the memory, for displaying the
overall performance health of the monitored process
and the composite index.

33. The apparatus of claim 32 wherein one of the com-

ponent indexes 1s associated with performance parameter of
the monitored process selected from the group consisting of
processor utilization, memory utilization, disk utilization,
network utilization, mail delivery latency performance,

address resolution performance, server response, HTTP
response, LDAP response, and IMAP response.

	Front Page
	Drawings
	Specification
	Claims

