US007363463B2

a2 United States Patent (10) Patent No.: US 7.363.468 B2

Barrick et al. 45) Date of Patent: Apr. 22, 2008
(54) LOAD ADDRESS DEPENDENCY (38) Field of Classification Search None
MECHANISM SYSTEM AND METHOD IN A See application file for complete search history.
HIGH FREQUENCY, LOW POWER :
PROCESSOR SYSTEM (56) References Cited
U.S. PATENT DOCUMENTS
(75) " Inventors: Brian David Barrick, Pflugerville, TX 6,021,485 A * 2/2000 Feiste et al. ...c..co........ 712/216
(US); Kimberly Marie Fensler, Round 6,079,002 A * 6/2000 Thatcher et al. 711/169
Rock, TX (US); Dwain Alan Hicks, 6,226,713 B1* 5/2001 Mehrotraccc......... 711/118
Pflugerville, TX (US); David Scott 6,247,124 B1* 6/2001 Joshi et al. ..oovevere..... 712/240
Ray, Georgetown, TX (US); David 6,732,236 B2* 5/2004 Favorcccovevvinnnnn.. 711/118
2 2 . 2%
Shippy, Austin, TX (US); Takeki 2002/0091914 Al 7/2002 Merchant et al. 712/219
Osanai, Austin, TX (US) OTHER PUBLICATIONS
_ _ _ _ A Large, fast instruction window for tolerating cache misses by
(73) Assignee: International Business Machines Lebeck, A. R. et al. published 2002, ISBN: 0-7695-1605-x, (ICSA
Corporation, Armonk, NY (US) ’02), pp. 59-70.*

(*) Notice: Subject to any disclaimer, the term of this It DY CRIIIC

patent 1s extended or adjusted under 35 Primary Examiner—Hyung S. Sough
U.S.C. 154(b) by 337 days. Assistant Examiner—Kaushik Patel
(74) Attorney, Agent, or Firm—Carr LLP; D’ Ann N. Rifa1

(21) Appl. No.: 10/992,381
(57) ABSTRACT

(22) Filed: Nov. 18, 2004 The present invention provides for a method for a load

address dependency mechanism 1 a high frequency, low

(65) Prior Publication Data . . .
power processor. A load instruction corresponding to a
US 2006/0106987 Al May 18, 2006 memory address 1s recetved. At least one unexecuted pre-
ceding instruction corresponding to the memory address 1s
(51) Int. CL identified. The load instruction 1s stored 1n a miss queue.
GO6F 9/30 (2006.01) And the load 1nstruction 1s tagged as a local miss.
(52) US.CL ... 712/216;°712/217;,°712/219;
711/125;711/140 5 Claims, 2 Drawing Sheets
(" sTART)
l‘ NOTIFY IU OF
205~ INSTRUCTBI?’hIIURECEIVED 230~ INSTRUCTION
: COMPLETION
210~{ INSTRUCTION RECEIVED
BY XU
v
215-.
DECODE INSTRUCTION
225
LOAD EXECUTE INSTRUCTION
INSTRUCTION? g AS NORMAL "
NO
240~ EXECUTE INSTRUCTION
STORE AGTIVE? > ”?| AS NORMAL I
265~ EXECUTE LOAD
245~ IDENTIFY LOAD-HIT- INSTRUCTION
STORE DEPENDENCIES
250~]PASS LOAD INSTRUCTION
TO MISS QUEUE 26
DEPENDENCIES
l‘ NG CLEARED?
255~ TRACK DEPENDENCIES

U.S. Patent Apr. 22, 2008 Sheet 1 of 2 US 7,363,468 B2

12
INSTRUCTION

UNIT (IU)

I |
| 22 RECEIVED I
! INSTRUCTION |
| ANALYSIS |
‘ |
l 42 ‘

‘ 24
| MISS DEP. STORE |
| A0 QUEUE TRACKING QUEUE :
l [
| : 26 |
| INSTRUCTION) |
I EXECUTION MODULE ‘
-V |
: | ,
| COMPLETED / RETIRED [~4° EG‘E%‘&'S)N |
‘ INSTRUCTION MODULE 5 |
T |
T |

30 B
CACHE /
MEMORY \R\
10

FIG. 1

U.S. Patent Apr. 22, 2008 Sheet 2 of 2 US 7,363,468 B2

TN
START FIG. 2
20 ION RECEIVED 23 NOTIFY IU OF
INSTRUCTBg U J INSTRUCTION
COMPLETION

21

INSTRUCTION RECEIVED
BY XU

21
‘ DECODE INSTRUCTION l

22C 99
LOAD

INSTRUCTION?

EXECUTE INSTRUCTION
AS NORMAL

NO

YES

240~] EXECUTE INSTRUCTION

STORE ACTIVE? 0 | AS NORMAL

YES
26 EXECUTE LOAD
24 IDENTIFY LOAD-HIT- INSTRUCTION
STORE DEPENDENCIES
YES

250-{PASS LOAD INSTRUCTION
TO MISS QUEUE

255~ TRACK DEPENDENCIES

DEPENDENCIES

O CLEARED?

200

UsS 7,363,468 B2

1

LOAD ADDRESS DEPENDENCY
MECHANISM SYSTEM AND METHOD IN A
HIGH FREQUENCY, LOW POWER
PROCESSOR SYSTEM

TECHNICAL FIELD

The present mvention relates generally to the field of
computer processor instruction sequencing and, more par-
ticularly, to a load address dependency mechanism system
and method 1n a high frequency, low power processor
system.

BACKGROUND OF THE INVENTION

A common problem found in high performance micro-
processor designs 1s detecting and handling load address
dependencies, and in particular, load and store memory
address conflicts. Generally, a load and store memory
address conflict occurs when a load instruction follows a
store 1struction directed to the same memory address, and
the store instruction has not yet been committed to memory
or otherwise cleared. A load and store memory address
conilict 1s typically referred to as a “load-hit-store” condi-
tion. Another load address dependency 1s a load and reload
memory address conflict. Generally, a load and reload
memory address conflict occurs when a load instruction
follows an earlier load, or reload, instruction directed to the
same memory address, and the earlier load instruction has
not yet been executed or otherwise cleared. A load and
reload memory address contflict 1s typically referred to as a
“load-hit-reload” condition. It will be understood to one
skilled 1n the art that, generally, a load-hit-reload condition
can be an address collision with an older load-type operation
that has not yet executed, and that a load-type operation can
include any operation that is operable to read data into the
processor, whether to be employed by software or stored in
a cache.

Several approaches have been undertaken to address load
address dependencies, and 1n particular load-hit-store con-
ditions. In typical low frequency designs, one approach 1s to
employ a handshake mechanism between a Load/Store Unait
(LSU) and the 1ssue logic that allowed the LSU to stall 1n
response to a load-hit-store condition. However, the LSU
handshake mechanism 1s not effective 1n higher frequency
designs.

One approach to handle load-hit-store conditions in a high
frequency design 1s to employ an 1ssue queue 1n the 1ssue
logic to 1ssued load/store instructions that have been sent to
the LSU. When the LSU detects a load-hit-store condition,
the offending instruction 1s rejected back to the 1ssue logic,
typically through a reject signal sent from the LSU to the
1ssue queue. The 1ssue queue then re-1ssues the offending
instruction 1n a later load/store pipeline slot. However, this
approach typically requires a complex 1ssue queue mecha-
nism, which incurs relatively high hardware size and power
COsts.

Therelore, there 1s a need for a system and/or method for
a load address dependency mechanism in a high frequency,
low power processor system that addresses at least some of
the problems and disadvantages associated with conven-
tional systems and methods.

SUMMARY OF THE INVENTION

The present ivention provides for a method for a load
address dependency mechanism 1 a high frequency, low

10

15

20

25

30

35

40

45

50

55

60

65

2

power processor. A load instruction corresponding to a
memory address 1s received. At least one unexecuted pre-
ceding 1nstruction corresponding to the memory address 1s
identified. The load instruction 1s stored 1n a miss queue.
And the load instruction 1s tagged as a local miss.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present mven-
tion and the advantages thereof, reference 1s now made to
the following descriptions taken in conjunction with the
accompanying drawings, in which:

FIG. 1 1s a block diagram depicting a load address
dependency mechanism 1 a high frequency, low power
processor system; and

FIG. 2 1s a flow diagram depicting a load address depen-
dency mechanism method 1n a high frequency, low power
processor system.

DETAILED DESCRIPTION

In the following discussion, numerous specific details are
set forth to provide a thorough understanding of the present
invention. However, those skilled 1in the art will appreciate
that the present invention may be practiced without such
specific details. In other instances, well-known elements
have been 1llustrated in schematic or block diagram form in
order not to obscure the present invention in unnecessary
detail. Additionally, for the most part, details concerning
network communications, electromagnetic signaling tech-
niques, user interface or mput/output techniques, and the
like, have been omitted inasmuch as such details are not
considered necessary to obtain a complete understanding of
the present invention, and are considered to be within the
understanding of persons of ordinary skill in the relevant art.

It 1s further noted that, unless indicated otherwise, all
functions described herein may be performed in either
hardware or software, or 1n some combinations thereof. In a
preferred embodiment, however, the functions are per-
formed by a processor such as a computer or an electronic
data processor 1n accordance with code such as computer
program code, software, and/or integrated circuits that are
coded to perform such functions, unless indicated otherwise.

Referring to FI1G. 1 of the drawings, the reference numeral
10 generally designates a group of components of a high
frequency, low power microprocessor core. Core 10 includes
instruction umt (IU) 12. IU 12 1s a circuit or circuits or other
suitable logic and 1s configured to receive load and store
instructions. In particular, IU 12 receives load and store
instructions from an executing program, identifies an appro-
priate execution unit (XU) to execute the instruction,
receives notification from the XU when the instruction has
been executed, and notifies or otherwise interfaces with the
executing program based on the completed execution of the
instruction, as will be understood to one skilled in the art. It
will be understood to one skilled in the art that load
istructions can include software and/or hardware prefetch
requests.

In the illustrated embodiment, IU 12 1s coupled to execu-
tion umt (XU) 20. XU 20 1s a circuit or circuits or other
suitable logic and, generally, 1s configured to receive, pro-
cess, and execute load and store 1nstructions, as described 1n
more detail below. Generally, as used herein, an execution
unit 1s a generic functional unit. It will be understood to one
skilled in the art that an execution unit can include a
Load/Store Unit (LSU), a Fixed Point Unit (FXU), a Float-
ing Point Unit (FPU) and/or other suitable sub-units. In

UsS 7,363,468 B2

3

particular, XU 20 includes received instruction analysis
module 22. Received instruction analysis module 22 1s a
circuit or circuits or other suitable logic and 1s configured to
recetve load and store instructions from IU 12, decode
received load and store instructions to i1dentify associated
memory addresses, and to pass recerved instructions for
processing and execution, as described 1n more detail below.

In particular, mn the illustrated embodiment, receirved
instruction analysis module 22 1s configured to determine
whether a received 1nstruction 1s a load or store instruction.
It the received instruction i1s a store instruction, received
instruction analysis module 22 1s configured to pass the
received store instruction to store queue 24. Store queue 24
1s a circuit or circuits or other suitable logic and 1s config-
ured to receive store instructions from received instruction
analysis module 22, and to pass received store instructions
to 1nstruction execution module 26 generally 1n the order
they are received from received struction analysis module
22. Accordingly, store queue 24 1s also configured to hold or
otherwise store receirved store instructions for subsequent
transmission to instruction execution module 26, as will be
understood to one skilled in the art.

If the received instruction 1s a load instruction, receirved
instruction analysis module 22 1s configured to determine
whether there 1s an uncleared dependency for the load
instruction, that 1s, whether the load mstruction 1s subject to
a load address dependency. Generally, received 1nstruction
analysis module 22 determines the memory address associ-
ated with the load 1nstruction, and searches store queue 24
for unexecuted or otherwise uncleared store instructions
with the same associated memory address. In an alternate
embodiment, received instruction analysis module 22 1s also
configured to 1dentily whether the load mstruction contlicts
with a previously i1ssued load struction, that 1s, whether a
load-hit-reload condition exists. It will be understood to one
skilled in the art that other configurations can also be
employed. If the load instruction 1s not subject to an
uncleared dependency, received instruction analysis module
22 1s configured to pass the load instruction to instruction
execution module 26.

Instruction execution module 26 1s a circuit or circuits or
other suitable logic and 1s configured to receirve load and
store 1nstructions for execution, to execute received load and
store 1nstructions through access to or otherwise interaction
with cache/memory module 30, and to pass completed or
otherwise retired 1nstructions to completed/retired 1nstruc-
tion module 28, as will be understood to one skilled 1n the
art. Cache/memory module 30 1s a circuit or circuits or other
suitable logic and 1s configured to store and retrieve data 1n
response to mstructions from instruction execution module
26, as will be understood to one skilled in the art. Com-
pleted/retired instruction module 28 1s coupled to IU 12 and
1s configured to receive completed or otherwise retired
istructions from instruction execution module 26, and to
generate an istruction completion signal based on received
completed/retired instructions, or otherwise to notity 1U 12
that the received 1nstruction has been executed, as will be
understood to one skilled 1n the art.

If the load instruction under inspection by receirved
instruction analysis module 22 1s subject to an uncleared
load address dependency, received instruction analysis mod-
ule 22 1s configured to pass the load instruction to miss
queue 40 and to generate a miss signal or otherwise notily
IU 12 that the load instruction has resulted 1n a “local miss.”
Generally, as will be understood to one skilled 1n the art,
from the perspective of IU 12, a local miss appears as a level
one (LL1) cache lookup miss. Thus, XU 20 1s configured to

10

15

20

25

30

35

40

45

50

55

60

65

4

handle a load-hit-store condition without rejecting the
offending 1nstruction back to the IU or requiring a handshake
mechamsm with IU 12.

In one embodiment, when a load address dependency 1s
detected, received instruction analysis module 22 1s config-
ured to tag or otherwise mark the load instruction as a local
miss and to pass the tagged load instruction to miss queue
40. In a particular embodiment, received istruction analysis
module 22 1s configured to set one or more “wait” or
“dependency” bits of the load nstruction to embed the
dependency mformation within the load instruction. In an
alternate embodiment, recerved instruction analysis module
22 passes the load instruction to miss queue 40 without
modification. In an alternate embodiment, received 1nstruc-
tion analysis module 22 passes dependency information for
the load instruction to dependency tracking module 42. It
will be understood to one skilled in the art that other
confligurations can also be employed.

Maiss queue 40 1s a circuit or circuit or other suitable logic
and 1s configured to receive dependent load instructions
from received instruction analysis module 22, to store
received load instructions, and to receive associated depen-
dency mformation from dependency tracking module 42.
Generally, dependency information 1s information 1dentify-
ing one or more previously issued uncleared store/reload
commands with the same associated memory address as the
subject load nstruction. It will be understood to one skilled
in the art that dependency information can also include
information identifying one or more previously issued
uncleared load commands with the same associated memory
address as the subject load instruction.

Dependency tracking module 42 1s a circuit or circuits or
other suitable logic and 1s configured to receive dependency
information associated with load instructions in miss queue
40, and to track received dependency information. In one
embodiment, dependency tracking module 42 1s configured
to track or otherwise monitor store instructions in store
queue 24 on which load instructions 1n miss queue 40 are
dependent. In an alternate embodiment, dependency track-
ing module 42 1s also configured to track or otherwise
monitor load instructions 1n miss queue 40 and/or istruction
execution module 26 on which load instructions in miss
queue 40 are dependent. In a particular embodiment, depen-
dency tracking module 42 1s configured to reset a tag or
other mark of the load 1nstructions in miss queue 40. In an
alternate embodiment, dependency tracking module 42 1is
coniigured to reset one or more “wait” or “dependency” bits
of the load instruction, when the dependency is cleared, to
embed the cleared dependency information within the load
istruction.

Thus, dependency tracking module 42 can be configured
to monitor load address dependencies for instructions stored
in miss queue 40. In one embodiment, dependency tracking
module 42 1s configured to determine whether a load 1nstruc-
tion stored 1n miss queue 40 1s the oldest, or otherwise
carliest-issued 1instruction, of the instructions remaining in
store queue 24 and miss queue 40. If the load instruction 1s
the oldest instruction, dependency tracking module 42 1s
configured to clear the associated dependencies and miss
queue 40 passes the load nstruction to received instruction
analysis module 22 for pre-execution processing.

In an alternate embodiment, dependency tracking module
42 1s configured to identily each dependency for a load
instruction stored i miss queue 40, and to determine
whether each and every identified dependency is cleared. IT
cach and every identified dependency 1s cleared, depen-
dency tracking module 42 1s configured to clear the associ-

UsS 7,363,468 B2

S

ated dependencies and miss queue 40 passes the load
instruction to received instruction analysis module 22 for
pre-execution processing.

In an alternate embodiment, dependency tracking module
42 1s configured to i1dentify at least one dependency for a
load 1nstruction stored 1n miss queue 40, and to determine
whether the i1dentified dependency 1s cleared. If the i1denti-
fied dependency 1s cleared, dependency tracking module 42
1s configured to determine whether any additional depen-
dencies for the load mstruction exist. If no additional depen-
dencies for the load instruction exist, or all additional
dependencies are also cleared, dependency tracking module
42 1s configured to clear the associated dependencies and
miss queue 40 passes the load instruction to received
instruction analysis module 22 for pre-execution processing.
It will be understood to one skilled 1n the art that other
configurations can also be employed.

In the 1llustrated embodiment, miss queue 40 1s config-
ured to return a cleared load instruction to received instruc-
tion analysis module 22 for subsequent return to the ordinary
instruction pipeline. In an alternative embodiment, miss
queue 40 can be configured to pass a cleared load instruction
to 1struction execution module 26 for execution. It will be
understood to one skilled 1n the art that other configurations
can also be employed.

It will be understood to one skilled 1n the art that many
microprocessor core systems include a local load miss
queue. Thus, core 10 can be configured to provide a cost
ellective and high frequency mechanism 1n a load-store unit
(LSU) that employs an existing load miss queue to handle
load address dependencies. As described in more detail
above, a load instruction 1s 1ssued to the LSU and an address
compare 1s performed against outstanding stores/reloads. If
a hit occurs, the load 1s places 1n the LSU miss queue and
treated as a “local miss.” Thus, core 10 avoids a handshake
with IU 12, other than to indicate a “miss” signal. Moreover,
the present invention does not require any form of an 1ssue
queue. Thus core 10 can be configured to reduce processing
speed degradation caused by returning load address depen-
dent 1instructions to IU 12, which can increase overall
processor performance.

Referring to FIG. 2 of the drawings, the reference numeral
200 generally designates a flow diagram depicting the
operation of a load address dependency mechanism 1n a high
frequency, low power processor system. The process begins
at step 205, wherein an instruction 1s recerved. This step can
be performed by, for example, IU 12 of FIG. 1. This step can
also 1nclude decoding the recerved instruction, 1dentifying
the appropriate execution unit (XU) to execute the mnstruc-
tion, and passing the received instruction to the i1dentified
XU. At next step 210, the instruction 1s received by the XU.
This step can be performed by, for example, XU 20 of FIG.
1.

At next step 2135, the received instruction 1s decoded. This
step can be performed by, for example, XU 20, and 1n
particular, received 1nstruction analysis module 22 of FIG. 1.
At next decisional step 220, a determination 1s made whether
the decoded 1nstruction 1s a load 1nstruction. This step can be
performed by, for example, received instruction analysis
module 22 of FIG. 1. It at decisional step 220 the decoded
instruction 1s not a load istruction, the process continues

along the NO branch to step 225. At step 225, the decoded
instruction 1s executed as normal, as will be understood to

one skilled in the art. This step can be performed by, for
example, mstruction execution module 26 of FIG. 1. At next
step 230, the IU 1s notified that the instruction has been
executed or otherwise completed, as will be understood to

10

15

20

25

30

35

40

45

50

55

60

65

6

one skilled in the art. This step can be performed by, for
example, completed/retired instruction module 28 of FIG. 1.
The process returns to step 203.

I1 at decisional step 220 the decoded instruction 1s a load
instruction, the process continues along the YES branch to
decisional step 235. At decisional step 235, a determination
1s made whether there are active store instructions with the
same associated memory address as the decoded load
istruction. This step can be performed by, for example,
received 1nstruction analysis module 22 of FIG. 1. It will be
understood to one skilled in the art that this step can also
include 1dentitying whether there are active reload instruc-
tions with the same associated memory address as the
decoded load instruction. For ease of illustration, the
remainder ol the process will be described with respect to
load-hit-store load address dependencies. If at decisional
step 233 there are no active store instructions with the same
associated memory address as the decoded load instruction,
the process continues along the NO branch to step 240. At
step 240, the decoded instruction 1s executed as normal, as
will be understood to one skilled 1n the art. This step can be
performed by, for example, instruction execution module 26
of FIG. 1. At next step 230, the IU 1s notified that the
instruction has been executed or otherwise completed, as
described above. The process returns to step 205.

IT at decisional step 235 there are active store instructions
with the same associated memory address as the decoded
load 1nstruction, the process continues along the YES branch
to step 245. At step 245, load-hit-store dependencies, the
active 1nstructions with the same associated memory address
as the decoded load 1nstruction, are identified. This step can
be performed by, for example, dependency tracking module
42 of FIG. 1. At next step 250, the decoded load nstruction
1s passed to a miss queue. This step can be performed by, for
example, recerved istruction analysis module 22 of FIG. 1.
This step can also include moditying or tagging the decoded
load 1nstruction to reflect the 1dentified dependencies.

At next step 255, the identified dependencies are tracked.
This step can be performed by, for example, dependency
tracking module 42 of FIG. 1. As described above, this step
can include determining whether the decoded load nstruc-
tion 1s the oldest unexecuted instruction 1 the XU. This step
can also include modifying or tagging the decoded load
instruction to retlect any 1dentified dependencies that have
cleared. At next decisional step 260, a determination 1s made
whether the identified dependencies have been cleared. This
step can be performed by, for example, dependency tracking
module 42 of FIG. 1. It will be understood to one skilled in
the art that this step can include determining whether each
and every i1dentified dependency 1s cleared. If at decisional
step 260 the identified dependencies have not been cleared,
the process continues along the NO branch, returning to step
255. It at decisional step 260 the identified dependencies
have been cleared, the process continues along the YES
branch to step 265.

At next step 2635, the decoded load instruction 1s executed.
This step can be performed by, for example, nstruction
execution module 26 of FIG. 1. The process continues to
step 230, wherein the IU 1s notified that the mstruction has
been executed, and the process returns to step 205. Thus, the
illustrated process can be employed to handle load-hit-store
and load-hit-reload conditions without requiring an 1ssue
queue 1n the IU, thereby reducing processing speed degra-
dation caused by returning load-hit-store/reload condition
instructions to the IU, which can increase overall processor
performance.

UsS 7,363,468 B2

7

The particular embodiments disclosed above are 1llustra-
tive only, as the invention may be modified and practiced in
different but equivalent manners apparent to those skilled 1n
the art having the benefit of the teachings herein. Further-
more, no limitations are intended to the details of construc-
tion or design herein shown, other than as described 1n the
claims below. It 1s therefore evident that the particular
embodiments disclosed above may be altered or modified
and all such variations are considered within the scope and
spirit of the mvention. Accordingly, the protection sought
herein 1s as set forth in the claims below.

What 1s claimed 1s:

1. A method for a load address dependency mechanism 1n
a high frequency, low power processor comprising an
instruction umt and an execution unit, the method compris-
ng:

receiving, by the execution unit from the mstruction unit,

a load instruction corresponding to a memory address;
wherein the execution unit comprises a miss queue and an
instruction execution module (IEM);

determining, by the execution unit, whether there 1s at

least one unexecuted preceding 1nstruction correspond-
ing to the memory address 1n the IEM;

in the event there 1s at least one unexecuted preceding

instruction corresponding to the memory address 1n the
IEM, indicating, by the execution unit to the instruction
umt, a local cache miss corresponding to the load
instruction;

10

15

20

25

8

storing the load instruction in the miss queue;
tagging the load instruction as a local miss;

determiming whether every one of the at least one unex-
ecuted preceding instructions have been executed; and

in the event every one of the at least one unexecuted
preceding instructions have been executed, storing the
load 1instruction in the IEM for execution.

2. The method as recited in claim 1, wherein the at least

one unexecuted preceding instruction corresponding to the
memory address 1s a store instruction.

3. The method as recited in claim 1, wherein the at least
one unexecuted preceding instruction corresponding to the
memory address 1s also a load instruction.

4. The method as recited 1n claim 1, wherein determining,
whether the at least one unexecuted preceding instruction
has been executed comprises determining whether there are
any unexecuted instructions older than the load instruction
pending 1n the execution unit.

5. The method as recited 1n claim 1, further comprising
determining whether there are additional unexecuted pre-
ceding instructions corresponding to the memory address.

	Front Page
	Drawings
	Specification
	Claims

