12 United States Patent
Kryzak et al.

US007362864B2

US 7,362,864 B2
Apr. 22, 2008

(10) Patent No.:
45) Date of Patent:

(54) FRAMING OF TRANSMIT ENCODED DATA
AND LINEAR FEEDBACK SHIFTING

(75) Inventors: Joseph Neil Kryzak, Ames, IA (US);
Aaron J. Hoelscher, Ankeny, 1A (US)

(73) Assignee: Xilinx, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 870 days.

(21) Appl. No.: 10/659,979

(22) Filed: Sep. 11, 2003

(65) Prior Publication Data
US 2005/0058290 Al Mar. 17, 2005

(51) Int. CL.
HO4L 9/00 (2006.01)

(52) US.CL ..., 380/268; 380/261; 380/260

(58) Field of Classification Search 380/268,

380/255, 265, 260, 261
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,667,305 A 5/1987 Dill et al.

5,561,714 A
5,659,718 A

FOREIGN PATENT DOCUMENTS
EP 1 133 124 A2

OTHER PUBLICATIONS

10/1996 Hershberger
8/1997 Osman et al.

9/2001

Key distribution scheme based on two cryptosystems for hierarchi-
cal access control Bing Hu; Wu Ye; Sui-Li1 Feng; Xiao-Liang Wang;

received code word 160

Xing Xie; Advanced Communication Technology, 2006. ICACT
2006. The 8th International Conference vol. 3, Feb. 20-22, 2006.*

Scrambling and key distribution scheme for digital television
Kanjanarin, W.; Amornraksa, T.; Networks, 2001. Proceedings.

Ninth IEEE International Conference on Oct. 10-12, 2001 pp.
140-145.*

On Compression of Encrypted Video Schonberg, D.; Chuohao Yeo;
Draper, S.C.; Ramchandran, K.; Data Compression Conference,
2007. DCC ’07 Mar. 27-29, 2007 pp. 173-182.%

(Continued)

Primary Examiner—David Jung
(74) Attorney, Agent, or Firm—Timothy W. Markison;
LeRoy D. Maunu

(57) ABSTRACT

Framing transmit encoded output data begins by determin-
ing a scrambling remainder between scrambling of an 1nput
code word in accordance with a 1% scrambling protocol and
the scrambling of the input code word 1n accordance with an
adjustable scrambling protocol. The processing continues by
adjusting the adjustable scrambling protocol based on the
scrambling remainder to produce an adjusted scrambling
protocol. The processing continues by scrambling the input
code word in accordance with the 1% scrambling protocol to
produce a 1% scrambled code word. The processing contin-
ues by scrambling the input code word 1n accordance with
the adjusted scrambling protocol to produce a scrambled
partial code word. The processing continues by determining
a portion of the 1* scrambled code word based on the
scrambling remainder. The process continues by combining,
the scrambled partial code word with the portion of the 1%
scrambled code word to produce the transmit encoded
output data.

22 Claims, 10 Drawing Sheets

(N/2)-bits I (m + N/2)-bits i

______ _______

_____________ _______.

N/2 <.

scrambled code word

| |
| |
| | scramble module framing |
e o oot |
: (N/2)-bits :
l l
| |
l |

de-scramble module 88

s s oo e Eae s B B EEE DN EE e wll

elastic storage
buffer 92

(m + N/2)-bits L
of descrambled
code word

Nb/(N+m)b
decode 98
N2 4

§

decoded data 162

US 7,362,864 B2

Page 2
OTHER PUBLICATIONS U.S. Appl. No. 10/659,971, filed Sep. 11, 2003, Boecker et al.
U.S. Appl. No. 10/660,254, filed Sep. 11, 2003, Groen et al.

Encrypted video over TETRA Samarakoon, M.I.; Honary, B.; U.S. Appl. No. 10/661,016, filed Sep. 11, 2003, Groen et al.
Rayne, M.; Tetra Market and Technology Developments (Ref. No. U.S. Appl. No. 10/659,972, filed Sep. 11, 2003, Shafer.
2000/007), IEE Seminar on Feb. 10, 2000 pp. 3/1-3/5.% U.S. Appl. No. 10/659,974, filed Sep. 11, 2003, Kryzak et al.
A fast video encryption scheme suitable for network applications U.S. Appl. No. 10/660,159, filed Sep. 11, 2003, Groen et al.
Shiguo Lian; Zhiquan Wang; Jinsheng Sun; Communications, Cir- U.S. Appl. No. 10/660,016, filed Sep. 11, 2003, Jenkins.
cuits and Systems, 2004. ICCCAS 2004. 2004 International Con- U.S. Appl. No. 10/659,973, filed Sep. 11, 2003, Groen et al.
ference on vol. 1, Jun. 27-29, 2004 pp. 566-570 vol. 1.* U.S. Appl. No. 10/660,190, filed Sep. 11, 2003, Groen.
U.S. Appl. No. 10/660,234, filed Sep. 11, 2003, Boecker. U.S. Appl. No. 10/659,916, filed Sep. 11, 2003, Black et al.
U.S. Appl. No. 10/660,449, filed Sep. 11, 2003, Cory et al. U.S. Appl. No. 10/659,978, filed Sep. 11, 2003, Groen et al.
U.S. Appl. No. 10/660,191, filed Sep. 11, 2003, Kryzak et al. U.S. Appl. No. 10/660,235, filed Sep. 11, 2003, Boecker et al.
U.S. Appl. No. 10/660,062, filed Sep. 11, 2003, Groen et al. U.S. Appl. No. 10/659,966, filed Sep. 11, 2003, Chuang et al.
U.S. Appl. No. 10/660,448, filed Sep. 11, 2003, Groen et al. U.S. Appl. No. 10/660,243, filed Sep. 11, 2003, Shafer et al.
U.S. Appl. No. 10/659,803, filed Sep. 11, 2003, Black et al.
U.S. Appl. No. 10/659,819, filed Sep. 11, 2003, Groen et al. * cited by examiner

XY X1 Or 9J1A p oiboj
SqemmeIboid
- Tenbd

82 (1DNd)

US 7,362,864 B2

J8AI9ISUR))
}Iqebib-ninw
a|jgewwe.lboid

Sheet 1 of 10

O£ 8|NpPOoW |0J]U0?

Apr. 22, 2008

02 (1DNd)
JOAI20SURl)

Nqebib-nw
a|gewwesboid

X4 X1

U.S. Patent

Xd X1 Xd XL
! 1 |

oc (LOWd) 2 (LONJ)
19AI90SURl] 19AIB0SURI]

Nqebib-ynw JIqebib-pinw
a|qewwesbosd s|qewwesbo.d

| 1 | |

Z | ouqe) a1boj sjqewwesboid

-

gL (1DNd)
JoAIdIsSUR))

9l (19DNd)

19AI189SURl}
jigqebib-inuw
ajqewwelbo.d

1qebib-nnuw
a|qewwe.bo.id

Xd X1 Xd X1

Xd X1

2e (LONd)
laAI8osUel)

Hgebib-nnw
ajqewwelbold

t1L (1D9Nd)
J9AI90SURI]

Jiqebib-ninw
a|gewwesbosd

X4 X1

US 7,362,864 B2

Sheet 2 of 10

Apr. 22, 2008

U.S. Patent

programmable
logic fabric 12

|

programmabile interface 36

QG Buiyjas asepuaul 2160)

GE 9|npow |0JJu0d

29 bumaes aoepnaul
09 Bumes aoeuaul| SOd VIN 8AI8d8)

SOd VIAd lwsuel

GG J81s1bai SO d

9G SpiOMm Elep XY 4 9|npow

(™11 s9Dd °envoal

a|qewwe.boud

9 buipnes
uonezijeuss pawwesbdosd

¢ Sinpowl

Soduwsuen [=% vIAd

9b SPIOM ﬂmu X1 d|qewweiboid | | g4 ejep jojesed X1

ve (SDd) 1eAe|gns
Buipod jesisAyd
a|qewwe.sbo.d

g9 buipes uoljezijesassap
pawwesbo.d

Gt J9)sibal buiddew
Asowawl <_>_n_

G elep |9jeied XY — Ot sinpow -
(— 11 YINd aniedal

a|qewwesbo.d

g¢ aInpowl

a|qewwelbo.d

28 (VINd) luswyodeye
eipaw |edisAyd
sjgqewwelbo.d

3[gewwelboa

¢ 9nbij

Jwsues

RX serial

TX serial

data 52

data 50

US 7,362,864 B2

Sheet 3 of 10

Apr. 22, 2008

U.S. Patent

RX data words 56

29 bumes

e
RX CRC 100

Nb/(N+m)b
decode 98

9/ Iinpow
AJLUBA pue 8podap
a|qewweldo.d

v 8|hpoll

3d Al O 1 |[qewiuiel

€ 9JNbIJ

29 Bbumaes

ey ek ool . . T A A T A el alagy seeas el S -

elastic storage
buffer 92

{6 Buipuoq

ljauueyo

7/ djnpow abeio)s
a|qewwe.iboid

29 bumes

de-scramble
module 88

C—

8b/10b
decode 86

2/ 8npow aposap
pue a|quieiosep
a|qewwelbold

I WeEes pppees maaas wikishk G EEEEE R S Sl . G S S S -

L . S SIS ems annkbi A N A AR S sl bl S S

1]

block sync 82

. value detect
| realign 80

8L
auIydew ajels JUAS

0/ @|npow juswubje
ejep 9|qewwelboid

RX parallel data 54

lock

21| 9|npow 9poousd AjuoA 9|qewwelbo.ld

a|qewwelboid
11 a|npow abe.ols

ajgqerwwesbo.d

gl anpow
Buljquelds s|qewwesboid

)
= ¢ 9[npolll
W §5d NIWSUEI] [qelwielbol
o S|0J3U0D § 9Inbij
&
“
= A ittt
¢ p _
_ w
- " Q2
| o O 5
" S
_ E2 TR = 09 Bupes 09 Bumes
“ 38 _
S _ E b B 7
— | | |
_ e, |
e 0 | _
9 _ IR
: M “ M _ Bmw...,ﬂ _ mu _
-+ o — |
s ke _ m _ | | I zZ _ | “
s || O o “ B <o B _
or P ¢ “ p I E S _ _ _ _
S _ . _ 3 i @ "
] | _ < _ =
e _ | _
g _ | _ N |
. | Qo | Q |
= “ o | (— © o | “ (—] & _
< | & © B S 6 Ly O |
| S B S | - |
_ ' O |
| 2571 X |
_ 2| ! orLempow
| O 1 | _ _
| | | _
| B _
| ol _
_ _
_ _
_ _

U.S. Patent

TX data words 46

BJep P poou

-

aa

>

M, g¢7L PJOM 8pOI Jlwsues G 2InbiJ

A 19-(w+N) Jo uoiod

M ,- PIOM 8p02

- ~ 2N pPa|qWBldS
sig-(2/N)

v 1 9|npoul
SuIwE) (|

2 L SJudjuoo abelols oisele

Sheet 5 of 10

T O N v

Apr. 22, 2008

-3

)
Ot | 19S50 HIYS \

U.S. Patent

arwel)

4!
a|NpowW 8|quIBIdS

ﬂ S1g-(2/N)

82l 1/vng
obr.o)s ol)se|d

PJOM 89P0 Indul JO
T sHa-(e/N + w)

22| 9poousd

q(w+N)/aN

1

~ 2N

b1 €lep Indul 1g-N

9|0A0 Jad 9)Aq | paniwsuel) SPJOM 8p0d JWISUe)) Ig-/ | o [BABjUl Indino

]
a'a
M
m, 0°0] e -4 w1 .0l e1-0S
NS 9'0] qL-N4 er-os | 2 | 120l 91-98 SpIOM BPOD
m., G'0l e2-N4 “w | [2]q1-0S | € /'0] 2-0S SIQUIBIOS 1
; 0] U2-IN4 7'9lezos | v [[Zolag-ns | PP 1991
- 0] BS-N4 “w | [z9lag-0s | s | [0l ee-08
#'0] Q-4 /'Gl eg-08s 9 /'0] q8-DS
r i ; —_— mw—."Z hon—
0] BN “w | [Z'Slag-0s . [TZoleyr-0s H=t pu
0] Ob-I\ 7Y e5-0S 9 70] G5-0S 2 |1 Sjusjuod abeiols ase|d
2'0) eg-nN4 W L'v1ap-0S 6 | [20]e5-0S .| (sugg) ai |x| (suqg)er |w
¢ 0] Qg-N4 L'l eG-0S Ol .'01 QG-0S i " E
o Foleo-Nd | W L€135-0S L [Troeeos] ¢ (aelde x| (uaglee lw
- 1‘0] 99-N4 /2l e9-08 2t | [0l q9-08 | (swag)ag [x| (suas)ee |w
< - [ojez-Nd | W /'2lag-0s et | lz'0jes-08 o °
- olasnd | = lziles3s 00202 [vb] 12014208 : ¢
> w2 aeos 1 sH| [Z'0leg-0s
= s o Frorasos—1 2[Guagaz [x[suasies [w
£'0] 98-0S L] dis | gl (snag)ag [x| (suag)es |w!
9'0] eL-Nd gL | l2'0jel-0S (@) ()
" 9'0] qL-N4 6. | [20] 91-0S
S —_— N
“ g SIg-g1
) 6
e €1 9npow ¢€ 1 9|npowl
= Buiwe.) ~ (smqg)er |w] | (sugg)el a|quiesds
< o suqg) ai | x Sig 8) qi o
~(swgg)eg |w SHq 8) ez
sugg)aeg | x S1q 8) 42
N ® u - gjep bulwed] Jo ajduiex
= 3 . . 15 9 3IMbl
= w ~_(sugg)eg __(suagjeg | O
== I s)g 8) a8 slq 8) a8 =
. T ~ (suag)elL - (suqg)ep
& S1q 8) qi ~ (s¥q8) gL
-

0S| Je|qWeIDS 3INPOLW awely

Tpanunuod

US 7,362,864 B2

_

_ |

_ |

“ ¢Gl uondun} 4s4 _ ejep buillel] jJo ajdwuexs

_ " Z3imo!

“. - ||“ g ; £ b £ I i

50 ‘0L ‘og ‘o 'op '0G'09 'dL 8l

<dpjs> Ll
<dpys> ol

owE,_;mEﬁNwEﬁmmEﬁmeh_meh.meu_._._w mp ,..,_h.
Qwis ‘LWSs ‘Zws ‘gws ‘pws ‘guis ‘gus ‘2ws /1 o0 ‘d}. ‘dg ‘dg ‘dy ‘dg *dg *d. mp

— £ € 4 4 i 3 &
= oW ‘LWS ‘ZWS ‘EWS ‘pws ‘Gws ‘gws ‘Jws o] im1 tmm fne e fele fda ¢
, : h : . . 90 ‘O ‘oz ‘og ‘op ‘dg ‘d9 ‘dyz G
= ws ‘ZWs ‘cWs ‘pws ‘cus ‘guwis ‘Zws
M st ‘ . v | 3 . mP 20 ‘0| ‘og ‘o¢ ‘Op ‘06 ‘dg ‘dz &
5 OSW ‘LSW) ‘ZSW) ‘ESW) ‘pSW) ‘HS ‘Quis Jws g oL ©
= OSW]j ‘ LSwy ‘Zsw} ‘eswy ‘pswy ‘GsSwy ‘gws ‘Zws b oo “or _om _om dw dm .o@ .n_h 4
s 9 oSwi) __.w_._.z. ‘ZSW .WWE* H.VWE“_. .mw_..cn— .T_w -hEm £ 0 21 92 9€ IO 0G 09 4L |_'.Iﬁ
" OSW} ‘| SWy ‘ZSWy ‘ESWy ‘pSwy ‘GSWwy ‘gsw ‘HS |) sopeay ouks 4541
m PIOM 9pP0D X[JO suood pug % 1S| mmm%u_u.n_. 951 (HS) 1opEsl
3 00 ‘0L ‘0g ‘O€ ‘O ‘0G 09 O

Q uopod pug uoipod sy E 091 Ve m__mv 599 L w”
W O | PIOM 8POI JILUSURI) 50 ‘01 ‘02 ‘08 ‘O ‘06 09 0L 91
A mmmmmm s

i

|

_ o - o\ ™ <t 0 O ~ 20 ‘0| ‘0z ‘oF ‘OF ‘0G ‘09 ‘04 G

3 B D s D s L s L o D e L i A T 90 ‘0L 0208 Oy 9599 0L

" | 90'01L0g0g 00609 0L €

| 251 UonouN) YS | 0p‘0L ‘9 0E Oy 9§09 0L g

" “ OO _Q—. _QN .Om .0._‘...‘ nom .O@ HON —‘

|||...|...||||i....|||WWWm:Uoﬁlmﬁ%lme |||||||||||||||| 2Del0)s onisej@ wolif ndur eyep SOIOAD

SEER

U.S. Patent

US 7,362,864 B2

Sheet 8 of 10

Apr. 22, 2008

U.S. Patent

¢9 1 Blep papoosp

1]

- ¢/N

86 2P009P

q(w+N)/aN

DIOM 8p02
DaIqWRIISSP JO

B SHQ-(g/N + W)

¢6 194NQ
abe.o)s dljse|e

Qg 9|npow a|quielas-ap

DJOM BPOD PB|qUIBIOS
T /N SHg-(2/N)

el sinpoul
Sunel (— 1 ———

¢t
a|Npow 9|quields

S1g-(2/N)

09 L PIOM 2P0D PAAIBIA]

US 7,362,864 B2

Sheet 9 of 10

Apr. 22, 2008

U.S. Patent

PJOM 8p02 Jlwisuel) ay} aonpoid
O] PIOM 8P0I Pa|qWIBIIS 1811} BUl

JO uoipod 8yl ylim piom apod
leiyed psjquielos ayl suiquod

081

6 9.nbi4

1apurewsal Buljquelds ayy
UO paseq pIom apod pa|quields
1S11) 8y] Jo uoipod e auiwdlep

8.1

PIOM B8P0 [eied pajquields e
aonpo.d 0] |090)0.d Buljquieids

paisnipe ayj yjim 2oueploode
Ul pJOm 8po3d Indul 8y} ajquie.los

9/L1

DIOM BP0
pajquie.os 1s41 e aonpoud 0} |00030.d
Buljgquielos 1si1} 8yl Yim 80UBpIodOE
Ul pJOMm 8po2 Indul 8yl a|quuesds

PLL

|00010.4d Bulquuelos
palsnipe ue aonpo.d 0} Japulewal
Bulnqwelds ayj uo paseq j020j0.d
Buiqwesds a|qeisnipe ayj jsnipe

cll

1000)0.d Bunquielos s|geisnipe ue
UM 80UBpIodde Ul pIOM P02 Indul ay)
10 Buljqwiesoas pue j020)04d Buliquesds
1S11} B UM 92UBpI0d9e Ul PIOM
ap09 Indul ue jo Buljquelds usamiaq
lapurewss buiquelds e aulwis8)ap

OLL

US 7,362,864 B2

Sheet 10 of 10

Apr. 22, 2008

U.S. Patent

PAOM BP0 POYIYS UG N B}

Jo [(1- M.W)-g/N) ‘0] Suq pue pJom 8pod
PayIus 1q (3, W)-N 8y} UO peseq pJom
2p02 INdiNo payiys 1q N ue sanpo.d

961

19SYHO
HIYS O]} SpUOdsaLod ¥ Uidisym ‘piom
9p0d PayIys ¥g (4, w)-N ue aonpo.d
0} pue piom apo2 ndul ay) JO sHq
W 8y} ulejuiew o0} uonelado yoeqpas)
183Ul pUO2aS B Ylim 8ouUepiodde
Ul plom apo2 Indul wi+N 8y} ssed0.d

1441

PJOM BP0D

PaYIUs g N ue saonpoid 0} plom 8pod
indul Wwi+N 8y} Jo sug N uo uonelado
HIYS Moeqgpas) Jeaul| 1si) e wiopad

uoieuLIojul
lopesy 0} spuodsau0 suq w
pue ejep 0} spuodsaliod sjig N utasaym
‘PAIOM BP0 INdUl LI+ UR BAIS03I

061

s

US 7,362,864 B2

1

FRAMING OF TRANSMIT ENCODED DATA
AND LINEAR FEEDBACK SHIFTING

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

This mvention relates generally to communication sys-
tems and more particularly to encoding/decoding and scram-
bling/descrambling of data within such communication sys-
tems.

2. Description of Related Art

Communication systems are known to transport large
amounts of data between a plurality of end user devices.
Such end user devices include telephones, facsimile
machines, computers, television sets, cellular phones, per-
sonal digital assistants, et cetera. As 1s also known, such
communication systems may be local area networks (LAN)
and/or wide area networks (WAN). A local area network 1s
generally understood to be a network that interconnects a
plurality of end user devices distributed over a localized area
(e.g., up to a radius of 10 kilometers). For example, a local
area network may be used to interconnect workstations
distributed within an oflice of a single building or a group of
buildings, to interconnect Internet computer based equip-
ment distributed around a factory or hospital, et cetera.

A wide area network 1s generally understood to be a
network that covers a wide geographic area. Wide area
networks include both public data networks and enterprise
wide private data networks. A public data network 1s estab-
lished and operated by a national network administrator
specifically for data transmission. Such public data networks
facilitate the interworkings of equipment from different
manufacturers. Accordingly, standards by the ITU-T have
been established for conveying data within public data
networks. Currently, there are two main types of public data
networks: packet switched public data networks and circuit
switched public data networks. For example, the public
switched telephone network 1s a circuit switched public data
network while the Internet 1s a packet switched public data
network. Other examples of wide area networks include
integrated service digital networks (ISDN) and broadband
multi-service networks.

As 1s further known, communication systems may be
networked together to yield larger communication systems,
where such networking 1s typically referred to as internet-
working. Internetworking 1s achieved via internetworking
units that allow communication networks using the same or
different protocols to be linked together. The internetwork-
ing units may be routers, gateways, protocol converters,
bridges, and/or switches.

Regardless of the type of communication system (e.g.,
LAN, WAN, imnternetworking LAN and/or WAN), each
communication system employs a data conveyance protocol
to ensure that data 1s accurately conveyed within the system.
All such data conveyance protocols are based on layers 1, 2,
3, and/or 4 of the open system 1nterconnection (OSI) seven
layer reference model. As 1s known, the layers include a
physical layer (layer 1), a data link layer (layer 2), a network
layer (layer 3), a transport layer (layer 4), a session layer
(layer 5), a presentation layer (layer 6), and an application
layer (layer 7).

In general, a protocol 1s a formal set of rules and con-
ventions that govern how each end user device and/or data
terminal equipment (1.e., the iirastructure equipment of the
communication system) exchanges information within the
communication system. A wide variety of protocols exist,
but can generally be categorized in the one of four types of

10

15

20

25

30

35

40

45

50

55

60

65

2

protocols: a local area network protocol, a wide area net-
work protocol, a routing protocol, or a network protocol.
Local area network protocols operate at the physical and
data link layers and define communication over various local
area network and media. Wide area network protocols
operate at the lowest three layers of the OSI model and
define communication over the various wide area media.
Routing protocols are network layer protocols that are
responsible for path determination and trathic switching.
Network protocols are the various upper layer protocols that
exist 1n a given protocol suite. Examples of such protocols
include asynchronous transier mode (ATM), frame relay,
TCP/IP, Ethemet, et cetera. Typically, such protocols include
an encoding/decoding and/or scrambling/descrambling
scheme. As 1s known, an encoding/decoding scheme
enhances the reliability of data conveyances by encoding
and/or scrambling data to include extra bits with the data to
produce a code word. When the code word 1s recerved by the
corresponding decoder and/or descrambler, 1t utilizes the
extra bits to determine 11 the data was recetved without error.
It the data was received without error, the decoder and/or
descrambler uses the extra bits to determine and subse-
quently correct the error.

One such coding scheme 1s 64b/66b, which takes 64 bits

of data and produces a 66-bit code word. In addition, the
66-bit code word 1s scrambled to produce a scrambled 66-bit
code word. The scrambled 66-bit code word 1includes a 2-bit
sync-header and 64 bits of scrambled encoded data. An 1ssue
arises 1n transmitting and subsequently receiving the
scrambled 66-bit code word 1n that most data buses are
32-bits wide. Thus, every 2 cycles, there are 2 bits leftover,
which need to be transmitted during the 3™ cycle.
The current solution to resolve this 1ssue 1s to use a barrel
shifter gearbox. While the barrel shifter works, 1t 1s very
large with respect to die area and consumes a significant
amount ol power. For instance, a barrel shifter for a 32-bat
bus requires 16x66 registers to store and transier the
scrambled 66-bit code words. The 66 value corresponds to
the number of bits 1n a scrambled code word and the 16
value corresponds to the pattern of the 2 leftover bits
repeating every 16 cycles (e.g., 32 bit bus divided by 2 extra
bits).

Therefore, a need exists for a method and apparatus for
framing code words without the need for a barrel shifter.

BRIEF SUMMARY OF THE INVENTION

—

T'he framing of transmit encoded data and linear feedback
shifting of the present mvention substantially meets these
needs and others. In one embodiment, a transmit code word
1s framed by determining a scrambling remainder between
scrambling of an input code word in accordance with a 1%
scrambling protocol and the scrambling of the input code
word 1n accordance with an adjustable scrambling protocol.
The processing continues by adjusting the adjustable scram-
bling protocol based on the scrambling remainder to produce
an adjusted scrambling protocol. The processing then con-
tinues by scrambling the input code word 1n accordance with
the 1°° scrambling protocol to produce a 1°* scrambled code
word. The processing continues by scrambling the input
code word in accordance with the adjusted scrambling
protocol to produce a scrambled partial code word. The
processing continues by determining a portion of the 1%
scrambled code word based on the scrambling remainder.
The process then continues by combining the scrambled
partial code word with the portion of the 1°* scrambled code
word to produce the transmit code word. With such a

US 7,362,864 B2

3

method, encoded data, 1.e., code words, may be scrambled
without the need for a barrel shifter by utilizing the adjust-
able scrambling protocol in combination with the 1% scram-
bling protocol.

In another embodiment, a method for linear feedback
shifting begins by receiving an N+m mnput code word, where
N-bits of the N+m bit input code word corresponds to data
and m bits of the N+m mput code word corresponds to
header information. The processing continues by performing,
a 1°* linear feedback shift operation on N-bits of the N+m bit
input code word to produce an N-bit shifted code word. The
processing continues by processing the N+m bit input code
word in accordance with a 2" linear feedback operation to
maintain the m bits of the mput code word and to produce
an N-(m™*k) bit shifted code word, where k corresponds to
a shift oflset. The processing then continues by producing an
N bit shifted output code word based on the N-(m*k) bit
shifted code word and bits [0, (N/2-(m*k)-1)] of the N bit
shifted code word. With such a method, a N+m bit code
word may be shifted without the need for a barrel shifter thus
considerably reducing die area requirements and power
consumption.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 1s a schematic block diagram of a programmable
logic device 1 accordance with the present invention;

FIG. 2 1s a schematic block diagram of a programmable
multi-gigabit transceiver in accordance with the present
imnvention;

FIG. 3 1s a schematic block diagram of a programmable
receive physical coding sub-layer (PCS) module 1n accor-
dance with the present invention;

FIG. 4 1s a schematic block diagram of a programmable
transmit physical coding sub-layer (PCS) module in accor-
dance with the present invention;

FIG. 5 1s a graphic example of framing encoded data in
accordance with the present invention;

FIG. 6 1s a further example of framing data in accordance
with the present mvention;

FIG. 7 1s a continuation of the FIG. 6 example of framing
data in accordance with the present invention;

FIG. 8 1s a diagram depicting framing decoded data in
accordance with the present invention;

FI1G. 9 15 a logic diagram of a method for framing transmit
encoded output data in accordance with the present inven-
tion; and

FI1G. 10 1s a logic diagram of a method for linear feedback
shifting in accordance with the present invention.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

FIG. 1 1s a schematic block diagram of a programmable
logic device 10 that includes programmable logic fabric 12,
a plurality of programmable multi-gigabit transceivers
(PMGT) 14-28 and a control module 30. The programmable
logic device 10 may be, for instance, a programmable logic
array device, a programmable array logic device, an erasable
programmable logic device, and/or a field programmable
gate array (FPGA). When the programmable logic device 10
1s a field programmable gate array (FPGA), the program-
mable logic fabric 12 may be implemented as a symmetric
array configuration, a row-based configuration, a sea-oi-
gates configuration, and/or a hierarchical programmable
logic device configuration. The programmable logic fabric

10

15

20

25

30

35

40

45

50

55

60

65

4

12 may further include at least one dedicated fixed proces-
sor, such as a microprocessor core, to further facilitate the
programmable flexibility offered by a programmable logic
device 10.

The control module 30 may be contained within the
programmable logic fabric 12 or it may be a separate
module. In either implementation, the control module 30
generates the control signals to program each of the transmut
and receive sections of the programmable multi-gigabit
transceivers 14-28. In general, each of the programmable
multi-gigabit transcervers 14-28 performs a serial-to-parallel
conversion on receive data and performs a parallel-to-serial
conversion on transmit data. The parallel data may be 8-bits,
16-bits, 32-bits, 64-bits, et cetera wide. Typically, the serial
data will be a 1-bit stream of data that may be a binary level
signal, multi-level signal, etc. Further, two or more program-
mable multi-gigabit transceivers may be bonded together to
provide greater transmitting speeds. For example, 11 multi-
gigabit transceivers 14, 16 and 18 are transceiving data at
3.125 gigabits-per-second, the transceivers 14-18 may be
bonded together such that the eflective serial rate 1s 3 times
3.125 gigabits-per-second.

Each of the programmable multi-gigabit transceivers
14-28 may be individually programmed to conform to
separate standards. In addition, the transmait path and receive
path of each multi-gigabit transceiver 14-28 may be sepa-
rately programmed such that the transmit path of a trans-
celver 1s supporting one standard while the receive path of
the same transceiver 1s supporting a different standard.
Further, the serial rates of the transmait path and receive path
may be programmed from 1 gigabit-per-second to tens of
gigabits-per-second. The size of the parallel data in the
transmit and receive sections, or paths, 1s also programmable
and may vary from 8-bits, 16-bits, 32-bits, 64-bits, et cetera.

FIG. 2 1s a schematic block diagram of one embodiment
ol a representative one of the programmable multi-gigabit
transceivers 14-28. As shown, the programmable multi-
gigabit transceiver includes a programmable physical media
attachment (PMA) module 32, a programmable physical
coding sub-layer (PCS) module 34, a programmable inter-
face 36, a control module 35, a PMA memory mapping
register 45 and a PCS register 35. The control module 35,
based on the desired mode of operation for the individual
programmable multi-gigabit transceiver 14-28, generates a
programmed deserialization setting 66, a programmed seri-
alization setting 64, a recetve PMA_PCS 1nterface setting
62, a transmit PMA_PCS terface setting 60, and a logic
interface setting 58. The control module 35 may be a
separate device within each of the multi-gigabit transceivers
and/or included within the control module 30. In either
embodiment of the PMGT control module 35, the program-
mable logic device control module 30 determines the cor-
responding overall desired operating conditions for the
programmable logic device 10 and provides the correspond-
ing operating parameters for a given multi-gigabit trans-
ceiver to 1ts control module 35, which generates the settings
58-66.

The programmable physical media attachment (PMA)
module 32 includes a programmable transmit PMA module
38 and a programmable receive PMA module 40. The
programmable transmit PMA module 38 is operably coupled
to convert transmit parallel data 48 1nto transmit serial data
50 1n accordance with the programmed serialization setting
64. The programmed serialization setting 64 indicates the
desired rate of the transmit serial data 50, the desired rate of
the transmit parallel data 48, and the data width of the
transmit parallel data 48. The programmable receive PMA

US 7,362,864 B2

S

module 40 1s operably coupled to convert receive serial data
52 into receive parallel data 54 based on the programmed
desenialization setting 66. The programmed deserialization
setting 66 indicates the rate of the receive serial data 52, the
desired rate of the receive parallel data 34, and the data
width of the receive parallel data 54. The PMA memory
mapping register 45 may store the serialization setting 64
and the deserialization setting 66.

The programmable physical coding sub-layer (PCS) mod-
ule 34 includes a programmable transmit PCS module 42
and a programmable receive PCS module 44. The program-
mable transmit PCS module 42, which will be described 1n
greater detail with reference to FIG. 4, receives transmit data
words 46 from the programmable logic fabric 12 via the
programmable interface 36 and converts them into the
transmit parallel data 48 i1n accordance with the transmit
PMA_PCS interface setting 60. The transmit PMA_PCS
interface setting 60 indicates the rate of the transmit data
words 46, the size of the transmit data words (e.g., 1-byte,
2-bytes, 3-bytes, 4-bytes, et cetera) and the corresponding
transmission rate of the transmit parallel data 48. The
programmable receive PCS module 44, which will be
described 1n greater detail with reference to FI1G. 3, converts
the recerve parallel data 34 into receive data words 56 in
accordance with the receive PMA_PCS interface setting 62.
The receive PMA_PCS 1nterface setting 62 indicates the rate
at which the receive parallel data 54 will be received, the
width of the parallel data 54, the transmit rate of the receive
data words 56 and the word size of the receive data words
56.

The control module 35 also generates the logic interface
setting 58 that provides the rates at which the transmit data
words 46 and receive data words 56 will be transceived with
the programmable logic fabric 12. Note that the transmit
data words 46 may be received from the programmable logic
tabric 12 at a different rate than the receive data words 356 are
provided to the programmable logic fabric 12.

As one of average skill 1n the art will appreciate, each of
the modules within the PMA module 32 and PCS module 34
may be individually programmed to support a desired data
transfer rate. The data transier rate may be 1n accordance
with a particular standard such that the receive path, 1.e., the
programmable receive PMA module 40 and the program-
mable receive PCS module 44 may be programmed in
accordance with one standard while the transmit path, 1.e.,
the programmable transmit PCS module 42 and the pro-
grammable transmit PMA module 38 may be programmed
in accordance with another standard.

FIG. 3 1s a schematic block diagram of a programmable
receive PCS module 44 that includes a programmable data
alignment module 70, a programmable descramble and
decode module 72, a programmable storage module 74, and
a programmable decode and verily module 76. The pro-
grammable data alignment module 70 includes a synchro-
nous state machine 78, a value detect realign module 80, a
block synchronization module 82, and a multiplexer 84. The
programmable descramble and decode module 72 includes a
64b/66b descrambling module 88, an 8b/10b decoding mod-
ule 86 and a multiplexer 90. The programmable storage
module 74 includes a channel bonding module 94, an elastic
storage buller 92 and a multiplexer 96. The programmable
decode and verily module 76 includes a recerver CRC
(cyclic redundancy check) module 100, a 64b/66b decoding
module 98, and a multiplexer 102.

In operation, the programmable data alignment module 70
receives the receive parallel data 54. Based on the receive
PMA_PCS nterface setting 62, the receive parallel data 54

10

15

20

25

30

35

40

45

50

55

60

65

6

may be passed via multiplexer 84 without processing, may
be processed by the value detect realign module 80 and then
passed via multiplexer 84 and/or further processed via the
block synchronization module 82. As such, the setting 62
may bypass the programmable data align module 70, per-
form a value detection realignment and pass the realigned
data and/or further utilize block synchronization, which 1s
typically used for 10 gigabits-per-second signaling. The
synchronization state machine 78 coordinates the alignment
of the recerve parallel data 54 via the value detect realign 80
and the block synchronization module 82. In addition, once
the value detect realignment module 80 indicates that the
data 1s valid and the block synchronization module 82
indicates that the PCS module 1s now in sync with the
receive parallel data 54, the sync state machine 78 generates
a lock signal.

The controls of the value detect realign module 80 include
receive polarity of the signal, alignment information, et
cetera.

The programmable descramble and decode module 72
receives the output of multiplexer 84 and, based on setting

62, either passes the data via multiplexer 90, descrambles it
via the 645/665 descrambler 88, or decodes it via the 85/1058

decode module 86. The 645/66b descrambling module 88
will be described 1n greater detail with reference to FIG. 8.
The 856/10b decoding module 186 may be further described
in co-pending U.S. patent application Ser. No. 10/660,191
filed Sep. 11, 2003, by Kryzak and Boecker entitled
“Enhanced 8B/10B Encoding/Decoding and Applications
Thereof.”

The programmable storage module 74 may bufler the data
it recerves from multiplexer 90 via the elastic store butler 92
to facilitate channel bonding or pass the data directly to
multiplexer 96. The channel bonding module 94 enables the
receiver of one programmable multi-gigabit transceiver to
be linked or bonded with one or more other receivers within
another multi-gigabit transceiver to increase the eflective
serial data rate.

The programmable decode and verity module 76 receives
the output of multiplexer 96 and passes it directly as the
receive data word 56 1n accordance with setting 62, pro-
cesses the data via a recetve CRC module 100 and provides
that as the output, or decodes 1t via the 645/665 decoding
module 98. The 645/665 decode module 98 1s described 1n
greater detail with reference to FIG. 8.

As one of average skill in the art will appreciate, the
programmable receive PCS module 44 1s readily program-
mable via settings 62 (which may control multiplexers 84,
90, 96, and 102) to decode the recerve parallel data 54 using
a variety of decoding schemes, to process channel bonding,
to verily and lock the incoming data, et cetera, thereby
enabling compatibility with various standards.

FIG. 4 1s a schematic block diagram of the programmable
transmit PCS module 42 that includes a programmable
verily module 110, a programmable encode module 112, a
programmable storage module 114, and a programmable
scramble module 116. The programmable verity module 110
includes a transmit CRC module 118 and a multiplexer 120.
The programmable encode module 112 includes a 64b/66b
encoding module 122, an 8b/10b encoding module 124, and
a multiplexer 126. The programmable storage module 114
includes an elastic storage bufler 128 and a multiplexer 130.
The programmable scramble module 116 includes a
scramble module 132, a framing module 134, and a PMA
converter 136.

The programmable verity module 110 1s operably coupled
to receive the transmit data words 46 and eirther pass them

US 7,362,864 B2

7

directly to the programmable encoding module 112 or
perform a cyclic redundancy check upon them. The transmit
PMA _PCS interface setting 60 indicates whether the trans-
mit data words 46 will be directly passed to the program-
mable encode module 112 or be subject to a cyclic redun-
dancy check. The programmable encoding module 112,
based on setting 60, either encodes the data received from
the programmable verity module 110 via the 85/105 encoder
124, the 64b/66bH encoder 122 or passes the data directly to
the programmable storage module 114. The 645/66H
encoder 122 1s described 1n greater detail with reference to
FIGS. 5-7. The 856/106 encoder 224 1s more fully described
in co-pending patent application Ser. No. 10/659,971, filed
Sep. 11, 2003, by Boecker, Black and Groen, entitled
“Receiver Termination Network and Application Thereot.”

The programmable storage module 114, based on setting,
60, either passes the data that 1t receives from the program-
mable encode module 112 or stores 1t 1n the elastic storage
butler 128. The elastic storage builer 128 allows for differing,
time rates between the transmit data words 46 and the
transmit parallel data 48. For example, 1f the transmit data
words 46 are 1-byte words at a rate of 500 megahertz and the
transmit parallel data 48 1s 2-bytes width at 300 megahertz,
the data-per-cycle rate 1s different between the transmit data
words 46 and the transmit parallel data 48. Accordingly, the
clastic storage bufler 128 allows for data to accumulate 1n
the elastic storage buller and thus accommodate the differing,
data-per-rate discrepancies between the transmit data words
46 and the transmit parallel data 48.

The programmable scramble module 116 receives the
output of multiplexer 130 and either passes 1t directly to the
PMA converter 136 to produce the transmit parallel data 48
based on control signals or scrambles the data via the
scramble module 132 and the framing module 134. The
controls for the PMA converter 136 include polarity of the
parallel data 48 and an indication of which path the data waill
be received from. The scramble module 132 and framing
module 134 will be further described with reference to
FIGS. §-7.

As one of average skill in the art will appreciate, the
programmable transmit PCS module 42 may be pro-
grammed 1n a variety of ways to directly pass the transmait
data words 46, encode them, scramble them, bufler them, et
cetera. As such, with a wide diversity 1n programming
abilities, the programmable transmit PCS module 42, as well
as the enftire programmable multi-gigabit transceiver, may
be programmed 1n accordance with many standards.

FIG. 5 15 a diagram depicting framing of encoded data in
accordance with the present invention. The framing process
1s implemented via an Nb/(N+m)b encoder 122, an elastic
storage buller 128, a scrambling module 132 and a framing
(or gearbox) module 134. For instance, in one embodiment,
N may be 64 and m may be 2, and, thus, the Nb/(N+m)b
encoder 122 may be a 64b/66b encoder. In other embodi-
ments, Nb/(N+m)b encoder 122 may be a 64b/(64+m)b
encoder, where m 1s 3 or more.

In operation, the Nb/(N+m)b encoder 122 recerves N-bit
input data 144 via a bus that has a bus width of N/2. For
example, 1 the N-bit mnput data 144 corresponds to 64 bit
data then the N/2 bus will be a 32-bit bus. The encoder 122
encodes the N-bit input data 144 to produce (m+N/2) bits of
the mput code word during a processing cycle. A processing,
cycle may include one or more clock cycles. Thus, every 2
processing intervals, the encoder 122 outputs a complete
input code word. For 64b/66b encoding and an input bus of
32 bits, the encoder 122 outputs a 66-bit code word every
two processing intervals.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

The elastic storage butler 128 stores the (m+N/2) bits
(e.g., 34 bits for 64b/66b encoding) of the input code word.
As shown, the elastic storage contents 142 includes a
plurality of lines of memory, where each line of the elastic
storage bufler 128 includes 2 sections; each storing m +IN/2
bits of information. For 64b/66b encoding, the elastic stor-
age contents 142 include the 66-bit encoded code word. In
this instance, the m-bits 1n the first section of a line (1.e., the
left section) correspond to the sync-header and the N/2 bits
store the first 32-bits of a 66-bit code word. The m-bits of the
second section of a line contains null (or don’t care) infor-
mation and the N/2 bits of the second section store the
second 32-bits of the 66-bit code word.

As 1s also shown, each line of the elastic storage contents
142 has a corresponding shift ofiset 140. The shiit ofiset (k)
1s an integer value 1n the range of 1 to N/2m. For example,
for a 66-bit encoded code word, N 1s 64and m 1s 2 such that
the shift offset range 1s 1 to 16. The shiit oflset 1s used by the
framing module 134 to determine how much of the incom-
ing code word 1t will process to produce its corresponding
output. This will be described 1n greater detail with reference
to FIGS. 6 and 7.

The scramble module 132 receives N/2 bits of the input
code word and scrambles them to produce an N/2 bits
scrambled code word. The scrambling module 132 may be
a linear feedback shiit register that executes a generator
polynomial to produce the scrambled code word. For 64b/
66b encoding the polynomial may correspond to G(X)=1+
X3 9+X58.

The framing module 134 receives m+IN/2 bits of the input
code word per processing interval and outputs N/2 bits of
information. For example, 1f the process i1s for 64b/66b
encoding the framing module receives 34 bits of information
and outputs 32 bits of encoded information. The framing
module 134 also receives the N/2 bit scrambled code word
from the scramble module 132. Based on the internal
scrambling performed by the framing module 134, the shift
offset (k), and the N/2 bits scrambled code word received
from scramble module 132, the framing module 134 pro-
duces a portion of the N+m bit transmit code word 146.

FIG. 6 illustrates an example of framing data as may be
performed by the circuit of FIG. 5 and/or the circuit of FIG.
8. In this example, the resulting code word 1s 18-bits, 16 bits
of which correspond to encoded data, 1 bit for a sync-header
and 1 bit of don’t-care data. Accordingly, for this example,
the elastic storage content 142 includes a plurality of 18 bit
lines for codes words having N=16, and m=1. With N=16
and m=1, the shift oflset 1s 1n the range of 1 to 8 (1.¢., 1 to
N/2m, which is 1 to 16/(2*1)=1 to 8). As shown, the 1* line
of the elastic storage (1.¢., the bottom line) includes the 1-bat
sync-header (m) followed by 8-bits of encoded data, which
is designated as 1a. The 2" section of this line of the elastic
store stores a don’t-care bit (x) followed by 8-bits of
encoded data, which 1s designated as 1b.

The scramble module 132 1n this example sequentially
receives the 8-bits of the encoded data stored in the first and
second sections of elastic storage and outputs an 8-bit
scrambled value. As shown, the 1°° 8-bits that the scramble
module 132 receives corresponds to the 1a portion of the 1%
code word stored 1n the elastic storage. Scramble module
132 scrambles these 8-bits to produce 8-bits of a scrambled
code word, which 1s designated as SC-la. The square
bracketed values following the designation of SC-1a corre-
spond to bit numbers of the 8-bits of the scrambled code
word. The scramble module 132 continues to scramble
8-bits of the recerved data per scrambling interval, which
may 1include one or more clock cycles. The resulting

US 7,362,864 B2

9

scrambled contents provide 16-bit scrambled code words,
where a first portion of the 16-bit scrambled code word 1s
one line and the second portion of the 16-bit scrambled code
word 1s on the next line.

The framing module 134 receives, per scrambling inter-
val, 9-bits of information from the elastic storage buller and
the 8-bits scrambled output from the scramble module 132.
The framing module 134 functions to preserve the 1-bit
sync-header (m) and scrambles at least a portion of the
remaining 8-bits of encoded data it receives from the elastic
storage buffer. During the 1% scrambling interval, the fram-
ing module 134 outputs 8-bits of data as shown in the bottom
line of the 17-bit transmit code words, which are transmitted
1-byte-per-cycle. As such, the framing module 134, based on
the scrambled inputs from the scramble module 132 and the
9-bits from the elastic storage, outputs the 1-bit sync-header
followed by 7-bits of a scrambled code word produced by
the framing module 134 corresponding to scrambling of the
la mputted code word section. As such, the designation
FM-1a [0,6] corresponds to 7 scrambled bits of the mnput 1a
produced by framing module 134. Accordingly, the 1%
portion of the 1* code word 1a is not completely represented
in the 1°° line outputted by the framing module 134. The
framing module 134 outputs the remaining 7 scrambled bit
produced by the scrambling module 132, which 1s desig-
nated SC-1la [7], during the next scrambling interval. The
remaining portion of the 2”¢ interval output of framing
module 134 corresponds to the scrambling performed by the
framing module on 7-bits of the 27 portion (1b) of the 1*
code word.

As shown, during the 2"? output interval of framing
module 134 only 7-bits are outputted that correspond to the
2" nortion (1b) of the 1°* code word. Thus, on the 3" output
interval of framing module 134, 1t first outputs the remaining
bit of the 2”? portion of the 1** code word that was produced
by scrambling module 132, which 1s designated SC-1b[7].
The framing module then outputs the sync-header for the 2%
code word stored 1n the elastic storage. In the same interval,
the framing module 134 outputs 6 scrambled bits of the 1%
portion of the 2" code word it produces, which is designated
as FM-2a[0,5].

At this point, only 6 of the 8 bits have been outputted for
the scrambling of the 1°* portion of the 2" code word. Thus,
on the 4” output interval, the framing module 134 begins by
outputting bits 6 and 7 of the 1°” portion of the 2" code word
produced by the scramble module 132, which 1s designated
SC-2a[6,7]. The remaining output during the 47 interval
corresponds to the scrambling of 6-bits produced of the 2%
portion of the 2" code word produced the by framing
module 134, which 1s designated FM-2b[0,3].

During the 57 output interval, the framing module 134
first outputs the remaining 2 bits of the scrambling of the 2%
portion of the 2 code word produced by scrambling mod-
ule 132, which 1s designated SC-2b[6,7]. The framing mod-
ule 134 then outputs the 1-bit sync-header for the 3’ code
word m followed by 5-bits of scrambled code word of the 1%
portion of the 3" code word produced by framing module
134, which 1s designated FM-3a[0.,4].

During the 6” output interval, the framing module 134
first outputs the remaining 3-bits of the scrambling of the 1*
portion of the 3" code word as produced by scrambling
module 132, which 1s designated SC-3a[5,7]. The framing
module 134 also outputs 5-bits of the scrambling it produces
regarding the scrambling of the 2" portion of the 3™ code
word, which 1s designated FM-3b[4,0].

As can be seen over the next intervals 7-15, the framing
module 134 outputs one less bit of the scrambled code word

10

15

20

25

30

35

40

45

50

55

60

65

10

it produces every two intervals and one more bit from the
scrambled module every two intervals. At output cycle 16 of
framing module 134, the offset shifting of the output of the
framing module has looped completely around such that the
framing module 134 during output cycle 16 outputs the
scrambled code word produced by scrambling module 132,
which 1s designated SC-8a[0,7]. Stmilarly, for output cycle
17, the framing module 134 outputs the scrambled code
word portion produced by scrambling module 132, which 1s
designated SC-8b[0,7].

To maintain alignment of the outputting of the scramble
module 132 with the outputting of framing module 134, the
scrambling module 132 slips, or skips an output interval
every 16 intervals to maintain alignment with the outputting
of framing module 134. The slipping results because the
framing module 134 needs to output 17 bits of code word per
two 1ntervals while the scramble module only outputs 16 bits
of code words per two intervals. Thus, every 16 intervals of
outputting a 17-bit code word, requires the outputting by the
scrambling module 132 to slip one cycle.

By slipping, or skipping, an interval, as shown at output
interval 17, the process of outputting the 17-bit code words
by the framing module 1s repeated at output interval 18,
which has the same output bit pattern as output interval 1.

As one of average skill in the art will appreciate, the
example of FIG. 6 may be extended to a N-bit/N+m bait
encoding system where the shift oflset 1s 1n a value ranging
from 1 to N/2m. In an embodiment, N may be equal to 64.
As one of average skill 1n the art will also appreciate, during
the 1°° two intervals, which corresponds to the shift offset
having a value of 1, the framing module 134 outputs bits O
through N/2-(m*k)-1 bits of the N-bit shufted code word.
Thus, for intervals 1 and 2, where the shift offset k 1s 1, the
framing module 134 outputs bits 0-6 of the 1°* code word
where N 1s 16, m 1s 1 and k 1s 1. Continuing with the
example, during the 3" and 4” output cycles, where the shift
oflset 1s 2, the framing module outputs 6 bits of information
(e.g., bits 0-5).

FIG. 7 continues the example of framing data and as
shown 1n FIG. 6 and further 1llustrates details of scrambling
module 132 and framing module 134. The framing module
134 includes logic circuitry 154 and framing module scram-
bler 150. The framing module scrambler 150 1s a linear
teedback shift register (LFSR) and has a corresponding
LFSR function 152. For example, the LFSR function may be
implemented as a generating polynomial, which for 64b/66b
is G(X)=1+X°7+X>®. The scrambling module 132 includes

an 1dentical LFSR structure to that of the framing module
scrambler.

The scrambling module 132 receives data inputs from the
clastic storage device. In this example, it receives 8 bits of
a code word per LFSR cycle. As shown, the LFSR cycles are
listed as 1-18. During the first LFSR cycle, the scramble
module 132 receives 8 bits of a first portion of a first code
word. During the second LFSR cycle, the scramble module
132 receives 8 bits of the second portion of the first code
word. Accordingly, the scramble module 132 receives the
first portion of a code word during odd numbered LFSR
cycles and receives the second portion of the code word
during the even numbered LFSR cycles. Each portion of a
code word 1n this example includes 8-bits, which are des-
ignated [Oc-7c]. The lower case C indicates that the data
being received 1s current for this particular LFSR cycle.

For each LFSR cycle, the scrambling module 132
executes the LFSR function 152 on the current 8 bits of a
code word to produce a scrambled code word as 1llustrated

in FIG. 6. Thus, during the 1** LFSR cycle the scrambling

US 7,362,864 B2

11

module 132 outputs the scrambled code word, which 1n FIG.
6, has the designation of SC-1a[0,7].

The logic circuitry 154 1s operably coupled to receive the
current scrambled code word produced by the scramble
module 132 and to provide an 8-bit input to the framing
module scramble 150. The logic circuitry 154 1s also oper-
ably coupled to provide the output of the framing module
134. The logic circuitry 154 1s also operably coupled to
receive the sync-header 156 from the elastic storage device
and to provide it at the appropriate time and 1n the appro-
priate location of the transmit code word 146.

As previously discussed 1in FIG. 6, the framing module
134 uses at least a portion of the scrambled resultant
produced by scramble module 132 to produce the resultant
transmit code word 146. To maintain alignment of the
scrambling of data, the logic circuit 154 utilizes the previous
iput from the elastic store and/or a previous output of the
scrambling module 1n a corresponding bit position as part of
the 1input to the frame module scrambler 150. For 1nstance,
during the 1°* LFSR cycle, the logic 154 selects the 77 bit
from a previous code word inputted to, or outputted from,
the scramble module 132 i bit position 7 of the frame
module scrambler mmput, which 1s designated as 7p. The
remaining bits of frame module scrambler mput are the 7
current bits of the data input from the elastic store, which are
designated Oc-6¢. As such, the frame module scrambler 150
1s scrambling 8-bits, 1 from a previous input or output of
scramble module 132 and the remaining 7 bits from the
current mput from the elastic storage device. The same bit
pattern 1s repeated for cycle 2.

During the 1% LFSR cycle, the logic 154 outputs part of
the 1% portion of the transmit code word 146 and the
sync-header (SH). As shown, the output includes the sync
header followed by 7 bits of scrambled data produced by the
frame module scrambler 150, which are designated fms6-
fms0. During the 2"¢ LFSR cycle, the logic 154 utilizes a
previous bit outputted by the scramble module 132, which 1s
designated as sm7, and 7 bits outputted by the frame module
scrambler 150 to produce the next scrambled output. At this
point, the code word 146 1s 1-bit short of being complete.
This bit is outputted during the 3™ LFSR cycle.

During the 3" LFSR cycle, while the scramble module
receives all 8-bits of the current mput, the frame module
scrambler only receives 6 of the current 8 bits, 5¢-Oc and
receives bits 6 and 7 from the previous input or output of
scramble module 132. The same input pattern occurs with
respect to the 4” LFSR cycle. Also, the 3™ LFSR cycle, the
logic 154 outputs the sync header for the 2" code word, and
6 bits of scrambled data produced by the frame module
scrambler 150. Note that the 6 bits of the scrambled data
produced by the frame module scrambler correspond to the
6 bits of the current mput being received by the frame
module scrambler 150.

Accordingly, the input bits having a “p” designation to the
frame module scrambler act as place holders such that the
frame module scrambler 1s effectively adjusted to scramble
only the bits of the current mput code word portion. The

scrambling by the frame module scrambler continues as
shown for LFSR cycles 4-14.

At the 157 LFSR cycle, the 1* portion of an 87 code word
1s inputted to the scramble module 132 and a portion of that
iput 1s provided to the framing module 150. As shown
during the 157 cycle, the frame module scrambler input has
7 of the 8 bits coming from the previous input and/or output
of scramble module 132 and only 1 bit, bit position 0,
coming {rom the current data input from the elastic storage
device. The resulting output for cycle 15 has 7 bits corre-

10

15

20

25

30

35

40

45

50

55

60

65

12

sponding to the previously scrambled output of scramble
module 132 and 1-bit of sync-header. On the 16” and 177
cycles, the frame module scrambler recerves no input and
the entire output for cycles 16 and 17 are produced by
scramble module 132. As also shown, the 177 cycle input to
the scramble module 132 1s skipped to realign the inputting
of data into the scrambling module and the frame module
scrambler.

FIG. 8 15 a logic diagram of framing decoded data. The
framing apparatus includes the descramble module 88 that
includes a scrambling module 132 and framing module 134,
clastic storage buller 92 and an Nb/(N+m)b decoder 98. In
general, the descramble module 88 receives a receive code
word 160 that includes a sync-header, a 1** portion and a 2”4
portion. The descramble module 88 descrambles the data,
which 1s provided to the elastic storage builer 92. The elastic
storage buller 92 provides, during each processing interval,
the Nb/(N+m)b decoder with m+N/2 bits of data. The
decoder performs an inverse function of the encoder (as was
described in connection with FIGS. 5-7).

As indicated, the scramble function and descramble func-
tion are 1dentical to the framing of encoded data. In essence,
the scramble function 1s multiplying one code word with a
subsequent code word to produce the next code word. As 1s
generally known 1n the coding art, code words are unique
values and have the properties that one code word multi-
plied, using finite field arithmetic, with another code word
yields a third code word or the same code word. For
example, 0 1s one valid code word, thus any code word
multiplied with O results in that same code word. Further,
code word 1 multiplied with code word 2 equals code word
3. Similarly, code word 3 multiplied with code word 2 equals
code word 1. Based on this principle, the scrambling process
1s one ordered finite field multiplication of code words, for
example code word 1 multiplied with code word 2 to
produce code word 3, and the descrambling process 1s a
reverse ordered finite field multiplication of codes words, for
example, code word 3 multiplied with code word 2 equals
code word 1. Thus, by performing the finite field mathemat-
ics 1n reverse order of the scrambling function, the descram-
bling function 1s obtained. Accordingly, the same concepts
for the scrambling or framing of data as indicated 1n FIGS.
5 and 6 apply to the descrambling and/or deframing of data
by the descramble module 88 of FIG. 8.

The programmable receive PCS module 44 of FIG. 3
and/or the programmable transmit PCS module 42 of FIG.
4 may perform the method for framing data as shown in FIG.
9. The process begins at Step 170 where a scrambling
remainder between scrambling of an mput code word in
accordance with a 1¥ scrambling protocol and scrambling of
the mput code word in accordance with an adjustable
scrambling protocol 1s determined. The scrambling remain-
der corresponds to the number of bits being used from the
scramble module to complete the scrambling of a code word.
With reference to FIG. 6, the scrambling remainder for
cycles 2 and 3 1s 1, the scrambling remainder for cycles 4
and 5 1s 2, et cetera.

Further, the scrambling remainder may be determined
based on a current modulo count for the scrambling of the
input code word in accordance with the 1% scrambling
protocol and 1s based on the bit size diflerence between the
transmit encoded output and the 1% scrambled code word.
This was 1llustrated and discussed with reference to FIGS. 6
and 7. The 1% scrambling protocol and the adjustable scram-
bling protocol may be implemented as a linear feedback
shift register that implements one or more generator poly-
nomials. In one embodiment, the adjustable scrambling

US 7,362,864 B2

13

protocol is based on the generator polynomial of the 1%
scrambling protocol where a number of stages in the linear
teedback shiit register are determined based on the scram-
bling remainder.

The process then proceeds to Step 172 where the adjust-
able scrambling protocol 1s adjusted based on the scrambling
remainder to produce an adjusted scrambling protocol. This
was 1llustrated in FI1G. 7 where the 1input to the frame module
scrambler 1s adjusted. The process then proceeds to Step 174
where the input code word 1s scrambled 1n accordance with
the 1°* scramble protocol to produce a 1% scrambled code
word. with reference to FIGS. 6 and 7, the 1% scrambling
protocol corresponds to the scrambling of the mput code
word by the scrambling module 132.

The process then proceeds to Step 176 where the input
code word 1s scrambled 1n accordance with the adjusted
protocol to produce a scrambled partial code word. This
corresponds to the scrambling performed by the frame
module scrambler 150 of FIGS. 6 and/or 7. Note that at cycle
15, 16 and 17, the pattern begins to rollover with respect to
the scrambling. As such, when a rollover condition exists, as
at cycle 16 and/or 17 the scrambling by the frame module
scrambler 130 1s not utilized and the resulting outputted
scrambled word 1s produced by scramble module 132. Once
the rollover 1s complete, the pattern repeats as 1n accordance
with cycle 1. As an alternate approach to adjusting the
scrambled protocol, the frame module scrambler 150 may
have shift stages (1.e., S0-S7 1 FIG. 7) removed based on
the scrambling remainder such that the LFSR function 152
1s adjusted.

The process then proceeds to Step 178 where a portion of
the 1°° scrambled word is determined based on the scram-
bling remainder. The portion corresponds to the particular
LFSR cycle, as shown 1n FIG. 7, being implemented. During
cycles 2 and 3 the scrambling remainder 1s 1, during cycles
4 and 5 the scrambling remainder 1s 2, et cetera. As such,
based on this scrambling remainder, the portion of the
scrambled resultant produced by scrambling module 132 1s
used. The process then proceeds to Step 180 where the
scrambled partial code word 1s combined with the portion of
the 1°° scrambled code word to produce the transmit code
word. This 1s 1llustrated 1n FIGS. 6 and 7 as the output of the
framing module 134.

FIG. 10 1llustrates a logic diagram of linear feedback
shifting that may be performed by the programmable receive
PCS module 44 of FIG. 3 and/or the programmable transmat
PCS module 42 of FIG. 4. The process begins at step 190
where an N+m 1nput code word 1s received. N-bits of the
input code word correspond to data and the m bits corre-
spond to header information. For example, N may be 64 and
m may be 2 for 64b/66b encoding. Note that the encoding
may be extended to 64b/(64+X)b encoding where X 1s a
value greater than 3.

The process then proceeds to step 192 where a first linear
teedback shift operation 1s performed on N bits of the N+m
input code word to produce an N bit shufted code word. The
process then proceeds to step 194 where the N+m 1nput code
word 1s processed in accordance with a second linear
teedback operation to maintain the m bits of the mnput code
word and to produce an N-(m*k) bit shifted code word,
wherein k corresponds to shift offset. The process then
proceeds to Step 196 where an N-bit shifted output code
word 1s based on the N-m™*k bit shifted code word and bits
[O,N/2-(m*k)-1)] of the N-bit shifted code word. This again
was 1llustrated with reference to the examples of FIGS. 6
and 7.

10

15

20

25

30

35

40

45

50

55

60

65

14

The preceding discussion has presented a method and
apparatus for framing transmit encoded data and linear
feedback shifting. By utilizing the 1°° scrambling protocol as
may be implemented via the scramble module 132 and an
adjustable scrambling protocol as implemented by the frame
module 134, scrambling and descrambling of code words 1s
achieved without the need for a barrel shifter, which reduces
die area and power consumption. As one of average skill in
the art will appreciate, other embodiments may be derived
from the teaching of the present invention without deviating
from the scope of the claims.

What 1s claimed 1s:

1. A method for framing a transmit code word, the method
comprising:

determining a scrambling remainder between scrambling

of an mput code word in accordance with a first
scrambling protocol and scrambling of the mput code
word 1n accordance with an adjustable scrambling
protocol;

adjusting the adjustable scrambling protocol based on the

scrambling remainder to produce an adjusted scram-
bling protocol;

scrambling the input code word 1n accordance with the

first scrambling protocol to produce a first scrambled
code word:

scrambling the input code word 1n accordance with the

adjusted scrambling protocol to produce a scrambled
partial code word;

determiming a portion of the first scrambled code word

based on the scrambling remainder;

combining the scrambled partial code word with the

portion of the first scrambled code word to produce the
transmit code word; and

outputting the transmit code word.

2. The method of claim 1, wherein the determining the
scrambling remainder further comprises:

determining a current modulo count for the scrambling of

the input code word 1n accordance with the first scram-
bling protocol during the first timing interval, wherein
the modulo count 1s based on a bit size difference
between the transmit code word and the first scrambled
code word.

3. The method of claim 1, wherein the first scrambling
protocol comprises a generator polynomial for an M-bit
input code word.

4. The method of claim 3, wherein the adjustable scram-
bling protocol turther comprises finite field multiplication of
the generator polynomial with the M-bit input code word via
a programmable linear feedback shift register, wherein a
number of stages of the linear feedback shift register are
determined 1n accordance with the scrambling remainder.

5. The method of claim 1 further comprising:

encoding a 64-bit digital value utilizing a 64b/66b encod-

ing protocol to produce an encoded code word, wherein
the encoded code word includes the mput code word
and a second nput code word, wherein the mput code
word includes an 2-bit sync header and the second
input code word includes 2-bits of null imnformation.

6. The method of claim 5 further comprising;:

scrambling the second mput code word in accordance

with the first scrambling protocol to produce a second
scrambled code word;

scrambling the second mmput code word in accordance

with the adjusted scrambling protocol to produce a
second scrambled partial code word;

determining a portion of the second scrambled code word

based on the scrambling remainder; and

US 7,362,864 B2

15

combining the second scrambled partial code word with
the portion of the second scrambled code word to
produce a second transmit code word.
7. The method of claim 6, wherein the first scrambling,
protocol further comprises:
performing a function of G(x)=1+X""+X>® on the input
code word and the second 1mput code word.

8. The method of claim 6 further comprising;:
determining rollover of the scrambling of the second input
code word 1n accordance with the first scrambling
protocol, and of the scrambling of the second input
code word 1n accordance with the adjusting scrambling
protocol, prior to the scrambling of the second input
code word 1n accordance with the adjusted scrambling
protocol; and
when the rollover exists:
scrambling the second mput code word 1n accordance
with the first scrambling protocol to produce the
second scrambled code word; and
utilizing the second scrambled partial code word as the
second transmit code word.
9. The method of claim 1 further comprises:
encoding a 64-bit digital value utilizing a 64b/(64+m)b
encoding protocol to produce an encoded code word,
wherein the encoded code word 1ncludes the input code
word and a second input code word, wherein the 1input
code word includes an m-bit sync header and the
second 1nput code word includes m-bits of null infor-
mation, where m 1s greater than or equal to three.
10. The method of claim 1, wherein the adjusting the
adjustable scrambling protocol further comprises:
reducing stages of a linear feedback shift register based on
the scrambling remainder to produce the adjusted
scrambling protocol.
11. The method of claim 1, wherein the adjusting the
adjustable scrambling protocol further comprises:
shifting the mput code word to produce a shifted nput
code word based on the scrambling remainder; and
loading an adjustable linear feedback shift register with
the shifted input code word from a linear feedback shiit
register performing the first scrambling protocol.
12. An apparatus for framing a transmit code word, the
apparatus comprising;
an encoding module for generating input code word from
input data; and
a scrambling module operably coupled to:
determine a scrambling remainder between scrambling
of an mput code word in accordance with a first
scrambling protocol and scrambling of the input
code word 1n accordance with an adjustable scram-
bling protocol;
adjust the adjustable scrambling protocol based on the
scrambling remainder to produce an adjusted scram-
bling protocol;
scramble the mput code word 1n accordance with the
first scrambling protocol to produce a first scrambled
code word:;
scramble the mput code word 1n accordance with the
adjusted scrambling protocol to produce a scrambled
partial code word;
determine a portion of the first scrambled code word
based on the scrambling remainder;
combine the scrambled partial code word with the
portion of the first scrambled code word to produce
the transmit code word; and

output the transmit code word.

10

15

20

25

30

35

40

45

50

55

60

65

16

13. The apparatus of claim 12, wherein the scrambling
module further functions to determine the scrambling
remainder by:

determiming a current modulo count for the scrambling of

the input code word 1n accordance with the first scram-
bling protocol during the first timing interval, wherein
the modulo count 1s based on a bit size difference
between the transmit code word and the first scrambled
code word.

14. The apparatus of claim 12, wherein the first scram-
bling protocol further comprises a generator polynomial for
an M-bit 1input code word.

15. The apparatus of claim 14, wherein the adjustable
scrambling protocol further comprises finite field multipli-
cation of the generator polynomial with the M-bit input code
word via a programmable linear feedback shift register,
wherein a number of stages of the linear feedback shift
register are determined 1n accordance with the scrambling
remainder.

16. The apparatus of claim 12, wherein the encoding
module further functions to:

encode, as the mput data, a 64-bit digital value utilizing a

64b/66b encoding protocol to produce an encoded code
word, wherein the encoded code word includes the
input code word and a second 1nput code word, wherein
the mput code word 1ncludes an 2-bit sync header and
the second mput code word includes 2-bits of null
information.

17. The apparatus of claim 16, wherein the scrambling
module further functions to:

scramble the second mput code word 1n accordance with

the first scrambling protocol to produce a second
scrambled code word;

scramble the second mmput code word 1n accordance with

the adjusted scrambling protocol to produce a second
scrambled partial code word;

determine a portion of the second scrambled code word

based on the scrambling remainder; and

combining the second scrambled partial code word with

the portion of the second scrambled code word to
produce a second transmit code word.

18. The apparatus of claim 17, wherein the scrambling
module further functions, 1n accordance with the first scram-
bling protocol, to:

perform a function of G(x)=1+X>"+X"® on the input code

word and the second 1nput code word.

19. The apparatus of claim 17, wherein the scrambling
module further functions to:

determine roll-over of the scrambling of the second 1nput

code word 1 accordance with the first scrambling
protocol and of the scrambling of the second 1nput code
word 1 accordance with the adjusting scrambling
protocol prior to the scrambling of the second input
code word 1n accordance with the adjusted scrambling
protocol;

when the roll-over exists:

scramble the second input code word in accordance
with the first scrambling protocol to produce a sec-
ond scrambled code word; and

utilize the second scrambled partial code word as the
second transmit code word.

20. The apparatus of claim 12, wherein the encoding
module further functions to:

encode a 64-bit digital value utilizing a 64b/(64+m)b

encoding protocol to produce an encoded code word,
wherein the encoded code word includes the input code
word and a second input code word, wherein the input

US 7,362,864 B2

17 18
code word includes an m-bit sync header and the 22. The apparatus of claim 12, wherein the scrambling
second 1nput code word includes m-bits of null infor- module further functions to adjust the adjustable scrambling
mation, where k 1s greater than or equal to three. protocol by:
21. The apparatus of claim 12, wherein the scrambling shifting the mput code word to peruce d ?hiftEd input
module further functions to adjust the adjustable scrambling > code word based on the scrambling remainder; and
protocol by: loading an adjustable linear feedback shiit register with

the shifted input code word from a linear feedback shift

reducing stages of a linear feedback shitt register based on register performing the first scrambling protocol.

the scrambling remainder to produce the adjusted
scrambling protocol. £ % % k%

	Front Page
	Drawings
	Specification
	Claims

