12 United States Patent

(10) Patent No.:

US007356546B2

US 7,356,546 B2

Venkatesh et al. 45) Date of Patent: *Apr. 8, 2008
(54) SYSTEM AND METHOD FOR OBJECT 6,047,291 A 4/2000 Anderson et al. 707/103
PERSISTENCE IN A DATABASE STORE 6,070,174 A 5/2000 Starek et al. 707/206

(75) 1 R hand Venk b Bell 6,108,004 A 82000 Medl ..coovvvninil. 715/804
nventors: Ramachandran venkatesh, Sellevue, 6,112,024 A 82000 Almond et al. 717/122

WA (US); Beysim Sezgin, Redmond, | o
WA (LS)j JOSE A. Blﬂk@leyj 1{6(:1111011(1j 6,199,100 Bl 3/2001 Fllepp etal. 709/203
WA (US); Denis Y. Altudov, Redmond, 6,199,195 Bl 3/2001 Goodwin et al. 717/104
WA (US) 6,223,344 Bl 4/2001 Gerard et al. 717/170
' _ _ 6,338,056 Bl 1/2002 Dessloch et al. 707/2
(73) Assignee: %‘é’*""“ﬁ Corporation, Redmond, WA 6,370,541 Bl 4/2002 Chou et al. w.ovveeeee..... 707/103
(US) 6,505,211 Bl 1/2003 Dessloch et al. 707/103
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 404 days.
(b) by S (Continued)
'TlhlS patent 1S SUbjeCt to a terminal dis- OTHER PUBLICATIONS
claimer.
Andrews, T. et al., “Combining Language and Database Advances
(21) Appl. No.: 11/028,783 in an Object-Oriented Development Environment”, OOPSLA Pro-
ceedings, Oct. 4-8, 1987, 430-440.
(22) Filed: Jan. 4, 2005
(Continued)
(65) Prior Publication Data
Primary Examiner—Debbie Le
B ssistant fxaminer—rOaro otellin
US 2005/0120048 Al Jun. 2, 2005 Assi 7 : Harold A Hotelling
Related U.S. Application Data (74) Attorney, Agent, or Firm—Woodcock Washburn LLP

(63) Continuation of application No. 10/692,225, filed on (57) ABSTRACT
Oct. 23, 2004, now Pat. No. 6,941,316.

(51) Int. CL. A new persistence format for storing objects of a user
GO6t 7/00 (2006.01) defined type 1in a database store enables information about
GO6E 17700 (2006.01) the structure of the type to be commumicated to the store.

(52) US.ClL ., 707/103; 707/101 This information enables a number of store optimizations,

(58) FiEld Of ClﬂSSiﬁCﬂtiOIl Seal'Ch NOIle includlng direct Structural aAccess to members Of the type'
See application file for complete search history. Specifically, metadata is exchanged between the type imple-

(56) References Cited menter and the data store. The store uses the metadata to

U.S. PATENT DOCUMENTS

5,297,279 A 3/1994 Bannon et al. 707/103
5,437,027 A 7/1995 Bannon et al. 395/600
5,804,802 A 1/1999 Kriens et al. 707/103
5,900,870 A 5/1999 Malone et al. 715/866

Application genarates
query that includes

determine the storage layout for instances of the type. With
this information, the store 1s able to detect access patterns
that can be optimized to directly operate over the storage

representation without hydration (deserialization) the object.

pradicate or expression
that references 3
imanagsed bahavior of
{OT abject

APPLICATION

CLR

Datsbase Server {SQL Server)

MErmory

Objett | ‘
fin-memory farm) I I
i I De-serilization
/" T .~ (Hydration)
Serialization DISK
~ 1 ST
e _____..--""‘
[1]

UDT
Persisted

Form

4 Claims, 8 Drawing Sheets

US 7,356,546 B2
Page 2

U.S. PATENT DOCUMENTS

6,519,597 Bl 2/2003 Cheng et al. 707/10
6,556,983 Bl 4/2003 Altschuler et al. 706/55
6,564,205 B2 5/2003 Iwataetal. 707/2
6,578,046 B2 6/2003 Chang et al. 707/4
6,671,687 Bl 12/2003 Pederson et al. 707/9
6,708,196 Bl 3/2004 Atkinson et al. 709/102
6,772,178 B2 8/2004 Mandal et al. 707/204
6,785,690 Bl 8/2004 Davidson 707/103 Y
6,941,316 B2 9/2005 Venkatesh et al. 707/101
2002/0091702 Al 7/2002 Mullins ...ooovvvenninninnnnn. 707/100
2002/0152422 A1 10/2002 Sharma et al. 714/13
2002/0198891 A1 12/2002 Lietalcoovvvinnann.nnn. 707/102

OTHER PUBLICATIONS

Berg, C., “How Do I Create Persistent Java Objects?”, Dr. Dobb’s
Journal, 1997, 22(4), 98-101.

Bhattacharya, S. et al., “Coordinating Backup/Recovery and Data
Consistency Between Database and File Systems”, ACM SIGMOD,
Jun. 4-6, 2002, 500-511.

Biliris, A., “The Performance of Three Database Storage Structures
for Managing Large Objects”, ACM SIGMOD, 1992, 276-285.
Buneman, P. et al., “Inheritance and Persistence 1n Database Pro-
gramming Languages”, ACM, 1986, 4-15.

Chien, A.A., “Concurrent Aggregates (CA)-Design and Experience
with a Concurrent Object-Oriented Language Based on Aggre-
gates”, J. Parallel and Distributed Computing, 1995, 25(2), 174-
196.

Darby, C., “Object Serializatin in Java 1.1. Making Objects Persis-
tent”, Web Techniques, 1997, 2(9), 55, 58-59.

Findler, R.B. et al., “Contact Soundness for Object-Oriented Lan-
guages® ACM Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSLA, 2001, 15 pages.
Frost, R.A. “Binary-Relational Storage Structures™, The Computer
Journal, 1982, 25(3), 358-367.

Fuh, Y-C. et al., “Implementation of SQL3 Structured Types with
Inheritance and Value Substitutability”, Digital Symposium Collec-
tion, 2000, 565-574.

Harrison, C.J. et al., Structure Editors: User-Defined Type Values
and Type Inference, IEEE, 2000, 241-247.

Haverlock, K., “Object Serialization, Java, and C++", Dr. Dobbs.
Journal, 1998, 23(8), 32, 34, 36-37.

Hsiao, H.I. et al., “DLFM: A Transactional Resource Manager”,
MOD, 2000, 518-528.

Khan, L. et al., “A Performance Evaluation of Storing XML Data in
Relational Database Management Systems”, WIDM, 2001, 31-38.

King, et al., “TriStarp—An Investigation into the Implementation
and Exploitation of Binary Relational Storage Structures”, Proc. 8
Supth BNCOD(British national Conference on Data Bases), 1990,
64-84.

Leontiev, Y. et al., “On Type Systems for Object-Oriented Database

Programming Languages™, ACM Computing Surveys, Dec. 2002,
34(4), 409-449,

Melton, J. et al., “SQL and Management of External Data”,
SIGMOD Record, Mar. 2001, 30(1), 70-77.

Papiani, M. et al., A Distributed Scientific Data Archive Using the
Web, XML and SQL/MED, SIGMOD Record, Sep. 1999, 28(3),
56-62.

Seshadri, P., “Enhanced Abstract Data Types in Object-Relational
Databases™, The VLDB Journal, 1998, 7, 130-140.

Stonebraker, M., “Inclusion of New Types in Relational Data Base
Systems”, [FEE International Conference on Data Engineering,
1986, 1-19.

Varlamis, . et al., “Bridging XML-Schema and Relational Data-
bases. A System for Generating and Manipulating Relational Data-

bases Using Valid XML Documents™, Dockng 'OL, Nov. 9-10,
2001, 105-114.

Yoshikawa, M. et al., “XRel: A Path-Based Approach to Storage and
Retrieval of XML Documents Using Relational Databases™, ACM
Transactions on Internet Technology, Aug. 2001, 1(1), 110-141.

* cited by examiner

U.S. Patent Apr. 8, 2008 Sheet 1 of 8 US 7,356,546 B2

(Serializable]
(SglUserbPefinedType (MaxByteSize=8000)]
publi¢c class Baseltem: INullable

{

private SqlGuid m_ ID;
private SqlString m Name;

cuklic SglGuid ID

{
get

{

return m“ID;

set
{

J

this.m_ID = wvalue;

'

public 5glGuid Name

{
get

[
return m_Name;

set

{
!

this.m_Name = value:;

public MultiSet<PropertyAssociation> Properties;

fregion UDT boilerplate
public Baseltem()
{

}
public override string ToString()

{

)

protectec SglBoolean m_IsNull = SglBcolean.False;

publ;c boocl IsNull { get { return this.m IsNull.Value; }
public static Baseltem Null B

{

this.ID = new SgiGuid(Guid.NewGuid());

return "ID " 4+ this.ID;

get
{

Baseltem s = new Baseltem();

s.m IsNull SglBcolean.True;

return s;

}

'
public static Baseltem Parse(SqglString s)

{
}

fendregion

return new BaseItem{):

Fig. 1

U.S. Patent Apr. 8, 2008 Sheet 2 of 8 US 7,356,546 B2

Application generates
query that includes
predicate or expression
that references a
managed behavior of
UDT object

Database Server (SQL Server)

memory

APPLICATION

Object —
(in-memory form)

De-serialization
(Hydration)

Serialization . DISK

TN
e

UDT -
Persisted
Form

Fig. 2

U.S. Patent Apr. 8, 2008 Sheet 3 of 8 US 7,356,546 B2

Column Defined
as UDT \
TABLE

——

UDT |

EEEN
-

values of object
(i.e., an instance
of the UDT) are
stored in cell of
column

{ ”

Fig. 3

U.S. Patent Apr. 8, 2008 Sheet 4 of 8 US 7,356,546 B2

_ . . i — S

Receive query that

% 400 includes predicate or |
Define type expression that

| references a managed \ 406
| behavior of UDT object

Add metadata to ty;:pe_i — Y
| definition to control the Translate operation

storage facets of each Ve 402 into its equivalent

field of the type and to structural access path —— 408

denote equivalent based on information
structural access paths in system catalog

for behaviors ; —

0

Create UDT on 404
database server and
import metadata

Access value
structurally and returnto| - 410
user without hydration
or managed method
T ; invocation

Fig. 4A Fig. 4B

U.S. Patent Apr. 8, 2008 Sheet 5 of 8 US 7,356,546 B2

1, Serializable]
2. [SglUserDefinedType{Format.Structured, MaxByteSize=8000)]
3. puslic class BaseItem: INullable
4 . {
5. [SglUdtField{IsNullable=false)]
6. private SqlGuid m ID;
7.
8. [SqlUdtField (MaxSize=128, IsFixedLength=false)]
S. private SqlString m Name;
10
11 [SqglUdtProperty (FieldName="m ID")]
12. public SglGuid ID
13. {
14 get
15. {
l6. return m 1ID;
17. } -
18. set
19. [
20. this.m ID = wvalue;
21. }
22. }
23,
24. [SglUdtProperty (FieldName="m Name')]
25. public SglGuid Name o
26. [
27. get
28 . {
recurn m Name;
}
set

{
}

this.m Name = value;

}

[SglUdtField (IsNullable=true)]
oublic MultiSet<PropertyAssociation> Properties;

WWWWWwWwwWwwm
O O ~-I s W OW

40. #region UDT boilerplate
41. Dublic Baseltem(}
42, {
43, this.ID = new SqlGuid{Guid.NewGuid());
44 . }
45. public override string ToString()
46. {
47 . return "ID " + this.ID;
48 . }
49, [SqlUdtField]
50. protected SqlBoolean m IsNull = SglBoolean.False;
o1. public bool IsNull { get { return this.m IsNull.value; | }
52. public static BaseItem Null
53. {
54 . get
o5. {
26. Baseltem s = new Baseltem{);
7.
58. s.m IsNull = SglBoolean.True;
9. return s;
60. }
61. }
g%. public static Baseltem Parse(SqglString s)
: {
04 . return new Baseltem();
65. }
65, fendregion F' 5
T‘] lg .

U.S. Patent Apr. 8, 2008

Object
(in-memory form)

Application generates
query that includes
predicate or expression
that references a
managed behavior of

UDT object (1)

£

; APPLICATION v

Value accessed
sfructurally and
returned withou
deserialization

(3)

UDT
Persisted
Faorm

Sheet 6 of 8

US 7,356,546 B2

Ba;tabase Server (SQL Server)

CLR

memory

Query Processing
System

Operation
translated into
equivalent
structural
access path (2)

Fig. ©

U.S. Patent Apr. 8, 2008 Sheet 7 of 8 US 7,356,546 B2

bl A

Computing

Device s
110a Computing Device

i..'

J '

l_'—_""— %
"l

Object
;o 110c

LY
v

L
1

s

-
v
-
‘..i"
"
-

/14

Communications
Network/Bus

——h aruniii

Computing
Device
110e

10a

Server Object

Database 20

.

US 7,356,546 B2

Sheet 8 of 8

Apr. 8, 2008

00 _Oooooaéﬁo

G381 SNVHOO0™d

= NOILVOITddV
JLOWIYH 191
- 991A2(] Bl [Col byl
) . opl- 34" 124"
ommm._.:n_s_oo 29} p1eogha) Bunuod | Viva E,qwmcoo%ma SWVHOOUC WILSAS
2L OWa : Wv¥00dd | T, oF 5" | NOILYOINddY | ONILVH3dO
ﬁ Ll
¥IOM]ON BalY aPIM .
ﬁﬂ%&M@?ﬂHﬁLﬂWﬁﬁ -
BE —
L1 H T.m[“ejeq
_ S Em._mo._m
57T 09T 0G| mumtﬁ:_ OF| adelldju} |
3JOMIBN 22BMYU] 9J. 19U} AlowBdy Aouwlay 5T mm__.:oo
Ba1y |2o0 Y IOM)SN induy s1asn 9j1)RJOA-UON 3]1J8|OA-UON welb0o1 1d 48410
- - 3|qeAoway 9]eAOLIIY-UON
B B - wllmEEmEa_
_“mﬂmh@v_mwnm LZ1 Sng Wa)sAS @ uonesijddy
" " 061 B Za1 .. —
ﬂmﬂmumtmuc_ a3 ¢ Jomtm«:_ oct vEr warshs _
961 Jayupy jesaydisag saydein nun [Bupeiec)
| ndingo buissad0i4d

)

U.S. Patent

Lol JOJIUOY DLl

" Mowo weysAs

001 JuUswuon

U3 bupnduwiod

US 7,356,546 B2

1

SYSTEM AND METHOD FOR OBJECT
PERSISTENCE IN A DATABASE STORE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This 1s a continuation of prior application Ser. No. 10/692,

225, filed Oct. 23, 2004, now U.S. Pat. No. 6,941,316 which
1s hereby incorporated by reference in 1ts entirety.

COPYRIGHT NOTICE AND PERMISSION

A portion of the disclosure of this patent document may
contain material that 1s subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as 1t appears in the Patent and Trademark Oflice patent
files or records, but otherwise reserves all copyright rights

whatsoever. The following notice shall apply to this docu-
ment: Copyright © 2003, Microsoit Corp.

FIELD OF THE INVENTION

The present invention relates to data storage 1n a computer
system, and more particularly, to a system and method for
persisting objects 1n a database store.

BACKGROUND

Microsoft SQL SERVER 1s a comprehensive database
management platform that provides extensive management
and development tools, a powertul extraction, transiorma-
tion, and loading (E'TL) tool, business intelligence and
analysis services, and other capabilities. Two improvements
to SQL SERVER have recently been implemented. First, the
Microsolt Windows .NET Framework Common Language
Runtime (CLR) has been integrated into the SQL SERVER
database, and second, a new object, referred to as a user
defined type (UDT), can now be created with managed code
in the CLR environment and persisted 1n the database store.

The CLR 1s the heart of the Microsoft NET Framework,
and provides the execution environment for all NET code.
Thus, code that runs within the CLR 1s referred to as
“managed code.” The CLR provides various functions and
services required for program execution, mcluding just-in-
time (JIT) compilation, allocating and managing memory,
enforcing type salety, exception handling, thread manage-
ment and security. The CLR 1s now loaded by SQL SERVER
upon the first invocation of a .NET routine.

In previous versions of SQL SERVER, database program-
mers were limited to using Transact-SQL when writing code
on the server side. Transact-SQL 1s an extension of the
Structured Query Language as defined by the International
Standards Organization (ISO) and the American National
Standards Institute (ANSI). Using Transact-SQL, database
developers can create, modily and delete databases and
tables, as well as insert, retrieve, modily and delete data
stored 1n a database. Transact-SQL 1s specifically designed
for direct structural data access and manipulation. While
Transact-SQL excels at structural data access and manage-
ment, 1t 1s not a full-fledged programming language 1n the
way that Visual Basic NET and C# are. For example,
Transact-SQL does not support arrays, collections, for each
loops, bit shifting or classes.

With the CLR integrated into the SQL SERVER database,
database developers can now perform tasks that were 1mpos-
sible or difficult to achueve with Transact-SQL alone. Both

10

15

20

25

30

35

40

45

50

55

60

65

2

Visual Basic .NET and C# are modern programming lan-
guages oflering full support for arrays, structured exception
handling, and collections. Developers can leverage CLR
integration to write code that has more complex logic and 1s
more suited for computation tasks using languages such as
Visual Basic .NET and C#.

In addition to CLR mtegration, SQL SERVER also adds
support for user defined types (UDT)—a new mechanism
that enables a developer to extend the scalar type system of
the database. UDTs provide two key benefits from an
application architecture perspective: they provide strong
encapsulation (both 1n the client and the server) between the
internal state and the external behaviors, and they provide
deep mtegration with other related server features. Once a
UDT 1s defined, 1t can be used 1n all the contexts that a
system type can be used 1n SQL SERVER, including in
column definitions, variables, parameters, function results,
cursors, triggers, and replication.

The process of defining a UDT on a database server 1s
accomplished as follows:

a) create a class in managed code that follows the rules for

UDT creation:

b) load the Assembly that contains the UDT into a
database on the server using the CREATE ASSEMBLY
statement; and

C) create a type 1n the database using the CREATE TYPE

statement that exposes the managed code UDT.

At this point, the UDT can be used 1n a table definition.

When a UDT definition 1s created in managed code, the
type must meet the following requirements:

a) 1t must be marked as Serializable;

b) 1t must be decorated with the SqlUserDefined TypeAt-

tribute;

¢) the type should be NULL aware by implementing the

[Nullable interface;

d) the type must have a public constructor that takes no

arguments; and

¢) the type should support conversion to and from a string

by implementing the following methods:
1. Public String ToString(); and
2. Public Shared <type> Parse (SqlString s).

FIG. 1 1s an example of a class that defines a UDT 1n
accordance with the process described above. In accordance
with the steps described above, this class 1s then compiled
into a dynamic link library (dll). An Assembly containing the
compiled class 1s then created using the following T-SQL
script commands:

create assembly test

from ‘c:test.dll’

g0

The following T-SQL script commands are then used to
create the UDT on the server:

create type Baseltem

external name [test]:[Baseltem]

g0

Once the UDT has been created on the server, a table (e.g.,
“MyTable”) can be created defining an attribute of the table
as the UDT type, as follows:

create table MyTable
(

Item Baseltem,
[temlId as 1item::ID

US 7,356,546 B2

3

A new item can be added to the table, as follows:
declare (@1 Baseltem

set (@i=convert(Baseltem,”)

insert into MyTable values ((@1)

20

The UDT expression can then be used in a query such as:
SELECT Item.ID, Item.Name FROM MyTable.

With the integration of the CLR into SQL SERVER and
the ability to define UDTs from a class definition in managed
code, applications can now 1nstantiate objects of the type
defined by the managed code class and have those objects
persisted 1n the relational database store as an instance of the
UDT. Moreover, the class that defines the UDT can also
include methods that implement specific behaviors on
objects of that type. An application can therefore mstantiate
objects of a type defined as a UD'T and can invoke managed
behaviors over them.

When an object of a class that has been defined as a UDT
1s 1mnstantiated 1n the CLR, the object can be persisted in the
database store through the process of object serialization,
wherein the values of the variables of the class are trans-
terred to physical storage (e.g., hard disk). FIG. 2 illustrates
the serialization of an object 1n memory to 1ts persisted form
on disk. The object may be persisted 1n the database store 1n
a traditional relational database table of the format illus-
trated 1n FI1G. 3. As shown, the table comprises a column of
the specified UDT. The senialized values of a persisted object
of the specified UDT occupy a cell of the UDT column.

Referring again to FIG. 2, when an application generates
a query that includes a predicate or an expression that
references a managed behavior of a UDT object that has
been persisted in the database store (e.g., a behavior that
returns the value of a field of the UDT object), the persisted
object must be de-serialized (sometimes also referred to as
“hydrating”) and the CLR must allocate memory for the full
object 1n order to receive 1ts stored values. The CLR must
then invoke the actual method that implements the behavior
desired by the application. Unfortunately, the processing
overhead associated with allocating memory to store the full
object at run time, desernializing and populating all parts of
the object, and then imnvoking the method that implements
the requested behavior, can be burdensome. Consequently,
there 1s a need for systems and methods that provide more
cilicient storage and retrieval of objects persisted in a
database store. The present invention satisfies this need.

SUMMARY

The present invention 1s directed to a system and method
that provides a new persistence format for user defined types
(UDTs) within a database store that enables information
about the structure of a UDT to be communicated to the
underlying data store. This information enables a number of
store optimizations, including direct structural access to
members of the type. Specifically, the present invention
ecnables metadata exchange between the type implementer
and the data store. The store uses the metadata to determine
the storage layout for instances of the type. With this
information, the store 1s able to detect access patterns that
can be optimized to directly operate over the storage repre-
sentation without hydration (deserialization) of the object.
Moreover, by understanding operations that are structural
access-only operations, the system 1s able to build data
distribution statistics and indexes over the individual mem-
bers without requiring redundant persistence of the com-
puted value.

10

15

20

25

30

35

40

45

50

55

60

65

4

Other features and advantages of the invention may
become apparent from the following detailed description of
the invention and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed
description of the mnvention, 1s better understood when read
in conjunction with the appended drawings. For the purpose
of illustrating the invention, there 1s shown 1n the drawings
exemplary embodiments of various aspects of the invention;
however, the invention 1s not limited to the specific methods
and instrumentalities disclosed. In the drawings:

FIG. 1 1s an exemplary code segment illustrating a man-
aged code class definition for a user defined type;

FIG. 2 1s a block diagram 1illustrating the serialization and
deserialization of an 1nstance of a user defined type that has
been mstantiated in managed code;

FIG. 3 1s a diagram 1illustrating a database table in which
an object of a user defined type has been persisted;

FIG. 4A 1s a flow diagram illustrating one embodiment of
an aspect of the method of the present invention;

FIG. 4B 1s a flow diagram illustrating one embodiment of
another aspect of the method of the present invention;

FIG. 5 1s an exemplary code segment illustrating a man-
aged code class definition for a user defined type that has
been annotated 1n accordance with the present invention;

FIG. 6 1s a block diagram of a system 1n which the present
invention can be implemented, as well as illustrating the
structural access and return of a value of a persisted object
of a UDT 1n accordance with the method of the present
invention;

FIG. 7 1s a block diagram representing an exemplary
network environment having a variety of computing devices
in which the present invention may be implemented; and

FIG. 8 1s a block diagram representing an exemplary
computing device in which the present invention may be
implemented.

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

The subject matter of the present invention 1s described
with specificity to meet statutory requirements. However,
the description 1tself 1s not intended to limait the scope of this
patent. Rather, the inventors have contemplated that the
claimed subject matter might also be embodied in other
ways, to mclude different steps or elements similar to the
ones described 1n this document, in conjunction with other
present or future technologies. Moreover, although the term
“step” may be used herein to connote different aspects of
methods employed, the term should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps 1s explicitly described.

As stated above, the present invention 1s directed to a
system and method that provides a new persistence format
for user defined types (UDTs) within a database store that
enables information about the structure of a UDT to be
communicated to the underlying data store. This information
enables a number of store optimizations, including direct
structural access to members of the type. Specifically, the
present imvention enables metadata exchange between the
type implementer and the data store. The store uses the
metadata to determine the storage layout for instances of the
type. With this information, the store 1s able to detect access
patterns that can be optimized to directly operate over the

US 7,356,546 B2

S

storage representation without hydration (deserialization) of
the object. Moreover, by understanding operations that are
structural access-only operations, the system 1s able to build
data distribution statistics and indexes over the individual
members without requiring redundant persistence of the
computed value. The term “direct structural access” refers to
the ability of the database store to execute a query over an
object by direct access to the persisted values of the object
in a table of the data store, without having to hydrate
(deserialize) the object.

FI1G. 4A 15 a flow diagram 1llustrating one embodiment of
a method of the present invention. As illustrated, the method
begins at step 400 with the definition of a user defined type.
As with most UDTs, the type 1s defined as a CLR class in
managed code using, for example, a high-level program-
ming language such as Visual Basic .NET or C#. According
to the present invention, however, 1n order to apply the new
persistence format of the present invention to this class
definition, the class defimition 1s annotated in step 402 to
provide metadata that describes the storage layout of the
UDT. Preferably, the metadata describes the storage facets of
the fields of the type, such as size, precision, scale, etc. as
well as denoting equivalent structural access paths for every
behavior of the type. FIG. 5 1s an exemplary code listing in
which the CLR class shown FIG. 1 has been annotated in
accordance with the present nvention. In the present
embodiment, there are three aspects to this annotation.

First, the class definition 1s annotated to 1identify the UDT
as one to which the new persistence format of the present
invention will be applied. In the present embodiment, this 1s
achieved by adding the parameter “Format.Structured” to
the [SqlUserDefined Type()] attribute of the class defimition,
as show 1n line 2 of the exemplary class definition of FIG.
5. This 1dentifies the UDT to the data store as one to which
the persistence format of the present invention 1s to be
applied.

Second, each field of the class 1s annotated with a storage
attribute that controls the storage facets of the type, such as
s1Ze, precision, scale, etc. In the present embodiment, this 1s
achieved by annotating each field with a custom storage
attribute named SqlUdtField(). This attribute annotates
fields with additional storage directives. These directives are
enforced when the object 1s serialized to disk. In the present
embodiment, the properties (1.e., the directives that can be
1ssued) of the SqlUdtField() custom attribute are as follows:

Name Description Default value
IsFixedLength Is this a fixed length field? False
MaxSize The maximum size, 1n logical X
units for the underlying field
type, bytes for the binary
field types, and characters for
the character field types.
Precision Precision, valid only for X
numeric types
Scale Scale, valid only for numeric X
types
IsNullable Can values of this field be True
null?

It 1s understood, however, that the present invention 1s by no
means limited to the properties show. Rather, in other
embodiments additional or other properties may be specified
with this attribute.

In the present embodiment, the following field types are
permitted in a Format.Structured UDT: SqlBoolean, Sql-

10

15

20

25

30

35

40

45

50

55

60

65

6
Byte, Sqllntl6, Sqllnt32, Sqgllnt64, SqlSingle, SglDouble,
SglDateTime, SglMoney, SqlGuid, SqlDecimal, SqlString,
SglBinary, SglXmlReader, SqlBytes, SqlChars, SqlUtcDa-
teTime, SglDate, SqlTime, and Embedded UDTs. Of course,
in other embodiments, some of these field types may not be
permitted and other field types may be permitted. The
following table reflects the matrix of valid values of the
various properties for specific field types. “Y” means the
property 1s valid, “N” means the property 1s not valid, “R”
means the property 1s required. If the property 1s invalid,
type registration will report an error 11 a non-default value
for the property 1s specified. In other embodiments, these

[

limitations and constraints may differ.

Preci-

IsFixedLength MaxSize sion Scale IsNullable

Type
SqlBoolean
SqlByte
Sqlintl6
SqlInt32
Sqlint64
SqlSingle
SqlDouble
SqlDateTime
SqlMoney
SqlGuid
SqlDecimal
SqlString
SqlBinary
SqlXmlReader
SqlBytes
SqlChars
SqlUtcDateTime
SqlDate
SqlTime

Embedded UDTs

222 Z KA ZL 22222222277
2222 RRPRLARRPRZZZ2272272772727%7%7
2,22 222 222 2222772722777
222222222 2222272Z27227227%Z7Z7
e T e

Referring to the exemplary code listing of FIG. 5, the
SqlUdtField() custom attribute has been added at lines 5, 8,

37, and 49 to annotate the respective fields of the exemplary
UDT class definition.

As a third aspect of the class definition annotation, every
managed behavior (e.g., a method that can be invoked on the
UDT object to return the value of a field) defined in the CLR
class 1s annotated with an attribute that denotes an equiva-
lent structural access path for that managed behavior. In the
present embodiment, the custom attribute used for this
purpose 1s named SqlUdtProperty(), and the database server
(e.g., SQL SERVER) assumes that the implementation of
properties annotated with this custom attribute will delegate
to a field specified as part of the attribute definition. This lets
the server optimize access to the property structurally with-
out creating an nstance and invoking the behavior on it. The
properties ol the SqlUdtProperty() custom attribute are as
follows:

Name Description

FieldName the name of the field that i1s used to store
the value for this property.

The presence of the SqlUdtProperty denotes that the body
ol the property can be 1gnored, and the name of the field 1s
used as the structural access path. In the present embodi-
ment, property accessors are the only behaviors that can be

US 7,356,546 B2

7

accessed structurally. However, 1n other embodiments, other
types of methods may be capable of structural access.

Referring to the exemplary code listing of FIG. 5, the
SqlUdtProperty() custom attribute has been added at lines 11
and 24 to annotate the respective managed behaviors of the
class.

Referring again to FIG. 4A, at step 404 the UDT as
defined by the UDT author 1s created on the database server
and the metadata retlected in the class definition annotations
1s 1imported 1nto the database store, which uses the metadata
to determine the storage layout for instances of the type.
Specifically, the SqlUdtField attribute in combination with
the actual type of a given field 1s used to control the storage
layout of the persisted value of that field. For example, 11 the
attribute 1ndicates that a field 1s nullable, the component of
the database system that handles storage can reserve a bit in
the area used to store null values for this field. As another
example, 11 the field 1s of a varying sized type (like string),
the attribute may 1ndicate that the field 1s actually fixed size.
This imnformation can again be used by the database system
to optimize access to this field by storing the field in the fixed
s1ze portion of the value. The specifics of how the facets on
the SqlUdtField attribute affect the storage layout are depen-
dent upon the particular storage layout choices of the
database system. It 1s understood, therefore, that the fore-
going discussion provides merely two examples of how such
an attribute can control the storage layout of an instance of
a UDT; the present invention 1s by no means limited thereto.

In the present embodiment, step 404 of the method 1s
carried out by (1) compiling the CLR class file that defines
the UDT into a dynamic link library (.dll), (2) creating an
Assembly that contains the UDT and registering the Assem-
bly with the store, and then (3) creating the UDT over the
managed type. As part of step(3), the storage facets of the
type are validated and the metadata information reflected in
the annotations to the CLR class definition are imported into
the database system catalog that describes the structure of
the type. In the present embodiment, these steps can be
carried out using the following T-SQL script commands:

--create the assembly
create assembly test
from ‘c:test.dll’

g0
-- create the UDT
create type Baseltem

external name [test]:[Baseltem]
g0

Instances of the UDT can then be instantiated in managed
code, and those objects can be persisted 1n a table of the
database store, as with any UDT. It 1s understood that 1n
other embodiments, particularly those that may employ
database servers other than SQL SERVER, the details of
how the UDT 1s registered and how the metadata informa-
tion 1s exchanged with the database store may be diflerent.

FIG. 4B 1s a flow diagram illustrating a method for
accessing values of a UDT to which the new persistence
format of the present invention has been applied, e.g., UDTs
annotated with the “Format.Structured” property as dis-
cussed above. According to the inventive method, as shown
in step 406, the database server receives a query that
includes a predicate or an expression that references a
managed behavior of an object persisted 1n the database
store, to which the method of the present invention has been

10

15

20

25

30

35

40

45

50

55

60

65

8

applied. For example, suppose a Format.Structured UDT
named “Person” has been created and that it includes a field
of type SqlString called “Name,” which has been properly
annotated with the SqlUdtField() attribute as described
above. Assume also that the Person type has a managed
behavior that returns the value of the “Name” field of an
instance of the type and that the behavior has been properly
annotated with the SqlUdtProperty() attribute. The database
server may receive the following query on the Person object:

SELECT Person.Name FROM T

where T 1s a table that contains a UDT column called Person.

As described above in the Background section, 1n the case
of SQL SERVER, for UDTs to which the new persistence
format of the present invention 1s not applied, the query
would be processed as follows. At query compilation time,
the assembly metadata for the UDT 1s examined to deter-
mine that Name 1s a valid property on the type. A helper
function 1s then created on the fly to immvoke the Name
property on the deserialized instance of the Person object.
Deserialization 1s implemented by a type-specific deseral-
izer that 1s also generated on the fly. As discussed above, the
process of deserialization involves using the contents of the
on-disk representation to populate the internals of the new
managed object. Internally, the query:

SELECT person.Name FROM T

gets converted to:

SELECT desenalizelnto(new person()), personDatum)—
invokeFunction(Name) FROM T

All the new code that 1s generated 1s encapsulated 1n a
function InvokeUdiExternal, which 1s used at runtime to
evaluate this expression.

In accordance with the present invention, however, as
illustrated at step 408, the query is processed differently.
Specifically, the query operation 1s translated into its equiva-
lent structural access path based on the metadata stored 1n
the system catalog of the database. In the presently described
embodiment 1in which the invention 1s implemented 1n the
SQL SERVER database, at query compilation time, the
assembly metadata for the UDT 1s examined to determine
that Name 1s a property that can be rewritten for structural
access. I 1t can be executed structurally, sql metadata and
assembly metadata are used to determine the physical access
information (location, type and size of the value, along with
the access path to get to 1t). This structural metadata 1s used
to compile an accessor and store this information in the
compiled expression. In the present embodiment, therefore,
the same query above gets compiled 1nstead 1nto:

Select binding.GetData(personDatum, NameOrdinal)

from T

Next, at step 410, the value of the requested field can now
be accessed structurally and returned to the user without the
need for object hydration and without invoking any behav-
iors 1n managed code. Specifically, 1n the present embodi-
ment, the accessor 1s used at runtime to fetch the field.
Internally, the implementation of the accessor parses the
serialized form and returns the property.

FIG. 6 1s a block diagram that illustrates a system that
implements the method illustrated 1n FIG. 4B. As shown at
(1), an application generates a query that includes a predi-
cate or an expression that references a managed behavior of
an object persisted 1n the database store, to which the present
invention has been applied. A query processing system of the
database server uses the stored metadata associated with the
UDT to translate the query into an equivalent structural
access path, as shown at (2). The value 1s then accessed

US 7,356,546 B2

9

structurally and returned to the application without object
hydration and without invoking the behavior on the object,
as shown at (3).

Developers can build upon the ability of the present
invention to provide structural access to fields of a UDT
object without object hydration, to enable additional opti-
mizations. For example, with the present invention, devel-
opers have the ability to build computed column indexes
over structurally accessible UDT operations without requir-
ing the column to be persisted redundantly. The direct
structural access to a value provided by the present invention
can be used to retrieve interesting information from the
value, such as the actual type of the value, or whether the
value contains embedded large values. The present invention
can also be used to provide structural transformations of a
value 1n response to servicing and data upgrade scenarios.
Additionally, the present invention can be used to migrate
and 1mport/export values from one domain (store) to another
more efliciently.

As 1s apparent from the above, all or portions of the
various systems, methods, and aspects of the present inven-
tion may be embodied 1n hardware, software, or a combi-
nation of both. When embodied 1n software, the methods and
apparatus of the present invention, or certain aspects or
portions thereof, may be embodied in the form of program
code (1.e., mstructions). This program code may be stored on
a computer-readable medium, such as a magnetic, electrical,
or optical storage medium, including without limitation a
floppy diskette, CD-ROM, CD-RW, DVD-ROM, DVD-
RAM, magnetic tape, flash memory, hard disk drive, or any
other machine-readable storage medium, wherein, when the
program code 1s loaded mnto and executed by a machine,
such as a computer or server, the machine becomes an
apparatus for practicing the invention. A computer on which
the program code executes will generally include a proces-
sor, a storage medium readable by the processor (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device. The
program code may be implemented 1 a high level proce-
dural or object oriented programming language. Alterna-
tively, the program code can be implemented 1n an assembly
or machine language. In any case, the language may be a
compiled or interpreted language.

The present invention may also be embodied in the form
of program code that 1s transmitted over some transmission
medium, such as over electrical wiring or cabling, through
fiber optics, over a network, including a local area network,
a wide area network, the Internet or an intranet, or via any
other form of transmission, wherein, when the program code
1s received and loaded 1nto and executed by a machine, such
as a computer, the machine becomes an apparatus for
practicing the 1invention.

When implemented on a general-purpose processor, the
program code may combine with the processor to provide a
unique apparatus that operates analogously to specific logic
circuits.

Moreover, the invention can be implemented in connec-
tion with any computer or other client or server device,
which can be deployed as part of a computer network, or in
a distributed computing environment. In this regard, the
present mvention pertains to any computer system or envi-
ronment having any number of memory or storage units, and
any number of applications and processes occurring across
any number of storage units or volumes, which may be used
in connection with processes for persisting objects 1 a
database store 1n accordance with the present invention. The
present invention may apply to an environment with server

10

15

20

25

30

35

40

45

50

55

60

65

10

computers and client computers deployed in a network
environment or distributed computing environment, having
remote or local storage. The present invention may also be
applied to standalone computing devices, having program-
ming language functionality, interpretation and execution
capabilities for generating, receiving and transmitting infor-
mation in connection with remote or local services.

Distributed computing facilitates sharing of computer
resources and services by exchange between computing
devices and systems. These resources and services include,
but are not limited to, the exchange of information, cache
storage, and disk storage for files. Distributed computing,
takes advantage of network connectivity, allowing clients to
leverage their collective power to benefit the entire enter-
prise. In this regard, a variety of devices may have appli-
cations, objects or resources that may implicate processing
performed 1n connection with the object persistence methods
of the present invention.

FIG. 7 provides a schematic diagram of an exemplary
networked or distributed computing environment. The dis-
tributed computing environment comprises computing
objects 10a, 105, etc. and computing objects or devices
110a, 1105, 110c, etc. These objects may comprise pro-
grams, methods, data stores, programmable logic, etc. The
objects may comprise portions ol the same or different
devices such as PDAs, televisions, MP3 players, personal
computers, etc. Each object can communicate with another
object by way of the communications network 14. This
network may 1tself comprise other computing objects and
computing devices that provide services to the system of
FIG. 7, and may itsell represent multiple interconnected
networks. In accordance with an aspect of the invention,
cach object 10a, 105, etc. or 110a, 1105, 110c¢, etc. may
contain an application that might make use of an API, or
other object, soitware, firmware and/or hardware, to request
use of the processes used to implement the object persis-
tence methods of the present invention.

It can also be appreciated that an object, such as 110c,
may be hosted on another computing device 10a, 105, etc.
or 110qa, 1105, etc. Thus, although the physical environment
depicted may show the connected devices as computers,
such 1illustration 1s merely exemplary and the physical
environment may alternatively be depicted or described
comprising various digital devices such as PDAs, televi-
sions, MP3 players, etc., software objects such as interfaces,
COM objects and the like.

There are a variety of systems, components, and network
configurations that support distributed computing environ-
ments. For example, computing systems may be connected
together by wired or wireless systems, by local networks or
widely distributed networks. Currently, many of the net-
works are coupled to the Internet, which provides the
infrastructure for widely distributed computing and encom-
passes many diflerent networks. Any of the infrastructures
may be used for exemplary communications made incident
to the present invention.

The Internet commonly refers to the collection of net-
works and gateways that utilize the TCP/IP suite of proto-
cols, which are well-known 1n the art of computer network-
ing. TCP/IP 1s an acronym for “Transmission Control
Protocol/Internet Protocol.” The Internet can be described as
a system ol geographically distributed remote computer
networks interconnected by computers executing network-
ing protocols that allow users to interact and share informa-
tion over the network(s). Because of such wide-spread
information sharing, remote networks such as the Internet
have thus far generally evolved into an open system for

US 7,356,546 B2

11

which developers can design soitware applications for per-
forming specialized operations or services, essentially with-
out restriction.

Thus, the network infrastructure enables a host of network
topologies such as client/server, peer-to-peer, or hybrid
architectures. The “client” 1s a member of a class or group
that uses the services of another class or group to which it
1s not related. Thus, in computing, a client 1s a process, 1.€.,
roughly a set of 1nstructions or tasks, that requests a service
provided by another program. The client process utilizes the
requested service without having to “know” any working,
details about the other program or the service itself. In a
client/server architecture, particularly a networked system, a
client 1s usually a computer that accesses shared network
resources provided by another computer, e.g., a server. In the
example of FIG. 7, computers 110a, 1105, etc. can be
thought of as clients and computer 10a, 105, etc. can be
thought of as servers, although any computer could be
considered a client, a server, or both, depending on the
circumstances. Any ol these computing devices may be
processing data 1 a manner that implicates the object
persistence techniques of the mvention.

A server 1s typically a remote computer system accessible
over a remote or local network, such as the Internet. The
client process may be active 1n a first computer system, and
the server process may be active in a second computer
system, communicating with one another over a communi-
cations medium, thus providing distributed functionality and
allowing multiple clients to take advantage of the informa-
tion-gathering capabilities of the server. Any software
objects utilized pursuant to the persistence mechanism of the
invention may be distributed across multiple computing
devices.

Client(s) and server(s) may communicate with one
another utilizing the functionality provided by a protocol
layer. For example, HyperText Transter Protocol (HTTP) 1s
a common protocol that 1s used 1 conjunction with the
World Wide Web (WWW), or “the Web.” Typically, a
computer network address such as an Internet Protocol (IP)
address or other reference such as a Universal Resource
Locator (URL) can be used to i1dentify the server or client
computers to each other. The network address can be
referred to as a URL address. Communication can be pro-
vided over any available communications medium.

Thus, FIG. 7 illustrates an exemplary networked or dis-
tributed environment, with a server in communication with
client computers via a network/bus, in which the present
invention may be employed. The network/bus 14 may be a
LAN, WAN, intranet, the Internet, or some other network
medium, with a number of client or remote computing
devices 110a, 1105, 110c¢, 1104, 110e¢, etc., such as a portable
computer, handheld computer, thin client, networked appli-
ance, or other device, such as a VCR, TV, oven, light, heater
and the like in accordance with the present invention. It 1s
thus contemplated that the present invention may apply to
any computing device in connection with which it 1s desir-
able to maintain a persisted object.

In a network environment 1n which the communications
network/bus 14 1s the Internet, for example, the servers 10a,
105, etc. can be servers with which the clients 1104, 1105,
110¢, 1104, 110e, etc. communicate via any of a number of
known protocols such as HI'TP. Servers 10a, 105, etc. may
also serve as clients 110a, 1105, 110c¢, 110d, 110e, etc., as
may be characteristic of a distributed computing environ-
ment.

Communications may be wired or wireless, where appro-

priate. Client devices 110q, 11056, 110¢, 1104, 110¢, etc. may

10

15

20

25

30

35

40

45

50

55

60

65

12

or may not communicate via communications network/bus
14, and may have independent communications associated
therewith. For example, 1n the case of a TV or VCR, there

may or may not be a networked aspect to the control thereof.
Each client computer 110q, 1105, 110¢, 1104, 110¢, etc. and

server computer 10a, 105, etc. may be equipped with various
application program modules or objects 135 and with con-
nections or access to various types ol storage elements or
objects, across which files or data streams may be stored or
to which portion(s) of files or data streams may be down-
loaded, transmitted or migrated. Any computer 10a, 105,
110a, 1105, etc. may be responsible for the maintenance and
updating of a database, memory, or other storage element 20
for storing data processed according to the invention. Thus,
the present invention can be utilized 1n a computer network
environment having client computers 110a, 1105, etc. that
can access and interact with a computer network/bus 14 and

server computers 10a, 105, etc. that may interact with client
computers 110a, 1105, etc. and other like devices, and

databases 20.

FIG. 8 and the following discussion are intended to
provide a brief general description of a suitable computing
device 1n connection with which the invention may be
implemented. For example, any of the client and server
computers or devices illustrated in FIG. 7 may take this
form. It should be understood, however, that handheld,
portable and other computing devices and computing objects
of all kinds are contemplated for use 1n connection with the
present invention, 1.e., anywhere from which data may be
generated, processed, received and/or transmitted 1n a com-
puting environment. While a general purpose computer 1s
described below, this 1s but one example, and the present
invention may be implemented with a thin client having
network/bus iteroperability and interaction. Thus, the
present invention may be implemented 1n an environment of
networked hosted services 1n which very little or minimal
client resources are implicated, e.g., a networked environ-
ment 1 which the client device serves merely as an interface
to the network/bus, such as an object placed 1n an appliance.
In essence, anywhere that data may be stored or from which
data may be retrieved or transmitted to another computer 1s
a desirable, or suitable, environment for operation of the
object persistence methods of the invention.

Although not required, the mnvention can be implemented
via an operating system, for use by a developer of services
for a device or object, and/or included within application or
server software that operates 1n accordance with the mven-
tion. Soitware may be described in the general context of
computer-executable instructions, such as program modules,
being executed by one or more computers, such as client
workstations, servers or other devices. Generally, program
modules include routines, programs, objects, components,
data structures and the like that perform particular tasks or
implement particular abstract data types. Typically, the func-
tionality of the program modules may be combined or
distributed as desired in various embodiments. Moreover,
the invention may be practiced with other computer system
configurations and protocols. Other well known computing
systems, environments, and/or configurations that may be
suitable for use with the invention include, but are not
limited to, personal computers (PCs), automated teller
machines, server computers, hand-held or laptop devices,
multi-processor systems, microprocessor-based systems,
programmable consumer electronics, network PCs, appli-
ances, lights, environmental control elements, minicomput-
ers, mainirame computers and the like.

US 7,356,546 B2

13

FIG. 8 thus illustrates an example of a suitable computing
system environment 100 in which the invention may be
implemented, although as made clear above, the computing
system environment 100 1s only one example of a suitable
computing environment and 1s not intended to suggest any
limitation as to the scope of use or functionality of the
invention. Neither should the computing environment 100
be iterpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 100.

With reference to FIG. 8, an exemplary system for imple-
menting the invention includes a general purpose computing,
device 1n the form of a computer 110. Components of
computer 110 may include, but are not limited to, a pro-
cessing umt 120, a system memory 130, and a system bus
121 that couples various system components including the
system memory to the processing unit 120. The system bus
121 may be any of several types of bus structures including
a memory bus or memory controller, a peripheral bus, and a
local bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnect (PCI) bus (also known
as Mezzanine bus).

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and commumication media. Computer storage
media include both volatile and nonvolatile, removable and
non-removable media implemented 1n any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules or other data.
Computer storage media include, but are not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CDROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can be accessed by computer 110.
Communication media typically embody computer readable
instructions, data structures, program modules or other data
in a modulated data signal such as a carrier wave or other
transport mechamsm and include any information delivery
media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such
a manner as to encode iformation in the signal. By way of
example, and not limitation, communication media include
wired media such as a wired network or direct-wired con-
nection, and wireless media such as acoustic, RF, infrared
and other wireless media. Combinations of any of the above
should also be included within the scope of computer
readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 131 and random access memory
(RAM) 132. A basic input/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between elements within computer 110, such as during
start-up, 1s typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are imnmediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FIG. 8

10

15

20

25

30

35

40

45

50

55

60

65

14

illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 8 1llustrates a hard disk drive 141
that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from
or writes to a removable, nonvolatile magnetic disk 152, and
an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156, such as a CD-RW,
DVD-RW or other optical media. Other removable/non-
removable, volatile/nonvolatile computer storage media that
can be used 1n the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital video tape,
solid state RAM, solid state ROM and the like. The hard disk
drive 141 1s typically connected to the system bus 121
through a non-removable memory interface such as intertace
140, and magnetic disk drive 151 and optical disk drive 155
are typically connected to the system bus 121 by a remov-
able memory interface, such as interface 150.

The drives and their associated computer storage media
discussed above and illustrated in FIG. 8 provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 8, for
example, hard disk drive 141 1s illustrated as storing oper-
ating system 144, application programs 145, other program
modules 146 and program data 147. Note that these com-
ponents can either be the same as or diflerent from operating
system 134, application programs 135, other program mod-
ules 136 and program data 137. Operating system 144,
application programs 145, other program modules 146 and
program data 147 are given different numbers here to
illustrate that, at a minimum, they are diflerent copies. A user
may enter commands and iformation into the computer 110
through mput devices such as a keyboard 162 and pointing
device 161, such as a mouse, trackball or touch pad. Other
input devices (not shown) may include a microphone, joy-
stick, game pad, satellite dish, scanner, or the like. These and
other mput devices are oiten connected to the processing
unit 120 through a user input interface 160 that 1s coupled to
the system bus 121, but may be connected by other interface
and bus structures, such as a parallel port, game port or a
umversal serial bus (USB). A graphics interface 182 may
also be connected to the system bus 121. One or more
graphics processing units (GPUs) 184 may communicate
with graphics iterface 182. A monitor 191 or other type of
display device 1s also connected to the system bus 121 via
an interface, such as a video interface 190, which may 1n
turn communicate with video memory 186. In addition to
monitor 191, computers may also include other peripheral
output devices such as speakers 197 and printer 196, which

may be connected through an output peripheral interface
195.

The computer 110 may operate 1n a networked or distrib-
uted environment using logical connections to one or more
remote computers, such as a remote computer 180. The
remote computer 180 may be a personal computer, a server,
a router, a network PC, a peer device or other common
network node, and typically includes many or all of the
clements described above relative to the computer 110,
although only a memory storage device 181 has been
illustrated 1 FIG. 8. The logical connections depicted 1n
FIG. 8 include a local area network (LAN) 171 and a wide
area network (WAN) 173, but may also include other
networks/buses. Such networking environments are com-

US 7,356,546 B2

15

monplace 1n homes, offices, enterprise-wide computer net-
works, intranets and the Internet.

When used in a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used 1n a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be internal or external, may be connected to the system
bus 121 via the user input itertace 160, or other approprate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way
of example, and not limitation, FIG. 8 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

As the foregoing illustrates, the present invention 1s
directed to a new persistence format for user defined types
in a database management system. It 1s understood that
changes may be made to the embodiments described above
without departing from the broad imventive concepts thereof.
For example, while an embodiment of the present invention
has been described above as being implemented in
Microsoit’s SQL SERVER database management system, 1t
1s understood that the present invention may be embodied 1n
any database management system that supports the creation
of user defined types. Accordingly, i1t 1s understood that the
present invention 1s not limited to the particular embodi-
ments disclosed, but 1s intended to cover all modifications
that are within the spirit and scope of the invention as
defined by the appended claims.

10

15

20

25

30

16

What 1s claimed 1s:

1. A computer-implemented method for persisting an
object 1n a database store, comprising:

creating a definition of a user-defined type of an object

that 1s persisted in the database store, wherein the
definition of the user-defined type comprises fields and
methods, each field of the defimtion of the type user-

defined comprising one or more storage facets;

annotating at least one field of the definition of the
user-defined type with a first attribute that controls said
one or more storage facets of the field;

annotating at least one method with a second attribute that
denotes an equivalent structural access path; and

wherein the database store uses the annotations 1n the
definition of the user-defined type to control the storage
layout of instances of the user-defined type in the
database store.

2. The computer-implemented method recited 1n claim 1,
wherein said one or more storage facets of the field that are
controlled by the first attribute comprise at least one of the
maximum size of the field, whether the field length 1s fixed
or variable the field 1s fixed length, the precision of the field,
the scale of the field, and when values of the field are null.

3. The computer-implemented method recited 1n claim 1,
wherein the second attribute specifies the name of a field of
the user-defined type that 1s the subject of the method.

4. The computer-implemented method of claim 1,
wherein the definition of the user-defined type 1s created as
a class 1n managed code.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,356,546 B2 Page 1 of 1
APPLICATION NO. : 11/028783

DATED . April 8, 2008

INVENTOR(S) : Ramachandran Venkatesh et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 16, lines 8-9, 1n Claim 1, delete “type user-defined” and 1nsert --user-defined type--,
therefor.

Signed and Sealed this
Twent

y-second Day of February, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

