United States Patent

US007356522B2

(12) (10) Patent No.: US 7,356,522 B2
Herrera et al. 45) Date of Patent: Apr. 8, 2008
(54) SYSTEM AND METHOD FOR BUILDING A 5,267,141 A * 11/1993 Morita et al. 700/32
RULEBASE 5,276,775 A 1/1994 Meng
5,355,444 A 10/1994 Chirico
(75) Inventors: Peter J. Herrera, San Jose,,.CA (US); 5363473 A 11/1994 Stolfo et al.
Ronald Cass, Cleveland Heights, OH 5367,619 A 11/1994 Dipaolo et al.
(US); Kirk D. Wilson, Sugar Hill, NH 5,706,475 A * 1/1998 Entressangle et al. 709/203
(E,S); It-Beng Tan, Redwood City, CA 5.826.250 A 10/1998 Trefler
(”S) 6,058,387 A 5/2000 Campbell et al.
(73) Assignee: Computer Associates Think, Inc., 6,067,637 A 5/2000 Auer et al.
Islandia, NY (US) 6,092,064 A 7/2000 Aggarwal et al.
6,092,194 A 7/2000 Touboul
(*) Notice: Subject to any disclaimer, the term of this 6,356,885 B2 3/2002 Ross et al.
patent 1s extended or adjusted under 35 6,519,580 Bl 2/2003 Johnson et al.
U.S.C. 154(b) by 627 days. 6,598,033 B2 7/2003 Ross et al.
6,606,616 B1* 82003 Selzer ...ccocvvvvvvnvvnnnnn.. 706/47
(21) Appl. No.: 10/418,702 6.829.604 B1* 12/2004 Tiflt ©veovoveeeeososeon 707/5
(22) Filed: Apr. 18, 2003 2001/0029499 A1* 10/2001 Tuatini et al. 706/47
2003/0023573 Al 1/2003 Chan et al.
(65) Prior Publication Data
US 2003/0229605 Al Dec. 11, 2003
Related U.S. Application Data (Continued)
(60) Provisional application No. 60/373,823, filed on Apr. OTHER PUBLICALIONS
19, 2002. Barry Shane et al., Consultations Among Multiple Knowledge
Bases In An Investment Portfolio Expert System, 1987, IEEE,
(51) Int. Cl. 497 .495 *
GO6F 17/00 (2006.01)
GO6N 5/02 (2006.01) (Continued)
(g;) ;‘J..Sl.d Cli._ Cl | ﬁ e S 106/47; 706/50;770066/;576 Primary Examiner—Joseph P Hitl
(58) Field of Classification Search ‘ (74) Attorney, Agent, or Firm—Pillsbury Winthrop Shaw
706/56, 50; 700/32; 707/5 -
L. . Pittman, LLP
See application file for complete search history.
(56) References Cited (57) ABSTRACT

U.S. PATENT DOCUMENTS

4,884,217 A * 11/1989 Skeirik et al. 706/56
4,885,705 A * 12/1989 Chol .ccovvvvvivviinninninnnnn. 702/184
5,058,043 A 10/1991 Skeirik

5,122,976 A 6/1992 Bellows et al.

5,165,011 A 11/1992 Hisano

5,175,696 A 12/1992 Hooper et al.

108

A method for building a rulebase includes receiving a
plurality of rulebase components. The method also includes
merging the rulebase components to create a consolidated
rulebase.

N CLIENT

CLIENT
APPLICATION

122
RULEBASE

¢ NETWORK 106

SERVER

1124 | 228

RULEBASE
BUILDER

1-118

11(5 112

INFERENCE
ENGINE

102~

RULE EDITOR

(.-‘
136
132) 1

‘,J
138
301

DEBUGGER |

TESTER

|
|
I
|
I
|
|
l
| TRANSFORMER
|
i
L

20 Claims, 12 Drawing Sheets

104

i

y

RULEBASE

Ir‘l15

By
130
5

157

US 7,356,522 B2
Page 2

U.S. PATENT DOCUMENTS

2003/0037063 Al 2/2003 Schwartz

2003/0229605 Al* 12/2003 Herrera et al. 706/47
2004/0030710 Al 2/2004 Shadle

2004/0260667 Al 12/2004 Huelsman et al.

OTHER PUBLICATIONS

ILOG, “I1LOG JConfigurator™;
jconfigurato; (4 pgs.), Mar. 2003.
ILOG, “ILOG Business Rule Components”; www.1log.com/prod-
ucts/jconfigurato; (6 pgs.), Mar. 2003.

ILOG, “ILOG JRules™; http://jrules.illog.com; (1-6 pgs.), May 2003.
Fairlssac, “Automate Your Critical Business Decisions”; Blaze
Advisor; www.blazesoft.com/product/advisor/more__technical htm;
(2 pgs.), Sep. 11, 2003.

Fairlssac, “Fair, Issac Blaze Advisor™ gsoftware”; www.blazesoft.
com; (2 pgs.), Oct. 2002.

larong, H., et al.; “The Alfalfa Entomology Pest Identification
System”™; Journal of Computer Science and Technology—English
language edition; Oct. 1988; vol. 3, No. 4; pp. 251-262.

Barreto, I., et al., “Qualitative Physics Versus Fuzzy Sets Theory 1n
Modeling and Control”; Proceedings of the International Confer-
ence on Industrial FElectronics, Control and Instrumentation
(IECON); Oct. 28, 1991-Nov. 1, 1991; vol. 1, Conf. 17; pp.
1651-1656.

Lamberti, P., et al.; “Advice-Giving Using Reason: An Intelligent
Assistant for Interactive Computing”; Proceedings of the Confer-
ence on Artificial Intelligence Applications; Feb. 24, 1991-Feb. 28,
1991; vol. 2, Cont. 7, pp. 428-434.

Shane, B., et al.; “Consultations Among Multiple Knowledge Bases
in an Investment Portfolio Expert System”; Conference Proceedings
on the 6th Annual Phoenix Conference on Computers and Com-
munications; 1987; pp. 492-495.

www.llog.com/products/

International Search Report for PCT/US03/12071 1ssued Jan. 13,
2005; 8 pages.

Ceri et al.; “Automatic Generation of Production Rules for Integrity

Maintenance”; ACM Transactions on Database Systems; Sep. 1994,
vol. 19, Issue 3; pp. 367-422.

Myllymaki, J.; “Effective Web Data Extraction with Standard XML
Technologies”; Proceedings of the 10™ International Conference on
World Wide Web; Apr. 2001; pp. 689-696.

Written Opinion mailed Apr. 28, 2005 in PCT Application No.
PCT/US2003/12071; 12 pages.

Raschid, L. et al.; “Semantics for Update Rule Programs and
Implementation 1n a Relational Database Management System”;
ACM Transactions on Database Systems; vol. 22, No. 4; Dec. 1996;
pp. 526-571.

Agha, G.; “Concurrent Object-Oriented Programming™; Communi-
cations of the ACM; vol. 33, No. 9; Sep. 1990; pp. 125-141.

Burke, M. et al., “A Practical Method for Syntactic Error Diagnosis
and Recovery”; Proceedings of the 1982 SIGPLAN Symposium on
Compiler Construction; Issue 6; Jun. 1982; pp. 67-78.

International Preliminary Examination Report 1ssued in PCT Appli-
cation No. PCT/US2003/012071; Jul. 5, 2005, 15 pages.

Franks et al.; “State Saving for Interactive Optimistic Simulation”;
Proceedings of the 11™ Workshop on Parallel and Distributed
Simulation; Jun. 1997, vol. 27, Issue 1; pp. 72-79.

Stefik, M.; “Introduction to Knowledge Systems”; Morgan

Kaufmann Publishers, Inc.; San Francisco, California; 1995, pp.
187-193.

* cited by examiner

U.S. Patent

103

CLIENT
APPLICATION

122

102

Apr. 8, 2008 Sheet 1 of 12

112
Z

10

INFERENCE 120

ENGINE 198

_____________ £

RULE EDITOR | | ANALYZER

132 196 134 16

DEBUGGER TESTER

‘ TRANSFORMER I
133

h—_——_____—-__—d

US 7,356,522 B2

104

RULEBASE

| ir”ﬁ
l 9]:116
130

of!

U.S. Patent Apr. 8, 2008 Sheet 2 of 12 US 7,356,522 B2

CLIENT
206 w |APIEII:11(EETTION| FIG. <
222
208
SERVER APPLICATION o
RULEBASE)14

BUILDER

212
210 p,

INFERENCE
ENGINE

RULEBASL
BUILDER

FIG. 3 [INFERENCE

ENGINE

‘OTHER PROGRAMMING LOGICI

374 APPLICATION

314

=== TT 7T T T T T 7N
A
-
A
N

U.S. Patent Apr. 8, 2008 Sheet 3 of 12 US 7,356,522 B2

RULEBASE DOMAIN RULESET
JZ 404 406
y——— — 4 j———— = A ——————————
HO~JINITIALIZATION METHODS
412~ ASSOCIATIONS
414~ CONSTRAINTS INITIALIZATION METHODS—~ 418 49a
408——CLASSES ASSOCIATIONS — 420
16—~ DOMAINS - — CONSTRAINTS — 422 INITIALIZATION METHODS
CLASSES — 424 ASSOCIATIONS~ 430
/r RULESETS —CONSTRAINTSx432
400 / CLASSES ~—434
420 RULES“_436
FIG. 4

StatelessBuilder

— L

StatelessBuilderControls

STRING
(java.lang.String)

0280 “~optionGenerateApplntfDoc:boolean
228b optionGenerateBinaryRulebase:boolean

J28¢ ~optionsGenerateLoadMapDoc:boolean
5984 ——0ptionsTracel1andLZEvents:boolean

598 ——~optionlracel 1Events:boolean 204 BinaryRulebase
598 __~optionTracelLoadertvents:boolean content:byte]
CONTROLS {1
StatelessBuilderResults MESSAGE
216~ binout:BinaryRuleb |
.BinaryRulebase cade:int
I18~—errorCount:int MESSAGES locTag:String
SQOWWGFHEHQCOUHHM 0. text:String
599 ——xmlAppIntf:String ; type:char
524I KmILOUdMGPStﬂI'lg 502 02 xmillinenum:int
o120 510 512¢

306~~statelessBuilder() / / /constructor p

508——"build(urlsIn:String[], binsIn:BinaryRulebase[], xmlsIn:String|],
513_,rcontrolsln:StatelessBuilderControls[]) - StatelessBuilderResults— 914

FIG. 54 .
500

U.S. Patent Apr. 8, 2008 Sheet 4 of 12 US 7,356,522 B2

550
FlG. 5B ¥

StatefulBuilder

STRING ' InputStream ~ READER
(java.lang.String) (java.io.InputStream) (java.io.Reader)
v \

WRITER OutputStream RuleSPException
(java.io.Writer (java.io.QutputStream (from CORE)

K - — -
063 070 204

D /

SN statefulBuilder(traceMask:int, msgHandler:IMessageHandler) //Constructor
2980~ qddRulebase(bytesIn:InputStream)
J98b ~-addRulebase(xmIn:Reader)
298¢ ~~addRulebase(url:String)

|
'

e S il _ el el

560 ——compile() -
567 ——9enApplinterfaceDocument(title:String, xmlOut:Writer) =
564 ——genBinaryRulebase(bytesOut:OutputStream)
566~ 9enLoadMapDocument(title:String, xmiOut:Writer)
630
FIG. 6B e
StatefulEngine
<<INTERFACE>>

SIRING READER IMessageHandler

(java.lang.String) (jova.io.Reader)

(FROM CORE)

< <INTERFACE>>
IChangeHandler

(FROM INTERFACES)

WRITER RuleSPException
(java.io.Writer) (FROM CORE)

bo4

<INTERFACE> >
InitHandler

(FROM INTERFACES)

602

US 7,356,522 B2

Sheet 5 of 12

Apr. 8, 2008

U.S. Patent

S)NSayauIbuIssa|eInIS—1 720
(s]013u0)3UIBUTSS3|8)0YS:UIS|CAU0D ‘BuLyG:suUOINPUOIRIgILX ‘[]BuLyS:isiesainypuod ‘[]en|pAp|alisuo}ipU0daId

‘[1eoubysuy:seoupisujuAp ‘buiig:swipNuIDUIOp .m:Em“5__3._%5_35»&_\oE
09 m_m go@ 319 009 s)nsayaulbu3sss|s}n)S

:(51043u0)BuUIDUTFSS2|21DIG UIS|0UOD 'DULIISISUDIHIPUOIS.4|LX “:?.Em”,m/ymmm_:%cou [Jen|pApial4:suonipucas.d 0079

@& ﬁa NB\ Joyonasuod// ()aulbulsss|eipis~g(Q9
o TR ——
ALl bm.uxB S3IVSSIN 0979~ BuLiG:saN|DAP|R! 4|UX
buLng:bp[20] ™ 8Z9 + 0 Jul:juno)buiuIDM
" uIapod san|DAPIRY JUI:JUN0QI0.IS

$1INSaYaUIDUTSSI(91D)S

1 { STOYINOY

JOVSSIN

buLiyS:awWDNaUD)SUI
PUING:3LIDNSSD|O

JONVLSNI

[1e34q:3usju00
asDpqajnyAuouig

buiig:aWDNSUD)SUI
buiiyS:an|pAp|al)

BulLiS:aWDNP|a1) 4929
Dul}G:SWONSSD|0

UD3|00Q:S}udAT | 7290 Uondo—" 7089
UD3|00q:S}UBAJZIPUD | J90Ds uondo—" (LY
UD3|00q:S)UAATIaujeoD. [uondo——PLEY
UD3|00q:00(]10ysdpuSa)DI3UagU0Nd0~ 9709
LID3|00q:20(3N|DAP|RI{8}04auaguondo— q7¢9
UD3|00q:ADLIyaN|DAP|BIJ3}DIsuagUONdo~ 0769

9N|PAP[31

709

(bunsbup|pAcf)
ONIULS $10ju0)auIbu3ssa|e)pIS

aulbu3ssa|aib)s

~ Vo 014
009

U.S. Patent Apr. 8, 2008 Sheet 6 of 12 US 7,356,522 B2

FIG. 6C—1 ¥
FUNCTION CALLS

constructor(int traceMask, 1MessageHandler

msgHandler, java.io.InputStream bytesin)
CREATE INFERENCE ENGINE OBJECT WITH BINARY
RULEBASE DEFINED USING BYTE INPUT STREAM

STATEFUL
ENGINE

co4a

constructor(int traceMask, [M;sugeHund\er

msgHandler, java.ic.String url)
CREATE INFERENCE ENGINE OBJECT WITH

BINARY RULEBASE IDENTIFIED BY URL

554b~] STATEFUL
ENGINE

- construct;)r{i;t traceMask, m;ssageHandler
654c~] STATEFUL msgHandler, Stateful Engine buselnstance)
| ENGINE CREATE INFERENCE ENGINE OBJECT FROM

ANOTHER INFERENCE ENGINE OBJECT

beginExplanation(java.lang.String className,

java.lang.String instanceName, java.lang.String fieldName)
BEGIN AN ANALYSIS OF CAUSAL RELATIONSHIPS
 BETWEEN FIELDS AND RULES

M’

6/0

java.lang.String

— e ——

confirmTMValue(java.lang.String className,

javo.lang.String instanceName, java.lang.String fieldName)
CONFIRM THE RETRACTABLE VALUE OF THE SPECIFIED
FIELD AS THE FIELD'S NON-RETRACTABLE VALUE

creoteDynamicIU;tance(}avciIung.String
classNome, java.lang.String instanceName)

VOID
CREATE A DYNAMIC INSTANCE OF A CLASS

VOID

| 680
662

disableTracking()

S?Gb’l voID I DISABLE TRACKING OF RULE/FIELD INTERACTIONS
VOID enableTracking() o
676G ENABLE TRACKING OF RULE/FIELD INTERACTIONS

explainFieldResolution(java.lang.String fieldF’atﬁj
DETERMINE THE RULE WHOSE FIRING '

RESOLVED A FIELD {IDENTIFIED BY PATHNAME)

S—

java.lang.String

b/4

-expluinRuleﬁring(qulung.String rulePath)
DETERMINE THE FIELD DEPENDENCIES FOR

A FIRED RULE (IDENTIFIED BY PATHNAME)

genRuleSnapshotDocument{java.lang.String title, juvu.io.Wr'_l{—e—r xr?nlOut)
GENERATE A RULE SNAPSHOT XML DOCUMENT FOR THE
CURRENT DOMAIN'S AGENDA AND DIRECT THE RESULTS

10 A SPECIFIED XML OUTPUT STREAM |
e ———————— _ ——
T0 FIG. 6C-2

jova.lang.String|]

6/2

U.S. Patent Apr. 8, 2008 Sheet 7 of 12 US 7,356,522 B2

_ 652
FIG. 60-F s

FROM FIG. 6C-1

genVaIuengcument(j;wd.Iung.String title, java.io.Writer xmiOut)
GENERATE A VALUES XML DOCUMENT
FOR THE CURRENT DOMAIN'S FIELDS

566c~ ¢ . or getAIIFieldVa_\ues-() -
FeldValueDescriptorl) | ZErmTHE VALUES OF ALL PRECONDITIONS AND POSTCONDITIONS

ggtFieIqulue(javo.IElng.St-rin'g className, java.lang.String

instanceName, java.lang.String fieldName)
FETCH THE VALUE OF THE SPECIFIED FIELD

-~ infer() -
int INITIATE INFERENCING OVER THE RULES
IN THE CURRENT DOMAIN'S AGENDA

Ic;uEV_oIuesDocument(java.io.Reoder xmlIn)
LOAD PRECONDITION VALUES FOR THE CURRENT
DOMAIN'S FIELDS FROM A VALUES XML DOCUMENT

66b6a~J VOID

bobb java.langString

608b VOID

popDomgin() |
POP THE CURRENT RULESET DOMAIN, RESTORING THE
PREVIOUS DOMAIN (IF ANY) AS THE CURRENT DOMAIN

6o6b VOID

postConditionalRuleset(java.lang.String ruleset)
POST ADDITIONAL RULES TO THE AGENDA FOR THE CURRENT DOMAIN

pushf)omuin(javun.long*String domain) .
PUSH.A RULESET DOMAIN, MAKING IT THE CURRENT DOMAIN

volb [registerChangeHandler(IChangeHandler handler)
684a REGISTER A ChangeHandler WITH THE ENGINE

obU VOID

6564 VOID

registe?lnithandle!r(llnitHﬂndler handler)
REGISTER AN InitializationHandler WITH THE ENGINE

reset()
RESET THE CURRENT ENGINE INSTANCE

I_r__etmthMVolquava.Iung.gﬁng className, java.lang.String

instanceName, java.lang.String fieldName)
RETRACT THE SPECIFIED FIELD BACK TO ITS LAST

NON-RETRACTABLE VALUE

!—:setFieldVoIue‘(juvo.ilong.String clussNafne, java.lang.String

R5Rq VOID instanceName, java.lang.String fieldName, java,lang.String fieldValue)
SET THE VALUE OF THE SPECIFIED FIELD ' |

selTMValue(jova.lang.String className, j&a.lung.S{rin;instunceNume, |

78 VOID java.lang.String fieldName, java.lang.String fieldValue)
SET THE VALUE OF THE SPECIFIED FIELD TO A RETRACTABLE VALUE

684b VoI

VOID

S
S
-

[PEEEEL

689 VOID

U.S. Patent Apr. 8, 2008 Sheet 8 of 12 US 7,356,522 B2

/00
CORL
'__-_—-_ T £
FieldvalueDescriptor RuleSPException

/04

<<INTERFACE>>
IMessogeHandler

className:string | qetCode():int

+postMessage(Message msgobj) | ;;S:SSSIT:;S‘;L”@? getContext()fString

RuleSP InstanceName:string getText():String
TRACEMSK _INFER:Int _ .
TRACEMSK_L1:int ERROR MESSAGES STRING
TRACEMSK _LZ:int - WARNING MESSAGES| | (jova.lang.String)
TRACEMSK_LOAD:int /06| TRACE MESSAGES
TRACEMSK_NONE:int /02

CORE
FiG. 8
800
<<IMPORTS>> y
INTERFACES
<<INTERFACE>> [<<INTERFACE>>
[ChangeHandler _ lInitHandler
_~notifyFieldValueChange 804 |
806 (fvd:FieldValueDescriptor) initFieldValue
+notifyObjectCreation - .
e /] ;
808 (classname:String, instanceName:String) 802 .(Wd FIE[dVGIU?DESCﬂptOI',
o ok isLastChance:boolean)

210 _~+notifyObjectDeletion

(clossName:String, instanceName:String)

RULE “Sample PMRule"

FOR]l
P 1s Person I 906
D 1S DUCk\
910
WHERL
FIG. 94 P.Age>D.Age AND P.Owns is EMPTY\QOB }902
THEN I
P.numducks=P.numducks+1 -904
.900/ P.Owns includes D I

END

U.S. Patent Apr. 8, 2008 Sheet 9 of 12 US 7,356,522 B2

IG. 9B

RULE “Sample DIRule”
9524 | EVALGetAge()~_ g5

THEN
<21.9.
CASE %2)5 958
FVAL Fact2— 904
THEN '
9040 CASE=true:DO Fact4=tfalse END-" 3640
OTHERWISE: DO Fact4=true END~_
END 964b
END
CASE>=41..<=55.5:
DO
EVAL Foct3/966
THEN
904D CASE=false: DO Factd=true END
OTHERWISE: DO Factd4=false END
END
END
954¢< CASE>32..<41: DO END
954d< CASE unknown: DO Fact4=true END
954e< OTHERWISE: DO Fact4=false END~_qc 0
END
FIG. 10

READ—ONLY 1050
RULEBASE IMAGE |

CLIENT-SPECIFIC |-1054
INFORMATION 1059

- -
1006

CLIENT-SPECIFIC
INFORMATION 1026

U.S. Patent Apr. 8, 2008 Sheet 10 of 12 US 7,356,522 B2

FIG. 114 110

Domain 1f1156“54
Ruleset 1~ 11580 1158b

Rule 1 / /

If Father.Age>65 AND Mother.Age>65 } 1159

THEN RetireCouple()
END

FIG. 11B %

Domain 1/;| 196

Class Person-" 1160

Field Nome—~_
Instance Fother\ : 11518?12

1150c¢
FIG. 11C .~
- 1156
Domain 1~
Class Person~" 1160

Feld Age—~_
Instance Mc>ther\&11 11 g ;rb

Domain 1~ 1 198

Class Person-”" 1160
Field Name—" 1162

Field Age~1164
Instances Father, Mother- 1158

If Father.Age>65 AND Mother.Age>65 ||| 1157
THEN RetireCouple() |

U.S. Patent Apr. 8, 2008 Sheet 11 of 12 US 7,356,522 B2

FIG. 12 1200
/

RECEIVE INFORMATION
IDENTIFYING RULES

1202

IDENTIFY PRECONDITIONS
AND POSTCONDITIONS
ASSOCIATED WITH RULES

1204

ﬁ

RECEIVE VALUES FOR
1206-" PRECONDITIONS

EXECUTE RULES USING
1208-"| VALUES FOR PRECONDITIONS

RETURN VALUES (IF ANY)
1210 FOR POSTCONDITIONS

-0 FIG 13 1300

1302~ | RECEIVE INFORMATION IDENTIFYING
RULEBASE COMPONENTS

1304

COMPONENTS IN
PROPER FORMAT?

YES

NO

CONVERT COMPONENTS
1306 - TO PROPER FORMAT

MERGE RULEBASE COMPONENIS
1308 INTO CONSOLIDATED RULEBASE

1310 COMPILE CONSOLIDATED RULEBASE

U.S. Patent

Apr. 8, 2008 Sheet 12 of 12
FIG. 14 START

1402~{ SELFCT RULEBASE COMPONENT
1404~ [PARSE RULEBASE COMPONENT

| INTO RULEBASE ELEMENTS

1406~] " SELECT RULEBASE ELEMENT
408 | IDENTIFY STANDARD ELEMENT
~{ CORRESPONDING TO SELECTED

1418

RULEBASE ELEMENT
1410

ANOTHER
ELEMENT HAS SAME
NAME ON SAME
LEVEL?

YES
1412

ONLY ONE STANDARD
ELEMENT DEFINES RULEBASE
LOGIC?

YES
MERGE STANDARD ELEMENTS

INSERT STANDARD ELEMENT
INTO DATA STRUCTURE

MORE RULEBASE
ELEMENTS?

1420 NO

MORE RULEBASE
COMPONENTS?

1422

NO
END

NO

YES

YES

1400

US 7,356,522 B2

US 7,356,522 B2

1

SYSTEM AND METHOD FOR BUILDING A
RULEBASE

RELATED APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 60/373,823 filed Apr. 19, 2002, and entitled
“System and Method for Providing Inferencing Services”,
which 1s incorporated by reference herein. This application
1s related to U.S. Pat. No. 7,191,163 filed Apr. 18, 2003 by
Peter Herrera, et. al. and entitled “System and Method for
Providing Inferencing Services™.

TECHNICAL FIELD

This disclosure relates generally to the field of expert
systems, and more particularly to a system and method for
building a rulebase.

BACKGROUND

Expert systems are often used to solve problems in
particular fields, such as 1n the medical or legal fields. For
example, an expert system could receive information 1den-
tifying the symptoms of a patient, analyze the symptoms,
and 1dentity possible diagnoses for the patient. A typical
expert system includes a rulebase, or a set of rules, that
embody the logic used by the expert system. A typical expert
system also includes an inference engine. The inference
engine typically executes the rules to analyze a set of inputs,
such as the symptoms suilered by a patient. When executing
the rules, the inference engine typically attempts to assign
values to a set of output values. The output values represent
the conclusions of the inference engine.

SUMMARY

The present disclosure provides a system and method for
building a rulebase. In particular, a rulebase builder may be
used 1n conjunction with one or more tlexible interfaces,
such as Application Program Interfaces (APIs). A user or
application may invoke the rulebase builder to create rule-
bases embodying logic to be used during inferencing, such
as a rulebase defined using extensible Markup Language
(XML).

In one embodiment, a method for building a rulebase
includes receiving a plurality of rulebase components. The
method also includes merging the rulebase components to
create a consolidated rulebase.

In another embodiment, an object-oriented programming
language for building rulebases includes a class element
identifying one or more fields and one or more methods. The
object-oriented programming language also includes a con-
straint element 1dentifying a condition placed on a value of
at least one field. The constraint element also 1dentifies a
violation action to be performed when the condition 1s
violated. The object-oriented programming language further
includes a rule element 1dentifying a rule associated with at
least one of the fields. At least one of the fields may be
associated with a number datatype. The number datatype 1s
operable to represent both mteger and floating point values.
A corresponding precision identifies a number of decimal
places associated with the number datatype.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of this disclosure,
reference 1s now made to the following descriptions, taken
in conjunction with the accompanying drawings, in which:

FIG. 1 1s an exemplary block diagram illustrating an
example system for providing inferencing services accord-
ing to one embodiment of this disclosure;

FIG. 2 1s an exemplary block diagram 1llustrating another
example system for providing inferencing services accord-
ing to one embodiment of this disclosure;

FIG. 3 1s an exemplary block diagram illustrating vyet
another example system for providing inferencing services
according to one embodiment of this disclosure;

FIG. 4 1s an exemplary block diagram illustrating an
example rulebase architecture according to one embodiment
of this disclosure;

FIGS. 5A and 5B are exemplary block diagrams 1llustrat-
ing example rulebase builders according to one embodiment
of this disclosure;

FIGS. 6A through 6C are exemplary block diagrams
illustrating example inference engines according to one
embodiment of this disclosure;

FIG. 7 1s an exemplary block diagram illustrating an
example core application according to one embodiment of
this disclosure:

FIG. 8 1s an exemplary block diagram illustrating
example interfaces according to one embodiment of this
disclosure:

FIGS. 9A and 9B are exemplary block diagrams 1llustrat-
ing example types of rules according to one embodiment of
this disclosure;

FIG. 10 1s an exemplary block diagram illustrating an
example memory arrangement for sharing a rulebase accord-
ing to one embodiment of this disclosure;

FIGS. 11A through 11D are exemplary block diagrams
illustrating example rulebase components being merged into
a consolidated rulebase according to one embodiment of this
disclosure:

FIG. 12 1s an exemplary flow diagram illustrating an
example method for providing inferencing services accord-
ing to one embodiment of this disclosure;

FIG. 13 1s an exemplary flow diagram illustrating an
example method for rulebase building according to one
embodiment of this disclosure; and

FIG. 14 1s an exemplary flow diagram illustrating an
example method for merging rulebase components accord-
ing to one embodiment of this disclosure.

DETAILED DESCRIPTION OF EXAMPL.
EMBODIMENTS

L1l

FIG. 1 1s an exemplary block diagram illustrating an
example system 100 for providing inferencing services
according to one embodiment of this disclosure. In the
illustrated embodiment, system 100 includes a server 102, a
database 104, a network 106, and one or more clients 108.

In one aspect of operation, server 102 may include a
rulebase builder 110 and an 1inference engine 112. Rulebase
builder 110 supports the creation and modification of one or
more rulebases 114. A rulebase 114 includes rules 116 that
embody logic used by inference engine 112 to perform
inferencing operations. For example, a rulebase 114 may
define how to analyze a patient’s symptoms and identily
possible diagnoses for the patient. Inference engine 112 may
perform inferencing operations 1n system 100. For example,
inference engine 112 could receive one or more input values,

US 7,356,522 B2

3

analyze the input values using a rulebase 114, and generate
one or more output values. The output values could then be
used for a variety of purposes, such as by making the
patient’s diagnosis available to a user.

In the illustrated embodiment, server 102 1s coupled to
network 106. In this document, the term “couple” refers to
any direct or indirect communication between two or more
components, whether or not those components are 1 physi-
cal contact with one another. Also, the term “communica-
tion” may refer to communication between physically sepa-
rate components or between components within a single
physical unit. Server 102 performs one or more functions
related to the creation and use of a rulebase 114 in system
100. For example, server 102 could create, modity, and
delete rulebases 114. Server 102 could also use rulebases
114 to perform inferencing operations. Server 102 may
include any hardware, software, firmware, or combination
thereol operable to perform rulebase building and 1nferenc-
ing functions.

Database 104 1s coupled to server 102. Database 104
stores and facilitates retrieval of information used by server
102. For example, database 104 may store one or more
rulebases 114 created by rulebase builder 110 and used by
inferencing engine 112. Database 104 could include any
hardware, soiftware, firmware, or combination thereof oper-
able to store and facilitate retrieval of information. Also,
database 104 may use any of a variety of data structures,
arrangements, and compilations to store and facilitate
retrieval of information.

Network 106 1s coupled to server 102 and clients 108.
Network 106 facilitates communication between compo-
nents of system 100. Network 106 may, for example, com-
municate Internet Protocol (IP) packets, frame relay frames,
Asynchronous Transier Mode (ATM) cells, or other suitable
information between network addresses. Network 106 may
include one or more local area networks (LLANs), metro-
politan area networks (M ANs), wide area networks (WANSs),
all or a portion of a global network such as the Internet, or
any other communication system or systems at one or more
locations.

Clients 108 are coupled to network 106. Client 108 may
perform any of a variety of functions 1n system 100. For
example, a client 108 could include a client application 122
that can 1nvoke the functionality of rulebase builder 110 and
inference engine 112 in server 102. As a particular example,
client application 122 could cause inference engine 112 to
perform iniferencing operations using a rulebase 114 1denti-
fied by client application 122. Client 108 could also repre-
sent a terminal through which a programmer or other user
may create, modily, or delete various rulebases 114 using
rulebase builder 110. Client 108 may include any hardware,
software, firmware, or combination thereol operable to
communicate with server 102.

In the illustrated example, server 102 1includes a processor
124 and a memory 126. Processor 124 executes instructions
and manipulates data to perform the operations of server
102. Although FIG. 1 illustrates a single processor 124 1n
server 102, multiple processors 124 may be used according
to particular needs. Memory 126 stores and facilitates
retrieval of information used by processor 124 to perform
the functions of server 102. Memory 126 may, for example,
store 1nstructions to be performed by processor 124 and data
used by processor 124. Memory 126 may include any
hardware, soitware, firmware, or combination thereof oper-
able to store and facilitate retrieval of information.

In the illustrated embodiment, server 102 includes rule-
base builder 110, inference engine 112, and tools 128. In a

10

15

20

25

30

35

40

45

50

55

60

65

4

particular embodiment, when rulebase builder 110 or infer-
ence engine 112 1s mvoked by a client application 122,
server 102 creates a rulebase builder instance or an inference
engine mstance. The instance instantiated by server 102 may
then be used to provide service to the client application 122.
If a second client application 122 attempts to invoke rule-
base builder 110 or inference engine 112, a separate instance
may be created for the second client application 122. Simi-
larly, 11 the first client application 122 uses multiple threads
and invokes rulebase builder 110 or inference engine 112 on
cach thread, separate instances can be instantiated for each
thread. This allows server 102 to provide rulebase building
and 1nferencing functionality to multiple clients 108 and on
multiple threads at the same time. In other embodiments,
server 102 need not create instances for each client appli-
cation 122 or thread. In addition, in the following descrip-
tion, rulebase builder 110 and inference engine 112 may be
described as performing particular functions. This descrip-
tion 1ncludes situations where the particular functions are
performed by rulebase builder instances or inference engine
instances.

Rulebase builder 110 facilitates the creation, modifica-
tion, and deletion of rulebases 114 1n system 100. A rulebase
114 defines one or more rules 116 used by inference engine
112 to perform inferencing functions i system 100. For
example, a rulebase 114 could define data objects that store
information and logic objects that specily methods and rules
that act on the information in the data objects. As a particular
example, data objects could store patient symptoms, while
logic objects analyze the symptoms and attempt to compute
a diagnosis. Example rules are shown 1n FIGS. 9A and 9B,
which are described below.

Rulebase 114 may include any number of rules 116
defined using any format. In one embodiment, a rulebase
114 contains rules 116 defined using eXtensible Markup
Language (XML). In a particular embodiment, a rulebase
114 contains rules 116 defined using the Rule Definition
Language (RDL), which 1s described below. Also, a rulebase
114 may be segmented into multiple sections or portions.
For example, a rulebase 114 could be divided into difierent
sections, where one section defines the data objects and
another section defines the logic objects that operate on the
data objects. As another example, a rulebase 114 may be
formed from multiple rulesets 130, where each ruleset 130
contains one or more rules 116 that are associated with a
common 1ssue. The rulebase 114 could further be formed
from multiple domains 130, which may include multiple
rulesets 130. An example rulebase architecture 1s shown in
FI1G. 4, which 1s described below.

Rulebase builder 110 supports the creation of a rulebase
114 1n system 100 by merging various rulebase components
into a consolidated rulebase 114. For example, rulebase
builder 110 may combine a set of rules 116, rulesets 130, and
rulebases 114 into a single rulebase 114. Rulebase builder
110 could also parse the resulting consolidated rulebase 114
to help ensure completeness and consistency between the
rules 116. As a particular example, different development
teams may separately create different rules 116, rulebases
114, or rulesets 130, and rulebase builder 110 could merge
the various components mto a single rulebase 114. As
another example, one development team could create a set
of data objects, while another development team could
create a set of logic objects that process the data objects.
Rulebase builder 110 could then merge the data and logic
objects 1nto a rulebase 114.

The various rulebase components being merged mto a
consolidated rulebase 114 could exist 1n several forms. For

US 7,356,522 B2

S

example, a rulebase 114 being merged could exist as an
uncompiled, source rulebase 114 or a compiled, binary
rulebase 114. The use of binary rulebases 114 could allow
third party vendors to create binary rulebases 114 that can be
marketed and sold to customers. Because the rulebases 114
are 1n binary form, the actual contents of the rulebases 114
may be protected to a greater degree. A customer obtaining,
the binary rulebase 114 could simply merge it with other
rulebases 114. The customer need not have access to the
actual rules 116 forming the binary rulebase 114.
Rulebase builder 110 also converts various rulebase com-
ponents into a standard format. For example, rulebases 114
in system 100 could have a default or standard format, such
as the Rule Definition Language in XML. If client applica-
tion 122 requests that rulebase builder 110 create a consoli-
dated rulebase 114 using a component having a different
format, rulebase builder 110 could convert and reformat the
component into the standard format. Rulebase builder 110
could then generate the consolidated rulebase 114 using the
reformatted component. .

This may allow users to write
rulebases 114 1n formats other than the standard format used
by rulebase builder 110 and inference engine 112.

Rulebase builder 110 further compiles source rulebases
114 to create binary rulebases 114. As an example, rulebase
builder 110 could compile a source rulebase 114 defined in
an XML document that conforms to the Rule Definition
Language. As a result of the compilation, rulebase builder
110 creates a binary version of the rulebase 114, which
inference engine 112 may use to perform inferencing opera-
tions. Compiling a rulebase 114 could help to increase the
operational efliciency of inference engine 112, and it could
also help to protect the privacy of and increase the security
surrounding the rulebase 114. A description of how infor-
mation may be merged mto a consolidated rulebase 114
defined by the Rule Definition Language 1s described below.

Rulebase builder 110 could include any hardware, soft-
ware, firmware, or combination thereof operable to create
and maintain rulebases 114. For example, rulebase builder
110 could 1nclude one or more soitware routines executed by
processor 124. Example embodiments of rulebase builders
are shown 1n FIGS. 5A and 5B, which are described below.

Inference engine 112 implements the inferencing func-
tionality of server 102. For example, inference engine 112
may access one or more rulebases 114 and 1dentity rules 116
to be used. Inference engine 112 may also receive input
values from client application 122 and execute the rules 116
using the mnputs. In this document, the term “execute” refers
at a mimmum to inference engine 112 examining at least a
portion of a rule 116 to determine whether an action in the
rule 116 should be performed. Inference engine 112 may
then return the results of the inferencing operations to client
application 122.

In one embodiment, the rules 116 used by inference
engine 112 contain or otherwise refer to attributes or fields.
Fields with known or defined values may be referred to as
“known fields” that exist 1n a “known state,” while fields
with unknown or undefined values may be referred to as
“unknown fields” that exist in an “‘unknown state.” During
inferencing, inference engine 112 uses rules 116 to try to
assign known values to unknown fields.

In one aspect of operation, inference engine 112 may
examine the rules 116 1n rulebase 114 and fire, fail, or pend
the rules 116. Inference engine 112 “fires” a rule 116 when
it examines a premise 1n the rule 116, finds that the premise
1s true, and performs an action specified in the rule 116.
Inference engine 112 “fails™ a rule 116 when 1t examines the
premise 1n the rule 116, finds that the premise 1s false, and

10

15

20

25

30

35

40

45

50

55

60

65

6

refuses to perform the action specified mm the rule 116.
Inference engine 112 “pends™ a rule 116 when it examines
the premise 1n the rule 116 and determines that the premise
cannot be resolved as either true or false. This may occur
when the premise involves a field that has an unknown
value. Inference engine 112 may later attempt to fire or fail
the pending rule 116 after the field 1s assigned a known
value.

Inference engine 112 may use one or multiple strategies to
execute the rules 116 1n a rulebase 114. In one embodiment,
inference engine 112 supports forward-chaining and back-
ward-chaining of rules 116 in rulebase 114. In general,
forward-chaining involves inference engine 112 attempting
to maximize the number of unknown fields in the rulebase
114 that are placed 1n a known state. In forward-chaining,
inference engine 112 fires a rule 116 and determines which
fields are resolved to a known state as a result of the firing.
Inference engine 112 then revisits any pending rules 116 and
determines 1 those pending rules 116 can now be fired or
falled. Inference engine 112 continues this process until
inference engine 112 cannot fire or fail any more rules 116
or execute any pending rules 116.

Backward-chaining generally mvolves inference engine
112 attempting to resolve a primary goal, such as determin-
ing whether certain preconditions warrant a particular out-
come or resolve an identified field. Inference engine 112
mitially visits rules 116 that could potentially resolve the
identified goal. If a rule 116 pends because of an unknown
field, inference engine 112 adds the unknown field to a list
of secondary goals. Inference engine 112 then visits rules
116 that could potentially resolve any of the primary or
secondary goals. Inference engine 112 continues this process
until the primary goal 1s resolved or there are no more rules
116 that can be executed.

In performing the inferencing operations, inference
engine 112 executes rules 116 1n a rulebase 114. In one
embodiment, the order 1n which the rules 116 are executed
depends, at least in part, on a priorty associated with the
rules 116. As described above, rules 116 may reside within
rulesets 130, and the rulesets 130 may reside within domains
131. When a client application 122 identifies a domain 131
to be used during inferencing, inference engine 112 loads the
unconditional rulesets 130 contained in that domain 131 1nto
memory 126. Inference engine 112 then ensures that the
rules 116 contained 1n the domain 131 are ordered according
to their priority. After that, inference engine 112 executes the
rules 116 in order of their priority.

In one embodiment, inference engine 112 enforces mono-
tonic reasoning when performing inferencing operations.
Monotonic reasoning assumes that, once the inference
engine 112 has fired or failed a rule due to a field value, the
field’s value should not be altered during subsequent infer-
encing; otherwise, inferencing integrity may be compro-
mised—because results may reflect the actions of conflicting
rules. Inference engine 112 may detect when a field’s value
1s tested by a rule premise. I that field’s value subsequently
changes, the inference engine may treat this as a monotonic
reasoning violation and warn the user of this violation.

Fields may be referred to as a “first-valued field” because
the field’s value may not change after being assigned an
initial value. Other fields may be called “final-valued fields,”
which have values that may change many times. The use of
final-valued fields may be useful, for example, when
counters are needed 1n a rulebase 114. As a particular
example, a rulebase 114 could include a group of rulesets
130, and each ruleset 130 could determine whether a tax-
payer 1s allowed to claim a certain tax exemption. The

US 7,356,522 B2

7

rulebase 114 could also 1include a counter that keeps track of
the number of exemptions the taxpayer 1s allowed to claim.
As 1nference engine 112 executes each ruleset 130, the
counter could be incremented 11 the taxpayer qualifies for an
exemption. In this example, the useful value of the counter
1s not known until all of the rulesets 130 have been executed,
and inference engine 112 could increment the counter many
times.

The distinction between first-valued fields and final-
valued fields may aflect the order 1s which rules 116 are
executed during inferencing. For example, a large number of
rules 116 could change the value of a final-valued field.
Inference engine 112 may be unable to fire or fail a rule 116
that uses the final-valued field 1n the premise until all of the
rules 116 that could change the value of the final-valued field
have been executed. Returning to the tax example, inference
engine 112 could be forced to pend any rules 116 that
calculate the taxes owed by the taxpayer until all rulesets
130 dealing with the number of exemptions are executed.

Inference engine 112 could also support the use of supple-
mental rules 116, rulebases 114, and rulesets 130. A supple-
mental rulebase 114 represents a rulebase that can be used in
addition to a primary rulebase 114 during inferencing. For
example, an 1nsurance company could have a primary rule-
base 114 established by 1ts corporate headquarters, and each
branch oflice could have a supplemental rulebase 114 defin-
ing local policies. To use a supplemental rulebase 114,
inference engine 112 could receive and load the primary
rulebase 114 1into memory 126. Rules within primary rule-
base 114 could then load domains from supplemental rule-
bases and sub-inference over the rules 1n those domains. In
one embodiment, communication between a primary rule-
base 114 and a supplemental rulebase 114 may occur via the
supplemental rulebase’s pre-conditions and post-conditions.
In a particular embodiment, a supplemental rulebase 114
may not directly reference any objects in the primary
rulebase 114, which may help to insulate the primary rule-
base 114 against possible “rogue” supplemental rulebases
114. A supplemental rulebase 114 could also be associated
with a different inference engine instance than 1s the primary
rulebase 114. In this example, the primary rulebase 114
could act as an “application” driving the supplemental
rulebase 114. From the perspective of the supplemental
rulebase 114, the primary rulebase 114 may be indistinguish-
able from an application. A primary rulebase 114 could load
one or multiple supplemental rulebases 114, and each
supplemental rulebase 114 could then load one or multiple
additional supplemental rulebases 114.

Inference engine 112 could also support serialized infer-
encing and sub-inferencing. In serialized inferencing, infer-
ence engine 112 performs inferencing operations using a
first domamn 131 and produces a set of output values.
Inference engine 112 then uses those output values as mput
values for a second domain 131, and inference engine 112
performs inferencing operations using the second domain
131. This may be useful, for example, when the first domain
131 calculates the number of exemptions a taxpayer 1s
entitled to receive, and the second domain 131 calculates the
taxes owed by the taxpayer based on the number of exemp-
tions. In sub-inferencing, inference engine 112 performs
inferencing operations using a first domain 131, and one of
the rules 116 1n the first domain 131 may invoke inferencing,
using a second domain 131. When that rule 116 1s fired,
inference engine 112 loads the second domain 131 and
performs inferencing operations using the second domain
131. Once inference engine 112 completes inferencing using
the second domain 131, inference engine 112 may return to

10

15

20

25

30

35

40

45

50

55

60

65

8

using the first domain 131. The execution of the rules 116 1n
the second domain 131 may unpend rules 116 in the first
domain, which inference engine 112 executes upon return-
ing to the first domain 131.

Inference engine 112 could include any hardware, soft-
ware, lirmware, or combination thereof operable to perform
one or more inferencing operations. Inference engine 112
could, for example, include one or more software routines
executed by processor 124. Example embodiments of infer-
ence engine 112 are shown in FIGS. 6 A through 6C, which
are described below.

To facilitate communication between client application
122 and rulebase builder 110, rulebase builder 110 may
include or otherwise be associated with an Application
Program Interface (API) 118. Similarly, inference engine
112 may 1nclude or otherwise be associated with an API 120.
APIs 118, 120 may allow client application 122 to mvoke
the functions of rulebase builder 110 and inference engine
112. For example, client application 122 could instruct
rulebase builder 110 to merge two rulebases 114 by supply-
ing the identity of the rulebases 114 to rulebase builder 110
through API 118. In a similar manner, client application 122
could mnvoke the inference function of inference engine 112
by supplying the identity of a rulebase 114 and the input
values to inference engine 112 through API 120.

In a particular embodiment, rulebase builder 110 could be
assoclated with a stateless API 118, a stateful API 118, or
both. Similarly, inference engine 112 could be associated
with a stateless API 120, a stateful API 120, or both. Stateful
APIs 118, 120 may retain session-oriented state information
involving client applications 122 that communicate with
server 102. The state information may, for example, repre-
sent the current status of a session occurring between server
102 and the client 108 on which client application 122 1s
operating. Stateless APIs 118, 120 may not retain session-
oriented state information mvolving client applications 122
that communicate with server 102.

The stateless APIs 118, 120 could be used to invoke
rulebase builder 110 or inference engine 112 as a remote
service over network 106. The statetul APIs 118, 120 may
allow server 102 to provide additional functionality to a
client application 122 accessing server 102. For example,
the use of stateful APIs 118, 120 allows server 102 to
provide “callbacks.” During a callback, rulebase builder 110
or inference engine 112 requests additional information from
or supplies information to a client application 122 during
rulebase building or inferencing. This could allow, for
example, server 102 to notily client application 122 when
changes to field values occur.

The callbacks could also allow server 102 to define
methods which server 102 may invoke to initialize precon-
dition values or other values. For example, server 102 could
request that client application 122 provide a known value for
a particular field, which may occur during “last chance
processing.” During inferencing, inference engine 112 may
be unable to complete inferencing because a field has an
unknown value that cannot be resolved. When that occurs,
inference engine 112 could ask client application 122 to
provide a value for the unknown field. If client application
122 provides the value, inference engine 112 may be able to
continue or complete the inferencing operations. In another
embodiment, rulebase 114 could provide a last chance value
for use during last chance processing. In this embodiment,
inference engine 112 uses the last chance value for a field
when inference engine 112 1s unable to resolve the field’s
value during inferencing. A combination of these approaches
could also be used, such as when inference engine 112

US 7,356,522 B2

9

requests a first value from client application 122 and uses a
second value from rulebase 114 when client application 122
fails to provide the first value.

Tools 128 assist 1in the development and maintenance of
rulebases 114 1n system 100. For example, rule editors 132
assist users 1n creating rules 116. A rule editor 132 could
allow a user to create and edit rules 116. As a particular
example, rule editor 132 could allow a user to create XML
documents that contain rules 116, edit existing XML docu-
ments that contain rules 116, and delete XML documents
that contain rules 116.

Tools 128 may also include one or more transformers 133.
Transtormer 133 converts a rule 116 from one format into a
different format. For example, transtormer 133 could receive
a rule 116 defined using natural language and convert the
rule 116 into XML format. This may allow a user to enter
rules 116 using simpler notations or grammar. In one
embodiment, transformer 133 could include an Infix-to-
XML Java-coded utility application. Other transformers
133, such as graphical editors or drop-down mechanisms,
may be used.

Tools 128 may further include one or more analyzers 134.
Analyzer 134 examines a binary or source rulebase 114 and
identifies relationships between data objects and rules 116.
For example, a user may 1dentity a specific data object, and
an analyzer 134 may identily any rule 116 that reads a value
from the data object or writes a value to the data object.

Tools 128 may also include one or more debuggers 136.
Debugger 136 monitors the execution of rules 116 during
inferencing. For example, a debugger 136 could identily the
input values supplied to inference engine 112, the rules 116
fired during inferencing, the order 1n which the rules 116 are
fired, and the reason why each rule 116 was fired. This
information may then be used to analyze the inferencing
operations that occurred. This may be useful when a rule-
base 114 1s not providing appropriate results, and the user
wants to 1dentily why the rulebase 114 failed to operate as
expected.

In addition, tools 128 may include one or more testers
138. Tester 138 assists a user 1n ensuring that a rulebase 114,
a ruleset 130, or a set of rules 116 work as intended. For
example, a tester 138 could receive information 1dentifying
a rulebase 114, a set of mput values, and a set of expected
output values. Tester 138 then invokes inference engine 112
using the i1dentified rulebase 114 and the input values,
receives the computed output values from inference engine
112, and determines whether the computed output values
match the expected output values. In a particular embodi-
ment, tester 138 could access a library that contains multiple
sets of input values and corresponding output values to test
the 1dentified rulebase 114.

Each tool 128 could include any hardware, software,
firmware, or combination thereof operable to perform one or
more functions 1n system 100. Also, each tool 128 could
invoke functions in rulebase builder 110 or inference engine
112 using the APIs 118, 120.

In one embodiment, rulebase 114 can define 1ts own data
objects, and rulebase 114 can be developed and used inde-
pendently of the application that relies on the logic embed-
ded in rulebase 114. For example, a specialized client
application 122 can be developed by one group of users,
while another group of users develops a rulebase 114 to be
used by client application 122. As a particular example, a
rulebase 114 or a domain 131 in rulebase 114 could define
preconditions, or input values, and postconditions, or output
values. The users developing the rulebase 114 could identify
the preconditions and the postconditions, and the users

5

10

15

20

25

30

35

40

45

50

55

60

65

10

developing client application 122 could then simply ensure
that client application 122 1s designed to communicate the
appropriate preconditions to inference engine 112 and
receive the appropriate postconditions from inference
engine 112. Also, because rulebase 114 can define 1ts own
data objects apart from the client application 122 that
invokes inferencing using rulebase 114, multiple client
applications 122 can share rulebase 114. These client appli-
cations 122 can mvoke inferencing using the same rulebase
114, even 1f the inferencing for one client application 122
overlaps partially or completely with the inferencing for
another client application 122.

Although FIG. 1 1illustrates an example system 100 for
providing inferencing services, various changes may be
made to system 100. For example, FIG. 1 illustrates one
example functional division of server 102. Various compo-
nents ol server 102 may be combined or omitted, and
additional components may be added according to particular
needs. As particular examples, rulebase bulder 110 or
inference engine 112 could be omitted from server 102, or
rulebase builder 110 and inference engine 112 could reside
on separate platforms. Also, database 104 could store any
other information as needed 1n system 100, and database 104
and memory 126 could reside at any location or locations
accessible by server 102. Further, server 102 could support
other or additional tools 128, and rulebases 114 can reside 1in
locations other than database 104. In addition, inference
engine 112 could support either forward-chaining or back-
ward-chaiming of rules 116, and other interfaces to rulebase
builder 110 and inference engine 112 could be used in
system 100.

FIG. 2 1s an exemplary block diagram 1llustrating another
example system 200 for providing inferencing services
according to one embodiment of this disclosure. In the
illustrated embodiment, system 200 includes a server 202, a
database 204, a network 206, and one or more clients 208.

Server 202, database 204, network 206, and client 208
may be the same as or similar to server 102, database 104,
network 106, and client 108 of FIG. 1. In this embodiment,
a rulebase builder 210 and an inference engine 212 form a
portion of a server application 250. Server application 250
represents an application that can be mvoked by client
applications 222 over network 206. Server application 250
could, for example, represent an expert application, such as
an application associated with the medical or legal field.

In one aspect of operation, server application 250 could
receive a request from a client application 222 to build a
rulebase 214 or perform inferencing operations. Server
application 250 could create an 1nstance of rulebase builder
210 or inference engine 212 and allow the instance to
perform suitable operations.

In the illustrated embodiment, server application 250
includes a server API 2352. Server API 252 allows client
applications 222 to invoke the functions of server applica-
tion 250. For example, a client application 222 could invoke
a function of server application 250 that creates a rulebase
builder 1nstance, and client application 222 could i1dentify
multiple source rulebases 214. Server application 250 could
pass the information received through server API 252 to the
rulebase builder instance and allow the rulebase builder
instance to merge and compile the 1dentified rulebases 214.
Server API 252 could represent a stateful interface, stateless
interface, or other interface or combination of interfaces.

In a particular embodiment, server application 250 rep-
resents a Java application, a J2EE servlet, an Enterprise Java
Beans (EJB) application, a JavaServer Pages (JSP) applica-

tion, or other suitable application. In this embodiment, APIs

US 7,356,522 B2

11

218, 220 may include a stateful interface that can be invoked
as a local service by server application 250. In addition,
server application 250 can be invoked through API 252 as a
remote service by client application 222.

Although FIG. 2 illustrates an example system 200 for
providing inferencing services, various changes may be
made to system 200. For example, while FIG. 2 illustrates
one example functional division of server 202, various
components of server 202 may be combined or omitted, and
additional components may be added according to particular
needs. As a particular example, rulebase engine 210 or
inference engine 212 could be omitted from server 202.

FIG. 3 1s an exemplary block diagram illustrating vyet
another example system 300 for providing inferencing ser-
vices according to one embodiment of this disclosure. In the
illustrated embodiment, system 300 includes a host com-
puter 360 executing an application 362.

In the 1llustrated embodiment, host 360 may execute with
any of the well-known MS-DOS, PC-DOS, 0O8-2, MAC-

OS, WINDOWS, UNIX, LINUX, or other appropriate oper-
ating systems. Host 360 could represent a desktop computer,
a laptop computer, a server computer, or other suitable
computing or communicating device. Host 360 may include
an mput device 364, an output device 366, a random access
memory (RAM) 368, a read-only memory (ROM) 370, a
CD-ROM, hard drive, or other magnetic or optical storage
device 372, and one or more processors 374. Input device
364 may, for example, include a keyboard, mouse, graphics
tablet, touch screen, pressure-sensitive pad, joystick, light
pen, microphone, or other suitable iput device. Output
device 366 may, for example, include a video display, a
printer, a disk drive, a plotter, a speaker, or other suitable
output device.

Items within the dashed lines in FIG. 3 represent exem-
plary functional operation and data organization of the
associated components of system 300. In the 1illustrated
embodiment, host 360 includes application 362 and database
304. Database 304 may be the same as or similar to database
104 and database 204 of FIGS. 1 and 2.

Application 362 may represent an expert application or
other application that uses rulebase building and inferencing
functionality. In the 1illustrated example, application 362
includes a rulebase builder 310, an inference engine 312,
and other programming logic 374. Rulebase builder 310
may be the same as or similar to rulebase builder 110 and
rulebase builder 210 of FIGS. 1 and 2. Also, inference
engine 312 may be the same as or similar to inference engine
112 and inference engine 212 of FIGS. 1 and 2. In addition,
rulebase builder 310 and inference engine 312 may, but need
not, include APIs 318 and 320.

Additional programming logic 374 may represent logic 1n
application 362 that invokes rulebase builder 310 and infer-
ence engine 312. For example, logic 374 could implement a
medical expert program that receives patient symptoms from
a user and passes the symptoms to inference engine 312.
After inference engine 312 performs the inferencing, logic
374 could make the diagnosis available to the user. Any
other suitable functions may be performed by logic 374 1n
application 362.

In a particular embodiment, application 362 may repre-
sent a Java application. Also, APIs 318, 320 may include a
stateful interface that can be mvoked as a local service 1n
application 362.

Although FIG. 3 illustrates an example system 300 for
providing inferencing services, various changes may be
made to system 300. For example, while FIG. 3 illustrates
one example functional division of host 360, various com-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

ponents of host 360 may be combined or omitted, and
additional components may be added according to particular
needs. As a particular example, rulebase builder 310 or
inference engine 312 could be omitted from host 360. Also,
although FIG. 3 illustrates host 360 as a desktop computer,
other computing or communicating devices could be used.
In addition, while FIGS. 1-3 illustrate various example
operating environments, rulebase builders 110, 210, 310 and
inference engines 112, 212, 312 could be used 1n any other
suitable environment.

FIG. 4 1s an exemplary block diagram illustrating an
example rulebase architecture 400 according to one embodi-
ment of this disclosure. In this embodiment, rulebase archi-
tecture 400 includes rulebase-level elements 402, domain-
level elements 404, and ruleset-level elements 406.
Although rulebase architecture 400 may be described with
respect to system 100 of FIG. 1, rulebase architecture 400
could be used with other systems, and other rulebase archi-
tectures can be used by system 100.

In FIG. 4, rulebase-level elements 402 include classes
408, 1nitialization methods 410, associations 412, con-
straints 414, and domains 416. Classes 408 define data
objects that store information and method objects that may
process the information 1n the data objects. For example, a
class 408 could define a Person object that includes fields for
the name of a person, the age of the person, and the name (11
any) of the person’s spouse. As another example, a class 408
could define a Retirement method that analyzes an instance
ol a Person, compares the person’s age to a value of 65, and
sets a flag identifying whether or not the person has reached
retirement age based on the comparison.

Initialization methods 410 define how server 102 1nitial-
izes fields 1in various objects. For example, an mitialization
method 410 may mitialize any integer fields 1n a set of data
objects to a value of zero and initialize any string fields to
a NULL value. An 1mitialization method 410 could also set
constant values, such as by setting a maximum age field to
a value of 120.

Associations 412 define relationships between fields. For
example, a Person instance may be the spouse of another
Person 1nstance, and an association may represent a one-to-
one relationship between the Person instances. As another
example, a Person instance may own multiple Duck
instances, and an association may represent a one-to-many
relationship between the Person and Duck instances. In one
embodiment, the related fields are in the same level of
architecture 400, such as 1n two classes 408. In a particular
embodiment, an association 1s defined by two roles. Each
role specifies a class and an instance reference field owned
by that class. An instance reference field 1n one object points
to or otherwise 1dentifies another object. For example, an
Ownership association may define one role for an Owns
field of the Person class and another role for an IsOwnedBy
field of the Duck class.

Constraints 414 define conditions that should be true
regarding values assigned to fields. Constraints 414 also
define the actions that occur if the conditions are violated.
For example, a constraint 414 may specily that a field
storing a person’s age should have a value between O and
120. IT an instance of Person 1s assigned an age of 800, the
constraint 414 associated with the age field 1s violated, and
the actions defined by that constraint 414 may be executed.
The action may include inference engine 112 halting infer-
encing, using a substitute value, or using stateful interface
120 to request a correct value from client application 122.

Domains 416 separate rules into different groups referred
to as domains. In each domain 416, a rulebase can include

US 7,356,522 B2

13

imnitialization methods 418, associations 420, constraints
422, classes 424, and rulesets 426. Initialization methods
418, associations 420, constraints 422, and classes 424 may
be the same as or similar to imitialization methods 410,
assoclations 412, constraints 414, and classes 408. These
domain-level elements 404 may have a different scope than
the rulebase-level elements 402. For example, while asso-
ciations 412 may define relationships between two classes
residing at the rulebase level, associations 420 may define
relationships between classes residing at the domain level.
In certain embodiments, pre- and post-conditions may be
defined at the main level.

Rulesets 426 further separate rules into different groups
called rulesets. In each ruleset 426, a rulebase can include
initialization methods 428, associations 430, constraints
432, classes 434, and rules 436. These ruleset-level elements
406 may have a different scope than the corresponding
rulebase-level elements 402 and the domain-level elements
404. For example, associations 430 may define relationships
between classes residing at the ruleset level.

Rules 436 define the logic used to analyze mput values
and generate output values. Rules 436 can process informa-
tion 1n data objects, such as objects created using classes
408, 424, 434. Rules 436 can also use methods defined in
method objects to assign values to fields 1n the data objects.
In one embodiment, rules 436 include decision tree rules and
pattern matching rules. An example pattern matching rule 1s
shown 1n FIG. 9A, which 1s described below. An example
decision tree rule 1s shown in FIG. 9B, which 1s also
described below.

Although FIG. 4 illustrates one example of a rulebase
architecture 400, various changes may be made to rulebase
architecture 400. For example, additional elements could be
added to various levels of architecture 400, and current
clements could be omitted according to particular needs.

FIGS. 5A and 3B are exemplary block diagrams 1llustrat-
ing example rulebase builders according to one embodiment
of this disclosure. In particular, FIG. 5A 1llustrates a stateless
rulebase builder 500, and FIG. 5B illustrates a stateful
rulebase builder 550. Although FIGS. SA and 5B may be
described with respect to system 100 of FIG. 1, rulebase
builders 500, 550 could be used with other systems.

In FIG. 5A, stateless rulebase builder 500 allows appli-
cations to invoke various function calls 502, and the function
calls 502 use various data structures 504 as mnputs and
outputs. In the illustrated embodiment, function calls 502
include a constructor tunction 506 and a build function 508.
Constructor function 506 creates an instance of rulebase
builder 500 for use by an application requesting rulebase
building services. For example, a client application 122 may
invoke constructor function 306 over network 106. Server
102 executes constructor function 5306 and instantiates an
instance of rulebase builder 500, creating a rulebase builder
instance. Additional function calls from client application
122 are then directed to that rulebase builder instance. If
multiple client applications 122 request rulebase building
services, server 102 may execute constructor function 506 to
create multiple instances of rulebase builder 500.

Build function 508 causes a rulebase builder istance to
merge various iputs, such as rulebases, rules, and rulesets,
into a consolidated rulebase. Build function 508 may accept
binary rulebases 510, strings 3512q-5125, and a control
object 513 as mputs. Input strings 312a represent XML
strings, which include uncompiled or source rules, rule-
bases, and rulesets. Input strings 5126 represent Uniform
Resource Locators (URLs), which 1dentity remote locations
of compiled or uncompiled rules, rulebases, and rulesets.

10

15

20

25

30

35

40

45

50

55

60

65

14

Betore building a consolidated rulebase, the rulebase builder
instance may access the remote location identified by a URL
and retrieve any rules, rulebases, or rulesets at that location.

Server 102 uses values 528 contained 1n control object
513 to 1dentity different functions that the rulebase builder
instance should perform when executing the build function
508. For example, value 528a instructs the rulebase builder
instance whether to generate an application interface docu-
ment 522. Value 5285 structs the rulebase builder instance
whether to generate a binary rulebase 516. Value 328c
instructs the rulebase builder instance whether to generate a
load map 524. Values 5284-528f instruct the rulebase builder
instance whether to trace various types of events, which may
be described 1n messages 526. In this example, the events
may be divided into high-level or L1 events, low-level or L2
events, and loader events. Other divisions of events could
also be used.

When the build function 508 1s invoked, the rulebase
builder instance may attempt to combine the mput rules,
rulebases, and rulesets and generates output results 514.
Output results 514 may include a consolidated binary rule-
base 516. Rulebase 516 represents the rulebase formed when
the mputs are merged mto a consolidated rulebase and
compiled. Output results 514 may also include an error
count 518 and a warning count 520. Error count 518
identifies the number of errors identified when creating the
consolidated rulebase 516, and warning count 520 i1dentifies
the number of warnings generated.

Output results 514 may further include an application
interface document 522 and a load map 524. Application
interface document 522 describes the mput values used by
rulebase 516 and the output values produced by rulebase
516. The application interface document 522 may be useful
when the binary rulebase 516 will be used 1n conjunction
with an application being developed. The application inter-
face document 3522 could describe the mputs and outputs
associated with the rulebase 516, and the developers creat-
ing the application can ensure that the application sends the
appropriate 1mputs to the rulebase 516 and expects the
appropriate outputs from the rulebase 516.

Load map 524 identifies the various objects 1n rulebase
516. Load map 524 also i1dentifies relationships between an
object in rulebase 516 and any rules 1n rulebase 516 affecting
that object. For example, the load map 524 may, for a given
object, 1dentily any rules that read a value from the object or
that write a value to the object. Load map 524 could be
turther processed, such as by another component 1n system
100, to generate rulebase reports. A rulebase report could
identify the rules 1n a rulebase 516, the interactions between
the rules, or other suitable information.

Output results 514 could also include a set of zero or more
messages 526. Messages 326 could include the error and
warning messages produced during the creation of consoli-
dated rulebase 516. Messages 526 could also include trace
messages, such as messages used to 1dentily diflerent events
that occur during the creation or compilation of the consoli-
dated rulebase 516.

In one aspect of operation, the contents of output results
514 could vary depending on values 528. For example, 1f
value 528q has a value of false, the output results 514 will
not include an application interface document 522. Simi-
larly, 11 value 528c¢ has a value of true, the output results 514
will include a load map 524. If value 52856 has a value of
false, the output results 514 will not include a binary
rulebase. This may be useful, for example, when an appli-
cation mterface document 522 or load map 524 1s needed for
an existing binary rulebase.

US 7,356,522 B2

15

In FIG. 5B, statetul rulebase builder 550 allows applica-
fions to invoke various function calls 552 that use data
structures 354 as inputs and outputs. In the illustrated
embodiment, function calls 552 include a constructor func-

tion 556. Constructor function 556 creates an instance of 5

rulebase builder 550 for use by an application requesting
rulebase building services. Constructor function 536
includes two 1put values, a tracemask 568 and a message
handler 570. The value provided for tracemask 568 deter-
mines the level of detail of trace messages provided to client
application 122. The level of detail may i1dentity whether
trace messages are provided and, i1f so, in what circum-
stances a trace message should be provided. As described
below, message handler 570 identifies a handler used to
communicate information between client application 122
and a rulebase builder instance. The message handler 570
may, for example, allow rulebase builder 550 to perform
callback operations and request information from client
application 122.

Add rulebase functions 558a-558¢ 1dentity different rule-
bases, rules, and rulesets to be merged 1nto a consolidated
rulebase. Add rulebase function 558a accepts a binary
rulebase, rule, or ruleset to be used when generating a
consolidated rulebase. Add rulebase function 3585 accepts a
source or uncompiled rulebase, rule, or ruleset to be used
when generating a consolidated rulebase. Add rulebase
function 558¢ accepts a URL 1dentilying a remote location
of a rulebase, rule, or ruleset to be used when generating a
consolidated rulebase. As each rulebase, rule, or ruleset 1s
added using the add rulebase functions 358a-3558c¢, it 1s
merged with previously-added rulebases, rules, and rulesets.
Compile function 560 compiles the merged rulebase to
create a binary rulebase.

Generate application interface document function 562
generates an application interface document. Generate
binary rulebase function 564 provides a binary rulebase to
client application 122 through an output stream, and client
application 122 can store the output stream into a builer or
other memory. Generate load map function 566 generates a
load map for a rulebase.

Because stateful rulebase builder 550 maintains session
information, the various function calls 552 supported by
rulebase builder 550 can be individually invoked by client
application 122. For example, the user using client applica-
tion 122 may want an application iterface document for an
existing binary rulebase. Client application 122 could supply
the binary rulebase to builder 350 using one of the add
rulebase functions 558a. Client application 122 could then
generate an application interface document by invoking
tfunction 562. I the user later decides to generate a load map,
client application 122 can mvoke function 566 to generate
the load map using the same rulebase builder instance.

Although FIGS. SA and 5B illustrate example rulebase
builders 500, 550, various changes may be made to rulebase
builders 500, 550. For example, various function calls 502,
552 could be omitted from builders 500, 550 according to
particular needs. Also, additional function calls 502, 552
could be added to builders 500, 550. In addition, while
FIGS. 5A and 5B illustrate example data structures 504, 554
used with the function calls 502, 552, other or additional
data structures could be used.

FIGS. 6A through 6C are exemplary block diagrams
illustrating example inference engines according to one
embodiment of this disclosure. In particular, FIG. 6 A 1llus-
trates a stateless inference engine 600, and FIGS. 6B and 6C
illustrate a stateful inference engine 650. Although FIGS. 6A

10

15

20

25

30

35

40

45

50

55

60

65

16

through 6C may be described with respect to system 100 of
FIG. 1, imnference engine 600, 650 could be used with other
systems.

In FIG. 6A, stateless inference engine 600 allows appli-
cations to imnvoke function calls 602 that use data structures
604 as mputs and outputs. In the illustrated embodiment,
function calls 602 include a constructor function 606, which
creates an instance of inference engine 600 for use by an
application. Function calls 602 also include two inference
functions 608, 610.

Inference function 608 invokes inferencing by engine 600
using a rulebase 612 and a control object 613 provided to
engine 600 as an input. Rulebase 612 may include multiple
domains, as shown by domains 416 in FIG. 4. As a result,
inference function 608 also receives a domain name 614 as
input, where the domain name 614 identifies which domain
416 to use during inferencing. Inference function 608 further
receives an 1dentification of any dynamic instances 616 to be
created and used during inferencing. Inference function 608
also receives any conditional rulesets 618, which represent
additional rules to be used along with the domain 1dentified
by domain name 614. In addition, inference function 608
may receive precondition values 620a-6206 as mput. The
precondition values 620 are assigned to the appropnate
fields 1n the identified rulebase 612 and used during infer-
encing. The precondition values 620 may take the form of a

precondition value document 620a or a precondition value
array 6200b.

Control object 613 defines values 632a-632f used by
server 102 to control the operations performed by the
inference engine istance. Value 632aq instructs the inference
engine instance to generate a field value array 62656, while
value 63256 instructs the inference engine instance to gen-
erate a field value document 626a. Value 632¢ instructs the
inference engine 1nstance to generate a rule snapshot 630.
Values 6324-632f instruct the inference engine instance to
trace various types of events, which may be described in
messages 628. In this example, the events may be divided
into L1 events, .2 events, and inference events. Other
divisions of events could also be used.

Inference function 610 recerves many of the same inputs
as inference function 608. While inference function 608
receives a binary rulebase 612, inference function 610
receives a URL mput 622 identitying the location of the
rulebase to be used during inferencing.

Both inference functions 608, 610 return output results
624. Output results 624 may include a set of zero or more
field values 626a-626b6. Field values 626 represent the
values assigned to postconditions by inference engine 600
during inferencing. Depending on values 632a and 6325,
field values 626 may take the form of a field value document
626a or a field value array 62656. Output results 624 may also
include a set of zero or more messages 628. Messages 628
could include error messages, warning messages, and trace
messages produced during the inferencing operations.

Output results 624 may further include a rule snapshot
630. Rule snapshot 630 provides information about the
current status of a rule at a particular point 1n time. The rule
snapshot 630 could identify the rule, any ruleset associated
with the rule, the priority of the rule, a rule type associated
with the rule, the status of the rule, and any fields 1n the rule
that cause the rule to pend.

In FIGS. 6B and 6C, stateful inference engine 650 allows
applications to invoke various function calls 652 that use
data structures 654 as inputs and outputs. In the illustrated
embodiment, constructor functions 654q-654¢ create an
instance of inference engine 630. In particular, function

US 7,356,522 B2

17

654a creates an inference engine instance that uses a binary
rulebase defined using an input stream, and function 6545
creates an inference engine instance that uses a binary
rulebase defined using a URL. As explained below, multiple
inference engine mstances may use the same rulebase, and
function 634c¢ creates one 1nference engine instance based
on another inference engine 1nstance that is using the same
rulebase.

Domain functions 656a-656b6 control which domain 416
1s used during inferencing. Domain function 656qa 1dentifies
a domain 416 to be used during inferencing, and domain
function 6565 removes a domain 416 so it 1s no longer used
during inferencing. Input functions 658a-6585 supply values
for preconditions to inference engine 650. In particular,
function 6358a provides a value for a specific precondition,
while function 6586 provides values for a set of precondi-
tions associated with the current domain 416. A conditional
ruleset function 660 supplies additional rulesets to inference
engine 650 for use with the current domain 416. A dynamic
instances function 662 creates dynamic instances to be used
during inferencing. An infer function 664 begins the infer-
encing process using the rules contained in the current
domain 416. Output functions 666 supply values for post-
conditions computed by inference engine 6350. In particular,
function 666a creates an output value document containing
the values for a set of postconditions, function 6665 provides
the value of a specific postcondition, and function 666¢
provides the values of all preconditions and postconditions.
Snapshot function 668 generates and outputs a rule snapshot
for the current domain.

Because stateful inference engine 6350 maintains session
information, additional functions may be oflered by infer-
ence engine 650. For example, inference engine 650 may
provide explanatory services, which are used to determine
how values get assigned to certain fields during inferencing.
Begin explanation function 670 receives the identity of a
field as mput and identifies the rule that assigned a final
value to that field. Explain rule firing function 672 uses the
rule identified by the begin explanation function 670 and
determines what caused that rule to fire. This may include
identifving any fields that caused the rule to fire and the
values of those fields. Explain field resolution function 674
uses a field 1dentified by the explain rule firing function 672
and determines how a value was assigned to that field. These
functions 670-674 allow client application 122 to trace how
and why values were assigned to fields during inferencing.
These functions 670-674 may require that server 102 moni-
tor and archive the various steps performed during infer-
encing. Because this monitoring may impose additional
processing requirements during inferencing, tracking func-
tions 676a-6765H allow client application 122 to specily
when server 102 should monitor the steps performed during,
inferencing. This allows client application 122 to control
when this additional processing 1s needed.

The use of stateful inference engine 6350 may also allow
server 102 to provide truth maintenance (“TM”) functions to
client application 122. During inferencing, assigning a
known value to a field can trigger a cascade of conse-
quences. For example, 1f a rule was previously pended
because the field had no known value, assigning a value to
that field may cause inference engine 630 to unpend and then
fire the rule. The fired rule may, 1n turn, resolve other fields
which, in turn, causes inference engine 630 to unpend and
fire additional rules. Truth maintenance refers to a facility
that allows a client application 122 to retract or reverse the
assignment of a value to a field, thereby retracting the
consequences of that assignment. This means that the truth

10

15

20

25

30

35

40

45

50

55

60

65

18

maintenance functionality may be usetul for “what-11 type
reasoning. As a particular example, in a loan-approval
application, a borrower may want to experiment with several
different variables, such as the loan amount, the loan term,
and the interest rate. In these situations, there may not be an
“answer” so much as a collection of hypothetical scenarios,
and the answer might be known only after experimenting
with alternative scenarios.

To support truth maintenance, set TM value function 678
indicates that a particular field may be assigned a retractable
value. A retractable value represents a value assigned during,
an assignment that can be negated. Client application 122
may assign multiple values to the selected field. Confirm TM
value function 680 sets the current value of a particular field
as that field’s non-retractable value. A non-retractable value
represents a value assigned during an assignment that cannot
be negated. Retract TM value function 682 retracts the field
back to 1ts last non-retractable value. In operation, client
application 122 could assign five retractable values to the
field. Client application 122 could then assign a non-retract-
able value to the field, followed by seven more retractable
values. In this example, the last seven values assigned to the
field could be retracted, but the first five could not. The
presence ol the non-retractable value prevents inference
engine 650 from retracting any values assigned before the
non-retractable value was assigned. Returning to the loan
example, the selected field could represent the loan amount
that a borrower wants to receive. During some experimen-
tation, the field may be assigned multiple retractable values.
Eventually, the user may identify a maximum amount that
the borrower 1s allowed to receive. That maximum amount
could be assigned as a non-retractable value. Additional
experimentation could be done that assigns additional
retractable values to the field. Any of these additional values
could be accepted as the loan amount, or the values can be
retracted to the last maximum loan amount identified as a
non-retractable value.

In addition to these functions, handler functions 684a-
6845 register various communication handlers with an infer-
ence engine instance. As described below, the handler tunc-
tions allow the inference engine instance to communicate
with client application 122 during inferencing. A reset
function 686 resets an inference engine instance to an initial
state. This may include, for example, inference engine 650
resetting all field values to the unknown state, deleting all
dynamic instances, popping all domains, and running any
rulebase-level 1nitialization methods 410.

Although FIGS. 6A through 6C illustrate example infer-
ence engines 600, 650, various changes may be made to
inference engines 600, 650. For example, various function
calls 602, 652 could be omitted from inference engines 600,
650 according to particular needs. Also, additional function
calls 602, 652 could be added to inference engines 600, 650.
In addition, while FIGS. 6A through 6C illustrate example
data structures 604, 654 used with the function calls 602,
652, other or additional data structures could be used.

FIG. 7 1s an exemplary block diagram illustrating an
example core object 700 according to one embodiment of
this disclosure. Core objects 700 represent objects shared by
both rulebase builders 500, 550 and inference engines 600,
650. Although FIG. 7 may be described with respect to
system 200 of FIG. 2, core object 700 could be used with
other systems.

In FIG. 7, core object 700 uses various data structures 702
to communicate with rulebase builders 500, 550 and infer-
ence engines 600, 650. Data structures 702 include a mes-
sage handler 704. Message handler 704 represents a handler

US 7,356,522 B2

19

used to communicate with client application 222. For
example, message handler 704 can be used to intercept
messages 706 from a rulebase builder 500, 550 or an
inference engine 600, 650. This may allow message handler
704 to capture error, warning, trace, or other messages 706
generated by rulebase builder 500, 550 or inference engine
600, 650. Data structures 702 also include exceptions 708.
Exceptions 708 identily errors detected during rulebase
building or inferencing.

Data structures 702 may further includes tracemasks 710.
Tracemasks 710 indicate how to trace the execution of
different functions by server 102. The integer values pro-
vided for tracemasks 710 determines the level of detail of the
trace messages provided to client application 222. The level
of detail may i1dentity whether trace messages are provided
and, 1f so, 1n what circumstances a trace message should be
provided. For example, a value of zero could cause server
202 to provide no trace messages, a value of one could cause
server 202 to provide broader trace messages, and higher
values could cause server 202 to provide more specific trace
messages. In this example, the events are divided into
inference events, L1 events, L2 events, and loader events.
Other divisions of events could also be used.

Although FIG. 7 illustrates one example of a core object
700, various changes may be made to core object 700. For
example, any other or additional data structures 702 could be
used.

FIG. 8 1s an exemplary block diagram illustrating
example interfaces 800 according to one embodiment of this
disclosure. In this embodiment, interfaces 800 include an
mitialization handler 802 and a change handler 804.
Although FIG. 8 may be described with respect to system
100 of FIG. 1, interfaces 800 could be used with other
systems.

Initialization handler 802 allows a client application 122
to 1mitialize a field value. For example, inference engine 6350
may attempt to execute a rule during inferencing, but that
rule may involve an unknown field. Inference engine 630
could pend the rule and see 1f the unknown field 1s resolved
later. Instead of or 1n addition to pending the rule, inference
engine 650 could mvoke 1nitialization handler 802 and ask
client application 122 whether client application 122 wants
to provide a value for the unknown field. I client application
122 provides a value, inference engine 650 could use the
value and continuing iniferencing.

The use of imtialization handler 802 may be useful when
a large number of preconditions exist for a rulebase. For
example, a rulebase could have 1,000 preconditions. With-
out the use of 1mtialization handler 802, client application
122 would provide mput values for all 1,000 preconditions
before inferencing begins. With the use of mmitialization
handler 802, client application 122 could provide input
values for some of the preconditions, and inference engine
650 could attempt to complete inferencing using those
values. I inference engine 650 1s unable to complete infer-
encing and needs values for more of the preconditions, client
application 122 can use mitialization handler 802 to provide
input values for the necessary preconditions.

Change handler 804 allows server 102 to inform client
application 122 when inference engine 6350 modifies various
data objects. For example, function 806 imnforms client 122
when a field value 1s changed. Function 808 notifies client
application 122 when an object 1s created, and function 810
notifies client application 122 when an object 1s deleted.

The use of change handler 804 may be useful when a large
number of postconditions are being calculated by inference
engine 650 during inferencing. For example, a rulebase

5

10

15

20

25

30

35

40

45

50

55

60

65

20

could have 1,000 postconditions. Without the use of change
handler 804, client application 122 may need to wait until
inference engine 650 completes inferencing before receiving
a set of 1,000 output values from inference engine 650. With
the use of change handler 804, client application 122 could
be notified whenever one of the postconditions 1s assigned a
value. In this way, client application 122 learns when each
individual postcondition i1s assigned a value, even when
inferencing has not been completed.

Although FIG. 8 illustrates example interfaces 800, vari-
ous changes may be made to interfaces 800. For example,
any other or additional communication handlers could be
used. Also, each handler 802, 804 could support any other or
additional functions.

FIGS. 9A and 9B are exemplary block diagrams 1llustrat-
ing example types of rules according to one embodiment of
this disclosure. In particular, FIG. 9A 1illustrates a pattern
matching rule 900, and FIG. 9B illustrates a decision tree

rule 950. Other or additional types of rules may also be used.
In addition, while FIGS. 9A and 9B may be described with

respect to system 100 of FIG. 1, rules 900, 950 could be used
with other systems.

In FIG. 9A, pattern matching rule 900 includes a premise
902, an action 904, and a bind section 906. Premise 902
represents a condition that determines whether or not the
action 904 should be executed. Premise 902 may, for
example, include one or more expressions 908. Server 102
may examine the expression 908 i premise 902 and deter-
mine 1f the expression 908 1s true or false. Using the results,
server 102 may then fire rule 900 by executing action 904 1
the expression 908 1s true, fail rule 900 11 the expression 908
1s Talse, or pend rule 900 1f a value for the expression 908
cannot be determined.

Action 904 represents one or more actions that are to be
performed by server 102 11 the premise 902 of rule 900 1s
true. Action 904 may, for example, indicate that server 102
should assign a particular value to a field. Action 904 could
also cause server 102 to execute a function or invoke
sub-inferencing over a different rulebase domain.

Bind section 906 identifies the data objects to be moni-
tored by server 102. Because rule 900 1s a pattern matching
rule, 1t can be applied to an entire collection of instances or
objects that satisty premise 902. Bind section 906 includes
one or more bind variables 910. Inference engine 112
associates a bind variable 910 with one or more candidate
instances of the bind class. Inference engine 112 then applies
the bind variable 910 against the premise 904 to determine
if any of the candidate instances satisty the premise 902. In
this way, inference engine 112 determines whether the
candidate instances deserve further attention. If any of the
candidate instances satisiy the premise 902, server 102
executes the action 904 using those candidate instances.

In the illustrated example, a bind variable 910 of P 1s
associated with the Person class, while another bind variable
910 11 D 15 associated with the Duck class. Rule 900 operates
to associate a Person object representing a person with a
Duck object representing a duck when the person 1s older
than the duck and the person owns no other ducks. Server
102 binds the Person objects to the P variable 910 and the
Duck objects to the D variable 910. Using the bind variables
910, server 102 examines existing Person and Duck objects
and determines 1f any satisly premise 902. IT any satisiy the
premise 902, server 102 applies the action 904 of rule 900
to each of those data objects. The action 904 increments the
number of ducks owned by the person and associates the
person with the duck.

US 7,356,522 B2

21

In a particular embodiment, server 102 keeps pattern
matching rules 900 1n a ready state and does not fail or pend
pattern matching rules 900. In another particular embodi-
ment, a pattern matching rule 900 may act as a single-fire
rule. In this embodiment, inference engine 112 waits until a
threshold number of objects are bound to bind variables 910.
Once the threshold number i1s met, inference engine 112
executes the pattern matching rule 900 once using those
objects. The executed pattern matching rule 900 may then be
ignored by inference engine 112.

Because a rulebase could include a large number of
objects, server 102 may use one or more algorithms to
increase the efliciency of processing pattern matching rules
900. For example, server 102 could use a Rete algorithm.
Using a Rete algonthm, server 102 detects when an object
1s created, modified, or deleted. Server 102 then executes
any pattern matching rule 900 having a premise 902 that
uses a {ield affected by the creation, modification, or dele-
tion. Server 102 may examine the premise 902 of any pattern
matching rule 900 located and, i1 the premise 902 is satis-
fied, execute the action 904.

In one embodiment, when applying the action 904 of a
first pattern matching rule 900, server 102 could create,
modity, or delete objects. Those objects could be aflected by
the same pattern matching rule 900 or another pattern
matching rule 900. As a result, the action 904 could lead to
the binding of the new objects to one or more rules 900.

In FIG. 9B, decision tree rule 950 includes an evaluation
statement 952, or subtree, followed by two or more treeno-
des 954a-954¢. Each subtree may be named such that it may
casily be associated with a rule. Evaluation statement 952
cvaluates and determines a value of an expression 956.
Based on the calculated value of the expression 956, one of
the treenodes 9354 1s executed.

Each treenode 954 includes either a case statement 958 or
an otherwise statement 960, followed by an action to be
performed. Case statement 958 1dentifies a potential value or
range of potential values for the expression 956. If the value
of the expression 956 matches the value or falls within the
range ol values of the case statement 958, the treenode 954
associated with the case statement 958 1s executed. The
otherwise statement 960 1dentifies a treenode 954 that 1s
executed 1f no other treenode 954 can be executed.

The action to be performed 1n a treenode 954 can further
include additional subtrees. For example, treenode 954a
includes another evaluation statement 962 and two treenodes
964a-964H. In this way, rule 950 can be divided into
hierarchical layers of subtrees, and server 102 may traverse
through the subtrees to arrive at the appropriate action to be
performed.

In the illustrated example, expression 956 calculates an
age, and one of the treenodes 954 1s selected based on the
calculated age. If the calculated age has a known value,
treenodes 934a, 954H, or 954¢ could be selected depending,
on the value. If the calculated age 1s unknown, such as when
the value depends on a field with an unknown value,
treenode 9544 1s selected. It the calculated age 1s known but
talls outside of the ranges of the case statement 1n treenodes
954a-954c, treenode 960 may be selected.

In a particular embodiment, server 102 may use a just-
in-time memory allocation scheme for decision tree rules
950. In a just-in-time allocation scheme, server 102 loads
only a portion of a decision tree rule 9350 into memory, such
as memory 126. The portion of rule 950 that 1s loaded allows
server 102 to 1dentily the treenode 954 to be traversed. After
server 102 1dentifies the treenode 954 to be traversed, server
102 loads the contents of that treenode 934 1nto memory. If

10

15

20

25

30

35

40

45

50

55

60

65

22

the loaded treenode 954 includes additional subtrees 964,
server 102 loads only the portion of rule 950 that allows
server 102 to select the next subtree 964 to be traversed.
After the next subtree 964 1s selected, server 102 loads the
contents of that subtree 964 into memory. This process
continues until server 102 fires or fails rule 950, at which
point server 102 may release the memory used by rule 950.
The use of a just-in-time allocation scheme may reduce the
amount of memory used by a decision tree rule 950. Because
a decision tree rule 950 may contain hundreds or thousands
of embedded subtrees, the use of a just-in-time allocation
scheme may help to decrease the memory requirements for
processing the decision tree rule 950.

In one embodiment, server 102 may be forced to pend a
decision tree rule 950. For example, server 102 may select
treenode 935456 during inferencing, but the field Fact3 may
have an unknown value. In this example, server 102 would
pend rule 950 because server 102 1s unable to complete
execution of rule 950. In a particular embodiment, server
102 performs a pinpoint restart to unpend and complete
execution of rule 950. When rule 950 pends, server 102 may
take a snapshot of rule 950. The snapshot i1dentifies the
context of rule 950, such as values for fields used 1n rule 950
and the precise location of the statement that caused rule 950
to pend. In the above example, the snapshot could identify
the location of evaluation statement 966 because that 1s the
statement that caused rule 950 to pend. When the field that
caused rule 950 to pend 1s assigned a known value, server
102 may unpend rule 950 and begin executing rule 950 at the
location stored 1n the snapshot. This may allow server 102
to more efliciently pend and unpend decision tree rules 950,
which may contain a large number of subtrees.

Although FIGS. 9A and 9B illustrate example rules 900,
950, various changes may be made to rules 900, 950. For
example, rule 900 could include any number of bind vari-
ables 910, and rule 950 could include any number of
subtrees. Also, other or additional types of rules may be
used.

FIG. 10 1s an exemplary block diagram illustrating an
example memory arrangement for sharing a rulebase accord-
ing to one embodiment of this disclosure. In particular, FIG.
10 illustrates a memory 1026 for use 1n server 102 of FIG.
1, where multiple client applications 122 use the same
rulebase 114 during inferencing. In this embodiment,
memory 1026 includes a read-only image 1050 of rulebase
114 and one or more client-specific iformation blocks
1052. While FIG. 10 may be described with respect to
system 100 of FIG. 1, memory 1026 could be used with
other systems.

Read-only image 1050 represents a copy of the rules 116
in a rulebase 114. Server 102 may create read-only image
1050 by loading rulebase 114 into memory 1026 from
database 104 or other location. Because rulebase 114 can
define 1ts own data objects that are used by server 102,
rulebase 114 may not be tied to any particular application.
As a result, rulebase 114 can be used by multiple clients
applications 122 at the same time. In a particular embodi-
ment, read-only 1image 1050 contains a copy of rulebase 114
without any client-specific information.

The client-specific information, such as actual precondi-
tion values and postcondition values, may be stored in
client-specific information blocks 1052. Client-speciiic
information blocks 1052 include client-specific information
1054 and a pointer 1056. The client-specific information
1054 represents precondition values, postcondition values,
snapshots of pending rules 116, and any other information
that 1s specific to a client application 122. Pointer 10356

US 7,356,522 B2

23

points to the read-only image 1050 that 1s associated with the
client-specific information 1054.

In one aspect of operation, when a client application 122

requests inferencing using a rulebase 114, server 102 may
determine whether a read-only 1image 1050 of that rulebase
114 already exists in memory 1026. If not, server 102 may
load rulebase 114 into memory 1026 as read-only image
1050. Inference engine 112 may then perform inierencing
operations using the read-only image 1050. If a client
application 122 requests inferencing using a rulebase 114
that already has been loaded 1nto memory 1026 as a read-
only image 1050, inference engine 112 may perform infer-
encing operations using the read-only image 10350 previ-
ously created. During inferencing, any values to be stored
for a particular client application 122 are placed i the
client-specific information 1054 of a client-specific infor-
mation block 1052. In this way, server 102 can use the same
rulebase 114 to perform inferencing operations for multiple
client applications 122, even when the inferencing imnvolves
different input values and the rules 116 are executed 1n a
different order.
In one embodiment, the use of memory 1026 as described
above may be limited. For example, 1n a particular embodi-
ment, supplemental rules 116, rulebases 114, and rulesets
130 may not be shared between multiple inference engine
instances. In this embodiment, an 1mage of the supplemental
rules 116, rulebases 114, and rulesets 130 may not be used
by multiple inference engine instances.

Although FIG. 10 illustrates one example of a memory
1026 arranged for sharing a rulebase 114 between multiple
client applications 122, various changes may be made to
memory 1026. For example, each client-specific information
block 1052 could be stored in a separate memory structure.
Also, other memory arrangements that do or do not allow
client applications 122 to share a rulebase 114 may be used.

FIGS. 11A through 11D are exemplary block diagrams
illustrating example rulebase components being merged into
a consolidated rulebase according to one embodiment of this
disclosure. In particular, FIGS. 11 A through 11C represent
rulebase components 1150a-1150c¢, and FIG. 11D represents
a consolidated rulebase component 11504. While FIGS. 11A
through 11D may be described with respect to system 100 of
FIG. 1, the rulebase components 1150 could be used with
other systems.

In FIG. 11A, component 1150a represents a rule 1152.
The rule 1152 1s contained 1n a ruleset 1154, which forms
part of a domain 1156. Rule 1152 refers to two instances
1158 of a Person class named Father and Mother.

In FIG. 11B, component 11505 represents a partial dec-
laration of the Person class 1160, which 1s contained in
domain 1156. The class 1160 includes a declaration of a field
1162 called Name. Component 11505 also includes a dec-
laration of the Father instance 1158a.

In FIG. 11C, component 1150¢ represents another partial
declaration of the Person class 1160 contained in domain
1156. The class 1160 also includes a declaration of a field
1164 called Age. Component 1150¢ also includes a decla-
ration of the Mother 1nstance 11585b.

Rulebase bulder 110 may merge components 1150a-
1150¢ by performing activities 1n stages. In one embodi-
ment, during a first stage, rulebase builder 110 examines
components 1150a-1150¢ to collect classes that define data
objects and logic objects. During this stage, rulebase builder
110 may create one or more internal data structures 1denti-
tying all of the classes defined by the components 1150. In
a second stage, rulebase builder 110 parses the internal data
structures from stage one to help ensure completeness and

10

15

20

25

30

35

40

45

50

55

60

65

24

consistency between the class declarations. For example, 1f
a class defines a rule that operates on an instance named
Brother, rulebase builder 110 may ensure that the instance
named Brother 1s created by a component 1150. During a
third stage, rulebase builder 110 may compile the parsed
data structures to produce a binary rulebase 114.

During the first stage, the components 1150 examined by
rulebase builder 110 could each define a portion of a class.
In the illustrated example, components 11505 and 11350c¢
define different portions of the Person class 1160. As a result,
during the first stage of the merge process, rulebase builder
110 keeps track of the class declarations encountered as each
component 1150 1s analyzed. If two components 1150 define
portions of a single class, rulebase builder 110 combines
those declarations 1nto a single class declaration. This may
be seen 1n FIG. 11D, which illustrates a complete declaration
of the Person class 1160 1n rulebase 11504d.

Assuming that rulebase builder 110 examines component
11506 and then component 11350¢, rulebase builder 110
would access component 11505 and determine that compo-
nent 11505 contains a declaration of class 1160. Rulebase
builder 110 would examine the internal data structure that
contains all previously encountered declarations, determine
that the class 1160 had not been declared by a previously
examined component 1150, and add class 1160 and field
1162 to the internal data structure. Rulebase builder 110
would continue on to component 1150¢ and locate another
declaration of class 1160. Rulebase builder 110 may exam-
ine 1ts internal data structure, determine that class 1160 has
been declared 1 a previously examined component 1150,
and add field 1164 to the class 1160 1n the data structure.
This produces the overall declaration of class 1160 shown 1n
FIG. 11D, which includes a single declaration of class 1160
having fields 1162, 1164. In a similar manner, rulebase
builder 110 may locate each declaration of an instance 11358
encountered 1n components 1150 and form a single decla-
ration as shown in FIG. 11D.

As described above with respect to FIG. 4, a rulebase 114
may define classes at multiple levels of the rulebase 114
(rulebase-level, domain-level, or ruleset-level). Also, classes
with the same name can exist at different levels 1n the
rulebase 114. Because of that, the internal data structure
created during stage one of the merge process specifies the
scope ol the class. For example, 1n FIG. 11D, class 1160 1s
shown to exist in domain 1156. If another Person class 1s
declared 1n ruleset 1154, the resulting rulebase 11504 would
contain another class defimition appearing as part of ruleset
1154. I yet another Person class 1s declared at the rulebase
level, the resulting rulebase 11504 would contain yet another
class definition appearing as part of rulebase 11504, outside
of domain 1156.

During the first stage, rulebase builder 110 may detect
class declarations that involve the same fields. In some
cases, the declarations may match one another, such as when
multiple components 1150 declare that the Person class 1160
includes a Name field 1162. In other cases, the declarations
may conflict with each other, and rulebase builder 110 may
be unable to resolve the conflict. For example, component
1150¢ could define the Age field 1164 as a number, while
another component 1150 defines the Age field 1164 as a
string. These declarations conflict with one another, and
rulebase builder 110 could generate an error message. In yet
other cases, the declarations may contlict with each other but
be resolvable by rulebase builder 110. As an example,
component 1150¢ could define the Age field 1164 as a
number, while another component 1150 defines the Age field
1164 as a number limited to a value between 0 and 120.

US 7,356,522 B2

25

Rulebase builder 110 could resolve this conflict by using the
more limited declaration, which 1n this example would be
the declaration with the constraint.

In one embodiment, rulebase builder 110 uses no defined
order when visiting components 1150 during the first stage
of the merge process. As a result, rulebase builder 110 could
process a rule 1152 that uses an instance 1158 of a class 1160
betore the structure of that class 1160 1s defined. In a
particular embodiment, the internal data structure used by
rulebase builder 110 helps to reduce or eliminate the use of
forward declarations during the rulebase merging process.

After creating the consolidated rulebase 11504, rulebase
builder 110 parses rulebase 11504. For example, rulebase
builder 110 analyzes rule 1152 to determine whether Father
and Mother are instances that have been declared. Rulebase
builder 110 also determines whether the class associated
with the Father and Mother mstances include an Age field.
Rulebase builder 110 further determines whether the
datatype associated with the Age field 1s appropnate for the
operation performed 1n rule 1152. In this example, the value
of Age 1s being compared to a value of 65, so rulebase
builder 110 determines whether Age has been declared as a
number datatype. In addition, rulebase builder 110 examines
the merge results and determines whether each method that
was declared also has an associated implementation. In this
example, a method may be declared in one rulebase com-
ponent 1150, and the developer of that component 1150
assumed the developer of another component 1150 could
provide the method implementation. If neither developer
defined how the method was to be implemented, rulebase
builder 110 may generate an error message. Rulebase
builder 110 may take other or additional steps to parse the
consolidated rulebase 1150d.

During the third stage, rulebase builder 110 compiles the
parsed rulebase 1150d4. In one embodiment, the rulebase
11504 1s defined by a format that disallows expressions from
having any side effects. A “side eflect” occurs when the
values of a field change when inference engine 112 1s
evaluating an expression. For example, in FIG. 9B, infer-
ence engine 112 evaluates expression 956 by calling a
function called GetAge. In this embodiment, inference
engine 112 1s not allowed to modity the values of any fields
when executing the GetAge function. To help reduce or
climinate the presence of side eflects 1n rulebase 11504,
rulebase builder 110 identifies whether a method returns a
value. If the method returns a value, that method may not
include any steps that change the value of a field (except for
local vanables used 1n the method). Also, the method that
returns a value may not mvoke a second method that
changes the value of a field (except for local variables used
in the second method). In another embodiment, rulebase
builder 110 may allow expressions 1n a rulebase to have side
cllects.

During the rulebase building process, rulebase builder 110
could also generate tables associated with the use of final-
valued fields. As described above, a first-valued field 1s a
field that should be assigned a value only once, while a
final-valued field 1s a field that may be assigned multiple
values over time. During inferencing, the useful value of the
final-valued field is typically not known until all of the rules
that could change the value of the final-valued field have
been fired or failed. During the rulebase building process,
rulebase builder 110 could generate a table for a final-valued
field. The table could identify rules that might change the
value of the final-valued field and rules that use the final
value of the final-valued field. In this way, inference engine
112 could use the table to fire or fail all of the rules that

5

10

15

20

25

30

35

40

45

50

55

60

65

26

might change the value of the final-valued field. Once all of
those rules have been executed, inference engine 112 could
fire or fail the rules that use the final value of the final-valued
field. In a particular embodiment, decision tree rules can use
final-valued fields, and pattern-matching rules cannot. In this
embodiment, the table constructed during rulebase building
would 1dentify only the decision tree rules that are associ-

ated with the final-valued field.

FIG. 12 1s an exemplary flow diagram illustrating an
example method 1200 for providing inferencing services
according to one embodiment of this disclosure. Although
method 1200 may be described with respect to system 100
of FIG. 1, other systems may be used.

Server 102 recerves information identifying one or more
rules 116 at step 1202. This may include, for example, API
120 receiving a binary rulebase 114 having one or more
domains 131 and API 120 receiving a domain 131 selection.
This may also include API 120 receiving the location of a
binary rulebase 114. The information may come from any
suitable source, such as a client application 122 attempting
to invoke the inferencing services of inference engine 112.

Server 102 identifies any preconditions and any postcon-
ditions associated with the 1dentified rules 116 at step 1204.
This may include, for example, inference engine 112 using
information contaimned in a domain 131 to identily any

preconditions and postconditions associated with that
domain 131.

Server 102 receives values for the identified preconditions
at step 1206. This may include, for example, API 120
receiving values for the preconditions from the client appli-
cation 122 mvoking inference engine 112. Inference engine
112 could recerve the precondition values imndividually from
client application 122, as a group mn an XML document,
through an initialization handler, or 1in other suitable ways.

Server 102 executes the rules 116 using the precondition
values at step 1208. This may include, for example, infer-
ence engine 112 firing, failing, and pending various rules
116 to try resolve postcondition fields from an unknown
state to a known state. This may also include inference
engine 112 revisiting pending rules 116 after field values
have changed to determine 1f the changes allow inference
engine 112 to fire or fail any of the pending rules 116. This
may further include inference engine 112 performing for-
ward-chaining or backward-chaining of rules 116.

Server 102 returns the values of any postconditions at step
1210. This may include, for example, inference engine 112
communicating values for the identified postconditions to
client application 122. Inference engine 112 could commu-
nicate the postcondition values individually to client appli-
cation 122, as a group 1 an XML document, through a
change handler, or in other suitable ways. Inference engine
112 may have been successiul in determining values for all
postconditions, some of the postconditions, or none of the
postconditions.

Although FIG. 12 illustrates one example of a method
1200 for providing inferencing services, various changes
may be made to method 1200. For example, inference
engine 112 could receive values for any preconditions and
postconditions before receiving the actual rules 116. Also,
inference engine 112 could produce additional information
during inferencing, such as a rule snapshot. In addition,
some of the steps in FIG. 12 may overlap. As an example,
inference engine 112 may use a change handler to commu-
nicate the postcondition values to client application 122. In
this case, the postcondition values may be sent to client
application 122 before inferencing has completed.

US 7,356,522 B2

27

FIG. 13 1s an exemplary flow diagram illustrating an
example method 1300 for rulebase building according to one
embodiment of this disclosure. Although method 1300 may
be described with respect to system 100 of FIG. 1, other
systems may be used.

Server 102 recerves mformation identifying one or more
rulebase components at step 1302. This may include, for
example, rulebase builder 110 recerving a source or binary
rule 116, ruleset 130, or rulebase 114. This may also include
rulebase builder 110 receiving the location of a source or
binary rule 116, ruleset 130, or rulebase 114. The informa-
tion may come from any suitable source, such as a client
application 122 attempting to mmvoke the rulebase building
services of rulebase builder 110.

Server 102 determines whether the received rulebase
components have the proper format at step 1304. This may
include, for example, server 102 determining whether the
received rulebase components are contained in XML docu-
ments. This may also include server 102 determiming
whether the received rulebase components follow the format
defined 1n the Rule Definition Language. If not, server 102
converts and reformats the received rulebase components
into the proper format at step 1306. This may include, for
example, server 102 converting the rulebase components
into an XML document and reformatting the rulebase com-
ponents to follow the Rule Definition Language.

Server 102 merges the rulebase components into a con-
solidated rulebase 114 at step 1308. This may include, for
example, server 102 identifying a declaration of a class or
other data object 1n a rulebase component. This may also
include server 102 looking 1n an internal data structure to
determine 1 a previously examined rulebase component
included another declaration of the same class or other data
object. If not, server 102 adds the declaration to the internal
data structure. Otherwise, server 102 inserts elements from
the current declaration into the previous declaration con-
tained i the internal data structure. When server 102
finishes generating the internal data structure, server 102
may generate a consolidated rulebase 114 that contains the
clements 1n the internal data structure.

Server 102 compiles the consolidated rulebase 114 at step
1310. This may include, for example, server 102 parsing the
consolidated rulebase 114 1nto various structures, each struc-
ture corresponding to an XML element defined in the Rule
Defimition Language. This may also include server 102
identifying links between the various elements of the struc-
tures to create interconnections between the structures. This
may further include server 102 creating a binary version of
the consolidated rulebase 114.

Although FIG. 13 illustrates one example of a method
1300 for rulebase building, various changes may be made to
method 1300. For example, rulebase builder 110 could only
receive rulebase components that have the proper format,
and rulebase builder 110 need not convert the rulebase
components. Also, rulebase builder 110 could produce addi-
tional information, such as load maps and application inter-
face documents.

FIG. 14 1s an exemplary flow diagram illustrating an
example method 1400 for merging rulebase components
according to one embodiment of this disclosure. Although
method 1400 may be described with respect to system 100
of FIG. 1, other systems may be used.

Server 102 selects a rulebase component at step 1402.
This may 1nclude, for example, rulebase builder 110 select-
ing one of one or more rulebase components 1150 supplied
by a client application 122. Server 102 parses the selected
rulebase component into one or more rulebase elements at

5

10

15

20

25

30

35

40

45

50

55

60

65

28

step 1404. This may include, for example, rulebase builder
110 dividing a rulebase component 1150 into various dec-
larations, such as class declarations.

Server 102 selects a rulebase element at step 1406. This
may 1nclude, for example, rulebase builder 110 selecting the
rulebase element that appears first 1n the selected rulebase
component 1150. Server 102 creates a standard element that
corresponds to the selected rulebase element at step 1408.
This may include, for example, rulebase builder 110 creating
an internal object that corresponds to the rulebase element,
such as an XML rulebase element.

After server 102 creates the corresponding standard ele-
ment, server 102 determines whether a previously encoun-
tered standard element has the same name and resides at the
same rulebase level at step 1410. This may include, for
example, rulebase builder 110 analyzing an internal data
structure containing previously encountered standard ele-
ments. This may also include rulebase builder 110 deter-
mining whether a previously encountered standard element
has the same name, resides on the same hierarchical rulebase
level, and represents the same type of element as the selected
standard element. ITf any of these conditions 1s not true,
server 102 1inserts the selected standard element into the
internal data structure at step 1418. This may include, for
example, rulebase builder 110 inserting the standard element
into the approprnate location 1n the internal data structure
based on the hierarchical level at which the standard element
resides.

If all three of the conditions are met at step 1410, two
separate standard elements define the same rulebase struc-
ture at the same rulebase level. Server 102 determines
whether only one of the two standard elements defines
rulebase logic at step 1412. Rulebase logic may include the
definition of an expression used to determine whether a
constraint 1s satisfied, an implementation for a declared
method, and an implementation for a rule. If more than one
of the standard elements defines rulebase logic for the same
rulebase structure, server 102 generates an error at step
1414. This may include, for example, rulebase builder 110
generating an error message that 1s captured by a message
handler and communicated to client application 122. If only
one of the standard elements defines rulebase logic for the
same rulebase structure, server 102 merges the standard
clements at step 1416. This may include, for example,
rulebase builder 110 inserting portions from the selected
standard element 1nto the standard element contained in the
internal data structure.

Server 102 determines whether there are additional rule-
base elements of the selected rulebase component to be
processed at step 1420. If additional rulebase elements
remain, server 102 returns to step 1406 and selects another
rulebase element. Otherwise, server 102 determines whether
there are additional rulebase components to be processed at
step 1422. If additional rulebase components remain, server
102 returns to step 1402 and selects another rulebase com-
ponent.

After the rulebase components have been processed, the
internal data structure created by server 102 contains the
standard elements that correspond to the various elements of
those rulebase components. Server 102 may then take any
other suitable action using the internal data structure. For
example, server 102 could semantically analyze the internal
data structures corresponding to logic and generate binary
instructions for that logic.

Although FIG. 14 illustrates one example of a method
1400 for merging rulebase components, various changes
may be made to method 1400. For example, rulebase builder

US 7,356,522 B2

29

110 could receive one rulebase component at a time, so
rulebase builder 110 need not select a rulebase component at
step 1402. Also, rulebase builder 110 could create a standard
clement for all rulebase components before mserting any of
the standard elements into the internal data structure. In
addition, while rulebase builder 110 has been described as
processing a single internal data structure, other types or
number of data structures can be used. Further, rulebase
builder 110 could directly compare rulebase XML elements
with pre-existing standard elements, thereby avoiding cre-
ating redundant standard elements.

Rule Definmition Language (RDL)

In one embodiment, rulebases are defined using a Rule
Defimition Language. The Rule Defimition Language defines
the structure and the contents of one or more XML docu-
ments that form the rulebase. In particular, the Rule Defi-
nition Language supports object definitions, such as the
definition of classes, fields, methods, and static instances, as
well as the definition of constraints and rules organized 1nto
domains.

Although the Rule Definition Language may be described
below 1n reference to system 100 of FIG. 1, other systems
may use the Rule Definition Language. Also, systems may
use other languages to define rulebases.

1. Overview

In general, the Rule Definition Language allows a user to
specily which objects 1 a rulebase 114, such as classes,
instances, fields, domains, and rulesets, may be shared with
a client application 122 as public objects. By default, other
objects specified 1n rulebase 114 may remain private to that
rulebase 114. For shared fields, the user may specily whether
cach field 1s accessible as a precondition or as a postcondi-
tion.

The Rule Definition Language supports two types of rules
116, pattern matching rules and decision tree rules. Both
types of rules are used during forward-chaiming, while
decision tree rules are used during backward-chaiming.

The Rule Definition Language supports a number of
different datatypes, including Numbers, Booleans, Strings,
Association 1nstances, Sets, and Instance References. A
Number represents a generic numeric datatype that does not
distinguish between integers and floating-point values. The
values may be of arbitrary size, and the precision of the
Number may be specified using a precision flag. Values may
also be rounded to the nearest neighboring value according
to particular needs. In one embodiment, 1f two neighboring,
values are equidistant, inference engine 112 could always
round to the nearest even neighbor or to the nearest odd
neighbor. A Boolean represents a value of TRUE or FALSE.
A String represents a sequence of Unicode characters and 1s
not case sensitive.

An Association instance defines a relationship between
rulebase instances. For example, a Person instance may be
the spouse of another Person instance, or a Person instance
may own a Duck instance. The Rule Definition Language
could support any suitable type of association, such as
one-to-one, one-to-many, many-to-one, and many-to-many
associations. As a particular example, the Rule Definition
Language could support Ownership (Owns and IsOwnedBy)
associations, Managership (Manages and IsManagedBy)
associations, Spousalship (IsSpouseOf) associations, and
Siblingship (IsSiblingOf) associations. For example, a Duck
instance’s field may define an IsOwnedBy association with
a Person mnstance, mndicating that the Duck 1s owned by the
identified Person.

5

10

15

20

25

30

35

40

45

50

55

60

65

30

An 1nstance reference 1n one instance represents a refer-
ence to another instance. For example, a Duck class may
define an instance reference to a Person, identifying the
Person instance that owns a given Duck instance. In this
example, the instance reference acts as a pointer to the other
instance. As with the other datatypes, an instance reference
may be 1n either a known or unknown state. If 1n a known
state, the instance reference value may either reference an
instance or be a null. The null value may be distinguished
from an unknown value 1n that the unknown value repre-
sents an unknown relationship, while a null value 1ndicates
the known lack of a relationship.

A set represents an unordered collection of unique ele-
ments. The elements may be of any of the above datatypes.
In a particular embodiment, all elements should be of the
same datatype. The Rule Definition Language may or may
not support sets of sets. The Rule Definition Language may
also support other datatypes, such as lists, dates, and times.

The Rule Definition Language may classily decisions to
be made by inference engine 112 into either rule premises or
constraint expressions. This helps to restrict decision mak-
ing to fewer, better-defined contexts. This also helps to
encourage developers creating a rulebase 114 or a portion of
a rulebase 114 to write cleaner, more atomic rules. This may
further reduce or eliminate the use of IF-THEN rules 1n
rulebase 114. The Rule Definition Language may also dis-
allow expressions from having any side eflects.

The Rule Definition Language may further limit the usage
of pointers and dynamically-allocated objects. For example,
the Rule Definition Language may limit the use of pointers
to fields 1n an Association instance and in the bind variables
used 1n pattern matching rules. This helps to facilitate
analysis of the rules 116 1n a rulebase 114 before inferencing
begins and the pointers are used. In a particular embodiment,
the analysis of the rulebase 114 may occur when rulebase
builder 110 1s building a rulebase 114, rather than by
inference engine 112 before inferencing begins. In another
embodiment, the use of pointers may not be limited or may
be limited 1n other ways.

In addition, to allow third party vendors to add function-
ality and additional information to a rulebase 114, the third
party vendors could add prefixes to the elements and fields
they define and use in a rulebase 114. In certain embodi-
ments, a prefix may be XML namespace prefix. Inference
engine 112 could process any elements and fields that are
defined 1n the Rule Definmition Language and ignore any
other elements and fields, such as elements and fields having
a prefix.

The following description of the Rule Definition Lan-
guage assumes that a rulebase 114 includes one or more
XML documents. In the following description, the contents
of the XML documents are described using Backus-Naur
Form (BNF) notation, and examples of rulebase logic use
infix notation. This 1s for illustration only. Other notations
used to describe the contents of XML documents and
examples could be used. Also, 1n other embodiments, rule-
bases 114 could include other types of information and 1s not
limited to XML documents.

2. Element Attributes

The Rule Definition Language supports the following
attributes:

AbortMsg Attrib

;= abort__msg="<StringVal>" // No default

US 7,356,522 B2

31

-continued

AppShared_ Attrib
::= appshared="true”
::= appshared="{alse”
CaseSensitivity_ Attrib
;1= case_ sens=""true”
;= case__sens="false”
Collection__ Attrib
= coll__type="set”
;== coll__type="none”
DataType_ Attrib
= type="number”
;= type="boolean”
= type="string”
;= type="1nst__ref”
Enabled_ Attrib

/I Detfault

/I Default

/I Detfault
// No default

-:= enabled=""true” // Default
::= enabled="false™
Intrinsic Attrib
= Intrinsic=""true”
= intrinsic=""false” /i Default

LocTag Attrib

;= loc__tag="<StringVal>"
Name__ Attrib

::= name="<Identifier>"
ParamIOType_ Attrib

;= 1otype="1n"’

;== 10type=""out”
PMOptions__Attrib

;= options="<Options>"

// No default
// No default

/i Detfault

// Default (least-
recent, multi-fire)
Post__ Attrib

;= post__type="conditional”

;== post__type="unconditional”
Precision_ Attrib

::= precision=""<IntegerVal>"
Priority_ Attrib

;.= priority="<IntegerVal>"
ResolutionType Attrib

= res__type="first_ valued”

= res__type="final_ valued”
ResumeVal _Attrib

;= resume_ val="<Value>"
Value Afttrib

= value="<Value>"

/I Detfault
/i Detfault: <0
/i Detfault: <0

/i Default

// No default

// No default

Later sections refer to these attributes. In many cases, this
list defines the actual values an attribute may have, such as
TRUE and FALSE. In other cases, this list reflects symbolic
values, 1n which case the symbolic values are bracketed (<>)
and more fully explained below.

3. Root Element
This element 1s the root element of the XMIL., document

and defines the overall structure of a rulebase 114. It has a
format of:

Rulebase FElement
= (‘rulebase’ RB__Attribs+)
RB_ Section™
Rulebase Attribs
:= Name__ Attrib
.= LocTag Attrib
Rulebase_ Section
.= [nitMethodDef Element
:= Assoc_ Element
-:= ConstraintSet_ Element
-:= Externall.ib_ Element
:= Class FElement
:= Domain_ Element

// Required
// Optional

Name_Attrib specifies a name for the rulebase 114, such
as an alphanumeric string. Inference engine 112 may use this
name 1n error and trace messages. Rulebase_Section

10

15

20

25

30

35

40

45

50

55

60

65

32

includes zero or more sub-elements, and these sub-elements
define the objects exposed at a global scope within the
rulebase 114. For example, InitMethodDel_Flements define
rulebase-level 1mitialization methods, Assoc FElements
define rulebase-level relationships between rulebase-level
classes, and ConstraintSet Flements define rulebase-level
sets of methods for constraining value assignments to rule-
base-level fields. Externall.ib Elements define external
libraries that could be invoked from the rulebase 114, and
Class_FElements define rulebase-level classes of fields, meth-
ods, and static instances. Domain_Elements define rulebase-
level domain resources.

All of these sub-clements may be optional since, as
described above and below 1n more detail, the Rule Defi-
nition Language supports merging fragments of incomplete
rulebases to form a complete rulebase 114. Also, as
described below, each sub-element may specily a Name_
Attrib. These names may be unique at the rulebase level but
may be overridden at lower levels. IT a rulebase 114 defines
same-named objects at a given level, rulebase builder 110

may merge those objects into a single rulebase object during
the merge process.

4. InttMethodDet Element

This element defines a method for mitializing objects 1n
the rulebase 114 and has a format of:

InitMethodDef Element
= (“1mmit_method’ InitMethodDef_ Attribs+)
[InitMethodBody_ Element]
[InitMethodDef_ Attribs
::= Name__ Attrib
.= LocTag__Attrib

// Requuired
/f Optional

InitMethodDel_Element defines method logic that 1nitial-
1zes level-specific fields and external libraries. For example,
this element may initialize various fields that are subse-
quently referenced by rules and constraints. Inference
engine 112 invokes this method when first loading resources
for the level. In one embodiment, inference engine 112 may
invoke this method once. When there are multiple Init-
MethodDel Elements at a given level, inference engine 112
may invoke the elements 1n any suitable order. The 1nitial-
ization methods defined in this element may accept no
arguments and return no values. The methods may be free to
invoke other methods and to access any and all objects
within their scope level. In one embodiment, the methods
may be unable to mnitiate inferencing or attempt to read fields
in the unknown state. In this embodiment, upon detecting
any of these operations, inference engine 112 may immedi-
ately abort inferencing with an error message.

i

T'his element may be specified at several different levels
in a rulebase 114. For example, it can be specified at the
rulebase level, the domain level, and the ruleset level. At a
given level, there may be multiple specifications of this
element, but each should have different names. Also, mul-
tiple sub-rulebases can contribute InitMethodDetElements
at the same rulebase level.

In one embodiment, the mitialization of fields 1s subject to
field constraints. The method should be sensitive to these
constraints and to the fields that such constraints rely on. For
example, a field constraint may rely on a field Maximum-
Age, so the imitialization method should help to ensure that
this field has been mitialized before setting any fields
dependent on that constraint.

US 7,356,522 B2

33

A sample rulebase 114 could define an InitMethodDe-
f Element at the rulebase level as follows:

<init__method name="RulebaseConstantslnitializer”>
<method_ body>
<![CDATA][
constants.max__age = 120
constant.adult _age = 21
constant.ValidSymptoms = set(“symptom1”, “symptom?2”,
“symptom3”’)
11>
</method__body>
</init__method>

This method 1nitializes various constant fields that are later
used by rules and constraints.

5. Assoc_Element

This element defines a relationship between fields and has
a format of:

Assoc_ Element
;== (“assoc’ Assoc_ Aftribs+)
FieldRet Element
FieldRet Element
Assoc_ _Attribs
:= Name__ Attrib
== LocTag Attrib
FieldRet FElement
= (‘field_ ref’ FieldRef Attribs+)

/I AssocRolel
/I AssocRole2

// Assoc name - Required
// Optional

IdentifierSpec // Class for Field
FieldRef Attribs
== Name__Afttrib // Fleld name - Required

== LocTag_ Attrib // Optional

This element may be specified at several diflerent levels
in a rulebase 114. For example, 1t can be specified at the
rulebase level, the domain level, and the ruleset level. In one
embodiment, the association has a name reflecting its sig-
nificance. For example, an Ownership association might
define how a person owns ducks, a Managership association
might define how a person manages other persons, and a
Spousalship association might define spousal relationships
between persons.

The Assoc_Element specifies 1ts member fields as Field-
Reti Elements. Each of these sub-elements specifies a field
name and a class owning or inheriting that field. Within its
respective class, each of these fields may be declared with
the 1nstance-reference datatype (see the Datalypeln-
stRel_Element described below). The specified fields may
be for the same class or different classes. For example, a user
may define an association between the IsOwnedBy field of
a Duck class and the Owns field of a Person class. As another
example, a user may define an association between the
IsManagedBy field of a Person class and the Manages field
of a Person class. A user can further specity the same field
for both association roles, such as where the IsSpouseOf
field of a Person class plays both association roles.

In one embodiment, the association’s multiplicity (one-
to-one, one-to-many, many-to-one, many-to-many) may
vary according to whether or not the specified fields are sets.
For example, 11 the Owns field of the Person class 1s a set but
the IsOwnedBy field of the Duck class 1s not a set, the

association 1s one-to-many relationship between Persons
and Ducks.

The Assoc_Element element may associate super-classes
of objects. For example, it may associate Persons with Birds,

10

15

20

25

30

35

40

45

50

55

60

65

34

and the mference engine 112 may polymorphically interpret
the relationship as between a Person and any kind of Bird
(Duck, Vulture, etc.).

In a particular embodiment, the Assoc_Element specifies
fields whose classes are at the same rulebase level (global,
domain, ruleset) as itself. In this embodiment, a domain-
level association may only reference fields for domain-level
classes, but not fields for global-level classes.

A sample rulebase 114 could define two Assoc_Elements
at the rulebase level as follows:

<assoc name="Ownership”>
<field ref name=“Owns”’>
<ldentifier name="Person”/>

</field ref>

<field__ref name="IsOwnedBy”>
<identifier name="Duck”/>

</field ref>

</assoc>

<assoc name="Siblingship”>
<field_ ref name="IsS1blingOf’>
<identifier name="Person’’/>

</field refs
<field_ ref name="IsS1blingOf’>
<ldentifier name=""Person’’/>

</field ref>
</assoc>

In addition, rulebase 114 could define Association fields.
These fields may be useful for maintaining information that
1s specific to the association but not to the individual
members of the association. For example, a Spousalship
association might have a DateOiMarriage field. To use
association fields, inference engine 112 may maintain
instances of associations, and other 1nstances can access the
association instances. For example, a Person instance may
need to determine her/his marriage date. This could occur
with an intrinsic method, such as:

marriage_ date = @getAssocValue(Father.spouse,
spousalship.marriage date)

@setAssocValue(Father..spouse, Spousalship.marriage date,
20010708)

where the first argument specifies an instance involved 1n the
association, and the second argument indicates the relevant
association field.

In another embodiment, the associations could be treated
as “lending” their fields to participating instances. For
example, the Person class could inherit a marriage_date field
by virtue of the fact that Person 1s a role class i the
Spousalship association. In that case, the above examples
might be recoded as:

marriage date = Father.marriage date
Father.marriage date = 20010708

Under this approach, field names of the association instance
may overlap with the field names of the Person class (and its
ascendant classes). Likewise, the Person class (and its
ascendant classes) may be unable to define two fields
playing Spousalship roles for diflerent association instances.
Further, 1f Person plays a class role in multiple different

US 7,356,522 B2

35

associations, the associations may need to employ different
field names. Optional special prefixes could be used for
Association fields to circumvent some of these 1ssues, such
as by:

marriage_ date = Father.Spousalship:marriage_ date
Father.Spousalship:marriage_ date = 20010708

6. ConstraintSet Element
This element specifies a collection of constraint defini-
tions and has a format of:

ConstraintSet_ Element
;== (“constraint_ set’ ConstraintSet Attribs+)
Constramt_ Element™
ConstraintSet_ Attribs
.= Name__ Attrib
== LocTag_ Attrib
Constraimnt_ Element
::= (“constraint’ Constraint__ Attribs+)

// Required
// Optional

GeneralExpr // Boolean expression
Constraint__ Attribs
;== Name__Afttrib // Required

== LocTag Attrib // Optional

ConstraintSet_Element specifies criteria for restricting
how values may be assigned to fields. Inference engine 112
may evaluate the constraints before assigning a value to a
target field. The constraints may be associated with fields
cither by means of the field’s declaration (using Field-
Dcl_Element) or by a static mnstance field modifier (using
StaticInstDel Element). Each constraint’s General Expr may
represent a Boolean expression. This expression references
an 1ntrinsic i1dentifier (candidate value) as a symbolic ret-
erence to the field’s proposed new value. When evaluating
the expression, inference engine 112 may substitute the
intrinsic 1dentifier for any symbolic references. The expres-
sion’s value indicates whether the candidate value satisfies
the constraint. IT the expression value 1s TRUE, inference
engine 112 may permit the value assignment to proceed.
Otherwise, inference engine 112 may take an action depen-
dent on the field declaration (or field modifier) specifica-
tions.

The expression may mmvoke methods and access any and
all objects within its scope level. In one embodiment, the
expression may not attempt to read fields 1n an unknown
state or cause any side effects. In this embodiment, upon
detecting any of these operations, inference engine 112 may
immediately abort inferencing with an error message.

This element can define multiple constraints, and each of
these constraints may have a unique name within the con-
straint set. This element may also be specified at several
different levels 1n a rulebase 114. For example, it can be
specified at the rulebase level, the domain level, and the
ruleset level. Inference engine 112 may evaluate the same
constraint on behalf of several different fields, such as fields
of the same datatype.

A sample rulebase 114 could define two Constraint-
Set Flements at the rulebase level as follows:

<constraint__set name="“ThingConstraints’>

<constraint name="CheckAgeConstraints”>
<![CDATA]

10

15

20

25

30

35

40

45

50

55

60

65

36

-continued

(@candidate value >= 0 and (@candidate_ value <= max_age

11>

</constraint

</constraint set>
<constraint set name="“PersonConstraints”»

<constraint name="CheckSympConstraints™>
<![CDATA]

@candidate_ value <= ValidSymptoms
11>

</constraint=
</constraint set>

7. Externall.ib_Element

This element allows users to supplement the Rule Defi-
nition Language functionality with that supplied by one or
more “external” libraries, such as libraries coded 1n Java or
C++. These users could then distribute the external libraries
along with the rulebases 114. The Externall.ib_Flement
provides a gateway to the external libraries. From the
standpoint of a rulebase 114, an external library could appear
as a “black box” offering methods with input parameters,
output parameters, and return values. A rulebase 114 could
invoke the methods in the external library as i1t would
methods defined 1n the rulebase 114 1itself. Inference engine
112 could be responsible for mapping the invocations to
target environments. The definition of an ExternallLib_Ele-
ment may require specification of language-specific, plat-
form-specific, or environment-specific settings. As a result,
inference engine 112 may or may not need to include some
target-specific code.

8. Class Flement

This element defines classes of fields, methods, and static
instances. It has a format of:

Class_ Element
;= (“class’ Class_ Attribs+)
Class_ Item™
Class Attribs
:= Name__Attrib
= LocTag Attrib
Class_ Item
::= Parent Element
-:= FieldDcl Element
.:= ClassMethodDef FElement
-:= StaticInstDet Element
Parent FElement
= (“parent’ [LocTag Attrib])
IdentifierSpec

// Requuired
// Optional

// Parent Class

This element may be specified at several different levels
in a rulebase 114. For example, it can be specified at the
rulebase level, the domain level, and the ruleset level. Some
or all sub-clements may specily a Name_ Attrib. Except for
method overloading, these names may be unique at the class
level but may override names at higher levels and be
overridden at lower levels. Also, except for method over-
loading, 1f a class defines same-named objects, rulebase
builder 110 may merge those objects into a single rulebase
object during the merge process. The Class_Element can
optionally specily a parent Class_Element, so classes can be
organized into an inheritance hierarchy. In one embodiment,
a class may have at most one parent class. In a particular
embodiment, 11 a class has a parent, the parent and child
classes reside at the same rulebase level (global, domain,
ruleset). In this embodiment, a domain-level class would be

US 7,356,522 B2

37

derived from another domain-level class and could not be
derived from a global-level class.

In a particular embodiment, fields and methods are at an
instance-level rather than at a class-level, and fields and
methods are at a public rather than a private or protected
access level. Also, 1n a particular embodiment, leat but not
parent classes can be instantiated. There may or may not be
support for class containment.

A sample rulebase 114 could define several Class_Ele-
ments at the rulebase level, such as:

<class name="Duck”>
<parent>
<ldentifier name="“Thing”/>
</parent>
<field name="IsOwnedBy”’>
<datatype coll_ type="none” type="inst_ ref”’>
<identifier name="Person”/>
</datatype>
</field>

</class>

8.1 FieldDcl Element

This element of Class_Element defines a class data object
and has a format of:

FieldDcl__Element
= (‘“field’ FieldDcl__Attribs+)
Datalype_ Element
[ConstrainedBy_ Element]
FieldDcl _Attribs
== Name__Afttrib
::= ResolutionType_ Attrib
== LocTag Attrib
ConstrainedBy_ Element
;== (“constrained__by’ [LocTag Attrib])
ConstrainerList_ Element
[ConstraintViolation_ Element]
ConstrainerList_ Element
;= (“‘constrainer_ list’ [LocTag Attrib])
IdentifierSpec™ /1 Applicable Constraints
ConstraintViolation_ Element
::= (“constraint__violation’ [LocTag Attrib])
ConstraintViolation_ Option
ConstraintViolation_ Option
::= ConstraintAbort_ Element
::= ConstraintResume__Element
ConstraintAbort Element
::= (“constraint__abort” ConstraintAbort_ Attribs™®)
ConstraintAbort Attribs
== LocTag Attrib
== AbortMsg Attrib
ConstraintResume_ Element
;== (“constraint__resume’ ConstramntResume__Attribs™)
ConstraintResume_ Attribs
== LocTag Attrib
::= ResumeVal__Attrib

// Requuired
// Optional
// Optional

// Optional
/1 Optional

// Optional
// Optional

The FieldDcl_Element can include field resolution types,
which are fields that can optionally specily a “resolution
type.” The resolution type applies to the behavior of infer-
ence engine 112 when 1t processes decision tree rules and
can be specified as either “first_valued” (the default) or
“final_valued.” This setting determines 11 inference engine
112 should assume that a field’s first value 1s 1ts resolution
value, or i inference engine 112 should expect that a field
might be assigned intermediate values on 1ts way to 1its

resolution value. For example, an Age field would typically
be a “first_valued™ field, whereas a SetOfResults field might
be a “final-valued” field.

5

10

15

20

25

30

35

40

45

50

55

60

65

38

The FieldDcl_Element can also optionally specity that
fiecld value assignments should be constraimned. Belore
assigning a value to the field, inference engine 112 may
evaluate zero or more constraints 1n the order specified by
ConstrainerList_Flement. IT any of the constraints evaluate
to a Boolean FALSE value, inference engine 112 may
perform a violation action depending on the ConstraintVio-
lation_Flement. IT the ConstraintViolation_Element speci-
fies a ConstraintAbort_Flement, inference engine 112 may
abort inferencing. If that element specifies an AbortMsg At-
trib, the attribute’s value may be the error message text.
Otherwise, the error message may retlect default text. If the
ConstraintViolation_Element specifies a ConstramntRe-
sume_Element, inference engine 112 may resume 1nferenc-
ing. If that element specifies a ResumeVal_Attrib, inference
engine 112 may replace the field’s current value with the
attribute’s value. Otherwise, the field may retain 1ts current
value. If there 1s no ConstraintViolation_Element, inference
engine 112 may abort inferencing with a default error
message. Constraints specified at the FieldDcl_Element
level may apply to all instances of the field’s class. A user
may also specily istance-specific constraints.

A sample field declaration from a sample rulebase 114

could be:

<field name="Symptoms™>
<datatype coll__type="set” type="‘string”/>
<constrammed_ bys
<constramer_ list>
<identifier name="CheckSympConstraints’/>
</constrainer__list>
<constraint_ violation>
<constramt__abort abort__msg="“Invalid symptoms
specified”/>
</constraint__ violation>
</constrained_ by>

</field>

8.2 ClassMethodDet Element

This element of Class FElement defines a class method
object and has a format of:

ClassMethodDef Element
;== (‘method’ ClassMethodDef Attribs+)
DataType_ Element] // Method ReturnType
ClassMethodParams]
ClassMethodBody_ Element]
ClassMethodDef Attribs

::= Name__ Aftrib // Required
== LocTag Attrib // Optional
ClassMethodParams

:= ClassParam_ Element
::= ClassParamlList_Element
ClassParam_ Element
== (‘param’ ClassParamAttribs+)
DataType_ Element

ClassParamAttribs
::= Name_Attrib // Required
;== ParamlIOType__Attrib // Optional
.= LocTag Attrib // Optional

ClassParamlList_ Element
;== (‘method__params’ [LocTag Attrib])
ClassParam__Element®
ClassMethodBody_ Element
= (‘method_ body’ [LogTag Attrib])
Statement™®

A method could optionally accept any number of argu-
ments of any datatype, and the method may classity each

US 7,356,522 B2

39

parameter as either an mput (“in”) parameter or output
(“out”) parameter. In one embodiment, parameters may be
either iput parameters or output parameters by default. In
a particular embodiment, a parameter may not be both an
input parameter and an output parameter. The Rule Defini-
tion Language may support method overloading, so a class
may define multiple methods of the same name so long as
their parameter lists are distinguishable. This distinction
may not take into account ClassParamAttribs (such as the
ParamlIOType_Attrib) or number precisions. A method can
optionally return one or more values of any datatype. If a
method returns a value, server 102 may classily it as a
function method. Otherwise, server 102 may classify 1t as a
procedure method. Server 102 imposes restrictions on func-
tion methods that may not be imposed on procedure meth-
ods. This 1s because function methods are expressions, and
expressions can have no side effects. Server 102 therefore
may disallow function methods from supporting output
parameters, assigning values to fields, invoking procedure
methods, or creating or deleting dynamic instances.

If a ClassMethodBody_Element 1s not specified, server
102 may assume that another rulebase 114 1s going to define
the method implementation and that the other rulebase 114
will be merged with the current rulebase 114 before infer-
encing.

A sample method definition from a sample rulebase 114

could be:

<method name="HaslstSymptomButNot2ndOne™ >
<datatype coll__type="none” type="boolean™/>
<method_ params:>
<param name="‘sympl” 1otype="1n">
<datatype coll__type="none” type="string”/>
</param:
<param name="symp2” 1otype="in""»
<datatype coll_ type="none” type="string™/>
</paramz
</method__params>
<method_ body>
<! [CDATA]
return Symptoms.(@Set_ DoesIncludeVal(sympl)
and not Symptoms.@Set_ DoesIncludeVal(symp?2)
>
</method__body>
</method>

8.3 StaticlnstDetf Flement
This element of Class Flement defines a class static
instance object and has a format of:

StaticInstDef Element
;== (“instance’ StaticInst Attribs+)
[FieldModifiers_ Element]
StaticInst_ Attribs
== Name__ Afttrib
;== LocTag Attrib
FieldModifiers_ Element
= (‘field__modifiers’ [LocTag Attrib])
FieldModifier Element*
FieldModifier_ Element
.= (‘field_modifier’ FieldModifier Afttribs+)
[Constrained By Element]
[LastChanceValue_ Element]
FieldModifier_ Attribs
;= Name__Afttrib
== LocTag Attrib
LastChanceValue_ Flement
::= (‘lastchance_ value’ [LocTag Attrib])
LastChanceValue

// Required
/1 Optional

// Requuired
/1 Optional

10

15

20

25

30

35

40

45

50

55

60

65

40

-continued

LastChanceValue
:= LiteralConstant_ Element
::= Unarybxpr
.= SetConstant_ Element
;== IdentifierSpec

// with LiteralConstant Element

// Instance name

Inference engine 112 may create a static instance when it
loads the instance’s class, and 1t may delete the instance
when 1t unloads the instance’s class. In one embodiment,
rulebase logic may not be able to explicitly create or delete
static instances. This element may optionally specily a
FieldModifiers_Element that specifies instance-specific field
characteristics, such as last-chance values and constraints.
The Name_Attrib for the FieldModifiers Element indicates
the affected instance field. This name may identity a field
declared or inherited by the instance’s class.

The LastChanceValue Element specifies a last chance
value for the field. For an instance-reference datatype, the
last-chance value may be an identifier for another static
instance or a set of such instances. For a field of another
datatype, the value may be a literal constant, a Set constant,
Or a unary operator on a literal constant. In the latter case, the
literal constant may be a number or Boolean constant.
Inference engine 112 could apply last-chance values 1n
certain well-defined situations concerning decision-tree
rules, so the static instance definition of last-chance values
may not 1n 1tsell guarantee that inference engine 112 wall
ever apply them.

The constraint sub-element specifies that field value
assignments should be constrained. Further information
about constraints may be found above 1n the description of
ConstrainedBy_Element in the FieldDcl_Element section.
Constraints specified at the StaticlnstDef Element level
may apply only to that instance. For example, a user could
specily different constraints for a Father.Age than for a
Mother.Age. The user may also specily class-level con-
straints that apply to all instances of a class. If for a given
field the user has specified both levels of constraints, infer-
ence engine 112 may apply the class-level constraints before
the 1nstance-specific constraints.

A sample StaticInstDel Element definition from a sample
rulebase 114 could be:

<instance name="CurrentPatient”>
<field modifiers>
<field modifier name="age”>
<lastchance_ value>
<literal constant value="55"/>
</lastchance_value>
</field__modifier>
</field _modifiers>
</1nstance>

9. Domain Element

This element defines rulebase-level domain resources and
has a format of:

Domain_ Element
= (‘domain’ Domain__ Attribs+)
Domain_ Items®
Domain__ Attribs

;= Name__Attrib // Requuired

US 7,356,522 B2

41

-continued

;== AppShared_ Aftrib
.= LocTag__ Attrib
Domain__ Items
:= DomainGoal Element
::= DomammAppSharedFlds_ Element
:= [nitMethodDef Element
.:= Assoc_ Element
.= ConstraimntSet_ Element
:= Class_ Element
-:= Ruleset FElement

// Optional
// Optional

This element may optionally specity that the domain may
be loaded by a client application 122 through the use of the
AppShared_Attrib field. Otherwise, the domain 1s loadable
from rulebase logic using a dmn_push() intrinsic method. A
rulebase 114 may share at least one domain with client
applications 122, but it could share multiple domains with
client applications 122.

Most sub-clements may specily a Name_Attrib. These
names may be unique at the domain level but may override
names at higher levels and be overridden at lower levels. IT
a domain defines same-named objects at a given level,
rulebase builder 110 may merge those objects into a single

rulebase object during the merge process.

Several of the domain sub-elements, such as InitMethod-
Del Flement, Assoc_Element, ConstraintSet_Element, and
Class_Element, may be the same as rulebase-level sub-
clements previously described. Other sub-elements, such as
DomainGoal_Flement, DomaimAppSharedFlds_Flement,
and Ruleset_Element, are specific to domains and described
below.

9.1 DomainGoal Element

This element of Domain_Element specifies a goal field for
the domain and has a format of:

DomainGoal_ Element
== (“domain__goal’ [LocTag Attrib])
IdentifierSpec // Backward-chaining goal (Field)

If the Domain_Flement specifies a DomainGoal_Ele-
ment, inference engine 112 may backward-chain the
domain’s rules 1n order to resolve the goal field. Otherwise,
inference engine 112 may forward-chain the domain’s rules.

A sample Domain Goal_Element from a sample rulebase
114 could be:

<domain name="PerformConclusionAnalysis” appshared="true”>
<domain__goal>
<identifier name="0OverallConclusion”/>
</domain__goal>

</domain>

9.2 DomaimnAppSharedFlds_Element

This element of Domain_Element species fields to be
shared with client applications 122 and has a format of:

DomamAppSharedFlds Element

;== (“appshared_ fields’ [LocTag Attrib])
‘DomainPreConditionList Element]
‘DomaimPostConditionList_ Element]

10

15

20

25

30

35

40

45

50

55

60

65

42

-continued

DomamPreConditionList Element
;== (‘precondition__ list’ [LocTag Attrib])
ConditionListItem™
DomainPostConditionlist Element
;== (‘postcondition_ list’ [LocTag Attrib])
ConditionListltem™
ConditionListltem
::= IdentifierSpec
:= FileldRet Element

// Restricted to global fields

If a domain includes a DomaimnAppSharedFlds_Element
sub-clement, the domain 1tself may be automatically shared
with client applications 122. The DomainAppSharedFl1d-
s_FElement specifies two sub-elements: one for inierencing
preconditions and another for inferencing postconditions.
Each sub-element specifies zero or more rulebase-level
ficlds. In one embodiment, the list may specily rulebase-
level but not domain-level fields. If the same field 1s speci-
fied for both lists, the field may be assumed to be a
precondition field.

The DomainPreConditionlist Element i1dentifies fields
both readable and write-able by a client application 122. The
DomainPostConditionlist Element 1dentifies fields that are
read-only to a client application 122. Inference engine 112
may reject attempts by client applications 122 to incorrectly
access fields. In one embodiment, different rulebase domains
may specily different DomaimnAppSharedFlds_Elements
because their mput and output fields may difler.

A sample DomainAppSharedFlds_Element from a sample

rulebase 114 could be:

<domain name="PerformConclusionAnalysis” appshared="true”>

<appshared_ fields>
<precondition_ list>
<identifier name="Factl”/>
<identifier name="Fact2”/>
<identifier name="Fact3”"/>
<identifier name="Fact4”/>
</precondition_ list>
<postcondition__list>
<identifier name=""0OverallConclusion”/>
</postcondition__list>
</appshared_ fields>

</domain>

The above example 1llustrates the definition of four pre-
condition fields and one postcondition field. For each field,
only a single 1dentifier has been specified because there 1s
only a single class 1nstance defined for those fields (so there
1s no referential ambiguity). In general, a shared field may be
specific to a single static instance so that, for example, a
domain may share Father.Age but not Mother.Age. It the
domain needs to share the field for multiple instances, the
DomainAppSharedFlds_Element may specily multiple
fields, one for each instance, such as by:

<precondition__list>
<identifier _path>
<ldentifier name="Father”/>
<identifier name="Age”/>
</1dentifier_ path>
<identifier_ path>
<ldentifier name="Mother”/>

US 7,356,522 B2

43

-continued

<ldentifier name="Age”/>
</1dentifier__path>
</precondition__ list>

The domain could also choose to share a field for all
instances of a class. To do so, the DomainAppSharedF1d-
s_FElement specifies the fields using FieldRei Element, such
as by:

<precondition__list>
<fleld_ ref name="Age”>
<1dentifier name="Person’/>

</field ref>

</precondition__ list>

This example specifies that the Age field should be shared
for all instances of Person. This may be useful when used
with dynamic instances, where it may not be practical or
possible to 1temize all the instances for a given field.

The FieldRef_Element can specily a parent class as well
as a leaf class, such as:

<precondition__list>

<field__ref name="Age’>
<identifier name="Bird”/>

</field ref>

</precondition__list>

This form 1s shorthand for all the leat classes derived from
that parent class, such as:

<precondition__list>

<field_ ref name="Age”>
<identifier name="*"Duck”™/>

</field_ ref>

<fleld_ ref name="Age”>
<identifier name="Vulture”/>

</field_ ret>

<field_ ref name="Age”>
<identifier name="Robin”/>

</field refs

</precondition__ list>

9.3 Ruleset Flement

This element of Domain Element defines ruleset-level
resources and has a format of:

Ruleset Element
;= (‘ruleset’ Ruleset_ Attribs+)
Ruleset_ Item™
Ruleset_ Attribs

::= Name__ Aftrib // Required
::= Post__Attrib // Optional
.= AppShared___Attrib // Optional
.= LocTag Attrib // Optional

Ruleset Item
= [nitMethodDetf Element
:= Assoc_ Element
-:= ConstraintSet_ Element

10

15

20

25

30

35

40

45

50

55

60

65

44

-continued

.= Class_Element
:= Rule Element

This element may, using a Post_Attrib field, optionally
specily that inference engine 112 should conditionally post
the ruleset’s rules to the domain’s rule agenda as controlled
by a client application 122 or rulebase logic. By default,
inference engine 112 may unconditionally post the rules to
the agenda when the ruleset 1s loaded. This element may
also, using an AppShared_Attrnib field, optionally specity
that the ruleset 1s accessible to a client application 122.
Otherwise, the ruleset 1s only accessible to rulebase logic.

A domain may share multiple rulesets with client appli-
cations 122. If a domain shares any rulesets, the domain
itself may also be automatically shared with client applica-
tions 122. If a ruleset 1s shared with an application, the
Post_Attrib may be set to “conditional.” Otherwise, server
102 may reject the element with a syntax error. If a ruleset
1s not shared with a client application 122, the Post_Attrib
may be set to either “conditional” or “unconditional”.

All sub-elements may specily a Name Attrib. These
names may be unique at the ruleset level but may override
names at higher levels and be overridden at lower levels. IT
a ruleset defines same-named objects at a given level,
rulebase builder 110 may merge those objects 1into a single
rulebase object during the merge process.

Several of the ruleset sub-elements, such as InitMethod-
Def Element, Assoc_Element, ConstraintSet FElement, and
Class_FElement, are the same as rulebase-level sub-elements
described above. Rule_Element may be specific to rulesets
and 1s described below.

A sample Ruleset_Element in a sample rulebase 114 could
be:

<domain name="PerformConclusionAnalysis” appshared="true”>
<ruleset name="ConclusionAnalysis’>
</ruleset>

</domain>

10. Rule Element
This element defines a rule and has a format of:

Rule Element
= (‘rule’ Rule_ Afttribs+)

RuleBody
Rule_ Attribs
;= Name__Attrib // Requuired
;= Priority_ Attrib // Optional
::= Enabled_Attrib // Optional
;= LogTag Atftrib // Optional
RuleBody
::= DecisionTree Element
.= PatternMatching Element

This element may optionally specily, using a Priority_ At-
trib field, a prionty level. Inference engine 112 may
sequence rules 1n the domain agenda by priority order, such
as Irom highest value to lowest value or lowest value to
highest value. I1 the element does not specily a prionty level,
inference engine 112 may assign a default priority of zero or
other suitable value.

US 7,356,522 B2

45

This element may also optionally specily whether the rule
should be enabled for inferencing via the Enabled Attrib
attribute. If enabled, the rule participates 1n inferencing.
Otherwise, mference engine 112 i1gnores the rule. In one
embodiment, the rule 1s enabled by default.

The Rule Definition Language natively supports two
types of rules, decision-tree rules and pattern-matching
rules. The different types may be intermixed within the same
ruleset. Rule editors and converters, such as rule editors 132
and transformers 133, may choose to support additional
types of rules. For example, the Infix-to-XML tool could
also support IF-THEN rules. Because IF-THEN rules may
represent simple specializations of decision-tree rules, the
Infix-to-XML tool can generate decision tree rules from
IF-THEN rules. The same could be true for decision-table
rules because, like IF-THEN rules, they could represent
specializations of decision-tree rules.

Some sample Rule_Elements from a sample rulebase 114
could be:

<domain name="PerformConclusionAnalysis” appshared="true’>

<ruleset name="ConclusionAnalysis™>
<rule name="Overall__status”>

</rule>
<rle name="“Conclusionl status”=

</1mule=
<rule name=""Conclusion2 status”’>

</rule>
</ ruleset>
</domain>

10.1 DecisionTree Element

This element of Rule_Element defines the body of a
decision-tree rule.

10.1.1 Structural Elements

A decision-tree includes one or more decisions having the
form:

DecisionTree Element
= (‘dec__tree__body’ [LocTag Attrib])
Decision Element+

10.1.1.1 Decisions

Each decision 1s named by an identifier (Name_Attrib)
and includes the sub-elements:

Decision_ Element
::= (“decision’ Decision__Attribs+)
GeneralExpr
Dec'TestGroup__Element®
[DecOtherwise_ Element]
[DecUnknown__Element]
Decision__Attribs
.= Name__Attrib
.= LocTag_ Attrib

// Required
// Optional

e

Although decisions within different rules may share the
same decision names, decisions within a given rule may
have unique names. A decision may define a base expression
(GeneralExpr) of any datatype. This expression may refer-
ence fields and mvoke methods. A decision may also define

10

15

20

25

30

35

40

45

50

55

60

65

46

one or more test groups (DeclestGroup_Element). It may
turther optionally define an otherwise clause (DecOtherwi-
se_Hlement) and/or an unknown clause (DecUnknown_Ele-

ment).
10.1.1.2 Decision Test Groups

Each test group specifies one or more case expressions
and an action clause, and it has the form:

DecTestGroup_ Element
== (‘dec__test_ group’ [LocTag Attrib])
DecCasebExpr+
DecAction

Inference engine 112 compares the values of the case
expressions (DecCaseExpr) against the value of the deci-
s10n’s base expression. If inference engine 112 finds at least
one “equal” comparison, inference engine 112 performs the
actions specified by the group’s action clause (DecAction).

10.1.1.3 Decision Otherwise Clauses

The otherwise clause specifies a default action clause for
the current decision and has the form:

DecOtherwise_ Element
== (‘dec__otherwise’ [LocTag_ Attrib])
DecAction

Inference engine 112 performs the actions specified by this
clause’s action clause (DecAction) 1f either there are no
decision test groups or else none of them result 1n a “true”
comparison.

10.1.1.4 Decision Unknown Clauses

The unknown clause, like the otherwise clause, 1s a
special-case action clause for the current decision and has
the form:

DecUnknown__ Element
== (‘dec__unknown’ [LocTag Attrib])
DecAction

Inference engine 112 performs the actions specified by

this clause’s action clause (DecAction) if inference engine
112 cannot evaluate the decision’s base expression due to an

unknown-field reference.
10.1.1.5 Decision Action Clauses

An action clause can specily one of two types of actions
and has the form:

DecAction

::= DecStatements_ FElement

:= DecRef Element
DecStatements FElement

;= (‘dec__statements’ [LocTag Attrib])

Statement®

DecRef Element

== (‘dec__ref’ DecRef Afttribs+)
DecRef Attribs

:= Name__ Attrib

.= LocTag Attrib

// Nested Decision

// Decision name - Required
// Optional

A statement-action clause (DecStatements_FElement)
specifies zero or more statements to be performed. Upon

US 7,356,522 B2

47

performing these actions, inference engine 112 terminates
the rule 1n either a “fired” or “pended” state (if clause
specifies some statements) or else a “failed” state (1f clause
specifles no statements).

A decision-action clause (DecRei Element) names
another decision within the current decision-tree rule. Infer-
ence engine 112 pursues the named decision as a sub-
decision of the current decision. For a given rule, multiple
decision action clauses (whether in the same decision or 1n
different decisions) may all reference the same decision as a
sub-decision.

10.1.1.6 Test Group Case Expressions

Each test-group case expression specifies a partial com-
parison and has the form:

DecCasebxpr
;== PartComp_ EQ__Flement
::= PartComp_ NE_ Flement
== PartComp_ LT__Element
;== PartComp_ L TEQ_ Element
== PartComp_ GT__Element
;== PartComp_ GTEQ __Element
::= PartComp_ Range_Element

/= General Expr

// <> GeneralExpr

/< General Expr

/<= General Expr

// > General Expr

// >= General Expr

// 1n range: (GeneralExprl . . .

GeneralExpr2)

The partial comparisons (PartComp_xxx_Elements) are
described later. In one embodiment, these expressions do not
need to be constant expressions. For example, they may
freely reference fields and invoke methods. These expres-
sions may also be type-compatible with the decision’s base
CXPression.

10.1.2 Nulls 1n Dynamic Identifier Path

In one embodiment, a dynamic identifier path could
include a null value. For example, 1n the statement:

Duckl.OwnedBy.SpouseOf Name="1red”

SpouseOf may have a null value. If a null value 1s detected
during base-expression evaluation, inference engine 112
may fail the rule (unless 1t specifies an otherwise clause). IT
a null value 1s detected during test-case evaluation, inference
engine 112 may fail the test case but resume with other test
cases. If a null value 1s detected while performing an action,
inference engine 112 may abort inferencing with an error.

Inference engine 112 may also consider action statements.
For example, 1n these statements:

1sTrue = Duckl.OwnedBy.SpouseOf.Name == “fred”
// SpouseOf 1s null

isTrue = Duckl.owner.age > 5 and Duckl.spouse.age < 5
// Owner and/or Spouse are null

rather than aborting, inference engine 112 may evaluate the
relational sub-expressions as false. Likewise, for base-ex-
pression premises, such as:

eval Duckl.owner.age<5 or Duckl.spouse.age<d //
Owner 1s null

inference engine 112 may fail the individual comparison.
However, 1f Owner 1s null, Spouse 1s not null, and Spouse 1s
suiliciently young, inference engine 112 may still evaluate
the base-expression as true.

10.1.3 Example Rules and Behaviors

A decision-tree decision may be similar to the switch
statement found within C, C++, and Java. The decision’s
base expression may correspond to the switch expression,

5

10

15

20

25

30

35

40

45

50

55

60

65

48

the test group case expressions may correspond to the
switch’s case statements, and the decision’s otherwise

clause may correspond to the switch’s default case.

Here 1s an mnfix-code example of a very simple decision-
tree rule reflecting a single decision:

<rule name="Factl is true”>
<I[CDATA]|
decision main

eval Fact2
then

case =false:
do Factl = true end
end

11>

</rule>

This example 1s the equivalent of a more-traditional
IF-rule. The rule sets Factl to TRUE 1f Fact2 1s FALSE.

Here 1s another example reflecting multiple decisions:

<rule name="Determine Fact4 status’>

<![CDATA]
decision main
eval age
then
case <21.5:
decision subl
case »>=30 ... <=32:
case »>=41 ... «<=55.5;
decision sub?2
case »>32 ... <41:
do end
otherwise:
do Factd = false end
unknown:
do Fact4 = true end
end
decision subl
eval Fact?
then
case =true:
do Fact4 = false end
otherwise:
do Fact4 = true end
end
decision sub?2
eval Fact3
then
case =false:
do Fact4 = true end
otherwise:
do Factd = false end
end
11>
</rule>

This rule evaluates an age and conditionally performs
actions based on the result. In some cases (such as an age of
15), the action 1s to process another decision (giving the rule
its distinctive tree-like behavior). In other cases (such as an
age of 35), there are no actions to perform.

In this example, a decision test group can “stack’™ cases so
as to share actions (such as for ages 35 and 45). The use of

an unknown clause catches situations where the age 1s
unknown, and the use of an otherwise clause catches situ-

ations not covered by decision test groups.
10.1.4 Additional Behavior
10.1.4.1 During Rulebase Compilation

In one embodiment, rulebase builder 110 may assure that,
for a given decision-tree rule, all decisions are uniquely

US 7,356,522 B2

49

named. In this embodiment, rulebase builder 110 may also
assure that exactly one of the rule’s decisions 1s not refer-
enced as a sub-decision by any other decision. Rulebase
builder 110 may distinguish this decision as the rule’s root
decision. A rule may specity decisions 1n any order without
regard to how decisions may reference one another as
sub-decisions. Multiple decision-action clauses may specily
the same decision as a sub-decision. Rulebase builder 110
may disallow seli-referencing decisions and “cyclic” refer-
ences amongst decisions.

10.1.4.2 During Inferencing

In one embodiment, imnference engine 112 begins rule
processing in the root decision. In this embodiment, infer-
ence engine 112 may then, according to the results there,
proceed to at most one of that decision’s nested decisions.
Decisions may be nested to an arbitrary number of levels,
but at each level the behavior of inference engine 112 may
be similar.

For a given decision, imnference engine 112 first evaluates
the decision’s base expression. I that fails due to an
unknown-field reference, inference engine 112 performs the
action for the unknown clause (if one 1s specified). If there
1s no such clause, inference engine 112 immediately termi-
nates rule processing in a pended state.

If inference engine 112 successtully evaluates the deci-
sion’s base expression, inference engine 112 next applies
that expression’s value against any test-group case expres-
sions. Inference engine 112 visits test groups in the order
specified by the decision. Within each test group, inference
engine 112 visits the case expressions 1n the order specified
by the test group.

Upon detecting a true case, inference engine 112 performs
that owning group’s actions. If none of the cases 1n any of
the test groups apply, inference engine 112 either performs
the otherwise-clause’s actions (1f defined) or else terminates
rule processing 1n a failed state.

A statement-action clause may be empty or non-empty. If
empty, inference engine 112 terminates rule processing 1n a
tailed state. Otherwise, inference engine 112 terminates rule
processing 1n a fired or pended state.

10.1.4.3 Rule Pending for Case Expressions

Inference engine 112 may view a test group’s case expres-
sions as alternative qualifications for a common action. If
any ol the case expressions result 1n a true case, inference
engine 112 performs the group’s action.

If case expression evaluation fails due to unknown-field
reference, inference engine 112 evaluates other of the
group’s case expressions for a true case. If one 1s not found,
inference engine 112 terminates the rule 1n a pended state.

As a result of this handling, a test group with multiple test
cases may not be semantically equivalent to multiple test
groups each with a single test case. For example, given the
test group:

case < MInumum
case > maximum
case > dangerous_ range_ start . . . « dangerous_ range__end

do
DoSomething()
end

inference engine 112 fires the rule 11 the base expression’s
value falls within a dangerous range, even though the
minimum and maximum values are unknown. However,
given the following seemingly-equivalent test groups:

10

15

20

25

30

35

40

45

50

55

60

65

50

case < Minumum

do
DoSomething()
end
case > maximnum

do
DoSomething()
end
case > dangerous_ range start. ..

do

< dangerous_ range_ end

DoSomething()
end

inference engine 112 immediately terminates the rule 1n a
pended state 1f the minimum value 1s unknown, even though
the maximum and/or range values are known.

10.1.4.4 Rule Pending for Statement Actions

While performing a rule action, if inference engine 112
detects a reference to an unknown field, 1inference engine
112 immediately terminates the rule 1 a pended state. Upon
re-starting the rule, unference engine 112 resumes execution
within the action that previously caused rule pending.

10.1.5 Miscellaneous Considerations

Inference engine 112 can both forward-chain or back-
ward-chain decision-tree rules. In one embodiment,
although a decision-tree rule can create dynamic instances
(via the inst_make 1ntrinsic method), it may not otherwise
access dynamic instances. In this embodiment, 1t can only
reference fields and methods for static instances.

10.2 PatternMatching_Element

This element of Rule_Flement defines a pattern-matching
rule and has a format of:

PatternMatching Element
= (‘pm__rule’ PM__ Attribs™)
PMBindVars
PMPremise__Element
PMActions_ Element
[PMOrderBy_ Element]
PM__ Attribs
;== PMOptions__ Attrib
== LocTag Attrib
// for PMOptions_ Attrib:
PMOption
‘mostrecent’
‘singlefire’

// Optional (see values below)
// Optional

This rule can specily one or more options as fields. These
options aflect the ordering of instance bindings (mostrecent)
and whether inference engine 112 fires the rule only once
(for the first binding) or multiple times (for all bindings). By

default, inference engine 112 may order bindings 1n a first
in-first out fashion (least-recent) and fire the rule for all
bindings.

When PM_ Attribs specifies multiple options, the options
may be comma-delimited, such as by:

options="mostrecent, singlefire”

The options may also be specified in any order.

The PatternMatching_Element may include three sub-
clements for bind-variable declarations (PMBindVars), rule
logic (PMPremise_Element, PMActions_Element), and an
optional sorting specification (PMOrderBy_Element).

US 7,356,522 B2

51 52
An mfix-code example of a pattern-matching rule from a
sample rulebase 114 could be: -continued

PMBmndVarList Element
= (“bindlist’ [LocTag Attrib])

. . . e 5 PMBindVarDcl Element®
<rule name="Itemize_ persons_ without__any_ siblings™>
<! [CDATA[

for anty person p This construct can declare one or more bind variables.

i Each declaration specifies a variable name (as a PMBind-
// person never had any siblings - VarDcl_Attribs Name Attrib) and a class name. Diflerent
E/-ISSlbhﬂgOf- @?dilslmkﬂ?;?l() bind variables may be associated with the same or different

person currently has no siblings classes. For the infix-code declarations:

or p.IsSiblingOf = set()

then any person p,
var msg 1s string = “No sibling for: ”& p.(@inst__getname() any duck d
(@engn_ tracemsg(msg) o

end 15 the generated Rule Definition Language code could be:

// Sort items 1n ascending sequence by age;
// For equal ages, sort by recency (most-recent first)
options mostrecent

orderby p.getage() <bindlist>

11> <bindvar dcl name="p” loc_ tag="Line#2”>
</rule> 20 <identifier name="person”/>
</bindvar__dcl>
<bindvar_ dcl name="d” loc_ tag="Line#3”>

This rule runs through all instances of Person and itemizes - <identifier name="duck”/>
</bindvar_ dcl>

the ones without any siblings. The results are ordered by age. </bindlists
Where ages are the same, more-recent bindings precede 25
less-recent bindings.

Pattern-matching rules may be more dynamic and auto-
matically react to instance creations, modifications, and
deletions performed in other rules. For example, a single
rule that feeds off of itself, and thereby calculates all
sibling-ship relationships, could be:

As described above, the loc_tag field represents a field
that inference engine 112 may include 1n error and trace
messages. The loc_tag field need not be processed by

4o Inference engine 112 when performing inferencing opera-
tions. In addition, the loc_tag field could apply to hierarchi-
cally lower elements 1n the Rule Definition Language,
unless the lower elements override the loc_tag value. As a
result, the loc_tag field could be used to attach source-input

<rule name="Make__sibling if there_ are_ shared_ siblings”> 35 line numbers to XML elements.
f![CIf)ATA[10.2.2 PMPremise Element
or

This element defines the rule’s premise:
any person pl,

any person p2

if
// different persons
pl <> p2 40 PMPremise_ Element
// persons not already siblings = (‘pm__premise’ [LocTag Attrib])
and not pl.IsSiblingOf.(@set__doesincludeval(p2) General Expr
// persons share siblings
and pl.IsSiblingOf.(@set__doesimtersect(p2.IsSiblingOf)
then . _
// make persons siblings 45 The GeneralExpr may be a Boolean expression that refer-
p1.IsSiblingOf@set_addval(p2) ences all of the bind variables declared for this rule. Oth-
end erwise, server 102 may reject the rule with a syntax error.
g 10.2.3 PMActions_Element

/rul : :
</rule> This element defines the rule’s actions:

50
If a dynamic identifier path includes a null value, infer-
ence engine 112 may perform the same actions described N Ao T
: . ctions__tlement
above with respect to the decision tree rules. = (*pm_ actions’ [LocTag Attrib])

10.2.1 PMBindVars Construct Statement™*

This construct declares the bind variables for a pattern- 55

matching rule and has a format of:
The rule actions may reference some field values via bind

variables, but server 102 may not 1nsist on such references.
10.2.4 PMOrderBy_Element
60 This element specifies criteria for sorting instance bind-
ings and has a format of:

PMBindVars
:= PMBindVarDcl FElement
:= PMBindVarList Element
PMBindVarDecl Element
== (‘bindvar_ dcl” PMBindVarDcl_ Attribs+)

IdentifierSpec // bindvar class PMOrderBy_ Element
PMBindVarDecl___Attribs ;= (“orderby’ [LocTag Attrib])
;= Name__ Attrib // Required 63 GeneralExpr* // Number or String

== LocTag Attrib // Optional

US 7,356,522 B2

53

This element specifies zero or more Number or String
expressions as sort criteria. Inference engine 112 may {first
sort bindings by the first expression, then sort matching
bindings by the second expression, and so on. If after all
those comparisons bindings still match, inference engine
112 may resolve ordering according to the mostrecent
option. The sorting may be done 1n ascending order,
descending order, or other suitable ordering. If descending
order 1s desired for Number expressions, a user could negate
the expression, such as by:

orderby -p.getage().
10.2.5 Miscellaneous Considerations

In one embodiment, inference engine 112 can forward-
chain but not backward-chain pattern-matching rules. In this
embodiment, inference engine 112 could 1gnore any pattern-
matching rules during backward-chaining. Pattern-matching,
rules can also work with both static and dynamic instances
or a mix of the two types. The rules may be able to freely
modify static instances, and they can freely create, modity,
and delete dynamic instances. When calculating pattern-
matching instance bindings, inference engine 112 could
ignore 1nst_template intrinsic instances. The bind vanables
can be associated with super-classes of objects. For
example, a user might specily a Bird bind vanable, and
inference engine 112 could polymorphically pattern-match
over instances ol Duck, Robin, and Hawk.

11. Statement Construct

This construct defines the Rule Definition Language’s
clements for logic statements and has a format of:

Statement
:= VarDclStmt_ Element
== AssignmentStmt_ Element
.= MethodCall__Element
= ReturnStmt_ Element

11.1 VarDclStmt Element

This element of Statement declares local variables and has
a format of:

VarDclStmt_ Element
= (“var__dcl’ VarDcl__ Attribs+)
Datalype Element

General Expr // Imtialization Value
VarDcel __ Attribs
::= Name__Attrib // Requuired

.= LocTag Attrib // Optional

This statement can be specified by both rule and method
logic. It may be positioned anywhere within that logic, but
its positiomng could aflect 1ts scope visibility. The local
variable may be of any datatype, including Set and Asso-
ciation instances. The statement may specily an 1nitializa-
tion value for the local variable. A GeneralExpr defines a
type-compatible 1mitialization value. The expression does
not need to be a constant expression.

An 1mnfix-code example from a sample rulebase 114 could

be:

var result 1s boolean=true // be optimistic

10

15

20

25

30

35

40

45

50

55

60

65

54

and the corresponding Rule Definition Language code could
be:

<var__dcl name="result” loc_ tag="Line#2”>
<datatype coll__type="“none” type="boolean/>
<literal constant value="true”/>

</var__dcl>

11.2 AssignmentStmt_Element
This element of Statement defines an assignment state-
ment and has a format of:

AssignmentStmt_ Element
= (“assign__stmt’ [LocTag Attrib])
IdentifierSpec
General Expr

// Destination (Field)
// Source

This element can be specified by both rule and method
logic. Inference engine 112 evaluates the GeneralExpr and
assigns 1ts value to the type-compatible specified destination
object. The destination object may be a field or local
variable. If a field, inference engine 112 may first invoke
constraint checking before completing the assignment.

When the operands are of type Number, inference engine
112 compares operand precisions. If the GeneralExpr pre-
cision 1s less than that of the destination object, inference
engine 112 may zero-extend the GeneralExpr value to match
the destination precision and then perform the assignment.
Otherwise, inference engine 112 rounds the GeneralExpr
value as necessary to match the destination precision.

An mfix-code example from a sample rulebase 114 could
be:

Factl=true

and the corresponding Rule Definition Language code could

be:

<assign_ stmt loc_ tag="Line#3”>
<1dentifier name="Fact1”/>
<literal__constant value="true”/>
</assign__ stmt>

11.3 MethodCall FElement

This element of Statement defines a method-invocation
statement and has a format of:

MethodCall _Element
::= (“‘method__call’ [LocTag Attrib])
IdentifierSpec
[MethodArglist_ Element]
MethodArglist_ Element
= (“arg_list’ [LocTag Attrib])
General Expr*

/i Method

This element can be specified by both rule and method
logic. Inference engine 112 could invoke the specified
method with any specified arguments. This element may be
applied both as a standalone statement and as a term 1n an
expression (1f the mmvoked method returns a value). The
invocation may involve zero or more argument expressions.
The number of arguments could be identical to the number
of parameters expected by the target method, and each
argument may be type-compatible with 1ts corresponding

US 7,356,522 B2

3

method parameter. If the method parameter 1s an output
parameter, the argument may be an identifier for either a
field or local variable.

When an argument and parameter are of type Number,
inference engine 112 compares their precisions. If the
source-object (argument for an mput parameter; parameter
for an output parameter) precision 1s less than that of the
destination object (parameter for an input parameter; argu-
ment for an output parameter), inference engine 112 zero-
extends the source value to match the destination precision
and then passes the value. Otherwise, inference engine 112
rounds the source value as necessary to match the destina-
tion precision. Similar considerations may apply to method
return values of type Number. Inference engine 112 may
adjust or round the return value prior to assigning 1t to the
destination object.

An infix-code example from a pattern-matching rule 1n a
sample rulebase 114 could be:

// assoclate person and duck
p.AssignDuck(d)

and the corresponding Rule Definition Language code could
be:

<method_ call loc_ tag="Line#13”>
<identifier path>
<1dentifier name="p”’/>
<identifier name="AssignDuck™/>
</1dentifier_ path>
<arg list>
<identifier name="d"/>
</arg list>
</method_ call>

11.4 ReturnStmt Element

This element defines a method return statement and has a
format of:

ReturnStmt_ Element
= (‘return__stmt’ [LocTag Attrib])
[General Expr]

In one embodiment, this statement can be specified only
by method logic and not rule logic. If specified within rule
logic, server 102 could reject the statement with a syntax
error. When executing this statement, inference engine 112
could terminate method execution and return control to code
that invoked the method. It the statement specifies a Gen-
eralExpr, the current method could be defined as returning a
value, and the declared return datatype may be type-com-
patible with the statement’s GeneralExpr. As described for
the MethodCall_Flement, inference engine 112 may adjust
or round return values of type Number.

An 1mnfix-code example from a sample rulebase 114 could
be:

return Symptoms.@Set_ DoesIncludeVal(symp1)
and not Symptoms.@Set_ DoesIncludeVal(symp2)

5

10

15

20

25

30

35

40

45

50

55

60

65

56

and the corresponding Rule Definition Language code could
be:

return_ stmt loc_ tag="Line#1”’>
<and_ op loc_ tag="Line#2”>
<method_ call>
<identifier intrinsic="true” name="set__doesincludeval”/>
<arg_ list>
<ldentifier name="Symptoms’/>
<identifier name="sympl™/>
</arg list>
</method_ call>
<not_ op>
<method_ call>
<identifier intrinsic="true” name="set__doesincludeval™/>
<arg_ list>
<1dentifier name="Symptoms™/>
<1dentifier name="symp2”/>
<farg list>
</method__call>
</not__op>
</and__op>
</return__stmt>

12. GeneralExpr Construct

The GeneralExpr constructs define expressions as refer-
enced from Rule Definition Language logic and have a
format of:

GeneralExpr
= SimpleTerm
::= Relational Term
// Unary Operators
;= UnaryPlusExpr Element
= UnaryMinusExpr__Element
::= UnaryNotExpr_ Element
// Binary Operators
;= ORed_ Element

:= ANDed__ Element

:= Addition_ Element

:= Subtraction_ Element
-:= Concatenation_ Element

::= Multiplication_ Element
::= Division__Element

A GeneralExpr supports the expected set of terms and
operators. As previously described, expression evaluation
may not generate any side elflects. As such, any methods
invoked by an expression may not generate any side eflects.
These methods, called function methods, are {further
described 1n the ClassMethodDet Element section above.

In one embodiment, the grammar makes no attempt to
distinguish datatype-compatible operations from 1mcompat-
ible operations. For example, the grammar could suggest
that one could subtract a Boolean value from a String value.
In this embodiment, type-compatibility enforcement 1s per-
formed by server 102, which performs both type checking
and constant folding.

A sample infix-code statement that manages to include a
sampling of most types of terms and operators could be:

var IsHappy 1s Boolean =
[sWealthy
or {
age =0 ... <=200
and not IsTooTall
and QualityIndex(

(iIncome + savings — debts)/12,

US 7,356,522 B2

-continued
firstname & ** ” & lastname,

some__random_ number)
> +100

The corresponding Rule Definition Language code for this
statement could be:

<var_dcl loc_ tag="Line#1” name="IsHappy™”>
<datatype coll__type="none” type=“Boolean”/>
<or_ op loc_ tag="Line#3”>
<identifier name="IsWealthy”’/>
<and_ op loc_ tag="Line#6”>
<and__op loc__tag="Line#5”>
<range_ op=
<identifier name="age”/>
<part_gt_ op>
<literal__constant value="0"/>
</part_ gt op>
<part_ lteq_ op>
<literal _constant value="200"/>
</part__lteq_ op>
</range_ op>
<not__op>
<ldentifier name="IsTooTall”’/>
</not__op>
</and__op>
<gt_ op>
<method__call>
<identifier name="QualityIndex”/>
<arg_ list>
<div__op>
<subt__op>
<add_ op>
<identifier name="income”/>
<1dentifier name="“savings”/>
<fadd__op>
<1dentifier name="debts”’/>
</subt__op>
<literal__constant value=*12"/>
</div__op>
<concat_ op=>
<concat__op>
<identifier name="firsthame”/>
<literal _constant value=""
"”/>
</concat__op>
<identifier name="lastname”/>
</concat__op>
<identifier name="some_ random__number”/>
</arg list>
</method_ call>
<uplus__op>
<literal _constant value="100"/>
</uplus__op>
</gt__op>
</and_ op>
</or__op>
</var dcl>

12.1 SumpleTerm Construct

The SimpleTerm of GeneralExpr could have a format of:

SimpleTerm
.:= LiteralConstant_ Element
= SetConstant Element
::= IdentifierSpec
::= MethodCall FElement

// Object name

10

15

20

25

30

35

40

45

50

55

60

65

58

The LiteralConstant Element and SetConstant Element are
described here. IdentifierSpec 1s described later in this
document, and MethodCall Element has been described
above.

12.1.1 LiteralConstant Element

The LiteralConstant Element has a format of:

LiteralConstant Element
;= (“literal constant’ LiteralConstant_ Attribs+)

LiteralConstant_ Attribs
::= Value_ Attrib
::= LocTag Attrib

// Requuired
// Optional

The Value Attrib indicates the value of the constant as a
string of characters. Server 102 may examine this value (in
a case-nsensitive manner) in order to determine the con-
stant’s datatype. If the value 1s “TRUE” or “FALSE”, server
102 recognizes the constant as a Boolean constant. If the
value 1s “NULL”, server 102 recognizes the constant as an
Association instance constant (1indicating the absence of an
Association instance). It the first character of the value 1s a
double-quote character, server 102 recognizes the constant
as a String constant and verifies that the last character of the
value 1s also a double-quote character. Otherwise, server 102
assumes that the constant 1s a Number constant and parses
it accordingly. Inference engine 112 determines the con-
stant’s precision by examining the number of digits to the
right of the decimal point. If the constant 1s expressed in
scientific notation, the precision also takes into account the
exponent value.

An miix-code example of a literal constant could be:

method1(false, null, “abc™, <, 123.456)

and the corresponding Rule Definition Language code could
be:

<method_ call loc_ tag="Line#1”>

<1dentifier name="method1”/>

<arg list>
literal constant value="false”/>
literal__constant value="null”/>
literal _ constant value=""abc"”/>
literal __constant value="""”/>
<literal constant value="123.456"/>

</arg list>
</method_ call>

AN AA

12.1.2 SetConstant Element
The SetConstant Flement has a format of:

SetConstant_ Element
;== (‘set__constant’ [LocTag Attrib])

SetMember*®
SetMember
;= LiteralConstant Element
::= IdentifierSpec // Instance name
= UnaryExpr // with LiteralConstant_ FElement

only

A Set contains zero or more members. In one embodiment,
all members of a set should be of the same datatype. The
datatype of the members (if any) 1s the datatype of the Set
constant. A member can be a literal constant, an Identifier-
Spec (for Sets of Association mnstances), or a unary operator
on a literal constant. In the case of a unary operator on a

US 7,356,522 B2
59 60

literal constant, the literal constant could be either a Number while an example ternary operation could be:
or Boolean constant. For Set constant of Numbers, the Set
itself may not have a precision, although its members do.
Likewise, a Set constant of instances may not be bound to
any particular Association. 5 IsInRange = fid1 >= 100 ... <200

Infix-code examples of set constants could be: // above statement is semantically equivalent to following statement
// (but 1s more eflicient):

IsInRange = fldl >= 100 and fld1 <200

setl = set(123)
set2 = set(“abc”, “def”)

set3 = set(duckl, duck?2) 10 _ _
setd = set(-123, 0) In either case, the expression returns a Boolean value
set> = set() // Empty set indicating the comparison results.

The Rule Defimtion Language code corresponding to the

and the corresponding Rule Definition Language code could above three mnfix statements could be:

be:

<assign__stmt loc_ tag="Line#1”>
<1dentifier name="IsLessThan™/>
0 <lt__op>
<identifier name="{ld1”"/>
<literal__constant value=*123"/>
</lt__op>
</assign_ stmt>
<assign_stmt loc_ tag="Line#2”>
<identifier name="IsInRange”/>
<range op>
<identifier name="tld1”"/>
<part__gteq__op>
<literal _constant value="100"/>
</part__gteq__op>
<part_ It op>
<literal__constant value="200"/>
</part_It_ op>
</range_ op>
</assign_ stmt>
<assign_ stmt loc_ tag="Line#5”>
<1dentifier name="IsInRange”’/>
35 <and_ op loc_ tag="Line#3”>
<gteq_ op>
<identifier name="fld1”"/>
<literal__constant value="100"/>

<assign_ stmt loc_ tag="Line#1”>
<identifier name="set1”/>
<set__constant>
<literal _constant value="123"/>
</set__constant>
</assign__stmt>
<assign_ stmt loc_ tag="Line#2”">
<identifier name="set2”/>
<set_constant> 75
<literal __constant value=""abc"”/>
<literal__constant value=""def"”/>
</set__constant>
</assign__stmt>
<assign_ stmt loc_ tag="Line#3”>
<identifier name="set3”/> 30
<set_constant>
<identifier name="duck1”/>
<1dentifier name="duck2”/>
</set__constant>
</assign__stmt>
<assign_ stmt loc_ tag="Line#4”>
<identifier name="set4”/>
<set_constant>
<UMInus__ op>
<literal constant value="123""/>

</uminus__op> j{ ?tej_:p}
<literal __constant value="0""/> —op> .
</set constant> 40 <identifier name="fld1”"/>
</assion stmts <literal__constant value="200"/>
ST — e . </lt__op>
<assign stmt loc_ tag="Line#5”>
</and__op>

<identifier name="“set3”/>
<set constant/>
</assign__stmt>

</assign_ stmt>

45 _
The tull comparison elements could have a format of:
12.2 RelationalTerm Construct
The RelationalTerm defines value comparisons and has a
format of:
FullComp_ EQ_ Element // General Expr = General Expr
50 = (‘eq__op’ Comp__ Aftribs™)
GeneralExpr
Lational General Expr
Relational Term FullComp_ NE_ Element // General Expr <> General Expr
= Fu____CGmp_EQ_Element e (Eﬂﬂq C’!pj C-::nmp Attl‘le*)
;== FullComp_ NE_ Element GeneraTExpr o
== FullComp_ LT__Element
;== FullComp_ LTEQ_Element 53 Generalbxpr
h — — FullComp_ LT Element // General Expr < General Expr
= FullComp_ GT__Element = (‘It_op’ Comp.__ Attribs*)
== FullComp_ GTEQ_ Element Gen;alExpr o
;= FullComp_ Range_ Element General Expr
FullComp_ LTEQ_ Element // General Expr <= General Expr
60 = (‘lteq__op’ Comp__ Attribs*)
Value comparisons could include tull comparisons and par- gﬂﬂemigxm
: : . eneral Expr
tial COLLIPATSOLS descr} bed above. FullComp_ GT__Element // General Expr > General Expr
12.2.1 Full-Comparison Constructs = (*gt_op’ Comp._ Aftribs*)
Full comparisons may include binary operations or ter- General Expr
nary operations involving a range of values. An example GeneralExpr
63 FullComp_ GTEQ_ Element // General Expr »>= General Expr

binary operation could be: = (‘gteq_op’ Comp_ Attribs*)

Isl.essThan=tld1<123

US 7,356,522 B2

61

-continued

General Expr
General Expr
FullComp_ Range FElement // GeneralExpr 1n range:
(GeneralExprl . . . GeneralExpr2)
;== (‘range_ op’[LocTag Attrib])
GeneralExpr
RangeStartComp
RangeStopComp
RangeStartComp
;== PartComp_ GT_ Element
== PartComp_ GTEQ__Element
RangeStopComp
== PartComp_ L'T_ Element

;== PartComp_ LTEQ_ Element

For all of these elements, the GeneralExprs could all be of

the same datatype. However, some operators support only
certain datatypes. For example, comparisons of equality and
inequality support all datatypes and Sets of values. Unequal
Sets may or may not mtersect. Comparisons of magnitude
could support only Number and String expressions but could
also be applied to Sets. For Sets, the results indicate subset
relationships. When comparing Number values, inference
engine 112 first zero-extends any lesser-precision operand to
the other operand’s precision and then performs the com-
parison.

For all of the elements, one can specily Comp_Attribs in
the format:

Comp__Attribs
:=CaseSensitivity__ Afttrib // Optional
:=LocTag Attrib // Optional

The CaseSensitivity_Attrib can be specified to indicate
case-sensitive String comparisons. By default, String com-
parisons could be case-insensitive or case-sensitive. For
comparisons for other datatypes, this setting could be
1gnored.

12.2.2 Partial-Comparison Constructs

Range comparisons rely on partial comparison constructs,
or constructs that specily only the “right-hand side” of a full
comparison. Partial comparison constructs have a format of:

PartComp_ EQ_ Element
= (‘part_eq_ op’ Comp__ Attribs™)
General Expr
PartComp_ NE__Element
= (‘part_neq_op’ Comp__Attribs™)
General Expr
PartComp_ LT Element
= (‘part_ It op’ Comp__ Attribs™*)
General Expr
PartComp_ LTEQ_ Element
= (‘part__lteq__op’Comp__Afttribs™)
GeneralExpr
PartComp_ GT_ Element
= (‘part__ gt op’ Comp_ Attribs™)
General Expr
PartComp_ GTEQ_ Element
= (‘part__gteq_ op’Comp__ Attribs™®)
General Expr
PartComp_ Range Flement

// = General Expr

/<> General Expr

/< General Expr

// <= GeneralExpr

/1 > General Expr

// >= General Expr

// 1n range:
(GeneralExprl . . . GeneralExpr2)

10

15

20

25

30

35

40

45

50

55

60

65

62

-continued

== (‘part__range op’[LocTag Afttrib])
RangeStartComp

RangeStopComp

These constructs, which could also used by decision-tree
clements, specily one GeneralExpr (or two for ranges). The
same datatype and case-sensitivity considerations apply to
them as for full comparisons.

12.3 Unary Operator Elements

The unary operators of GeneralExpr include UnaryPlu-
sExpr_Element, UnaryMinusExpr_Element, and UnaryNo-
tExpr_Element.

12.3.1 UnaryPlusExpr_Flement

The UnaryPlusExpr_Element of GeneralExpr has a for-
mat of:

UnaryPlusExpr Element
= (‘uplus__op’ [LocTag_ Attrib])
General Expr

This operation essentially returns the value of GeneralExpr.
It 1s included for “expressability” purposes, such as by:

if this value>=-100 . . . «=+100 then . . . end

The GeneralExpr could be a Number expression, and this
operation returns a Number value.

12.3.2 UnaryMinusExpr_Element

The UnaryMinusExpr_Element has a format of:

UnaryMimmusExpr_ Element
=(‘uminus_ op’ [LocTag Attrib])
General Expr

This operation reverses the arithmetic sign of the General-
Expr value. Positive values become negative values and
vice-versa. The GeneralExpr could be a Number expression,
and this operation returns a Number value.

12.3.3 UnaryNotExpr_FElement
The UnaryNotExpr_Element has a format of:

UnaryNotExpr__Element
;= (‘not__op’ [LocTag Attrib])
General Expr

This operation reverses the Boolean value of GeneralExpr.
TRUE values become FALSE and vice-versa. The General-
Expr could be a Boolean expression, and this operation
returns a Boolean value.

12.4 Binary Operator Elements

The binary operators include ORed_ Element, AND-
ed Flement, Addition_ Element, Subtraction_Flement, Con-
catenation_Element, Multiplication_Element, and Division_
Element.

US 7,356,522 B2

63

12.4.1 ORed Element
The ORed_Element supports OR operations and has a
format of:

ORed_ Element
== (‘or__op’ [LocTag__ Attrib])
GeneralExpr
General Expr

This operation performs a logical OR operation on the
sub-elements. The result 1s TRUE 1f either sub-element 1s
TRUE. Otherwise, the result 1s FALSE. The GeneralExprs
could both be Boolean expressions, and this operation
returns a Boolean value.

At runtime, 1inference engine 112 may evaluate only one
of the GeneralExprs. For example, for the infix-code expres-
S101:

f1d1 <100 or fld2>=200

if fld1 has a value of 50, inference engine 112 need not
bother testing 11d2 since the overall outcome 1s known to be
TRUE. However, 11 1ld1 1s unknown, inference engine 112
may test 11d2 so that inference engine 112 can avoid pending,
the rule 11 1ld2 has a sufliciently large value, such as 250.
Similarly, inference engine 112 could also determine
whether any of the identifier paths with intermediate
instance-reference fields have a null value. For example, for
the 1nfix code expression:

Father.pDog.age<5 or Child.pFriend.age>10

Father may not have any dog (pDog=null). However, infer-
ence engine 112 may evaluate the expression as true if
Child’s friend 1s sufliciently old.

While ORed_Flement 1s described as a binary operator, it
could also accommodate an arbitrary number of operands.
For example, ORed_Element could handle a “list” of one or
more operands. If a rule 1s pended because of one or more
operands 1n the ORed_Flement, inference engine 112 could
restart inferenceing with those operands that previously
pended (and only those operands).

12.4.2 ANDed Flement

The ANDed_Flement supports AND operations and has a
format of:

ANDed_ Element
= (‘and__op’ [LocTag Attrib])

GeneralExpr

General Expr

This operation performs a logical AND operation on the
sub-elements. The result 1s TRUE 1if both sub-elements are
TRUE. Otherwise, the result 1s FALSE. The GeneralExprs
could both be Boolean expressions, and this operation
returns a Boolean value. At runtime, inference engine 112
may evaluate only one of the GeneralExprs. For example,
for the infix-code expression:

fld1>=100 and fld2<200

if fld1 has a value of 50, inference engine 112 need not

bother testing 11d2 since the overall outcome 1s known to be
FALSE. However, 11 1ld1 1s unknown, inference engine 112
may test 1ld2 so that inference engine 112 can avoid pending,

10

15

20

25

30

35

40

45

50

55

60

65

64

the rule 1f f1d2 has a sufliciently large value, such as 250.
Similarly, inference engine 112 could also determine
whether any of the identifier paths with intermediate
instance-reference fields have a null value. For example, for
the 1nfix code expression:

Father.pDog.age<5 and Child.pFriend.age>10

Father may not have any dog (pDog=null). However, infer-
ence engine 112 may evaluate the expression as false 1f
Child’s friend 1s not sufliciently old.

While ANDed_FElement 1s described as a binary operator,
it could also accommodate an arbitrary number of operands.
For example, ANDed_Element could handle a “list” of one
or more operands. If a rule 1s pended because of one or more
operands in the ANDed Flement, inference engine 112
could restart inferenceing with those operands that previ-
ously pended (and only those operands).

12.4.3 Addition Element

The Addition_Element supports addition operations and
has a format of:

Addition Element

= (‘add__op’ [LocTag Attrib])
General Expr
General Expr

This operation performs an arithmetic addition of the sub-
clements. The operation returns the result of adding the
second sub-element to the first sub-element. The General-
Exprs could both be Number expressions, and this operation
returns a Number value. When adding objects, an object of
lesser precision may be zero-extended to the other object’s
precision before the arithmetic operation. The result may
reflect the greater precision.

12.4.4 Subtraction Element

The Subtraction_Element supports addition operations
and has a format of:

Subtraction_ Element
= (“subt__op’ [LocTag Attrib])
GeneralExpr
GeneralExpr

This operation performs an arithmetic subtraction of the
sub-clements. The operation returns the result of subtracting
the second sub-clement from the first sub-element. The
GeneralExprs could both be Number expressions, and this
operation returns a Number value. When subtracting objects,
an object of lesser precision may be zero-extended to the
other object’s precision before the arithmetic operation. The
result may reflect the greater precision.

12.4.5 Concatenation Element

The Concatenation Element
operations and has a format of:

supports concatenation

Concatenation_ Element
;= (‘concat__op’ [LocTag Attrib])
GeneralExpr
GeneralExpr

US 7,356,522 B2

65

This operation appends one String value to another String
value. The operation returns the result of appending the
second sub-element to the first sub-element. The General-
Exprs can be of any datatype, and either or both expressions
can be Set expressions. Inference engine 112 may automati-
cally convert non-String expressions to a String value before
performing the append operation. There could be no options
for controlling the formatting of non-String values. This
operation returns a String value.

12.4.6 Multiplication_Element

The Multiplication_Flement supports addition operations
and has a format of:

Multiplication_ Element
= (‘mult__op’ [LocTag Attrib])
General Expr
General Expr

This operation performs an arithmetic multiplication of the
sub-elements. The operation returns the result of multiplying
the first sub-element by the second sub-element. The Gen-
cralExprs could both be Number expressions, and this
operation returns a Number value. When multiplying
objects, there may be no precision adjustment, and the
product may retlect a precision that 1s the sum of the operand
precisions.

12.4.7 Division Element

The Division_Element supports addition operations and
has a format of:

Division Element
= (“div__op’ [LocTag_Attrib])
GeneralExpr
General Expr

This operation performs an arithmetic division of the sub-
clements. The operation returns the result of dividing the
first sub-element by the second sub-element. Divisions by
zero could terminate inferencing with an error. The Gen-
cralExprs could both be Number expressions, and this
operation returns a Number value. When dividing objects,
there may be no precision adjustment, and the quotient may
reflect the precision of the dividend value and be rounded as
necessary.

13. Datatype_Element

This specification makes Irequent references to
Datatype_Elements. Datatype_Elements have a format of:

DataType_ Element
::= DataTypeNumber_ Element
::= DataTypeBoolean_ Element
::= DataTypeString Element
::= DataTypelnstRef Element

DataTypeNumber Element
;= (‘datatype’ NumberType_ Attribs+)
NumberType__ Attribs

::= Datalype_ Attrib // “number” (Required)

::= Collection__ Attrib // Optional
::= Precision_ Attrib // Optional
== LocTag Attrib // Optional

10

15

20

25

30

35

40

45

50

55

60

65

06

-continued

DataTypeBoolean_ Element

;= (‘datatype’ BooleanType__ Attribs+)
BooleanType_ Attribs

::= DataType_ Attrib

::= Collection_ Attrib

== LocTag Attrib

// “boolean” (Required)
// Optional
// Optional

DataTypeString FElement

;= (‘datatype’ StringType_ Aftribs+)
StringType Attribs

;== DataType_ Attrib

::= Collection__ Attrib

== LocTag Attrib

// “string” (Required)
// Optional
// Optional

DataTypelnstRef Element
;= (‘datatype’ InstRefType_ Attribs+)
IdentifierSpec
InstRefType_ Attribs
::= DataType_ Attrib
;= Collection_Attrib
== LocTag Attrib

/{ Class for instance

// “inst__ref” (Required)
// Optional
// Optional

The Rule Definition Language supports the four “atomic”
datatypes shown above. There could also be a vanation of
Datatype_Element for each atomic datatype.

The DataType_Attrib and Collection_Attrib attributes are
common to all datatypes. Datalype Afttrib indicates the
related datatype. Collection_Attrib indicates whether this
datatype 1s for a collection of values, such as a set, or for a
simple atomic value.

For DatalypeNumber Element, a user can optionally
specily a “precision,” which 1s expressed 1n terms of decimal
digits to the right of the decimal point. If not specified,
server 102 assumes that the value 1s an integer of zero-
precision.

For DatalypeAssoclnst_Element, a user could specily
two sub-elements. These 1dentify, respectively, the
datatype’s Association role and Association name. For
example, for an Ownership Association mvolving classes
Person and Duck, the Duck class might define a field
(IsOwnedBy) declared as an Association instance for role
Person 1n an Ownership association, such as by:

<fleld name="IsOwnedBy”>
<datatype coll__type=“none” type="assoc__instance”>
<identifier name="Person™/>
<ldentifier name="Ownership™/>
</datatype>
</field>

u -

For DatalypelnstRelElement, a user specifies a sub-
clement that 1dentifies the class associated with the instance
reference. For example, a Duck class may define an

IsOwnedBy field declared as an instance to a Person class
by:

<field name="IsOwnedBy”>
<datatype coll_ type="none” type="inst_ ref”’>
<identifier name="Person”/>
</datatype>
</field>.

14. Identifiers

In one embodiment, identifier names could be case-
isensitive. In a particular embodiment, the Rule Definition
Language disallows 1dentifier names from including double

US 7,356,522 B2

67

quotes, periods, commas, colons, or parentheses (open or
close). Server 102 could impose additional restrictions, such
as by reserving words or imposing some ordering restric-
tions.

14.1 IdentifierSpec-Identifier_Flement,
Path Flement

IdentifierSpec elements have a format of:

Identifier-

IdentifierSpec

-:= Identifier Element

.:= IdentifierPath Element
Identifier Element

::(“1dentifier’ Identifier Attribs+)
Identifier Attribs

;= Name__ Attrib

.= Intrinsic Attrib

== LocTag Attrib
IdentifierPath Element

.= (“1dentifier_ path’ [LocTag Attrib])

Identifier Element+

// Required
// Optional
// Optional

An 1identifier specification could include either a single
identifier or a “path” of multiple i1dentifiers. For example,
infix language supports paths using the “.” operator, such as:

Class1.Instancel .Fld1=3

14.2 Intrinsic Identifiers

For each Identifier_Element, a user can optionally specily
that the 1dentifier 1s an intrinsic identifier (Intrinsic_Attrib),
or an identifier built-in to the Rule Defimtion Language.
Server 102 could examine these identifiers and compare
them against its list of intrinsic names. There could be a
match, such as a case-insensitive match. Otherwise, server
102 could reject the usage as a syntax error.

The 1nfix language could require that each intrinsic iden-
tifier be specified with an “@” prefix. Also, the infix
language could support alternative forms of intrinsic usage.
For example, the following pairs of statements could be
semantically equivalent and generate 1dentical Rule Defini-
tion Language code:

@inst_ reset(duck.(@inst_ template)
duck.@nst__template. (@inst__reset()

@dmn_ push(DomainX)

DomamX.@dmn__push()

if @fld__1sunknown(instancel.fld1) then . . . end
if mnstancel.fld1.@fld__1sunknown() then . . . end
if (@set__doesincludeval(setl, 123) then . . . end
if setl.(@set doesincludeval(123) then . . . end

In addition, server 102 may choose to expose 1ntrinsic
identifiers with diflerent names than those defined by this
document. For example, server 102 may choose to expose
inst_template more simply as “template’” and make the latter
name a reserved word 1n 1ts language.

14.3 Identifier Resolution

The Rule Definition Language associates identifiers with
rulebase objects, such as classes, domains, instances, and
fields. Server 102 then resolves name-references to those
objects.

10

15

20

25

30

35

40

45

50

55

60

65

08

14.3.1 Identifier Scoping
A user could define objects 1n a hierarchical fashion, such
as:

* rulebase-global objects
o class-specific objects
B method-specific local variables
o domain-specific objects
B class-specific objects
* method-specific local variables
B ruleset-specific objects
* class-specific objects
o method-specific local variables
* rule-specific local variables

An object’s position 1n this hierarchy determines 1ts scope
(visibility) to object references. An object at the rulebase-
level 1s visible throughout the rulebase from objects at both
the rulebase level and at lower levels. An object at a domain
level 1s visible throughout 1ts domain from objects at both
the domain level and at lower levels, but these objects may
not be visible outside their domain. An object at the ruleset
level 1s visible throughout the ruleset from objects at both
the ruleset level and at lower levels, but such objects may not
be visible outside the ruleset. Objects at lower levels “hide”
same-named objects at higher levels. Thus, a local vaniable
named Age may hide a class field named Age.

14.3.2 Identifier Qualification

A user does not generally need to tully object references.
The user may only need to specily enough qualifiers to
disambiguate references. Thus, if the identifier Age uniquely
identifies a field 1n an instance Father of a class Person, the
user can simply specity:

age.

If there are multiple static instances of Person, the user could
further qualily the i1dentifier as:
tather.age.

If multiple in-scope classes define Father objects, the user
could more-fully qualify the identifier as:
person.father.age.

If Age 1s defined multiple places within a code block’s
scope, the code block can reference each of the objects by
speciiying appropriate qualifiers.

14.4 Static and Dynamic IdentifierSpec Elements

14.4.1 Static Specifications

A static IdentifierSpec 1s one whose value can be resolved
prior to inferencing, such as:

age

father.age

person.father.age

domainl.rulesetl.duck.donald.age.

In one embodiment, an IdentifierSpec can be specified as

static anywhere within a rulebase where IdentifierSpecs are

allowed. In a particular embodiment, the path may not

consist of more than five identifiers, and the length of the

path aflects 1ts interpretation. For example, a field path with

five 1identifiers may be assumed to be in the format:
<domain_name>. <ruleset name>. <class name>.

<instance name>. <field name>,

whereas a field path of three i1dentifiers 1s assumed to be in
the format:

<class name>. <instance name>. <field name>.

14.4.2 Dynamic Specifications

A dynamic IdentifierSpec 1s one whose value 1s resolved
during inferencing, such as:

US 7,356,522 B2

69

// 'The age of the spouse for the Person instance named
Father person.father.spouse.age

// 'The age of the owner for the Duck instance named
Donald domainl.rulesetl.duck.donald.owner.age

In one embodiment, an IdentifierSpec can be specified as
dynamic within rule or method logic. In a particular embodi-
ment, these specifications can be arbitrarily long, such as:

// The age of the spouse of the manager of Employeel’s manager’s spouse
employeel . manager.spouse.manager.spouse.age = 32

The “tail” of the path specifies two or more field names. In
one embodiment, all but the last field names 1dentity fields
declared as 1nstance-reference fields. In the above example,
the 1dentifiers Manager and Spouse name 1nstance-reference
fields.

14.4.2.1 Inferencing Behaviors

As inference engine 112 evaluates the various fields in a
dynamic specification, inference engine 112 may encounter
unknown or null field values.

14.4.2.1.1 Handling for Unknown Field Values

If inference engine 112 detects an unknown value, infer-
ence engine 112 pends the currently executing rule.

14.4.2.1.2 Handling for Null Field Values

If inference engine 112 detects an intermediate field with
a null value, the outcome may depend on the current context.
If the current context 1s a comparison, such as:

employeel . manager.age < 32 // where employeel.manager = NULL (no
manager)

inference engine 112 may force the result of the comparison
to be false. If miference engine 112 detects a null value
outside of a comparison context, inference engine 112
terminates 1nferencing with an error exception. In this
embodiment, if Employeel does not have a manager
(Employeel .Manager=null), inference engine 112 evaluates
all of the following comparisons as false:

employeel manager.age<32

employeel . manager.age>=32

employeel . manager.age<>32

employeel manager.age=32

15. Rulebase Merging

Rulebase merging 1s a blending of elements and fields
from participating rulebases 114 or sub-rulebases. In some
cases, the merging involves same-named objects within the
same rulebase. Rulebase builder 110 merges rulebases ele-
ments by comparing object names at the rulebase-level,
constraint-set-level, class-level, domain-level, and ruleset-
level.

Where there 1s no overlap (no same-named elements) at a
given level, the result 1s simply the aggregate of the merge
objects at that level. So 11 one rulebase 114 only defines a
rulebase-level class named Class1 and another rulebase 114
only defines a rulebase-level class named Class2, the merge
result will reflect both Classl and Class2.

Where there 1s an overlap, the result will depend on the
clements and fields merged. In some cases, there will be a
blending of elements and fields. In other cases, there 1s only
a check for consistency between rulebases 114. In any case,
the following guidelines could apply. First, the merge results

10

15

20

25

30

35

40

45

50

55

60

65

70

reflect only elements and fields recognized by rulebase
builder 110 and might not include namespace-prefixed or
unrecognized elements/fields. Second, there could no
attempt to merge rulebase logic. For a method, this means
that only one rulebase element can define implementation
logic for the method. For a rule, this means that only one
rulebase element can specily implementation logic for the
rule. For a constraint, this means that only one rulebase
clement can specily a constraint Boolean expression. Third,
for a given element, the merge reflects only the first Loc-
Tag_Attrib found. So i1 the first rulebase element specifies a
LocTag_Attrib, the merge results reflect that field. Other-
wise, the results will reflect the LocTag_Attrib (1if any) for
the second rulebase element. The following sections provide
additional details of how rulebases elements can be merged.

15.1 Merging of IdentifierSpec Elements

When merging these elements, one element’s specifica-
tion should be 1dentical to or else a right-hand sub-path of
the other. For example, one element might specity Person-
Father.Name, and the other element can specily Person.Fa-
ther.Name, Father.Name, or Name. If the specifications are
not 1dentical, the merge results may retlect the most-specific
(longest) specification.

15.2 Merging of Datalype Elements

When merging these elements, each element’s attributes
and sub-elements should be consistent with those of the
other element. For DatalypeNumber_ Elements, if the Pre-
cision_Attrib differs, the merge result may reflect the greater
of the two precisions.

15.3 Merging of Rulebase Elements

The merge result reflects the first element’s Name_ Afttrib.

15.4 Merging of ImmtMethodDet_Flements (at any Level)

The merge result could retain multiple InitMethodDe-
f Elements. So if each rulebase element defines one Init-
MethodDel_Flement at a given level, the result will be two
InitMethodDet Elements at that level. Each element retains
its own fields and sub-elements, and the merged elements
should have different names. If merged elements have
identical names, at most one of the elements may specity an
InitMethodBody (method implementation).

15.5 Merging of Same-Named Assoc_FElements (at any
Level)

IdentifierSpec elements should be consistent with one
another.

15.6 Merging of Same-Named ConstramtSet_Flements
(at any Level)

Rulebase builder 110 could combine Constraint Ele-
ments. For same-named Constraint_Flements, only one ele-
ment may specily a GeneralExpr.

15.7 Merging of Same-Named Class_Elements (at any
Level)

If multiple elements specily a Parent Flement, these
specifications should be consistent with one another. If
cither element specifies a Parent_Element, the merge results
reflect the parent.

For same-named FieldDcl_Flements, the ResolutionTy-
pe_Attribs and Datalype_ Elements should be identical. IT
one element specifies “final valued” but the other does not,
the element will be “first valued.” Rulebase builder 110
could combine lists of Constrainerl.ist FElements. If both
clements specily ConstraintViolation_Flements, rulebase
builder 110 may choose the most restrictive one (an abort
clement over a resume element).

For same-named ClassMethodDet FElements, the method
signatures (except for parameter name) should be consistent
and at most one eclement may specily a ClassMethod-
Body_Element (method implementation).

US 7,356,522 B2

71

For same-named StaticlnstDef Elements, rulebase
builder 110 may combine any lists of LastChanceValue Ele-
ments. For elements with same-named i1dentifiers, rulebase
builder 110 may retain only the first LastChanceValue
found. Rulebase builder 110 handles constraints as for
FieldDcl Elements.

15.8 Merging of Same-Named Domain_Flements

If erther element 1s shared with client applications 122, the
result will be shared. Otherwise, the result will not be
shared. If both elements specily a DomainGoal_Element,
the goals should have consistent values. If either element
specifies a goal, the merge results retlect the goal.

If etther element specifies a DomainAppSharedFlds_Ele-
ment, the result may retlect a DomainAppSharedFlds_Ele-
ment. IT both specily one, the sub-elements may be merged,
but the same 1dentifier should not end up as both a Domain-
PreConditionl.ist Element and a DomainPostCondition-
[.1st Element.

For same-named Ruleset_Elements, 11 one element speci-
fies the Post_Attrib as “conditional” but the other does not,
the element will be “unconditional”. If either element 1s
shared with applications, the result will be shared. Other-
wise, the result will not be shared. Rulebase builder 110
combines the Rule_Element sub-elements but may disallow
same-named Rule Elements.

16. Intrinsic Identifiers

The Rule Definition Language refers to intrinsic identi-
fiers. The following are examples of intrinsic identifiers
given 1n iniix language. In these examples, the infix lan-
guage requires that each intrinsic identifier be specified with
an “(a)” prefix.

16.1 Symbolic References

16.1.1 scope_global

This i1dentifier 1s a symbolic reference to the rulebase
scope level. For example, 1t may be useful 1n distinguishing
a rulebase-level Classl from a domain-level Classl. This
identifier may be specified as the first 1dentifier within an
identifier path, such as by:

(@scope_global.class1.instancel .f1d1=3.

16.1.2 scope_currclass

This 1dentifier 1s a symbolic reference to the current class
for an executing method. For example, 1t may be usetul for
distinguishing an instance xyz from a local vaniable xyz.
This identifier may be specified within method logic, but not
rule logic, as the first identifier within an identifier path, such
as by:

(@scope_currclass.xyz.fld1=3

16.1.3 scope_currinstance

This 1dentifier 1s a symbolic reference to the current
instance for an executing method. For example, 1t may be
usetiul for distinguishing a field xyz from a local variable
xyz. This i1dentifier may be specified within method logic,
but not rule logic, as the first identifier within an 1dentifier
path, such as by:

(@scope_currinstance.xyz=3

16.1.4 candidate value

This i1dentifier 1s a symbolic reference to the proposed
new value for a field. This identifier may be specified within
constraint Boolean expressions, such as by:

(@candidate_value>=0 or (@candidate_value<=max_age

16.2 Intrinsic Objects

16.2.1 1st_template

This i1dentifier 1s a reference to an intrinsic instance
associated with all classes. It serves as a model for dynamic-
instance creation. A rule or method 1nitializes the template’s
fields to reflect the desired fields of the new dynamic
instance. Template mstances are a special form of instance

5

10

15

20

25

30

35

40

45

50

55

60

65

72

with restricted use in that they are write-only instances.
Rulebase logic can only set values for template fields, but
not read template fields or invoke methods via the template
instance. Likewise, template instances may have no infer-
encing significance, such as for pattern matching. One
example use 1s:

/{ Create a Duck

inst__reset(duck.(@inst_ template) // Reset fields to UNKNOWN

// status
// Imtialize template fields
duck.@inst_template.age = 4
.. . // mit additional fields
// Create new instance

(@inst__make(duck)

16.3 Engine-Level Methods

16.3.1 engn_startchain

This 1dentifier 1s an intrinsic method that initiates (or
restarts) inferencing for the current domain context. One
example 1s:

rclnfer=(@engn_startchain()

If inference engine 112 1s already inferencing over the
current domain, inference engine 112 may abort this opera-
tion with an error. The method return code indicates an
engn_stopchain() return code (if any). If inferencing termi-
nates normally (without engn_stopchain execution), the
return code 1s zero.

16.3.2 engn_stopchain

This i1dentifier 1s an intrinsic method that immediately
aborts inferencing for the current domain context. If infer-
ence engine 112 1s not currently inferencing over the current
domain, imnference engine 112 may abort this operation with
an error. This 1dentifier also specifies a numeric value that
will be returned as the inferencing return code. By conven-
tion, this value may be non-zero because inference engine
112 returns zero when inferencing terminates normally. In
any case, inferencing may terminate immediately without
completing the current rule action. If that action had mnvoked
methods and one of them invoked engn_stopchain(), that
method and all dynamically ascendant methods immediately
terminate as well. One example use 1s:

(@engn_stopchain(-123)

16.3.3 engn_tracemsg

This 1dentifier 1s an intrinsic method that sends a textual
message to an application’s MessageHandler or Message-
Array objects (if any). If the client application 122 has not
defined any of these object, inference engine 112 may i1gnore
invocations of engn_tracemsg(). One example use 1s:

(@engn_tracemsg(“In Rulel; father age=" & father.age)

16.4 Domain-I.evel Methods

16.4.1 dmn_push

This 1dentifier 1s an 1intrinsic method that loads a specified
sub-inferencing domain. If the specified domain 1s already
loaded (pushed), inference engine 112 may abort this opera-
tion with an error. One example use 1s:

(@dmn_push(DomainX)

16.4.2 dmn_pop

This i1dentifier 1s an intrinsic method that unloads the

current sub-inferencing domain. If there 1s no domain cur-
rently loaded, inference engine 112 may abort this operation
with an error. One example use 1s:

(@dmn_pop()
16.5 Instance-Level Methods

16.5.1 inst_make

US 7,356,522 B2

73

This 1dentifier 1s an intrinsic method that creates a
dynamic instance from an instance template. It creates an
instance based on the current field values for the template
instance. Rulebase logic can create multiple, similar
instances by mitializing the template instance once with field
values shared by all the instances and then mvoking inst_
make() multiple times, each time modilying the template

field values for instance-specific differences.

16.5.2 1nst_reset

This 1dentifier 1s an intrinsic method that resets all of a
specified mstance’s fields to an unknown state. One example
use 1s:

(@inst_reset(class1.istancel)
16.5.3 1nst_delete

This 1dentifier 1s an 1ntrinsic method that deletes a speci-
fied dynamic instance. In one embodiment, any kind of rule
can create dynamic instances, but only pattern-matching

rules can delete them. One example use 1s:

for
any duck d
if
// duck 1s an old duck
d.getage() >= 100
then
(@inst__delete(d)

end

16.5.4 1nst_getname

This 1identifier 1s an 1ntrinsic method that returns the name
of a specified instance. For static instances, the returned
name 1s a fully-qualified name with *“.”” delimiters, such as:

“Domainl.Ruleset]l .Person.Father”

For dynamic instances, the instance identifier reflects an
index value, such as:

“Domainl.Ruleset].Person(23)”

One example use 1s:
strName=(@inst_getname(personl.spouse)
16.6 Field-Level Methods (All Fields)

16.6.1 fild i1sknown
This 1dentifier 1s an 1ntrinsic method that tests a specified
field’s knowability status. If the field 1s currently 1n a

KNOWN state, the method returns a Boolean TRUE wvalue.
Otherwise, the currently-active rule will pend until the field
achieves a known state. One example use 1s:

if (@1ld_isknown(instancel.fld1) then . . . end
16.6.2 fld isunknown

This 1dentifier 1s an 1ntrinsic method that tests a specified
ficld’s knowability status. If the field 1s currently 1n a
KNOWN state, the method returns a Boolean FALSE value.
Otherwise, the method returns a Boolean TRUE value. One
example use 1s:

if (@1ld_1sunknown(instancel .fld1)then . . .

16.6.3 fld reset

This 1dentifier 1s an intrinsic method that resets a specified
field to an UNKNOWN state. One example use 1s:

(@ild_reset(class1 .instancel.1ld])

16.7 Field-Level Methods (Specific to Sets)

16.7.1 set addval

This 1dentifier 1s an 1ntrinsic method that adds a specified
value to a Set. I the Set already contains the value, this
operation has no effect. The specified value may be type-
compatible with the Set. One example use 1s:

(@set_addval(setl, 123)

end

10

15

20

25

30

35

40

45

50

55

60

65

74

16.7.2 set_doesincludeval

This 1dentifier 1s an intrinsic method that tests whether a
Set already contains a specified value. I the Set does contain
the wvalue, the method returns a Boolean TRUE wvalue.
Otherwise, 1t returns a Boolean FALSE value. The specified
value may be type-compatible with the Set. One example
use 1s:

11 @set_doesincludeval(setl, 123) then . .

16.7.3 set removeval

This identifier 1s an intrinsic method that removes a
specified value from a Set. As a result, the Set remains
unchanged, becomes a subset of itself, or becomes the empty
Set. The specified value may be type-compatible with the
Set. One example use 1s:

(@set_removeval(setl, 123)

16.7.4 set_mergeset

This 1dentifier 1s an 1ntrinsic method that merges a speci-
fied Set with a base Set. I the specified Set 1s empty, this
operation has no effect. The specified Set may be type-
compatible with the base Set. One example use is:

(@set mergeset(setl, set2) // merge set2 into setl

16.7.5 set_excludeset

This i1dentifier 1s an intrinsic method that removes a
specified Set’s values from a base Set. As a result, the base
Set remains unchanged, becomes a subset of itsell, or
becomes the empty Set. The specified Set may be type-
compatible with the base Set. One example use 1s:

(@set_excludeset(setl, set(123, 456)) // remove values

from setl

16.7.6 set_intersect

This identifier 1s an intrinsic method that intersects a
specified Set with a base Set. As a result, the base Set
remains unchanged, becomes a subset of itself, or becomes
the empty Set. The specified Set may be type-compatible
with the base Set. One example use 1s:

(@set_intersect(setl, set(123, 456)) // possibly modifies

setl

16.7.7 set_doesintersect

This 1dentifier 1s an intrinsic method that tests whether a
specified Set intersects with a base Set. If the Sets share any
values, the method returns a Boolean TRUE wvalue. Other-
wise, 1t returns a Boolean FALSE value. The specified Set
may be type-compatible with the base Set. One example use
1S:

11 (@set_doesintersect(setl, set2) then . .

16.7.8 set_getsize

This 1dentifier 1s an 1ntrinsic method that returns a Num-
ber value indicating the number of elements in a Set. I1 the
Set 1s empty, the method returns zero. One example use 1s:

var cElements 1s number=(@set_getsize(setl)

16.8 Field-Level Methods (Specific to Strings)

16.8.1 string_getlength

This 1dentifier 1s an intrinsic method that returns a Num-
ber value indicating the length of a String. It the String 1s
empty, the method returns zero. One example use 1s:

var cChars 1s number=(@string_getlength(string1)

16.9 Ruleset-Level Methods

16.9.1 ruleset_postrules

This 1dentifier 1s an intrinsic method that posts the rules
for the specified ruleset to the agenda for the current domain
context. The specified ruleset may have a Post_Attrib value
of “conditional”. One example use 1s:

(@ruleset_postrules(domainl .rulesetl)

While the present disclosure has been described in terms
of preferred embodiments and generally associated methods,
alterations and permutations of the preferred embodiments
and method will be apparent to those skilled 1n the art.

. end

. end

US 7,356,522 B2

7S

Accordingly, the above description of preferred exemplary
embodiments does not define or constrain the present dis-
closure. Other changes, substitutions, and alterations are
also possible without departing from the spirit and scope of
the present disclosure, as defined by the following claims.

What 1s claimed 1s:

1. A computer-implemented method for building a rule-
base, comprising:

receiving a plurality of rulebase components; and

merging the rulebase components to create a consolidated

rulebase, wherein merging the rulebase components
includes:

parsing the rulebase components into individual rulebase

elements,

identifying a standard element corresponding to each of

the rulebase elements, wherein each standard element
includes at least a portion of a standard rulebase format,
wherein each standard element has a corresponding
clement type and where each standard element resides
on one of a plurality of levels 1n the standard rulebase
format,

determining whether two standard elements share a com-

mon element type, reside on a common level, and share
a common name, and

building the consolidated rulebase using the identified

standard elements.

2. The method of claim 1, wheremn building the consoli-
dated rulebase comprises inserting the two standard ele-
ments 1nto the consolidated rulebase when the two standard
clements share a common element type, reside on a common
level, and do not share a common name.

3. The method of claim 1, further comprising determining
whether only one of the two standard elements comprises
rulebase logic when the two standard elements share a
common element type, reside on a common level, and share
a common name.

4. The method of claim 3, wherein the rulebase logic
comprises at least one of a constraint expression, a method
implementation, and a rule implementation.

5. The method of claim 1, wherein: the standard rulebase
format comprises rulebase-level standard elements, domain-
level standard elements, and ruleset-level standard elements;

the rulebase-level standard elements comprise first 1ni-

tialization methods, first associations, first constraints,
first classes, and domains;

the domain-level standard elements comprise second 1ni-

tialization methods, second associations, second con-
straints, second classes, and rulesets; and

the ruleset-level standard elements comprise third initial-

1zation methods, third associations, third constraints,
third classes, and rules.

6. The method of claim 1, wherein merging the rulebase
components occurs without use of forward declarations.

7. The method of claim 1, further comprising compiling
the consolidated rulebase into a binary form.

8. The method of claim 1, further comprising generating,
a load map, the load map i1dentifying a plurality of objects
defined 1n the consolidated rulebase and relationships
between each object and rules 1n the consolidated rulebase
allecting each object.

9. The method of claim 1, further comprising generating,
an application interface document i1dentifying one or more
preconditions and one or more postconditions for each
domain associated with the consolidated rulebase.

10. The method of claim 1, further comprising converting
one of the rulebase components from a first format to a
second format, the second format comprising a plurality of

5

10

15

20

25

30

35

40

45

50

55

60

65

76

standard elements each having a corresponding element type
and residing on one of a plurality of levels 1n a standard
rulebase format.

11. The method of claim 1, wherein merging the rulebase
components comprises merging the rulebase components
using a rulebase builder object.

12. The method of claim 1, wherein receiving the plurality
of rulebase components comprises receiving the rulebase
components using at least one of an input stream, an
extensible Markup Language (XML) document, and a Uni-
form Resource Locator (URL).

13. A computer-implemented system for building a rule-
base, comprising:

a memory that stores a plurality of rulebase components;
and one or more processors that collectively merge the
rulebase components to create a consolidated rulebase,
wherein the one or more processors collectively merge
the rulebase components by:

parsing the rulebase components into individual rulebase
elements,

creating a standard element corresponding to each of the
rulebase elements, the standard elements including at
least a portion of a standard rulebase format, wherein
cach standard element has a corresponding element
type and resides on one of a plurality of levels 1n the
standard rulebase format,

determining whether two standard elements share a com-
mon element type, reside on a common level, and share
a common name, and

building the consolidated rulebase using the created stan-
dard elements.

14. The system of claim 13, further comprising:

inserting the two standard elements 1nto the consolidated
rulebase when the two standard elements share a com-
mon element type, reside on a common level, and do
not share a common name; and

determiming whether only one of the two standard ele-

ments comprises rulebase logic when the two standard
clements share a common element type, reside on a
common level, and share a common name.

15. The system of claim 13, wherein:

the standard rulebase format comprises rulebase-level

standard elements, domain-level standard elements,
and ruleset-level standard elements:

the rulebase-level standard elements comprise first ini-

tialization systems, first associations, first constraints,
first classes, and domains;

the domain-level standard elements comprise second 1ni-

tialization systems, second associations, second con-
straints, second classes, and rulesets; and

the ruleset-level standard elements comprise third 1nitial-

ization systems, third associations, third constraints,
third classes, and rules.

16. The system of claim 13, wherein the one or more
processors further collectively compile the consolidated
rulebase 1nto a binary form.

17. The system of claim 13, wherein the one or more
processors further collectively operable to:

generate a load map, the load map 1dentitying a plurality

of objects defined 1n the consolidated rulebase and
relationships between each object and rules i1n the
consolidated rulebase affecting each object; and
generate an application interface document identiiying
one or more preconditions and one or more postcon-
ditions for each domain associated with the consoli-

dated rulebase.

US 7,356,522 B2

77

18. The system of claim 13, wherein the one or more
processors further collectively convert one of the rulebase
components from a first format to a second format, the

second format comprising a plurality of standard elements

cach having a corresponding element type and residing on 5

one of a plurality of levels 1n a standard rulebase format.

19. Logic embodied on at least one computer readable

medium and operable when executed for:

receiving a plurality of rulebase components; and

merging the rulebase components to create a consolidated 10

rulebase, wherein merging the rulebase components
includes:

parsing the rulebase components into individual rulebase
elements,

identifying a standard element corresponding to each of 15

the rulebase elements, the standard elements including
at least a portion of a standard rulebase format, wherein
cach standard element has a corresponding eclement
type and resides on one of a plurality of levels 1n the
standard rulebase format,

determining whether two standard elements share a com-
mon element type, reside on a common level, and share
a common name, and

building the consolidated rulebase using the identified
standard elements.

20

78

20. A computer-implemented system for building a rule-

base, comprising:

means for receiving a plurality of rulebase components;
and

means for merging the rulebase components to create a
consolidated rulebase, wherein merging the rulebase
components mcludes:

parsing the rulebase components into individual rulebase
elements,

identifyving a standard element corresponding to each of
the rulebase elements, the standard elements including
at least a portion of a standard rulebase format, wherein

cach standard element has a corresponding element

type and resides on one of a plurality of levels 1n the
standard rulebase format,

determiming whether two standard elements share a com-

mon element type, reside on a common level, and share
a common name, and

building the consolidated rulebase using the identified
standard elements.

	Front Page
	Drawings
	Specification
	Claims

