United States Patent

US007356027B1

(12) (10) Patent No.: US 7,356,027 B1
Parekh et al. 45) Date of Patent: Apr. 8, 2008
(54) APPLICATION DECODING ENGINE FOR 7,096,264 B2* 82006 Bonney et al. 709/224
COMPUTER NETWORKS 2003/0154399 Al1* 8/2003 Zuk et al.cceveennnnn.. 713/201
(75) Inventors: Pankaj Parekh, Fremont, CA (US); * cited by examiner
Sandeep-Gupta, De}hl (IN); Yijay Primary Examiner—Edan Orgad
Mamtani, Ne“j Delhi (IN); Himanshu Assistant Examiner—Blanche Wong
Deoskar, Delhi (IN) (74) Attorney, Agent, or Firm—William L. Botjer
(73) Assignee: i{’}osl)icy Networks Inc., Fremont, CA (57) ARSTRACT
(*) Notice: Subiect to any disclaimer, the term of this The present mvention essentially comprises a Packet
. . Receiver and a Stream Manager for a computer network.
patent 1s extended or adjusted under 35 :
USC 154(h) by 1046 d When a stream of packets passes through the present inven-
T (b) by S tion, they are received by the Packet Receiver. The Packet
_ Receiver 1dentifies the session to which the packet stream
(21) Appl. No.: 10/264,971 belongs, and passes the packet to the Stream Manager. The
(22) Filed: Oct. 4, 2002 Stream Manager identiﬁes the app}ica?ion generating tg_’le
packet stream by scanning an Application ID Hash Table,
Related U.S. Application Data which 1s a tablfe that coptaips a mapping of dgstination ports
S o to corresponding applications. Thereafter, 1t uses a State
(63) Continuation-in-part ot application No. 09/956,394, Machine Execution Engine to execute application decode
filed on Sep. 18, 2001, now Pat. No. 7,120,144. instructions on the packet stream. The application decode
instructions are stored in a table called EXpression Action
' ' d 1 ble called Expression Acti
(51) Int. Cl. Table, and are generated based on a decode script created by
' the user Ior eacnh application. € application decode
HO4L 12/28 (2006.01) h £ h applicati The application decod
HO4L 12/56 (2006.01) instructions are chosen by the State Machine Execution
(52) US.CL ... 370/389; 709/201; 709/213; Engine based on the current state of an Application Decode
709/217;709/249 State Machine, which 1s a state machine that keeps track of
(58) Field of‘Cla‘ssiﬁcation Search None the app]ication decode process. The results of the State
See application file for complete search history. Machine Execution Engine are passed to the Stream Man-
(56) References Cited ager, and are stored in tables called Session Cache Table and

U.S. PATENT DOCUMENTS

Application Instance Table. Once the Stream Manager has
decoded all the transactions and parameters of the applica-
tion, the decoded information 1s sent with the packets in the

5,802,935 A * 4/1999 Adamsoovvvrviinninnnn. 712/207
6,182,146 B1* 1/2001 Graham-Cumming, Jr. . 709/238 packet stream.
7,039,713 B1* 5/2006 Van Gunter et al. 709/229
7,061,920 B2* 6/2006 Janko etal. 370/395.5 19 Claims, 12 Drawing Sheets
—~ TN
Applicatio e _—
n Decode Application 203 Sta’uc_ »05
Script Decode > A;E)phca;lon /
201 C.ompile ecoqge
- - _Database -
Packet
207 /2/” 213 Extension
Packet _ State Machine (with decode
Extension % Execution Engine result)
—! Dynamic
© e = Tl 217 ppplicati
'uz:: E on
o = Decode
S A I R s - N
I 5 /299
)
ﬁ % v //215
0
= Session
E L—p
. O Correlation
Packet v o’ Lookup Packet
Engine

U.S. Patent Apr. 8, 2008 Sheet 1 of 12 US 7,356,027 B1

I
Input Packet
\

__________________ Generic Extension 101
Builder

.

Input Packet + Generic
Extensions

Session Cache I/ 103
Module

S T T S SR B B S S I WS S e e i s s

Input Packet + Generic
Extensions + Session Cache
Extensions (Session_[D)

'

105
_________________ > Application Decode
Module

T__--__—---_--___-

Input Packet + Generic Extensions +
Session Cache Extensions +
Application Decode Extension

:: 111 Session ID
T _ 107 Primary AppID
Policy Manager ‘___-_ Rule Engine Module Secondary ApplD

(Primary_App_ID, Secondary_App_ID, Control Packet
Transaction_|D) (Apply_Session)
'.‘ S |
i Input Packet + Generic Extensions + Transaction_ID
i Session Cache Extensions + Transaction_Paramet
i Application Decode + Rule Engine ers
| Extensions

109
------------------ Policy Entities

Input Packets sent |
out of the PA

v

FIG. 1

U.S. Patent Apr. 8, 2008 Sheet 2 of 12 US 7,356,027 B1

Applicatio|] (>

n Decode| | Application 203 Static

Script | Decode 3 Application 200
| P 201 Decode
_Database

Packet
207 211 e 213 R Extension
- I/ | (with decode
Packet 1 .._ State Machine
Extension | > Execution Engine result)
| 3 l T Dynamic l:'
— 5 | 7| E I 217 ppplicati
% g | > on —
& LU) —p Decode
o
N R S AR ol pB.
o 1 o
[215
© | | % it
- =
| c Session
O Correlation
| > j& |
Packet | @ <— LOOKUP | Packet
| J Engine |

FIG. 2

U.S. Patent

=S

v

Packet enters
packet
receiver

Packet

Apr. 8, 2008

Sheet 3 of 12

Packet recelver

sends the packet to
the Stream Manger

NO

301

313

Is
stream

US 7,356,027 B1

315

receiver ing Yes
identifies the require 1 17
session based 47 3
on Session D | 303 | Packet
| and checks No | receiver sends
‘_the Session ‘ 309 the packet to
Cafzile table < the State the Stream |
Machine Decode Layer.for |
305 complete? ordering |

|s there
entry
correspondi

ng to the
session?

O

/307

\ Packet recelver |

| sends packet to |

| Stream
Manager l

-~

I

Yes
Yes v /31 1

The packet
extensions are
modified with
decoded
. information. Some
information i1s sent

as control packets. |
| The packet Is sent |
I out

End

FIG. 3

l /319
Stream Layer
collates the
packets and
sends them to

the Stream
Manger

U.S. Patent Apr. 8, 2008 Sheet 4 of 12 US 7,356,027 B1

A
Stream Manger
| gets the
Stream Manger Application
invokes Session /401 | information from | 411
Correlation | Session |
Lookup Engine to | Correlation Table
| scan the Session l
i 41
| Correlation Table I . - 3
for an ex_pected J Stream Manger I
[SEessIon | stores the |
Application

.\ information In
. Session Cache
| table

I T
|
405 _ .
| Stream Mange
scans Application |

session
expected?

| |ID Hash Table to |
identify |
l application

_ |

407 l |
| [Stream 409
| | Manger -~

L assumes the

Has the
applicatio
n been

identified
?

Application to
be a default

U.S. Patent

Stream Manger
invokes the State

Machine Execution

Engine. This
Engine loads ana
executes the
Application Decode

State Machine. The

results of the State

Machine execution
are passed to the

Stream Manager

According to
the State Machine,
Is the packet
information
\ncomplete?

No

Apr. 8, 2008

Sheet 5 of 12

501

Yes

US 7,356,027 B1

End

Stream Manger

passes this
packet to the

Stream Layer

005

sets a flag in the

table to indicate

Stream Manger
Session Cache

that the packet
iInformation Is
incomplete

FIG. 5

U.S. Patent

Apr. 8, 2008

State Machine Execution |
Engine loads the Application

v _/691

Sheet 6 of 12

‘ End l
613

. —

Decode State machine for the

particular Application and

Session

/60

State Machine Execution Engine
executes the Expression Action
table instruction corresponding to
the current state of the Application
Decode State machine

v

605

|s the packet
information
fragmented?

Yes

No

s a new

session
expected?

No

State Machine
Execution Engine
updates the Session
Cache table with
relevant details
(current state, next
instruction, link to
Session Correlation
table, App Instance
table). It also updates
the Application

Instance table

3 611
State Machine l

Execution Engine
updates the |
Application Decode
State machine based
on the result of the

Expression Action

|__ table

A

| 609

| State Machine

Execution Engine
notes this in the

Session Correlation
table and Session
| Correlation Hash
table

US 7,356,027 B1

US 7,356,027 B1

Sheet 7 of 12

Apr. 8, 2008

U.S. Patent

- s)q

3JAQ s3aJAQ

/ [s81AQ Z | y | S8IAG b

31 ¥4

al op |xspujuo | J8UI0
aipu | 008Q |nepuen | d @il U

sbe|4| ewwon | pieH | uoissag | @A3 9€lS

LLL] 74 el L.

s9)JAQ
1%

29UB)SU]
uo

10L

9JElS
| uo auibu3
njeoljddy | Qj uo ap029(
Ale jeolddyy uo

eslddy | puooas | Alewlld | jeol|ady

60.L

LOL G0. 0L

US 7,356,027 B1

Sheet 8 of 12

Apr. 8, 2008

U.S. Patent

S

S s | 9

alAq |81Aq | Aq

14 % C

_ =1 A\
110D d

uo ay

ISSaS | XapUlf O
nald | XBN | 85

1 €8 —6281L28-G28-CC8

sa| s8
Ma| IAg
17 14
ao
(| uo | uejsuj
issag | ddy |
Wid | Wid

8 Ol
108
_—
S
S| S8 S| so S s1Aa
yg| ¥ay A9 suq| a1Aq| 1AQ | 814 1Aq |8IAG

A : G Ll vl v 2| € P
Alju3
De| 4 110D |

uol) ., o0 104|pod| uo
e _mm:o_u__m> Em_ummm_ o“ohn”_ wwno__o Inog 90 |1SS9S
uewusd| IV | -3 |Inog | IXaN

28— 618718618

£18—-118-608-208-G08t08

U.S. Patent Apr. 8, 2008 Sheet 9 of 12 US 7.356,027 B1

Link Key (4 bytes) Data

NxtOff |Reserve| Proto |Destinati [State-| Applica | SrcP | Unus
set |d (Make| col | on Port |Event| tion ID | ort ed

this field | Tree
as 0) Start
| Offset
4 1 |1byte| 2 bytes| 4 2 2 |16 bytes
bytes ‘ byte bytes bytes | bytes
N\ NN LN AN Y
903 005 907 909 911 913 915 917
901/
921 923
Application 1D State- Event Tree Start
| Offset
O|(Default Application) Indicates start event 925
tree index for a default
application 027
1 (FTP)
929
(Telnet)
(SMTP) I/93‘I
919/

FIG. 9

0L Ol4

1001
6L0l ZLOl G101l ¢ilolL LLoL 600k 200l G00L €001 \

US 7,356,027 B1

Xapuil |V Ul o v
a|qe) buuls| lsweled U1 19810 4
JUBISUOD)| JO 18SHO .
&\
1=
— disiels . |
2 \/ Ul Yjouaj SN[EeA IIL
7 peo|ABC sje |eisu|ddy
Ipswuwi| [0 18SHO |91199d| ¢
= a|qe) prdde 219eLAl
¥ ! pl-dde ddv | x5 e AOW 2
= | 10 1S34O 18SHO S
> apo puessdQ
pONeBA [CoNjeA| ZoNeA sodA| gadA | zadAl | LedAL sdy | 10 ON

an|eA puesadQ adA | puelad(. |

U.S. Patent

US 7,356,027 B1

Sheet 11 of 12

Apr. 8, 2008

U.S. Patent

Ll Ol4

‘o‘_‘
19840 sy|,-2dA) sy|, Aq paiyuspl a|gelea _]
BU} 0} Jasyo suyJ,-2dAysul, AQ palyjuap! SnjeA 11q 8) SAO|N SAOW | WajsAS
JOTJOT) \S \ 0} TXaU UOTOT Ul O} UlN]<c .
UoI}NJ3X3 m_pm:m 0] _EmEm._ma]SE| B SE xoﬂm o) uo Ssalppe
uinjal ||} fim ‘epoodo Buisas uo aulbua apoosp dde ay | TIVOONNA | wajshs
9JON ",@NjeA Sy|, Ul paljjusp| Xapui Uo paseq uoniouny sjjeg
‘al 3LV1S st .2dA} sy,
JI ‘ 8NjEA SU|, Ul payjijuapl ‘Xapu|aal] juaAngalels ay) suiniay
11NN S! adAl sy, jI Ajlewou SUIN}aY 139 | walsAg
'MOJ mec 2JN03axa 9s|3 ‘N1 S! JOSYO suJ,-8dA] syJ,
Aq payuapl enjea pue jesyo sy|,-adA} syj, Aq payusp
an|eA }iq Zenlg m_‘b_n_ q Jo uonelsado 0] |enb3/6ul/buIgNy oLO39g
~ [edifo] JI * xapuixeN, E vm_v.;cmn_ Xopul 0} YoUuBlg [ZeyOr ‘8ANYI | QU0
[- oo, AJ P=2IJUSPI .
18)s16a1 ay} ul palols aq 0} st w_swm._ .]9SO syd,-adAl syJ,
AQ paynuap! anjea)iq ZeAd 91A1G-8 SU} YIm padQ/pepuy _
“Jesyo sy|,-2dAy sy, Ag payijuspl anjea 319 Z¢A1q 91419-8 CEHO '8ANV| [20100T
' Jo)sibay)nsay, Aq payiuapl Ja}sibal |
aU] Ul }NSal 8y} S210]S JosPo syi,-adA) syJ, pue Jasyo sy, _Nmme _mme 1)
adAy y), Aq psuuapl sanjea 1q ZEAlq 91419-8 s1oengnsysppy| 91AAY 8AdV wEEW__MD
90A]
uondiiosaQ 2poadQ apoodO
o 0L S0 eok

US 7,356,027 B1

Sheet 12 of 12

Apr. 8, 2008

U.S. Patent

¢l Ol
LOCL
ezt S22 heek _—
so|so|so|so|saisa| 51 (S} | si|s1| s s1! s3] s1] slsy] S N
Aq JAq jAG DAQ BAQpAg| 19 [[1lg (19 | 19| 19| 19|19 19 |1q | %A Bug
Pl Y| V| V| P v €S | €| S| ¢| G| €| 65| €|g|9]|ze
o1 dl| alal[ad|al| afal| slal| ela
dAy | w [dAy | w | A w [dA] w |dAy [w |dAy | w
w| elw/ e|lwle|lwl elw elw e
el| Je | el el elle|elle|e|e
mn__n_,m.n_ d |[BEd| d |[Bd| d|ed| d|ed]| d
2| @ 9| 8 o| 9
nf | N Nf{n | NN df dl dl _ dl ar| ai
BA |BA | BA _m> _m> en| pue pue , pue | pue | pue | pue m
@ m _ ._1..« m N —‘ o o e, < s, S, m S
w|iw|w|w| w E_ dA | dA| dA | dA | _ dA] | dAL | uno) cm#mc:
eilel|erle | eslel oul Gl pu gl cu | LU 80| ddy
2d [ed [Bd d [edfed | Bled eled | eled | eled | eled | Bied [Ualgjoy| 083
122l €2ZL 6bZL— LiZL— SlZh— Ebzl— 112l 602L—10Zl— S0Zh— €0z}

US 7,356,027 Bl

1

APPLICATION DECODING ENGINE FOR
COMPUTER NETWORKS

CROSS REFERENCE TO RELATED
APPLICATION

This application 1s a continuation-in-part of U.S. patent

application Ser. No. 09/956,394, filed on Sep. 18, 2001 now
U.S. Pat. No. 7,120,144.

BACKGROUND

The present invention relates to the field of application
analyzers for computer networks. More specifically, the
present invention relates to a system and method for decod-
ing packets 1 a packet stream, to 1dentity the applications
generating the packet stream, the transactions of the appli-
cation, and the parameters of the transactions 1n real time, at
high speeds 1n the order of Gigabits/sec.

The growing popularity of computer networks such as the
Internet has resulted 1n a large number of applications being
deployed on such networks. These applications generate
network trathc, which have various Quality of Service (QoS)
requirements depending on the nature of the application.
That 1s to say, while applications like Simple Mail Transfer
Protocol (SMTP) and Hyper Text Transier Protocol (HTTP)
are sensitive to loss, other applications like Voice over
Internet Protocol (VoIP) are sensitive to delay. Similarly,
while applications like real-time video conferencing gener-
ate high prionty traflic that require a mimmmum guaranteed
bandwidth, those like File Transfer Protocol (F'1P) generate
small bursts of low priority traflic that do not require a
mimmum guaranteed bandwidth.

To ensure that these varying traflic requirements are met,
it 1s essential for network administrators to have a means to
identify the traflic based on the application generating it.

For this purpose, network administrators deploy protocol/
application analyzers to identify application traflic. These
are devices that capture and decode traflic flowing through
the network, and identily the applications generating this
traflic. They also provide information about the transactions
of an application. For example, analyzers can i1dentify that

an HTTP application has transactions like HTTP_GET
(fetching an HI'ML page) and HI'TP_PUT (sending data to

an HTML page), by analyzing application traflic.

Typical analyzer implementations do not adopt a generic
approach to identily application trathc. The application
identification algorithm 1s hard-coded into the analyzer, and
decoding newer application tratlic requires upgradation of
the algorithm. Some 1mplementations do adopt a generic
approach, but these are limited to decoding each individual
packet of a packet stream independently. Such implemen-
tations are therefore slow, and are unable to extract/associate
the decoded knowledge across multiple packets, when seen
as a stream.

SUMMARY

An object of the present invention 1s to provide a system
and method for decoding packets 1n a packet stream on a
computer network, to 1dentity the primary application gen-
crating the packet stream.

Another object of the present imnvention 1s to provide a
system and method for decoding packets 1n a packet stream,
to 1dentily the secondary application generating the packet
stream, 1n case of tunneled applications.

10

15

20

25

30

35

40

45

50

55

60

65

2

Yet another object of the present invention 1s to provide a
system and method for decoding packets in a packet stream,
to 1dentity the transactions and parameters of the applica-
tions generating the packet stream.

Yet another object of the present invention 1s to provide a
system and method for decoding packets 1n a packet stream
such that the decode process 1s generic in design, and
independent of the applications to be decoded.

Yet another object of the present invention 1s to provide a
system and method for decoding packets 1n a packet stream
at real time speeds by eflicient use of the already decoded
application knowledge.

The present invention i1s a system and method for decod-
ing packets 1n a packet stream to identily the applications
generating the packet stream, the transactions of the appli-
cation, and the parameters of the transactions 1n real time, at
high speeds of the order of Gigabits/sec.

The present mnvention comprises a Packet Recerver and a
Stream Manager. When a stream of packets passes through
the present invention, they are received by the Packet
Receiver. The Packet Recerver identifies the session to
which the packet stream belongs, and passes the packet to
the Stream Manager. The Stream Manager 1dentifies the
application generating the packet stream by scanning an
Application ID Hash Table, which 1s a table that contains a
mapping of destination ports to corresponding applications.
Thereatter, 1t uses a State Machine Execution Engine to
execute application decode instructions on the packet
stream. The application decode instructions are stored 1n a
table called Expression Action Table, and are generated
based on a decode script created by the user for each
application. The application decode instructions are chosen
by the State Machine Execution Engine based on the current
state of an Application Decode State Machine, which 1s a
state machine that keeps track of the application decode
process. The results of the State Machine Execution Engine
are passed to the Stream Manager, and are stored 1n tables
called Session Cache Table and Application Instance Table.
Once the Stream Manager has decoded all the transactions
and parameters of the application, the decoded information
1s sent with the packets 1n the packet stream.

The present invention also takes into consideration new
sessions related to existing sessions. When a packet belong-
ing to a new session enters the Stream Manager, the Stream
Manager uses a Session Correlation Lookup Engine to
determine whether the session of the packet 1s related to an
existing session. If the Session Correlation Lookup Engine
determines that the sessions are related, the Stream Manager
copies the decoded information from the Session Cache
Table and Application Instance Table entries of the existing
session to the Session Cache Table and Application Instance
Table entries of the new session. In this way, the present

invention 1s able to perform the decode process 1n real time,
at high speeds of the order of Gigabits/sec.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiments of the invention will herein-
alter be described in conjunction with the appended draw-
ings provided to illustrate and not limit the invention,
wherein like designations denote like elements, and in
which:

FIG. 1 1s a schematic diagram that 1llustrates the func-
tional modules of an exemplary Policy Agent.

FIG. 2 1s a block diagram that illustrates the cooperation
amongst the elements of the system, in accordance with the
preferred embodiment of the present invention.

US 7,356,027 Bl

3

FIG. 3 1s a flowchart that illustrates the initial processing
steps carried out on a packet by the system, 1n accordance
with the preferred embodiment of the present invention.

FIG. 4 1s a flowchart that 1llustrates the processing steps
carried out on a packet by the system, in accordance with the
preferred embodiment of the present invention, 11 the packet
1s the first of a session.

FIG. 5 15 a flowchart that 1llustrates the processing steps
carried out on a packet by the system, in accordance with the
preferred embodiment of the present invention, 11 the packet
1s not the first of a session.

FIG. 6 1s a flowchart that illustrates the working of the
State Machine Execution Engine of the system, in accor-
dance with the preferred embodiment of the present inven-
tion.

FI1G. 7 1s a diagram 1llustrating the structure of the Session
Cache Table.

FIG. 8 1s a diagram 1illustrating the structure of the Session
Correlation Table.

FIG. 9 1s a diagram illustrating the structure of the
Application 1D Hash Table and Application 1D Table.

FIG. 10 1s a diagram that illustrates a sample set of
Expression Action Table entries.

FIG. 11 1s a diagram that describes some of the opcodes
supported by the State Machine Execution Engine.

FIG. 12 1s a diagram that illustrates the structure of the
Application Instance Table.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The present invention 1s a system and method for decod-
ing packets i a packet stream to identify applications
generating the packet stream, transactions of the application,
and parameters of the transactions.

The present invention i1s envisaged to be operating within
a Policy Agent. The Policy Agent scans packets as they pass
through 1t, and enforces network policies on these packets.
Although the Policy Agent may be variously provided, a
description of one such Policy Agent can be found in
application Ser. No. 10/052,745 filed on Jan. 17, 2002, and
entitled “Architecture for an Integrated Policy Enforcement
System”; the entire content of which i1s hereby incorporated
by reference. However, 1t may be noted that the present
invention may be adapted to operate 1n other Policy Agents
by one skilled 1n the art.

It may also be noted that although the present invention 1s
envisaged to be operating within a Policy Agent, this does
not limit the scope of the present invention 1n any manner.
The policy agent may be embodied 1n a product such as the
ipEnforcer S000® as provided by policy Networks Inc. of
Fremont, Calif. This product 1s used to enforce management
policies on networks, and 1s placed at a point where packets
enter a network. Further, the policy agent may be encoded 1n
a programming language such as C or Assembly. The
present mvention may also be adapted to operate indepen-
dent of a Policy Agent by one skilled in the art.

The present invention 1s intended for practice 1n a network
environment, such as a Local Area Network (LAN) envi-
ronment.

Soltware programming code, which embodies the present
invention, 1s typically accessed by the microprocessor of
workstations or network equipments from storage media of
some type, such as a CD-ROM drive or hard drive. Alter-
natively, the programming code may be embodied in a
memory, and accessed by the microprocessor using a bus.
The techniques and methods for embodying software pro-

10

15

20

25

30

35

40

45

50

55

60

65

4

gramming code in memory, on physical media, and/or
distributing software code via networks are well known and
will not be further discussed herein.

The preferred embodiments of the present invention will
now be discussed with reference to the following figures. In
the preferred embodiments, the present invention 1s 1mple-
mented as a computer software program. The software may
execute on a user’s computer; or on a remote computer that
may be connected to the user’s computer through a LAN.
Alternatively, the software may execute on some network
equipment, such as a switch or router.

FIG. 1 1s a schematic diagram that illustrates the func-
tional modules of the exemplary Policy Agent. Referring to
FIG. 1, the various functional modules of the Policy Agent
are Generic Extension Builder 101, Session Cache Module
103, Application Decode Module 105, Rule Engine Module
107 and Policy Entities 109. The Policy Agent 1s also
supported by a Policy Manager 111. A packet entering the
Policy Agent travels through these functional modules. Each
functional module appends 1ts output to extensions in the
packet, which are then used by subsequent modules of the
Policy Agent.

Generic Extension Builder 101 processes the packet head-

ers for information related to Open Systems Interconnection
(OSI) Layer 2 and Layer 3.

Session Cache Module 103 processes the packet headers
for information related to OSI Layer 4 and above.

Application Decode Module 105 1dentifies the application
generating the packet and tracks the packet as 1t transitions
from one application state to another. This 1s the preferred
embodiment of the present invention.

Rule Engine Module 107 makes policy decisions based on
the information gathered from the previous modules. It
identifies partial or complete rule matching and passes this
information to Policy Entities 109.

Policy Entities 109 comprise a plurality of policy pro-
cessing modules that are specific to each individual policy to
be enforced. These modules analyze the packet further
according to 1ts requirements and enforce policies. Policy
processing modules include, but are not limited to, Firewall
modules, Intrusion Detection System (IDS) modules, URL
Filtering System (URL) modules and Virtual Private Net-
work (VPN) modules.

Policy Manager 111 contains policy rules, which it sends
to the Policy Agent for enforcement purposes.

FIG. 2 1s a block diagram that illustrates the cooperation
amongst the elements of the system, in accordance with the
preferred embodiment of the present mvention. The ele-
ments of the system may be grouped into two parts—those
operating within the Policy Agent, and those operating
within Policy Manager 111. The elements operating within
Policy Manager 111 are Application Decode Script 201,
Application Decode Compiler 203 and a Static Application
Decode Database 205. The elements operating within the
Policy Agent are Packet Receiver 207, Stream Manager 209,
Stream Layer 211, State Machine Execution Engine 213,
Session Correlation Lookup Engine 215 and Dynamic
Application Decode Database 217. The inter-working of the
parts of Policy Manager 111 1s brietly described below.

Application Decode Script 201 defines how an application
1s to be decoded. It 1s created by the end user, and 1s written
in a language defined by the present invention.

Application Decode Compiler 203 translates Application
Decode Script 201 1into Static Application Decode Database
205.

US 7,356,027 Bl

S

Static Application Decode Database 205 comprises many
databases, which are elucidated later. These are downloaded
to the Policy Agent for use in the present invention.

The mter-working of the parts of the Policy Agent 1s
discussed 1n detail in the subsequent figures.

FIGS. 3-5 are tlowcharts that illustrate the working of the
present imvention. FIG. 3 1s a flowchart that illustrates the
initial processing steps carried out on a packet by the system,
in accordance with the preferred embodiment of the present
invention. FIG. 4 1s a flowchart that 1llustrates the processing
steps carried out on a packet by the system, 1n accordance
with the preferred embodiment of the present invention, i
the packet 1s the first packet of a session. A session 1s defined
as a series of interactions between two communication end
points that occur during the span of a single connection. FIG.
5 1s a tlowchart that 1llustrates the processing steps carried
out on a packet by the system, in accordance with the
preferred embodiment of the present invention, 11 the packet
1s not the first packet of a session. The steps of the tlowchart
are described below.

At 301, when the packet enters the present invention, 1t 1s
received by Packet Receiver 207.

At 303, Packet Receiver 207 1dentifies the session to
which the packet belongs, by scanning the packet extensions
of the packet and extracting the session ID. The session 1D
1s appended by Session Cache Module 103, and identifies
the session to which the packet belongs.

At 305, Packet Receiver 207 determines whether the
packet 1s the first of a session, or whether it 1s part of an
existing session. This 1s determined by scanming Session
Cache Table 701, which 1s a table that contains information
on currently active sessions.

At 307, 11 the packet 1s the first of a session, Packet
Receiver 207 sends the packet to Stream Manager 209.

At 401, Stream Manager 209 uses Session Correlation
Lookup Engine 215 to determine whether the session 1s
related to an existing session.

At 403, Session Correlation Lookup Engine 215 scans a
Session Correlation Table 801 to determine whether the
session 15 related to an existing session.

At 411, 1f Stream Manager 209 determines that the session
1s related to an existing session, 1t collects the already
decoded application knowledge from Session Correlation
Table 801.

At 413, Stream Manager 209 stores the information
collected from Session Correlation Table 801 1n Session
Cache Table 701.

At 311, the Stream Manager 209 modifies the packet
extensions with decoded information from Session Cache
Table 701. This ends the flow of control for packets of a
session related to an existing session.

Referring again to 403, iI Stream Manager 209 deter-
mines that the session 1s not related to an existing session
then at 405, Stream Manager scans Application ID Hash
Table 901 and Application ID Table 919 to idenftily the
application. These tables contain a mapping of destination
port numbers to applications.

At 407, Stream Manager 209 determines whether it has
been able to i1dentity the application from Application 1D

Hash Table 901 and Application ID Table 919.

At 413, if the application has been i1dentified, Stream
Manager 209 stores this information in Session Cache Table

701.

At 409, 11 the application has not been identified, Stream
Manager 209 assumes a default application, and at 413,
stores this information in Session Cache Table 701.

10

15

20

25

30

35

40

45

50

55

60

65

6

At 311, Stream Manager 209 modifies the packet exten-
sions with the decoded information. This ends the flow of
control for packets of a session not related to an existing
SEsS101.

The decode steps for the first packet of a session are thus
completed.

Referring again to FIG. 3, at 309, 1t the packet 1s part of
an existing session, Packet Receiver 207 determines whether

decode of the Application Decode State Machine 1s com-
plete. The Application Decode State Machine keeps track of
the decode process. I the Application Decode State
Machine 1s complete, further decode 1s not required; the
packet extensions can be modified with the decoded infor-
mation. Thus, at 311, if the decode of the State Machine 1s
complete, the Packet Receiver modifies the packet exten-

sions with the decoded information and sends the packet out
of the Policy Agent.

At 313, 11 the Application Decode State Machine 1s not
complete, Packet Receiver 207 determines whether any
streaming action 1s required for the packet. Streaming 1s
required 1n case Application Decode Script 201 specifies that
special treatment 1s necessary for Transmission Control
Protocol (TCP) packets. This special treatment involves
taking care of re-transmitted packets and out-of-order pack-
ets. Streaming 1s also required 11 Session Cache Table 701
has a flag set at 503.

At 315, 11 Packet Receiver 207 determines that streaming
1s not required, 1t sends the packet to Stream Manager 209.

At 317, 11 Packet Receiver 207 determines that streaming
1s required, 1t sends the packet to Stream Layer 211 for
ordering. At 319, Stream Layer 211 collates the packets and
sends them to Stream Manager 209.

At 501, Stream Manager 209 mnvokes State Machine
Execution Engine 213, and loads and executes the Applica-
tion Decode State Machine. The working of State Machine
Execution Engine 213 1s elaborated in FI1G. 6. The results of
State Machine Execution Engine 213 are passed to Stream

Manager 209.

At 503, Stream Manager 209 determines whether the
information in the packet was suflicient for State Machine

Execution Engine 213 to process the packet.

At 3505, 1 Stream Manager 209 determines that the
information in the packet was not suflicient, 1t sets a tlag 1n
Session Cache Table 701. Then, at 507, Stream Manager 209
passes the packet to Stream Layer 211. Stream Layer 211
waits until 1t gets the remaining packets, after which 1t
collates the information, and presents the same to Stream

Manager 209. This process 1s called streaming, and 1is
illustrated at 317 and 319.

At 503, 1f Stream Manager 209 determines that the packet
information 1s complete, the packet 1s sent out of the Policy
Agent.

FIG. 6 1s a flowchart that 1llustrates the working of State
Machine Execution Engine 213 1n the system, 1n accordance
with the preferred embodiment of the present invention.
State Machine Execution Engine 213 executes the Applica-
tion Decode State Machine. The Application Decode State
Machine keeps track of the state of the decode process. Each
state has a set of instructions that are to be executed, and
State Machine Execution Engine 213 executes these instruc-
tions.

At 601, State Machine Execution Engine 213 loads the
Application Decode State Machine, to determine the state of
decode that has been reached for the particular application
and session.

US 7,356,027 Bl

7

At 603, State Machine Execution Engine 213 looks up
Expression Action Table 1001 for imnstructions to be executed
corresponding to the state of the Application Decode State
Machine.

At 605, State Machine Execution Engine 213 determines
whether the information available 1n the packet 1s suilicient
to complete the instructions. At 605, 1f the information
available 1n the packet 1s not suilicient to complete the
instructions, State Machine Execution Engine 213 does not
carry out the decode process. This process continues at 503.

At 607, if the information available in the packet 1s
suilicient to complete the mstructions, State Machine Execu-
tion Engine 213 determines whether the current decode state
indicates that a new session 1s expected.

At 611, if the current decode state indicates that a new
session 1s not expected, State Machine Execution Engine
213 updates the Application Decode State Machine accord-
ingly.

At 613, State Machine Execution Engine 213 updates
Session Cache Table 701 and Application Instance Table
1201.

At 609, 1f the current decode state indicates that a new
session 1s expected, State Machine Execution Engine 213
notes this information in Session Correlation Table 801 and
Session Correlation Hash Table.

At 611, State Machine Execution Engine 213 updates the
Application Decode State Machine accordingly.

At 613, State Machine Engine 213 updates

Execution

Session Cache Table 701 and Application Instance Table
1201.

FIG. 7 1s a diagram 1illustrating the structure of Session
Cache Table 701. This table maintains session specific
information across packets, and 1s made up of nine columns.
Referring to FIG. 7, these columns are described below.

“Application Decode Engine State” 703 stores the Appli-

cation Decode State Machine’s state for each session. This
field can have either “COPY” or “DECODE” values. The

default value of this field 1s “DECODE”, and this value can
be changed to “COPY” through Application Decode Script
201. It the value of this field 1s “COPY”, Stream Manager
209 will copy the values 1n the Primary Application ID 705,
Secondary Application ID 707 and Command ID 717 fields

onto the packet extensions.

“Primary Application 1D 705 1dentifies the application 1s
running corresponding to the session entry. In case this
session 1s correlated to an existing session, this field 1den-
tifies the primary application-id, for which this correlated
session was created. In case two applications (Primary and
Secondary application), for the case of tunneled applica-
tions, run on the same session, this field identifies the
primary application.

“Second Application ID” 707 i1dentifies the Secondary
Application running corresponding to the session entry. In
case this session 1s correlated to an existing session, this field
gives an Application ID for this correlated session. In the
case of tunneled applications, this field gives the Application
ID for the tunneled application. If the session 1s neither a

correlated session, nor a session for a tunneled application,
the field contains the default entry “OxFEF”.

“Application Instance” 709 1s an index into an entry in

Application Instance Table 1201. Application Instance Table
1201 1s elucidated in FIG. 12.

“State_Event_Tree_Pointer” 711 identifies the starting
point 1n Expression Action Table 1001 corresponding to the
current state of the Application Decode State Machine.

Initially, this field 1s filled from Application ID Table 919

10

15

20

25

30

35

40

45

50

55

60

65

8

and Application ID Hash Table 901, and subsequently 1t 1s
updated during the execution of the Application Decode
State Machine.

“Session Correlation Index™ 713 1s an index into an entry
in Session Correlation Table 801, of the Secondary Appli-
cation or Primary Application, as the case may be.

“Hard Decode 1D 715 1s used for applications that cannot
be coded through

Expression Action Table 1001 or Application Decode
Script 201, or for performance reasons, the application
decode 1s added as assembly code assembled along with the
Application Decode Engine. This field 1dentifies these appli-
cations by an ID.

“Command ID”” 717 1dentifies the command that 1s being
executed for the session. The appropriate values for this field
are defined 1n Application Decode Script 201.

“Flags” 719 indicate whether streaming 1s required or not.
Streaming 1s required 11 Application Decode Script 201
specifies that Stream Manager 209 should treat TCP and
UDP packets separately; or i State Machine Execution
Engine 213 1s unable to process a packet because the
information i1n the packet i1s icomplete at 503. Stream
Manager 209 sets this field.

FIG. 8 1s a diagram 1illustrating the structure of Session
Correlation Table 801. Session Correlation Table 801 main-
tains information specific to expected session across pack-
ets. To improve the efliciency of Session Correlation Table
801, 1t 1s supported by a hash table called the Session
Correlation Hash Table. Session Correlation Table 801 1s
made up of fifteen columns. Referring to FIG. 8, these
columns are described below.

“Next Session Corr Entry” 803 1s a pointer to the next
Session Correlation entry. This 1s used for traversal when the

same Hash mdex 1s obtained for multiple Session Correla-
tion entries.

“Source Port” 805 identifies the source port of the
expected session. If the source port number 1s not relevant,
this field 1s left empty.

“Dest Port” 807 identifies the destination port for the
expected session. This 1s the field on which the Hash lookup
1s done, and thus 1s never left empty.

“Source IP” 809 identifies the IP address of the expected
session. If the source IP 1s not relevant, this field 1s left
empty.

“Dest IP” 811 1dentifies the destination IP address for the
expected session. IT the destination IP 1s not relevant, this
field 1s left empty.

“Protocol” 813 identifies the Layer 4 protocol of the
expected session.

“Reserved” 813 1s a reserved field. These are 5 bits that
are left unused for future use.

“Valid” 817 1dentifies whether the entry 1s 1n use or not.
Stream Manager 209 checks this field while creating a new
entry 1n Session Correlation Table 801.

“Al Creation Flag” 819 indicates whether the Secondary
Application Instance needs to create a new Application
Instance Table 1201 entry or whether the Secondary Appli-
cation Instance can use the same Application Instance Table
1201 entry as the Primary Application. This field i1s useful
for applications with correlated sessions, to indicate if the
two sessions need separate Application Instance entries or
for the tunneled applications on the same session. The
Primary Application Instance fills this field.

“Permanent” flag 821 indicates when the entry in Session
Correlation Table 801 1s to be removed. If this flag 1s “True”,
the entry 1s removed when the Primary Application Instance
1s removed. If this flag 1s “False™, the entry 1s removed when

US 7,356,027 Bl

9

the first packet of the Secondary Application Instance
arrives. Hssenftially, this flag indicates whether the entry
should exist for the lifetime of the Primary Application
Instance, or whether it should be removed when the Sec-
ondary Application Instance starts. This flag 1s usetful 1n case
ol correlated sessions.

Correlated sessions are two different sessions that are part
of same application. For example, in HT'TP applications, the
request and response are parts of the same TCP session, and
the application ends after the sessions are over. But in the
case of F'TP applications, the request for transfer of a file
takes place in one session, and in that session, the next
(correlated) TCP session 1 which the actual file transfer
would take place 1s negotiated and agreed upon by the two
ends. Subsequently, a new TCP session 1s then opened for
the actual file transfer. Typically, in applications like FTP,
the master session exchange details of the subsequent ses-
s1on (correlated session) 1n which other part of the applica-
tion work would be done. In some cases, like 1n FTP, this
exchange of specifics about new session 1s done for each
correlated session. Thus, the session correlation information
has a lifetime of one session only. On the other hand, in
applications like H323, the exchange of correlated session
information has a lifetime of the time while the primary
session 1s alive. The flag indicates this fact about the
correlated session.

“Prim App Instance” 823 indicates the Primary Applica-
tion Instance of the primary session which created this entry.

“Prim Session ID” 825 indicates the primary session of
the Primary Application Instance that created this entry.

“Sec App ID” 827 indicates the Secondary Application for
which this entry 1s created.

“Next Index” 829 indicates the next Session Correlation
Table 801 entry corresponding to the Primary Application
Instance of this entry. A single primary session can have
multiple correlated sessions. For example, in H323 many
correlated sessions, for audio, video, data etc may be estab-
lished. When the primary session closes, or 1s killed, all the
related correlated sessions need to be cleaned up. “Next
Index”™ 1s a linked list of the correlated entries created for a
primary session.

“Prev Session Corr Entry” 831 a pointer to the previous
Session Correlation entry. This 1s used for deleting a Session
Correlation Table 801 entry from a list of Session Correla-
tion Table 801 entries that have the same Hash index.

FIG. 9 1s a diagram 1illustrating the structure of Applica-
tion ID Hash Table 901 and Application ID Table 919. These
tables are created by Application Decode Compiler 203
while compiling Application Decode Script 201, and are a

part of Static Application Decode Database 2035. Application
ID Hash Table 901 has eight columns. Referring to FIG. 9,
these columns are described below.

“NxtOflset” 903 1indicates the next entry in Application 1D
Hash Table 901, which has the same Hash index after
hashing on the Destination Port.

“Reserved” 905 1s a reserved field. It 1s reserved for future
use

“Protocol” 907 i1dentifies the Layer 4 protocol of the
Application.

“Destination Port” 909 identifies the destination port of
the Application. This i1s the field on which the Hash lookup
1s done, and thus 1s never left empty.

“State-Event Tree Start oflset” 911 1dentifies the starting
point in Expression Action Table 1001.

“Application ID” 913 1s a unique identifier generated by
Application Decode Compiler 2

10

15

20

25

30

35

40

45

50

55

60

65

10

03 for each application supported by the present imven-
tion.

“SrcPort” 9135 identifies the source port of application.
This field 1s left empty if the port number 1s not relevant.

“Unused” 917 1s an unused field. It 1s reserved for future
use, to include more information per application when
required.

Application ID Table 919 has two columns. Referring to
FIG. 9, these columns are briefly described below.

“Application ID” 921 1s a unique 1dentifier generated by
Application Decode Compiler 203 for each application
supported by the present invention. Application ID Table
919 is indexed on this field.

“State-Event Tree Start ofiset” 923 identifies the starting
point 1n Expression Action Table 1001.

FIG. 10 1s a diagram that illustrates a sample set of
Expression Action Table 1001 entries. This table 1s created
by Application Decode Compiler 203 while compiling
Application Decode Script 201, and 1s a part of Static
Application Decode Database 205.

Each entry of Expression Action Table 1001 identifies an
instruction that 1s to be performed during the Application
Decode State Machine execution. These instructions are
atomic expressions, which have one opcode and a maximum
ol eight operands.

Each entry of the Expression Action Table 1001 may have
ten or eighteen columns. The operations that require four or
less parameters need only first ten columns. FIG. 10 1llus-
trates an example of these operations. There are other
operations that need more than four parameters. These
operations have eight additional fields namely Operand Type
5 to Operand Type 8 and Operand Value 5 to Operand Value
8. Referring to FI1G. 10, the columns of this table are brietly
discussed below.

“Opcode” 1003 1s an identifier that defines how an
istruction 1s to be executed. The Opcode 1003 either
denotes an action (such as moving/copying a value from one
location to another) or denotes an operation (such as adding/
subtracting two values).

“Operand Type 17 1005 to “Operand Type 47 1011

identify the type of the operands.

“Operand Value 17 1013 to “Operand Value 47 1019
identify the value of the operands.

FIG. 11 1s a diagram that describes some of the instruc-
tions supported by State Machine Execution Engine 213.
The table shows sample opcodes along with a brief descrip-
tion of their function. This table 1s not intended to be an
exhaustive listing of all opcodes supported by State Machine
Execution Engine 213.

FIG. 12 1s a diagram that illustrates the structure of
Application Instance Table 1201. This table contains infor-
mation specific to each istance of an application. Entries in
this table are referred to by Session Cache Table 701.
Application Instance Table 1201 has fourteen columns.
Referring to FIG. 12, these columns are discussed below.

“Sec App Instance” 1203 1s a pointer to Application
Instance Table 1201 entry for the Secondary Application
Instance. This field 1s used only for applications with cor-
related sessions and for tunneled applications.

“Reference Count” 1205 1dentifies the number of sessions
referring to the entry. When the “Reference Count™ 1s zero,

the entry 1s deleted.
“Param 1 Type and 1D 1207 to “Param 6 Type and ID”

1217 identity the type and ID of the extracted parameters 1
to 6. The parameter type can be of type Integer or String. The
parameter ID 1dentifies the parameter. It may be noted that
when the present invention operates within the exemplary

US 7,356,027 Bl

11

Policy Agent of FIG. 1, the parameter ID 1s sent to Rule
Engine 107 along with the parameter value so that Rule
Engine 107 can apply rules based on the ID and 1ts corre-
sponding value.

“Param 1 value” 1219 to “Param 6 value™ 1227 identifies 5
the extracted value of parameters 1 to 6.

While the preferred embodiments of the mmvention have
been 1llustrated and described, 1t will be clear that the
invention 1s not limited to these embodiments only. Numer-
ous modifications, changes, variations, substitutions and 10
equivalents will be apparent to those skilled in the art,
without departing from the spirit and scope of the invention
as described 1n the claims.

What 1s claimed 1s: 15

1. A system for decoding the packet streams of computer
networks and 1dentitying applications generating the packet
streams, the system comprising:

a. a plurality of static data stores containing instructions
for decoding a packet to identify the application, trans- 20
actions and parameters, wherein said plurality of static
data stores further comprise:

1) an Application ID Hash Table that contains a map-
ping of destination port numbers to corresponding
applications; and 25

11) an Expression Action Table that contains instruc-
tions to be executed on the packets for decoding;

b. a plurality of dynamic data stores for maintaining
information related to the current state of the decode
process, wherein said dynamic data stores includes: 30
1) a Session Cache Table that contains information

regarding the currently active sessions;

11) an Application Instance Table that contains infor-
mation regarding the current state of the decode
process for the currently active applications; and 3>

111) a Session Correlation Table that maintains infor-
mation regarding news sessions that are related to
currently active sessions;

c. a means for receiving packets and for identitying the
session to which the packets belong; and

d. a means for decoding transactions and parameters of
the application and for sending the decoded informa-
tion with the packet out of the system.

2. The system according to claim 1, wherein said means
for receiving packets and for identifying the session 1s a
Packet Recerver.

3. The system according to claim 2, wherein said Packet
Receiver checks the Session Cache Table to determine
whether the packet 1s part of an existing session.

4. The system according to claim 1, wherein the system 1s
embodied as a computer program.

5. A method for decoding the packet streams on computer
networks and identifying applications generating the packet
streams, the method comprising steps of:

a. 1dentifying the session to which the packet belongs, by
means ol a Packet Receiver;

b. 1dentitying the application generating the packet, i1 the
session 1s a new session, by sending the packet to a
Stream Manager; 60

c. 1dentifying the transactions and parameters of the
application generating the packet, 1t the session 1s an
existing session, by sending the packet to a Stream
Manager;

d. 1dentitying the application using a Session Correlation 65
Lookup Engine, 1f the session to which the packet
belongs 1s an expected session;

40

45

50

55

12

¢. 1identifying the application using an Application 1D
Hash Table, 1f the session to which the packet belongs
1s not an expected session; and

. storing the identified application details 1 a Session
Cache Table and an Application Instance Table, by the

Stream Manager.
6. The method according to claim 5, wherein the step of

identifying the application using the Session Correlation
Lookup Engine further comprises scanning a Session Cor-
relation Lookup Table based on destination port of the
packet to determine if the session 1s an expected session.

7. The method according to claim 5, wherein the step of
identifying the application using the Application ID Hash
Table further comprises scanning the Application ID Hash
Table based on the destination port of the packet to identity
the application.

8. The method according to claim 5, wherein the step of

storing the i1dentified application details further comprises
the steps of storing a default details for the application, 11 the

application has not been identified.

9. The method according to claim 5, wherein the step of
identifying the transactions and parameters of the applica-
tion generating the packet further comprises steps of:

a. determiming whether the state of an Application Decode

State Machine execution 1s complete;

b. determining whether streaming of the packet 1is

required;

c. 1identifying transactions and parameters of the applica-

tion using a State Machine Execution Engine; and

d. determining whether the information in the packet 1s

incomplete for the State Machine Execution Engine.

10. The method according to claim 9, wherein the step of
determining whether the state of the Application Decode
State Machine execution i1s complete, further comprises
sending a decoded information with the packet.

11. The method according to claim 10, wherein the step of
sending the decoded information with the packet further
comprises appending the decoded information onto the
packet.

12. The method according to claim 10, wherein the step

of sending the decoded information with the packet further
comprises sending the decoded information as control pack-

ets.

13. The method according to claim 9, wherein the step of
determining whether streaming of the packet i1s required,
turther comprises the steps of:

a. sending the packet to the Stream Manager if streaming

1s not required; and

b. sending the packet to a Stream Layer 1f streaming 1s

required.

14. The method according to claim 13, wherein the step
of sending the packet to a Stream Layer, further comprises
steps of:

a. collating the information distributed over packets, by

the Stream Layer; and

b. sending the collated mnformation to the Stream Man-

ager.

15. The method according to claim 13, wherein the step
of sending the packet to the Stream Layer, further comprises
steps of:

a. ordering re-transmitted and out of order packets, by the

Stream Layer; and

b. sending the packets 1in order to the Stream Manager.

16. The method according to claim 9, wherein the step of
identifying the transactions and parameters using the State
Machine Execution Engine further comprises steps of:

US 7,356,027 Bl

13

a. loading the Application Decode State Machine, by the

State Machine Execution Engine; and
b. executing the instructions 1n an Expression Action

Table corresponding to the current state of the Appli-

cation Decode State Machine, by the State Machine
Execution Engine.

17. The method according to claim 16, wherein the step
of executing the 1nstructions in the Expression Action Table,
turther comprises the steps of:

a. informing the Stream Manager, 11 the information in the

packet 1s incomplete to execute the instructions;

b. storing details of new session 1n a Session Correlation

Table, 11 a new session 1s expected;

c. updating the Application Decode State Machine based

on results of executing the instructions; and

d. updating a Session Cache Table and an Application

Instance Table based on results of executing the mstruc-
tions.

18. The method according to claim 9, wherein the step of

10

15

determining whether the information 1n the packet 1s incom- 20

plete, further comprises steps of:
a. setting a flag 1n a Session Cache Table, 11 the packet
information 1s incomplete; and
b. sending packet to the Stream Layer, if the packet
information 1s 1ncomplete.

14

19. A system for decoding the packet streams of computer
networks and 1dentifying applications generating the packet
streams, the system comprising:

a. a plurality of static data stores containing instructions
for decoding a packet to identify the application, trans-
actions and parameters;

b. a plurality of dynamic data stores for maintaining
information related to the current state of the decode
process, wherein said plurality of dynamic stores fur-
ther comprise:

1) a Session Cache Table that contains information
regarding the currently active sessions;

11) an Application Instance Table that contains infor-
mation regarding the current state of the decode
process for the currently active applications; and

111) a Session Correlation Table that maintains infor-
mation regarding news sessions that are related to
currently active sessions;

c. a means for recerving packets and for identifying the
session to which the packets belong; and

d. a means for decoding transactions and parameters of
the application and for sending the decoded informa-
tion with the packet out of the system.

	Front Page
	Drawings
	Specification
	Claims

