US007353514B1
12 United States Patent (10) Patent No.: US 7.,353.514 B1
Camp et al. 45) Date of Patent: Apr. 1, 2008
(54) COMPUTER SOFTWARE METHOD FOR 5,835,763 A * 11/1998 KIein .ovveeveeeeeeeeeennn, 718/101
ADMINISTERING BATCH JOBS 6,349,333 B1* 2/2002 Panikatt et al. 709/223
6,519,594 B1* 2/2003 L1 vviiviiviiiiiiiiiniinninnnn, 707/10
(75) Inventors: Brandon Camp, Austin, TX (US): 6,625,651 B: 9/2003 Swartz et al. 709/226
James G. Mwaura, Irving,, X (US) 6,640,244 Bl 10/2003 Bowman-Amuah 709/207

(73) Assignee: Sprint Communications Company * cited by examiner

L.P., Overland Park, KS (US) Primary Examiner—Meng-Al T. An

_ _ L , Assistant Examiner—Kenneth Tang
(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35 (57) ABSTRACT
U.S.C. 134(b) by 773 days.

The present invention discloses a method for processing

(21) Appl. No.: 09/698,729 batch jobs. A batch job 1s wrapped to create an application

_— programming interface for communication with a batch

(22) Filed Oct. 27, 2000 framework. The batch framework comprises a batch dis-
(51) Int. CL patcher class, and the batch dispatcher class further com-
GO6F 9/46 (2006.01) prises a method to execute the batch job. The batch frame-
GO6F 3/00 (2006.01) work is. invoked accprding to a pre‘determined schedule. The

(52) US.CL oo 718/101: 719/328; 719/329 ~ Patch job may reside locally with the batch framework

remotely from the batch framework. In a preferred embodi-
ment, the batch framework 1s imvoked by a scheduling
service, preferably the AutoSys scheduling service on Unix
platform. The AutoSys scheduling service further executes a
(56) References Cited command line parameter, either a Unix shell script or a

Windows NT batch file.

(58) Field of Classification Search 709/1-108,
709/310-400; 718/1-108; 719/310-400

See application file for complete search history.

U.S. PATENT DOCUMENTS
5,327,559 A * 7/1994 Priven et al. 718/101 21 Claims, 4 Drawing Sheets

2 Scheduler
20

Batch = Batch
10 a¥ 15
| Framework ‘ <L Job

17

~—30 /~— 35

AUtOS
\&l l UNIX Shell Script

“java-classpath

/™~ 35
Standalone JVM
N , ! VA~ 100 15—
Batchlob 45
| Dispatcher _| AccountsPayable

pdl BackupAccounts 50

(maln)ﬂ A

= 102

Utility Frameworks
40

U.S. Patent Apr. 1, 2008 Sheet 1 of 4 US 7,353,514 B1

FIG. 14

Scheduler

20

Batch
Framework

FiG. IB

30 39

AutoSys UNIX Shell Script

"Java-classpath

/~— 55
Standalone JVM

100 =

DBist(;Q(J:ﬁzr AccountsPayable 43
pat BackupAccounts 50
(main)
Utility Frameworks

40

U.S. Patent Apr. 1, 2008 Sheet 2 of 4 US 7,353,514 B1

FiG. 24

20

5

Scheduler

Batch
Framework

10

U.S. Patent Apr. 1, 2008 Sheet 3 of 4 US 7,353,514 B1

FiIG. 2B

[~— 30 35

Aut
|L8ys|—‘ UNIX Shell Script

“java-classpath o0 e,

55
Standalone JVM
100
Batchlob
Dispatcher
(main)
102
EJBBatchJob 105
Dispatcher Utility Frameworks

(runEJBJob)

106 40

Weblogic JVM
15
AccountsPayable 46
BackupAccounts 51
E]B

Utility Frameworks

41

US 7,353,514 B1

Sheet 4 of 4

Apr. 1, 2008

U.S. Patent

()san2do.adi1ase
()onjepebe
()enjeAlsbe
()senuadoiqiobe
()senadoidiobe
()owenNuonedlddy1obe

JUSWUOIIAUZQOYdIey

01T —

(quawiuoliauauoned||dde wol))

Juswiuodiauguoned|ddy

()edel orSuLide
()edeiyoerSiuLde
()edeliorISuLde

()obesson19b4,

(Jpasopulabe

(Juondadxgycegde
(Juondadox3yoiege
(Juondaox3gyoeg,

boo|14

GCT

(buibboj wou))

()seipedold1oSe

()onepAlabe

()eneplsbe

()saiadoidisbe
()saiadoidiabe
()esweNuoned||ddyisbg
()jdwpuawuonaAuqorynege
()idwpuswuoiiauzqoryned,

0sT —/

|[dwpuawuoliauzgorydleg

STT —~

¢ OIA

uondadx3ayneqg

0CT

90T
()gordraunig

Joydedsigqorynegqr
GOI

(J1seLung

(Jurewg
()boquadpuruondarx3bo|ed,
(uondaoxgbojed
()sdiedon|eAAYIRDYS
(JpoyIsiNgoIabed
()sse|Dqo1abed

(quswuonauzgorynegiabed
()go[@1ND9X3ed
()qoryoredsipdd
()JoB607912.100d
()1266073neRa3LD DM

12ydedsigqqorydieg

00T

COT

US 7,353,514 Bl

1

COMPUTER SOFTWARE METHOD FOR
ADMINISTERING BATCH JOBS

BACKGROUND OF THE INVENTION

The present invention 1s a computer software method for
administering batch jobs, and more specifically scheduling,
iitializing, dispatching, and executing batch jobs. Prefer-
ably, the batch jobs are written as Java applications, and the
batch jobs may be located on a local computer or distributed
across an enterprise-wide computing system.

A batch job (also referred to as a batch program) 1s a
computer software application (1.e., program) for performs-
ing some repetitive, low priority task that typically requires
no direct external input (1.e., non-interactive, non-conversa-
tional). Common examples of batch jobs include report
generation (e.g., daily, weekly, monthly reports) and data
updating, backup, and sorting. Batch job administration 1s
the scheduling, execution, etc. of batch jobs on a computer
or network with minimal user supervision.

Batch jobs may be written 1n a variety ol computer
languages such as Cobol, Natural, SQL, C, C+, C++, efc.
The choice of the language used to implement the batch job
1s heavily influenced by the resources and information
required by the job during execution. For example, a batch
10b producing reports to show activity and modifications of
customer information 1n a database likely would be imple-
mented 1 SQL. Thus, batch jobs are often tightly coupled to
the components and services that process them, thereby
making 1t diflicult to reuse the batch job 1n a different domain
(1.e., platform) without substantial modification and rewrit-
ing. The present invention addresses this need for code reuse
and platform imndependence by encapsulating batch jobs and
providing a uniform application programming intertace
(API) for components and services processing the jobs.

SUMMARY OF THE INVENTION

The present invention discloses a method for processing
batch jobs, comprising wrapping the batch job to create an
application programming interface for communication with
a batch framework, the batch framework comprising a batch
dispatcher class, and the batch dispatcher class further
comprising a method to execute the batch job; and invoking
the batch framework according to a predetermined schedule.
The batch job may reside locally with the batch framework
remotely from the batch framework. In a preferred embodi-
ment, the batch framework 1s mvoked by a scheduling
service, preferably the AutoSys scheduling service on Unix

plattorm. The AutoSys scheduling service further executes a

command line parameter, either a Unix shell script or a
Windows NT batch file.

DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are block diagrams of a preferred

embodiment of the invention wherein a batch job 1s executed
in a local environment.

FIGS. 2A and 2B are block diagrams of a preferred

embodiment of the invention wherein a batch job 1s executed
in a distributed environment.

FIG. 3 1s an object model, also referred to as a class
diagram, of the batch framework of this invention.

5

10

15

20

25

30

35

40

45

50

55

60

65

2

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

Referring to FIGS. 1A and 2A, scheduler 5 1s attached to
and invokes batch framework 10, which 1n turn 1s connected
to and executes batch job 15. FIG. 1A represents a local
operating environment, wherein scheduler 5, batch frame-
work 10, and batch job 15 are all operating on a local
computer 20. FIG. 2A represents a distributed operating
environment, wherein scheduler 5 and batch framework 10
operate on local computer 20 to call and execute batch job
15 operating on remote computer 235. Alternative embodi-
ments not shown include, distributing scheduler 3, batch
framework 10, and batch job 15 over three separate com-
puters, and distributing scheduler S on a local computer and
batch framework 10 and batch job 15 on a remote computer.
In either a local or distributed environment, local computer
20 and remote computer 25 ecach may be any suitable
hardware for hosting and executing a computer application,
such as a work station, personal computer, or server. Fur-
thermore, any suitable operating system may be used on
local computer 20 and remote computer 25, for example
Windows, Windows NT, OS/2, UNIX, etc. In the distributed
environment of FIG. 2A, local computer 20 can be linked to
and communicate with remote computer 23 according to any
suitable distributed computing system, for example a local
or wide area network communicating via transmission con-
trol protocol/internet protocol (TCP/IP).

Batch job 15 may be any application program performing,
a task that lends itself to batch processing, and batch job 15
may be written 1n any suitable programming language.
Batch job 15 has an application programming interface
(API) 17, and batch framework 10 communicates with batch
10b 10 though API 17. An API 1s a language and message
format used by an application program/component to com-
municate with another program/component (e.g., an operat-
ing system or some other system or control program).
Preferably, API 17 1s a Java interface, which 1s written 1n the
Java programming language available from Sun Microsys-
tems Inc., and operates within a Java virtual machine (JVM).

Preferably, batch framework 10 1s a Java framework
comprising the classes shown in FIG. 3. Batch job dis-
patcher class 100 1s the main (1.e., public) entry point into
batch framework 10, this 1s batch job dispatcher class 100 1s
the executable that 1s invoked 1n order to use the function-
ality provided by the framework. As used 1n object technol-
0gy, a class defines the methods and variables for a particu-

lar type of object; all objects of a given class are 1dentical 1n
form and behavior but contain different data in their vari-
ables. Accessors are the methods on a class that provide
access to the varniables of the class (for example, get and set
commands). The methods and varniables comprising each
class are shown 1n FIG. 3, and it will be understood that
these methods and variables may be modified by one skilled
in the art without departing from the scope of the present
invention.

EJB batch job dispatcher 105 1s a subclass that extends
batch job dispatcher class 100. EJB batch job dispatcher 105
extends the functionality of batch job dispatcher class 100 1n
order to run (i.e., execute) batch jobs located remotely, and
specifically remote jobs operating as enterprise java beans
(EJBs). While use of EJBs to run remote batch jobs 1s
preferred, other subclasses could be added to cover runming
remote jobs other than EJBs.

Batch job environment 110 1s an interface that defines the
functionality of the implementation of a batch job environ-
ment object. An interface (also known as a message inter-

US 7,353,514 Bl

3

face) 1s a communication surface that determines the signals
(e.g., calls) that can pass through the surface; in other words,
the 1nterface defines which calls an object will respond to.
That 1s, the interface defines the base functionality (i.e.,
methods) that 1s required for an implementation of the
interface. Batch job environment implementation class 1135
implements batch job environment 110. The implementation
of an object consists of a class definition that implements the
object interface. A batch job environment object, comprising
an implementation of the batch job environment implemen-
tation class 115 upon request by batch job dispatcher class
100, contains configuration information (e.g., batch job
name and run parameters) for the batch job. The configu-
ration information 1s passed to the batch job (either locally
or remotely) by batch job dispatcher class 100. A batch job
environment object implemented from the batch job envi-
ronment class 1s a serializeable object that can be passed to
a remote batch job operating as an EJB.

Batch exception class 120 1s a standard error message
class corresponding to common errors (i.e., throwable
exceptions) encountered in implementing the batch frame-
work. In carrying out its functions, the batch framework may
call other classes or frameworks to provide particular func-
tionality. In the preferred embodiment of FIG. 3, batch job
dispatcher class 100 calls file log class 1235 (for a logging
framework) to obtain file logging functionality or batch job
environment 110 calls application environment class 130
(from an application environment framework) to obtain
environment/configuration functionality.

Referring generally to FIGS. 1 and 2, batch framework 10
accepts the broad batch job class (i.e., a Java class name), the
specific batch job to be executed (1.e., a method name), and
the parameters goverming execution of the batch job (.e.,
method parameters). The method of the class 1s executed as
a batch job with the parameters supplied as arguments and
the return code form the batch job method 1s passed back.
Thus, batch framework 10 provides a simple and consistent
command line interface for requesting that a batch job be
executed.

FIG. 1B 1s a preferred embodiment of the local operating
environment of FIG. 1A, wherein a standalone java batch
10b 1s executed by the batch framework 1n response to a
request from a Umix shell script. Scheduler 10 (FIG. 1A) 1s
an automated system (1.e., AutoSys 30) provided by the
operating systems (OS) for the scheduling and management
ol jobs. AutoSys 1s the standard scheduling service available
on Unix operating platforms. At a scheduled time, AutoSys
30 executes Unix shell script 35 or a Windows NT batch file.
Alternatively, scheduler 10 may be mcorporated into batch
framework 10, for example by coding a scheduling method
into batch job dispatcher class 100.

Unix shell script 35 comprises command line arguments,
including the batch job name/class (e.g., accounts payable
45) and the specific method (e.g., backup accounts 50) to
perform. Thus, Unix shell script 35 imnvokes main method
102 on batch job dispatcher class 100, passing the command
line arguments. The main method, also referred to as a start
method, 1s the entry point into the framework that creates an
instance of the class. The main method 1s a static method
rather than a member method, meaning that the main method
can be mvoked without instantiating the class. Batch job
dispatcher class 100 retrieves a batch job environment object
from batch job environment class 110, optionally using
utility frameworks 40 such as an application environment
framework (FIG. 3). The batch job environment 1s used to
register a given instance of the batch job dispatcher with a
utility framework such as a logging framework (FI1G. 3).

10

15

20

25

30

35

40

45

50

55

60

65

4

Batch job dispatcher class 100 uses the Java Reflection
API to find the requested job class name (e.g., accounts
payable 45) within 1ts own Java virtual machine (JVM), that
1s local or standalone JVM 55. The Java Reflection API 15 a
feature 1 the Java programming language that allows an
executing Java program to examine or “introspect” upon
itsell, and manipulate internal properties of the program or
classes executing within a program. Batch job dispatcher
100 uses the Java Reflection API to locate the appropriate
method (e.g., backup accounts 50) for the job class and
invokes the retrieved method passing the application envi-
ronment and properties as parameters. Batch job 15 accesses
utility frameworks 40 as needed to complete processing.
Batch job 13 passes return code back to batch job dispatcher
class 100, which 1s passed all the way back to AutoSys 30.

FIG. 2B 1s a preferred embodiment of the distributed
operating environment of FIG. 2A, wherein a remotely
located enterprise Java bean (EJB) batch job 1s executed by
the batch framework in response to a request from a Unix
shell script. Scheduler 10 (FIG. 2A) 1s an automated system
(1.e., AutoSys 30) provided by the operating systems (OS)
for the scheduling and management of jobs. At a scheduled
time, AutoSys 30 executes Unix shell script 35 or a Win-
dows NT batch file. Alternatively, scheduler 10 may be
incorporated ito batch framework 10, for example by
coding a scheduling method 1nto batch job dispatcher class

100.

Unix shell script 35 comprises command line arguments,
including the batch job name/class (e.g., accounts payable
EJB 46) and the specific method (e.g., backup accounts EJB
51) to perform. Thus, Unix shell script 35 invokes main
method 102 on batch job dispatcher class 100, passing the
command line arguments. Batch job dispatcher class 100
retrieves a batch job environment object from batch job
environment class 110, optionally using utility frameworks
40 such as an application environment framework (FIG. 3).
The batch job environment i1s used to register a given
instance of the batch job dispatcher with a utility framework
such as a logging framework (FIG. 3).

Batch job dispatcher class 100 uses the Java Reflection
API to find and invoke the EJB batch job dispatcher class
105 within 1ts own Java virtual machine (JVM), that 1s local
or standalone JVM 55. Batch job dispatcher class 1035 uses
Java Retlection API to locate “run EJB job” method 106 and
invokes the retrieved method passing the application envi-
ronment and properties as parameters.

EJB batch job dispatcher class 105 uses the Java Retlec-
tion API to find the requested job class name (e.g., accounts
payable 46) located on a remote Java virtual machine
(JVM), that 1s Weblogic JVM 55. EJB batch job dispatcher
105 uses the Java Reflection API to locate the appropnate
method (e.g., backup accounts EJB 31) for the job class and
invokes the retrieved method passing the application envi-
ronment and properties as parameters. Batch job 15 accesses
utility frameworks 41 as needed to complete processing.
Batch job 15 passes return code back through EJB batch job
dispatcher class 105 and batch job dispatcher class 100 all
the way back to AutoSys 30.

The batch framework 1s configured (1.e., initialized) such
that 1t has the necessary system properties for the JVM, the
location of a master mnitialization (in1) file, and an applica-
tion name as 1t appears in the master initialization file.
Command-line parameters (e.g., the Unix shell script) pret-
erably include the name of the batch job’s Java class and
name of the batch job’s method. Additional parameters
required by the batch job’s method are placed 1n a key-value

US 7,353,514 Bl

S

table and passed as one parameter to the batch job. The batch
10b’s method should know the name of the keys to retrieve
from the table.

EXAMPLES

While the code examples herein are written in the Java
programming language, which is available from Sun Micro-
systems Inc., 1t 1s understood that other suitable program-
ming languages may be used as will be readily apparent to
one skilled in the art. Furthermore, 1t should be understood
that the code examples are in skeleton or outline form, and
are not necessarily intended to be 1n complete executable
form, provided however that one skilled in the art could
casily tailor executable code based upon these examples.
The 1talicized text following the double backslashes (i.e.,
“//”’) 1s commentary text. Examples 1-3 are drawn to the
preferred local environment embodiment of FIGS. 1A and
1B, and Examples 4-6 are drawn to the preferred distributed
environment embodiment of FIGS. 2A and 2B.

Example 1

Assume an accounting application group wants to back up
theirr accounts payable from 1992 to 1996. The
AccountsPayable class needs configuration values from its
initialization file. “Accounting” 1s the application name as 1t
appears 1n the master initialization file, and backup Accounts
1s the name of the method on the AccountsPayable class. The
backup Accounts method expects to receive a Properties data
structure holding the key-value pairs for “startRange™ and
“endRange”. The resulting upper-half of the shell script
would read (case-sensitive):

User—Application Name found in the master init. file
APP_NAME_INIT=*Accounting”

User—Batch Job Class Name

10

15

20

25

30

35

6
Example 2

The following template applies to batch job class written
in Java that will be executed in a standalone JVM from the
batch framework. For each type of job to perform, prefer-
ably two methods are created. The first method 1s called by
the batch framework, which receives a ‘BatchJobEnviron-
ment” object and a Properties table. This first method parses
out any parameters from the Properties table, casts the
parameters to the appropriate data type (1f not a string), and
invokes a second batch job method. The first job method
should return an integer; and cannot throw any exceptions.
Therefore, all anticipated exceptions should be handled at
the first or second batch job method. A return code of O
should be used when processing 1s successiul. All other
return codes from the batch job should be “10° or greater.
Sample code 1s as follows:

public static int <Method Name>(BatchJobEnvironment, Properties) {
<Initialize variables needed for the Logging Framework>
<Initialize local variables>
<Parse key-value pairs from the Properties into parameter variables>

<Cast (1f necessary) the parameters into the appropriate type>
<Catch any exceptions that could occur with the typecast>
<Log the error with the Logging Framework>
<Set the appropriate return code and return it>
<If no errors occurred, calls the underlying batch job method passing
the required parameter variabless>
<Catch the return code and pass it back to the Batch Framework>
h

The secondary method can receive any required param-
cters should perform the actual job processing. It is free to
instantiate other helper classes, call other methods, or to
execute all the work solely within the secondary method.
The second method must return an integer and cannot throw
exceptions. Sample code 1s as follows:

JOB_NAME="com.sprint.arch.batch.example.accounting. AccountsPayable™

User—Batch Job Method Name
METHOD_NAME="*backupAccounts™

User—Key=Value parameter list (space separated)
PARAM_LIST="startRange=1992 endRange=1996"
User—Java Class Path for your Batch Job Class.

BATCH_JOB_CLASS_PATH="/home/bcamp/BJD/l1b/
app/accounting.jar’”

A sample master mitialization file for Example 1 1s:

i il NS TER INT R it 2 2 a1
Accounting=d:\\data\\batch"\NT\\Accounting App.ini

A sample application nitialization file for Example 1 1s:

HIHHHHAHHHHAHTR IR Lo gging tHHAHHHHHHHH AT R
; Tor N'T, MUST use double *\’ to delimit directory names 1.e. “\W

; Batch Framework will be looking for
‘logging.defaultl.ogFile=<your default Log File>’
logging.defaultLogFile=d:\\data‘\\batch"\NT\\defaultLog.doc

; Log file for your application, could be anything (i.e.

key . . .*<prefix>.<key>=<your app Log File>’

logging. myLogFile=d:\\data\\batch\\N'T%\defaultLog.doc

HIHHH A AT

40

45

50

55

60

65

publiclprivate> static int «<Method Name>(<Any required job
parameters>. . .) {
<Initialize local variables>
<Perform batch job work>
<Catch any anticipated exceptions:>
<Log the error with the Logging Framework>
<Set the appropriate return code and return it>
<If no errors occurred, return the successful return code>

Example 3

The following 1s an example of a class, “AccountsPayable”,
which has a job method, “backupAccounts”. The class
definition contains constants needed for a logging frame-
work and predetermined return codes. An AccountingBEx-
ception class was created to represent all caught application
exceptions for the accounting package.

Class definition:

package com.sprint.arch.batch.example.accounting;
import java.util.Properties;

import java.util.Date;

import com.sprint.arch.logging.”;

import com.sprint.arch.batch.BatchJobEnvironment;
/PI‘-‘ b

US 7,353,514 Bl

7

-continued

* This type was created 1n VisualAge.

*

public interface AccountsPayableReturnCodes {
static final int SUCCESSFUL_RET_C = 0;
static final int DEFAULT_ RET_C = 10;
static final int ATOI__ERR__RET_C = 20;
static final int INVALID_ PARAM_RET C = 21;

h

/=I===E=

* This type was created in VisualAge.

*

package com.sprint.arch.batch.example.accounting;
import java.util.Properties;

import java.util.Date;

import com.sprint.arch.logging.®;

import com.sprint.arch.batch.BatchJobEnvironment;
/*H‘-‘

* This type was created 1n VisualAge.
*

public class AccountsPayable implements AccountsPayableReturnCodes {

// Return Code constants have been moved to a new interface
// AccountsPayableReturnCodes which this class implements. This 1s
//per code review suggestions
private static final String USERID = “Accounting’;
private static final String CLASS_ NAME = “AccountsPayable™;
// Constants for the Logger
private static final String LOGGING__PREFIX = “logging”;
private static final String MY__LOG_KEY = “myLogFile™;

//Logger 1s created 1n the backupAccountsInternal method and it
//18 passed to remaining methods
/*H‘-‘
* This method was created in VisualAge.
* (@return int
* (@param appCon com.sprint.arch.batch.BatchJobEnvironment
* (@param p java.util. Properties
*
public static it backupAccounts(BatchJobEnvironment batchJobEnv,
Properties p) {
return backupAccountsInternal(batchJobEnv, p,

CLASS_ NAME, LOGGING__PREFIX, MY_LOG_KEY);

h

/=I==i=

* This method was created in VisualAge.
parameters as myLogger and className are passed. this 1s because
the same method will be called from ejb.AccountsPayableBean class
* (@return int
* (@param appCon com.sprint.arch.batch.BatchJobEnvironment
* (@param p java.util. Properties
*
public static it backupAccounts(Object paraml1, Object param?,
Object paramN, FileLog
myLogger, String className) {
// Do any neccessary work . . .
try {
// Log something 1f neccessary
myLogger.logMsg(className + “:backupAccounts session:
running . . . startRange” + paraml +
“EndRange” + param?2, LogBase. DEBUG);
myLogger.logMsg(className + “:backupAccounts session:
completed.”, LogBase. DEBUG);
myLogger.closeLog();
// woo hoo!
return SUCCESSFUL_RET_C;
} catch (LogMsgException e) {
// Since logging failed, print the stack trace.
// Note: deciding whether or not to return a successfully
//return code here should be driven
// by the requirements and logic of your application

// batch job.
e.printStackTrace();

return DEFAULLT RET_C;

h
h

/*H‘-‘

* This method was created in Visual Age.
* (@return int
* (@param appCon com.sprint.arch.batch.BatchJobEnvironment

* (@param p java.util. Properties
*

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

public static int backupAccountsInternal(BatchJobEnvironment
batchJobEnv, Properties p, String className, String

loggingPrefix, String myLogKey) {
// Needed for my Logger’s logMsg

String method__name = “backupAccounts”™;
int retC = DEFAULT RET C;

String myLogFileName = batchJobEnv.getValue(loggingPrefix

myLogKey);
FileLog mylogger = null;

try 1
// Establish my mylogger

mylogger = new FileLog(LogBase. DEBUG, LogBase. DEBUG,

myLogFileName, true);
} catch (java.io.IOException ioe) {
//Since logging failed, print the stack trace
1oe.printStackTrace();

h
try {

// register this session with my logger
Date todaysDate = new Date();

mylogger.logMsg(todaysDate.toString(), LogBase. DEBUG);
mylogger.logMsg(*“Begining” + className + “:backupAccounts

session . . ., LogBase. DEBUG);
} catch (LogMsgException e) {
//Since logging failed, print the stack trace
e.printStackTrace();

h

// Fetch the parameters this method cares about.

String startRangeString = p.getProperty(“*startRange”);
String endRangeString = p.getProperty(“endRange”);
// Cast (if necessary) the parameters 1nto the appropriate type.

try {

if (startRangeString == null && endRangeString == null) {

return retC;

h

Integer startRangelnt = Integer.valueOf(startRangeString);
Integer endRangelnt = Integer.valueOf{endRangeString);

} catch (NumberFormatException ¢) {

// The string could not be converted mnto an integer.
// Log the exception and location with the Logger
String message = “Error attempting to convert a String” +

“parameter to an integer.”’;

try {

mylogger.logMsg(message, LogBase. WARNING);

} catch (LogMsgException e2) {
//Since logging failed, print the stack trace
e2.printStackTrace();

h

return ATOI_ERRRET C;

h

// Calls a method with the same name and the relevant parameters.

return backupAccounts(startRangeString
endRangeString null,mylogger,className);

h
h

Example 4

Assume an accounting application group wants to back up

their accounts payable from 1992 to 1

996 and that the

accounting group chose to implement their AccountsPayable
batch job as an Enterprise Java Bean (EIB). The
AccountsPayableEJBObj EJB needs to access the nitializa-
tion framework and “Accounting” 1s the application name as
it appears 1n the master nitialization file. The application

name, “Accounting”’, need only appear 1n

the master 1nitial-

ization file on the platform where the BatchJobDispatcher
executes and does not have to be on the platform where the
EJB 1s deployed. (These two platforms are not necessarily
the same.) “AccountsPayableEJBOb;” 1s the application
name of the EJB, as defined 1n the application’s initialization

file by the entries with an ‘ejb’ prefix.

The name of the

method on the AccountsPayableEJBOb;

HJB 1s backupAc-

counts. The backupAccounts method expects to receive a

US 7,353,514 Bl

9

Properties data structure holding the key-value pairs for
“startRange™ and “endRange”. The resulting upper-half of
the shell script would look like (case-sensitive):

User—Application Name found 1n the master init. file
APP_NAME_INIT="Accounting”

User—Batch Job Class Name as found in the with an

‘e1b’ prefix 1n the 111 file
EJB_JOB_NAME="*AccountsPayableEIBOb;j”

User—EJB Batch Job Method Name
EIB_METHOD NAME="backupAccounts”

User—Key=Value parameter list (space separated)
PARAM_LIST="startRange=1992 endRange=1996"

A sample master imtialization file for Example 4 1s:

Hi A MAS TER INIHHHH A A
Accounting=d:‘\\data\\batch\\NT\\Accounting App.ini

A sample application nitialization file for Example 4 1s:

HIHHHHAHHHAAHTHE] BSs tHHHH AR
¢|b.AccountsPayableEJBOb|=
com.sprint.arch.batch.example.accounting.ejb. AccountsPayableHome
; For every EJB above, you must provide its provider url and it’s initial
context factory.

;EJB deployed on a WebLogic server
;AccountsPayableEJBObj.java.naming.factory.mmitial=

weblogic.jndi. TengahInitial ContextFactory
;AccountsPayableEIBObj.java.naming.provider.url=t3://localhost: 7001
;EJB deployed on a Websphere server
AccountsPayableEJBObj.java.naming.provider.url=IIOP:///
AccountsPayableEJBObj.java.naming.factory.initial=

com.ibm. ndi.CosNaming.CNInitialContextFactory

HIHHHHAHH TR
HIHHHHEHRHAHT L 0 g ging #HHHTTHHHHHHHH AT

; Tor N'T, MUST use double *\’ to delimit directory names 1.e. “\W

; Batch Framework will be looking for ‘logging.defaultl.ogFile=<your
default Log File>’

logging.defaultLogFile=

h:batch_ job__exampleiidatatibatch\i\NTV\defaultLog.txt

; Log file for your application, could be anything (i.e.

key . . .*<prefix>.<key>=<your app Log File>’

logging.mylL.ogFile=

h:'batch_ job_ example\idatatibatch\i\NTV\defaultLog.txt

HIHHHHAHH TR

Example 5

The following template applies to any batch job class

written 1n Java that will be executed as an Enterprise Java
Bean (EJB) 1n a WebLogic JVM from the batch framework.
For each type of job to perform, two methods should be
created. The first method 1s called by the batch framework,
which receives a ‘BatchJobEnvironment” object and a Prop-
erties table. The method 1s an 1nstance method, not static.
The first method parses out any parameters from the Prop-
erties table, casts the parameters to the appropriate data type
(if not a string), and 1nvokes a second batch job method. The
first job method should return an integer, and cannot throw
any exceptions. Therefore, all anticipated exceptions should
be handled at the first or second batch job method. A return
code of ‘0" should be used when processing 1s successiul. All
other return codes from the batch job should be ‘10 or
greater. Sample code 1s as follows:

5

10

15

20

25

30

35

40

45

50

55

60

65

10

public int «<Method Name>(BatchJobEnvironment,Properties) {
<Initialize variables needed for the Logging Frameworks>
<Imitialize local variables>
<Parse key-value pairs from the Properties into parameter variables>
<Cast (1f necessary) the parameters into the appropriate type>
<Catch any exceptions that could occur with the typecast>
<Log the error with the Logging Framework>
<Set the appropriate return code and return it>
<If no errors occurred, called the underlying batch job method
passing the parameter variables>
<Catch the return code and pass it back to the Batch Framework:>
1

The secondary method receives any required parameters
and performs the actual job processing. It 1s free to 1nstan-
tiate other helper classes, call other methods, or to execute
all the work solely within the secondary method. The second
method should return an integer and cannot throw excep-
tions. Sample code 1s as follows:

publiclprivate> it <Method Name>(
<Required job parameters>. . .)
{

<Initialize variables needed for the Logging Framework>
<Initialize local variables>
<Perform batch job works>
<Catch any anticipated exceptions>
<Log the error with the Logging Framework>
<Set the appropriate return code and return it>
<If no errors occurred, return the successful return code>

Example 6

The following 1s an example of an EJB remote interface,
“AccountsPayableEJBOby,” which has a bean,
“AccountsPayableBean,” and a job method, “backupAc-
counts.” The class definition contains constants needed for a
logging framework and predetermined return codes. An
AccountingException class was created to represent all
caught application exceptions for the accounting package.

Class definition:
package com.sprint.arch.batch.example.accounting.ejb;
/=I=$

* This 1s a Session Bean Class

*f

import javax.eb.*;

import java.util.Properties;

import java.util.Date;

ffmmmmm e Arch packages

import com.sprint.arch.logging.”;

import com.sprint.arch.configuration.®;

import com.sprint.arch.batch.BatchJobEnvironment;

import com.sprint.arch.applicationenvironment.
ApplicationEnvironmentManager;

import com.sprint.arch.batch.example.accounting.™;

public class AccountsPayableBean implements javax.ejb.SessionBean {
private javax.eb.SessionContext mySessionCtx = null;
// Return Code constants - not required as it just uses the
/fsprint.arch.batch.example.accounting. AccountsPayable
//class for its business
//methods.
// Constants for the Logger
private static final String USERID = “Accounting’;
private static final String CLASS_ NAME =

“AccountsPayableBean™;

US 7,353,514 Bl

11

-continued

private static final String LOGGING__ PREFIX = “logging’;
private static final String MY__L.OG__KEY = “myLogFile™;
//Logger
//protected FileLog logger = null;
/=I‘-‘=I‘-‘
* This method was created in VisualAge.
* (@return int
* (@param batchJobEnv com.sprint.arch.batch.BatchJobEnvironment
* (@param p java.util. Properties
*
//this method simply calls the AccountsPayable batch job method
//-modified as per code review suggestions
public int backup Accounts(BatchJobEnvironment batchJobEnv,
Properties p)

{
return com.sprint.arch.batch.example.accounting.
AccountsPayable.backup AccountsInternal(batchJobEnv,
p, CLASS NAME, LOGGING_PREFIX, MY_LOG_KEY);
h
/=I==I=

* gibActivate method comment.
*
public void ejbActivate() {

h

/=I==I=

* g|bCreate method comment.
*
public void ejbCreate() {

h

/*H‘-‘

* gibPassivate method comment.
*
public void ejbPassivate() {

;

/=I===E=

* ¢lbRemove method comment.
*
public void ejbRemove() {

h

/=I==i=

* setSessionContext method comment.

*

public void setSessionContext(javax.ejb.SessionContext ¢tx) {
mySessionCtx = ctx;

h

What 1s claimed 1s:

1. A method for processing a batch job, comprising:

wrapping the batch job to create an application program-
ming nterface for communication with a batch frame-
work, the batch framework comprising a batch dis-
patcher class, and the batch dispatcher class further
comprising a method to execute the batch job, wherein
the batch job performs a repetitive, low priority task
that typically requires no direct external input; and

10

15

20

25

30

35

40

45

50

12

invoking the batch framework according to a predeter-
mined schedule via execution of a command line
parameter, wherein the method provides for eflicient
reuse of programming code and platform independence
by encapsulating the batch job and providing a uniform
application programming interface for processing the
batch job according to the method.

2. The method of claim 1 wherein the batch job resides
locally with the batch framework.

3. The method of claim 1 wherein the batch job resides
remotely from the batch framework.

4. The method of claim 1 wherein the batch framework 1s

invoked by a scheduling service.
5. The method of claim 2 wherein the batch framework 1s

invoked by a scheduling service.
6. The method of claim 3 wherein the batch framework 1s

invoked by a scheduling service.

7. The method of claim 4 wherein the scheduling service
1s AutoSys.

8. The method of claim 7 where the AutoSys further
executes the command line parameter.

9. The method of claim 8 wherein the command line
parameter 15 a Unix shell script.

10. The method of claim 8 wherein the command line
parameter 1s a Windows NT batch file.

11. The method of claim 5 wherein the scheduling service
1s AutoSys.

12. The method of claim 11 where the AutoSys further
executes the command line parameter.

13. The method of claim 12 wherein the command line
parameter 1s a Unix shell script.

14. The method of claim 12 wherein the command line
parameter 15 a Windows NT batch file.

15. The method of claim 6 wherein the scheduling service
1s AutoSys.

16. The method of claim 15 where the AutoSys further
executes the command line parameter.

17. The method of claam 16 wherein the command line
parameter 15 a Unix shell script.

18. The method of claim 16 wherein the command line
parameter 15 a Windows NT batch file.

19. The method of claim 1 wherein the batch framework
1s a Java framework.

20. The method of claaim 1 wherein the application
programming interface for communication with the batch
framework 1s a Java application programming interface.

21. The method of claim 1 wherein the command line

parameter comprises a class name, a method name, and one
or more method parameters.

	Front Page
	Drawings
	Specification
	Claims

