12 United States Patent

US007350207B2

(10) Patent No.: US 7,350,207 B2

Fisher 45) Date of Patent: Mar. 25, 2008
(54) RULE-BASED SYSTEM AND METHOD FOR 6,550,057 B1* 4/2003 Bowman-Amuah 717/126
DOWNLOADING COMPUTER SOFTWARE 6,557,100 B1* 4/2003 Knutsonc.ceeeeeeennn.. 713/100
OVER A NETWORK 6,802,054 B2* 10/2004 Farajccceveveeeeenneen... 717/128
7222341 B2* 5/2007 Forbes et al. 717/170

(75) Inventor: Matthew D. Fisher, Manassas, VA 2002/0021307 ALl* 2/2002 Glenn et al. wvvevvee.... 345/753

(US)

(73) Assignee: Tellabs Operations, Inc., Naperville, IL
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 874 days.

(21) Appl. No.: 10/153,952

(22) Filed: May 23, 2002

(65) Prior Publication Data
US 2003/0088684 Al May 8, 2003

Related U.S. Application Data

(60) Provisional application No. 60/293,230, filed on May
25, 2001, provisional application No. 60/293,178,
filed on May 25, 2001.

(51) Inmt. CL.
GO6F 9/445 (2006.01)
(52) US.CL ..., 717/178; 717/168; 717/172;
717/173;717/174;717/177
(58) Field of Classification Search 709/203-224,
709/236; 717/126-176, 178; 713/100;
345/753
See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS
5,832,275 A 11/1998 Olds
5,867,714 A 2/1999 Todd et al.
5,901,320 A * 5/1999 Takahashi et al. 717/170
6,247,128 B1* 6/2001 Fisher et al. 713/100
6,286,051 B1* 9/2001 Becker etal. 709/236
6,341,373 Bl 1/2002 Shaw

SOFTWARE COMPATIBILITY TAG 300

305 SCTRI02[55; PNV

309 PNV[2:0]

11 PNV[10:17;

[18:25]
PN[0:7]

317 PN[8:15]

(Continued)
OTHER PUBLICATIONS

Notification of Transmuttal of the International Search Report or the
Declaration (from PCT counterpart application) dated Sep. 5, 2002.

(Continued)

Primary Examiner—Meng-Al T. An
Assistant Examiner—Mark P. Francis
(74) Attorney, Agent, or Firm—Welsh & Katz, Ltd.

(57) ABSTRACT

The apparatus, system, and method facilitates the replace-
ment of software components. New versions of software
components and files may be transmitted to a computer
system for purposes of updating the existing software com-
ponents and files on that computer system. Automatic updat-
ing systems, as are currently known in the art, may however,
create problems in the receiving computer system 1f the
transmitted soltware components or files are corrupt or are
incompatible with the software already installed on the
receiving computer. The apparatus includes a data construct
that, when appended to a software component or file for
transmission through a communications network, facilitates
the detection of transmission errors and of system incom-
patibilities. This construct (trailer) includes compatibility
tags for use with a rule engine or other apparatus to
guarantee a software component’s ability to coexist with
other components within the receiving computer system. In
addition, multiple hierarchical CRCs (cyclic redundancy
checks) are used to verily data integnty.

3 Claims, 4 Drawing Sheets

'SCT VERSION, REQUIRED,
{SCT RULE,

PART NUMBER VERSION(MSB}
PART NUMBER VERSION

PART NUMBER VERSION

PART NUMBER VERSION(LSB) 1 SCT
PART NUMBER(MSB)

15 PN[16:23]

PART NUMBER
PART NUMBER

24:31]

PART NUMBER (LSB) y

US 7,350,207 B2
Page 2

U.S. PATENT DOCUMENTS

2002/0073415 Al 6/2002 Kim et al.

2002/0087962 Al 7/2002 Hudson et al.

2002/0104080 Al* 8/2002 Woodard et al. 717/176
2002/0144248 Al* 10/2002 Forbes et al. 717/167
2003/0051026 Al* 3/2003 Carter et al. 709/224
2004/0015952 Al* 1/2004 Lajoie et al. 717/171
2004/0034686 Al* 2/2004 Guthriecoe....e. 709/203

OTHER PUBLICATIONS

International Standard; ISO/IEC 3309, Fifth edition Dec. 15, 1993;
Information technology—Telecommunications and information
exchange between systems—High-level data link control (HDLC)
procedures—Frame structure; pp. 11-1v; 1-8.

Telcordia Technologies; Performance from Experience; Application
of Software management OSI Information Model to Software
Download and Memory Restoration; Issue 3, Nov. 1999; pp. 2-1-
2-4; 3-1-3-4.

Library of Congress Cataloging in Publication Data; Tanenbaum,
Andrew S, 1944—; Computer networks/Andrew S.
Tanenbaum—3rd ed. p. cm.; pp. 182, 187, 188, 189, 190, 191.
Encoder—SRS Home/Front Page/Monthly Issue/Index; Motorola’s
S-Record; pp. 1-3; http://www.seattlerobotics.org/encoder/jun99/
dougl .html.

IEE/ACM Transactions on Networking. vol. 6, No. 5, Oct. 1998;
Performance of Checksums and CRC’s over Real Data; 1063-6692/
98$10.00 © 1998 IEEE.

Building Custom Rule Engines; (originally published in PC Al
magazine, vol. 10, No. 2 Mar./Apr. 1996) pp. 1-12.

* cited by examiner

U.S. Patent Mar. 25, 2008 Sheet 1 of 4 US 7,350,207 B2

FIG. 1

103

RULE
ENGINE
13 TARGET
RULE 107 RULE
ENGINE ENGINE

105 TARGET 109 TARGET

U.S. Patent

200

Mar. 25, 2008

Sheet 2 of 4

FIG. 2
201 PNO:T]
203 PN[G:15]
205 PN[16:23]
207 PN[24:31]
200 oscTier
211 _ SCT1[8M5)
213 SCT 1[16:23]
215 SCT 1[24:31]
217 SCT 1[32:39)
219 SCT 1[40:47]
221 SCT 1[48:55]
993 SCT 1[56:63]

—
225 SCT ni0:7]

_z_zz_ SCT n[8:15]
229 SCT n[16: 23]
233 SCT n[32 39}
235 SCT n[40:47]
937 SCT nj48:55]
_2_3_ SCT n[56:63]

SCTS[0:5] 249
s SO |
255 PV[2:9]

5 PV[10 71

1BYTE

US 7,350,207 B2

PAYLOAD NUMBER (LSB)
PAYLOAD NUMBER

PAYLOAD NUMBER
PAYLOAD NUMBER (MSB;

FIRST SOFTWARE
COMPATIBILITY TAG

|

s nth SOFTWARE
COMPATIBILITY TAG

i
OVERRIDE, VERSION SCT SIZE(LSB)

SCT SIZE (MSB),
PAYLOAD VERSION (LSB)

PAYLOAD VERSION
PAYLOAD VERSION

6 PCS[O 7] PAYLOAD CRC(LSB)
263 PCS[8:15] PAYLOAD CRC
265

265 PCS[16:23] } PAYLOAD CRC

267 PCS{24:31} PAYLOAD CRC(MSB)

269 _ PTCS[0:7] PAYLOAD AND TRAILOR CRC(LSB)
21 _ PrcsEid] PAYLOAD AND TRAILOR CRC

273 PTCS[16:23] PAYLOAD AND TRAILOR CRC

275 PTCS[24:31] PAYLOAD AND TRAILOR CRC (MSB)
\ _ /

YT

U.S. Patent Mar. 25, 2008 Sheet 3 of 4 US 7,350,207 B2

FIG. 3

SOFTWARE COMPATIBILITY TAG 300

'SCT VERSION, REQUIRED,
307 VO] *ng;TRfEIJHhE/fBER VERSION(MSB)
PART NUMBER VERSION
PART NUMBER VERSION
313 PNV[18:25] PART NUMBER VERSION(LSB) 1 SCT
315, B PN[0:7] PART NUMBER(MSB)
317 PNy PART NUMBER |
PN[16:23] PART NUMBER
PN[24:31]] PART NUMBER (LSB) y

a8

U.S. Patent

Mar. 25, 2008

Sheet 4 of 4

START EXTRACT VERSION (VER) FROM TRAILER
40 401
IS
VVERSION NO
VALID?
_ | ves (405
EXTRACT OVERRIDE BIT (OVR) FROM TRAILER | |
423 413
| ADVANCE TO NEXT SCT EXTRACT SOFTWARE COMPATIBILITY
TAG INFORMATION (SCT)
421 414
THERE ANY REQUIRED
MORE SCT'S BIT (REQ)
SET
| ?
YES NO B YES 415
| EXTRACT PART NUMBER (PN) FROM SCTI-/
DOES THE -
RULE EVALUTE
CORRECTLY 50 ANV 416
429 | NO _"TARGET PN'S

ANY RULES
EVALUATED

YES

DID ALL
RULES EVALUTE

CORRECTLY

YES | STORE PAYLOAD, PAYLOAD NUMBER

MATCH THE
SCT PN?

417

YES
| EXTRACT PART NUMBER VERSION (PNV) FROM SCT]

I

EVALUATE SCT RULE AGAINST TARGET | 419
PN'S VERSION AND SCT PNV

(PN) AND
PAYLOAD VERSION (PV) ON TARGET

427 |

| DISCARD PAYLOAD AND TRAILER

* 407

END

US 7,350,207 B2

Us 7,350,207 B2

1

RULE-BASED SYSTEM AND METHOD FOR
DOWNLOADING COMPUTER SOFTWARE
OVER A NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/293,178 filed May 25, 2001 and
Provisional Application Ser. No. 60/293,230 filed May 25,
2001.

FIELD OF THE INVENTION

The present invention generally relates to downloading
soltware over a network to a target element. In particular,
this invention provides means for verifying compatibility
and data integrity of software to be installed at a target
clement.

BACKGROUND

It 1s well known 1n the prior art to download computer
soltware to a target element 1n a network 1n order to upgrade
or replace existing soltware or to replace faulty software.
However, current software downloading models either do
not adequately address software and hardware compatibility
and data integrity 1ssues, or address them 1n a costly manner.
In the former case, software may be downloaded over a
network without checking compatibility, and by relying on
network protocols to ensure data integrity. These protocols,
typically conducted at a packet level, provide a limited

degree of assurance that no corrupted data has been trans-
mitted.

Indeed, 1n some cases, network-level reliability checks are
not required. This may be satisfactory in single-instance
cases where the user already knows that the software to be
downloaded 1s compatible with software and hardware at the
target, and where the user does not mind resending the
software 11 the software 1s corrupted during transmission.

If the software 1s not corrupted 1n the transmission pro-
cess, or iI any corruption that occurs 1s detected and cor-
rected through the reliability checks built into the network,
the software may arrive at the target 1n an uncorrupted state;
and 11 1t 1s compatible with software at the target element,
then 1t will function properly after 1t has been downloaded.
In other cases, however, especially where the software 1s to
be downloaded at a multiplicity of targets, each having
particular software and hardware compatibility 1ssues, there

1s a need to take additional measures to ensure compatibility
and data integrity.

Accordingly, an inexpensive and reliable means of 1nstall-
ing, replacing or upgrading software at a target element over
a network 1s needed.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention, which are believed
to be novel, are set forth with particularity 1n the appended
claims. The mvention may best be understood by reference
to the following description taken in conjunction with the
accompanying drawings, 1n the several figures of which like
reference numerals 1dentify like elements, and 1 which:

FIG. 1 shows a network having a sending element and a
plurality of target elements, 1n which the principles of this
invention may be practiced;

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 2 shows the structure of a data trailer of an embodi-
ment,

FIG. 3 shows the structure of a software compatibility tag
of an embodiment; and

FIG. 4 shows a flow diagram of the operation of a
soltware compatibility tag of an embodiment.

DETAILED DESCRIPTION

Embodiments of the present invention provide an inex-
pensive and reliable method for installing software over a
network to a network element, and also provide an inex-
pensive and reliable method for upgrading installed software
components on a network. Embodiments of the present
invention also increase the reliability of data transmission
over a network. Greater data transfer reliability 1s achieved
through use of a nested-CRC (Cyclic Redundancy Check)
approach.

According to an embodiment of the present invention a
data trailer 1s provided that 1s capable of containing software
compatibility tags with maximum flexibility in terms of
number of tags, size of tags, and format of data within the
tags. Furthermore, according to an embodiment of the
present 1nvention a data trailer 1s provided that 1s not
dependent on the data payload, and thus can be used in any
type of data, including encrypted and non-encrypted data,
and proprietary and open encodings. An embodiment of the
present mvention uses a rule-based approach for compat-
ibility testing for a software installation procedure. This
rule-based approach to compatibility testing {facilitates
evaluating complex expressions that can vary widely from
target to target.

Embodiments of the present invention provide reliable,
ellicient means for installing software sent from one node of
a network to another node 1n the network, without corrup-
tion, and with compatibility with existing software or hard-
ware. Specifically, the embodiments provide a method for
providing downloadable software from a sending element to
a target element comprising (1) providing a data unit com-
prising a payload and a data trailer; (2) storing a software
program constituent in the payload; (3) storing at least one
software compatibility tag in the data trailer, each software
compatibility tag containing at least one software compat-
ibility tag rule associated with the software compatibility
tag, and each software compatibility tag containing infor-
mation specific to the software program 1n the data trailer;
and (4) transmitting the data unit to a target element, the
target element having information specific to software
located at the target element, and the target element evalu-
ating the soiftware compatibility tag rule.

In one embodiment, an application at the target element
evaluates the software compatibility tag rule and determines,
based on the rule, whether to 1nstall the payload to the target
clement. Specific embodiments include an indicator, pro-
vided 1n the data trailer, of whether the at least one software
compatibility tag rule should be evaluated, and an indicator,
in the software compatibility tag, of whether a software
compatibility tag rule associated with the software compat-
ibility tag should be evaluated. A data umt sent 1 accor-
dance with one embodiment further comprises two reliabil-
ity checking parameters in the data trailer, where one such
parameter 1s associated exclusively with the data in the
payload, and the other such parameter 1s associated with the
data unit as a whole.

In another embodiment, a data unit containing the con-
tents of the above-described data trailer but without a
payload 1s sent to a target element for evaluation of the rules

Us 7,350,207 B2

3

of any SC's 1n the data trailer. If the rules evaluate satis-
tactorily, then a signal 1s sent to the sending element, which
prompts the sending element to send a data unit contaiming,
the payload for installation at the target element.

The following defined terms are used in the present
description.

“Checksum”™ 1s defined as a means for checking reliability
of a data transmission that includes both checksums and
cyclical redundancy checks, as those terms are understood
by those with skill 1n the art.

“Data unit” refers to data that 1s sent over a network
according to an embodiment of the present invention, and
typically comprises a payload portion and a data trailer. The
payload portion typically contains one or more files, which
may be compressed.

“Package,” as used herein, can be synonymous with “data
unit” and thus 1n some usages refers to a file or set of {files
that are associated with a data trailer, but can also refer to a
file or set of files without regard to whether the file or files
are associated with a data trailer.

“Install,” “installation™ as used herein refers to installing,
replacing, upgrading, updating, or running software (as
defined herein) at a target element.

“Software,” as used herein, retfers to executable software
computer programs, as well as files without any executable
components, such as data files.

“Data trailer,” as used herein, refers to any data trailer that
can be populated with checksums and/or SCTs, and 1s not to
be construed as limited to the specific embodiments of data
trailers discussed herein.

“Software Compatibility Tag,” or “SCT,” as used herein,
refers to any SCT that can be populated with identifying
information (such as a part number) and rules for comparing
the 1dentifving information to like information external to
the SCT, and 1s not to be construed as limited to the specific
embodiments of SCTs described herein.

FIG. 1 shows a network such as can beneficially employ
the system of this mvention for installing computer soft-
ware. The system 1ncludes sending element 101, typically a
component of or a plug-in to network 103, target elements
105, 107, and 109, all coupled to the network, and rule
engines 113 associated with each target element. The send-
ing element 101 1s typically a computer operated by a user,
but can also be an automated server that requests packages
automatically or a computer that 1s operated by a remote
user. The data to be sent over the network can comprise a
single file or a plurality of files, which may be compressed.

In one embodiment, each data unit 1s provided with a data
trailer 1n accordance with the present invention, where the
data trailer typically includes a checksum that covers the
entire data unit (including both data trailer and payload), as
well as a checksum that covers only the payload. In one
embodiment, the atorementioned checksums are Cyclical
Redundancy Checks (CRCs). The data trailer also may
contain one or more software compatibility tags, as
described herein. The data unit, including the data trailer, 1s
sent over network 103 to be installed at any or all of target
clements 1035, 107, and 109. At the recerving target element,
soltware 1nstalled at the target element receives the incom-
ing software and evaluates the checksums for corruption,
and, using rule engine 113, evaluates the rules provided 1n
the software compatibility tags to determine compatibility.
These steps are treated in more detail 1n the discussion of
FIGS. 2-4.

As shown in FIG. 1, rule engine 113 has information
about the target element that can be used to assess compat-
ibility by comparing it to information regarding the incom-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing soiftware contained i the software compatibility tag.
Typically, as 1n the embodiments discussed below, the
information comprises part number and version number
information. It the rule engine determines that the incoming
soltware 1s compatible with software and hardware at the
target, 1t 1s 1nstalled at the target. If a target 1s replacing its
existing software with a package’s payload, it overwrites the
existing software load with the new software and hence
upgrades 1tself

FIG. 2 depicts an exemplary data trailer 200, which may
be included as part of a package of software to be transmuit-
ted to a target element, where 1t will be read and executed.
It will be appreciated by those with skill 1in the art that the
s1ze of the data trailer 200, or the size or location of any or
all of 1ts constituents, can vary from that depicted in FIG. 2
and still perform 1ts function 1n accordance with this inven-
tion.

As shown 1n FIG. 2, part number fields 201, 203, 2035, and
207 are each 8-bit (one byte) fields that can be used to
contain a part number associated with the software to be sent
in the payload or software or hardware at a target element.
However, a user can elect to place other data in this field.

In the embodiment of FIG. 2, fields 209-223 are dedicated
to one 64-bit (8 byte) Software Compatibility Tag (SCT). As
shown, the data trailer 200 may contain any number n of
SCTs. An SCT contains information regarding the payload
of the package that will enable a rule engine at a target
clement to determine whether the software 1n the package 1s

compatible with software and hardware existing at the target

element. SCTs are discussed 1in more detail 1n connection
with FIG. 3.

In the embodiment of FIG. 2, field 245, consisting of one
bit, 1s used to serve an override function. The Override bit
(OVR) allows a network element to 1gnore the SC'T data and
to install the payload directly. The OVR bit may be set to
“override” 1f, for example, multiple packages need to be
installed subsequent to each other, but have compatibility
rules that are only applicable after all of the packages have
been installed. The possible values of the OVR bit 1n one
embodiment of the invention are shown 1n Table 1.

TABLE 1
OVR Field
Value Description
0 Utilize SCT bytes for compatibility resolution.
1 Ignore all SCT bytes.

In the embodiment depicted 1n FIG. 2, field 246 contains
a bit that identifies the version number of the trailer layout.
In the depicted embodiment, the VER field 1s a single bit that
can be set to indicate erther an 1nitial value or a future value.
Thus, the VER field contemplates future upgrades to the
trailer layout. If the VER submitted with a software package
1s recognized by the target element to be an outdated version
of the software package, the target element will not permat
the installation to occur. The possible values of the VER bit
in one embodiment of the invention are shown 1n Table 2,
although 1t will be recognized by those with skill 1n the art
that additional bits could be used to differentiate between
different version numbers.

Us 7,350,207 B2

~
TABLE 2
VER Field
Value Description >
0 Initial value.
1 Future value.

In the embodiment depicted in FIG. 2, fields 249 and 251 1©

constitute the SCT Size (SCTS) field, which contains 12 bits
that specity the number of SCTs that are contained in data

trailer 200, although 1t will be recognized that more or fewer
bits can be reserved for this purpose. 15

In the embodiment depicted 1n FIG. 2, fields 253-259 are
dedicated to 26 bits that specily the version number of the
payload. In general, the payload 1s expected to contain a
single file or package, although this 1s not required, as the ,,
payload may consist of several files, like a compressed
archive. Thus, the payload version can uniquely reference

the payload’s contents.

In the embodiment depicted 1n FIG. 2, the 32 bits of fields
261-2677 constitute the Payload Checksum (PCS) field. This
field provides a checksum for the payload portion of the data

25

unit only. In a preferred embodiment, the PCS field 1s
designed to hold a CRC-32 CRC as described in ISO 3309

(International Organization for Standardization, “Informa- 39

tion Processing Systems—Data Communication High-Level
Data Link Control Procedure—Frame Structure,” ISO 3309,
October 1984, 3rd Edition). Upon receipt of the data unit at

a target element, the PCS CRC 1s analyzed to determine -
whether the data has been corrupted in the transmission
pProcess.

In the embodiment depicted 1n FIG. 2, the 32 bits of fields
269-275 constitute the Payload and Trailer Checksum. The
Payload and Trailer Checksum (PTCS) covers the data 1n the
entire data umit, including that 1n the trailer as well as that 1n
the payload. Like the Payload Checksum (PCS), the PTCS
can be a CRC-32 CRC as described 1n ISO 3309. The use of
the PCS and PTCS as nested CRCs ensures a level of data 45
integrity not attainable with the PCS or the PTCS alone.
While using a single CRC gives a certain level of assurance
depending on the number of bits dedicated to the CRC, the
use of two CRCs 1n a nested arrangement results in assur-
ance of data integrity that is proportional to the product of °°
the probabilities of undetected transmission errors of the
PCS or PTCS standing alone. As 1s well known 1n the art, 1f
corruption 1s detected 1mn a data transmission, the target
element sends a signal or fails to send a signal to the sending
clement, which causes the sending element to resend the
data.

FIG. 3 depicts a 32-bit software compatibility tag 300. In
the preferred embodiment depicted 1n FIG. 3, SCTV field
301 comprises 2 bits that can be used to represent the SCT
Version (SCTV). The SCTV represents the version of the
SCT 300, that 1s, how the SCT 300 1s formatted. For
example, as described below, the various fields 1n the SCT
300 depicted 1n FIG. 3 are associated with particular func- 5
tions. For a subsequent version of the SCT 300 (for example,
where SCTV=11), the correspondence between fields and

40

60

6
functions might be different. Thus, the SCTV of this exem-

plary embodiment can be set to represent an 1nmitial value, or
one of three future values.

TABLE 3
SCTV Field
Value Description
00 Initial value.
01 Future value.
10 Future value.
11 Future value.

In the embodiment depicted in FIG. 3, Field 303 contains
the Required (REQ) bit. The REQ bat tells the rule engine
whether or not to assess the embedded rule. This allows the
rules to be evaluated one rule at a time. This field allows the
target to evaluate all the rules of a set of SCls on a
rule-by-rule basis, by providing that any SCT with O 1n this
fiecld will be skipped without causing an 1incorrect rule
evaluation.

TABLE 4
REQ Field
Value Description
0 Rule 1s not required.
1 Rule 1s required.

In the preferred embodiment depicted 1n FIG. 3, field 305
contains 3 bits that identity the Software Compatibility Tag
Rule (SCTR) by which to compare the characteristics of
incoming software with the compatibility requirements of
soltware and hardware present at the target node. The SCTR
will typically comprise a mathematical symbol for describ-
ing the relationship between two numbers, such as equal to
(=), less than or equal to (<=) or greater than or equal to (>=).
As demonstrated in Example 1 below, the rules of a plurality
of SCTs can be set to tell the rule engine that a number (such
as a part number or version number) associated with a piece
of hardware or software at a target node must fall within a
certain range, for compatibility with the mncoming software
package.

In the embodiment depicted 1n FIG. 3, the information

contained in the SCT 300 comprises Part Number (PN)
information (the 32 bits of fields 315-321) and Part Number
Version (PNV) information (the 26 bits of fields 307-313).
In this exemplary embodiment, PN refers to a part number
assigned by a manufacturer to a given piece of software or
hardware, and PNV refers to a specific version of that piece
ol software or hardware.

The SCTR operates by comparing Part Number and Part
Number Version information relating to the incoming appli-
cation to the Part Number and Part Number Version of a
soltware or hardware component at the target node (the Part
Number and Part Number Version of such a component at
the target node are referred to, respectively, as the “Target
Part Number” and the “Target Part Number Version™). If the
Target Part Number does not match the Part Number 1n the
SCT 300, then the rule 1s not evaluated. If the Target Part
Number does match the Part Number 1n the SCT 300, then
the rule 1s evaluated. The rules comprise a plurality of
mathematical expressions, for example those 1n Table 5:

Us 7,350,207 B2

TABLE 5
SCTR Field
Value Description
000 Equality comparison (==
001 Inequality comparison { !=).
010 Less than comparison { <).
011 Less than or equality comparison (<=).
100 Greater than comparison (>).
101 Greater than or equality comparison (>=).
110 Unused.
111 Unused.

FI1G. 4 15 a flow diagram that provides an overall view of
the operation of the target node rule engine when 1t receives
an 1ncoming packet containing a data. First, the application

extracts the Version (VER) for the data trailer (step 401). If

the version 1s not valid (determination made at step 402), the
payload and data trailer—i.e., the entire data unit—are
discarded (step 403). If the version 1s valid (determination
made at step 402), the application extracts the Override Bit
(OVR) from the trailer (step 405). I the OVR bit 1s set
(determination made at step 404), then the Payload, Payload
Part Number (PN) and Payload Version (PV) from the data

trailer are installed on the target without further analysis
(step 411).

If the OVR bit 1s not set, then the application extracts the
soltware compatibility tag information (step 413). If the
SCT Required (REQ) bit 1s set (determination made at step
414), the application proceeds to step 415 to extract the Part
Number (PN) from the SCT (step 415). If the SC'T REQ bt
1s not set, then the application checks to see 1f there are any
more SCTs to be evaluated (step 421). If not, then applica-
tion checks to see 1f any rules were evaluated (step 422). IT
no more SCTs remain to be evaluated, and if none of the
rules have been evaluated, then the application discards the
payload and trailer (step 403). If, at step 421, there are no
more SCTs to be evaluated, and all the rules evaluated were
evaluated correctly, then the Payload, Payload Part Number
(PN) and Payload Version (PV) from the data trailer are
installed on the target (step 411). If there are more SC'Ts to
be evaluated, the application advances to the next SCT (step
423), extracts the SCT mnformation from that SCT (step
413), and proceeds as discussed above.

Returming to step 415, 11 no Target Part Number matches
the SCT PN, then the application checks to see 11 there are
any more SCTs to be evaluated (step 421) and proceeds as
discussed above. If any Target Part Number matches the
SCT PN, the application extracts the Part Number Version
(PNV) from the SCT (step 417) and then evaluates the SCT
rule against the target Part Number’s version and the SCT
PNV (step 419). If the rule does not evaluate correctly
(determination made at step 425), then the payload and
traller are discarded (step 403). If the rule does evaluate
correctly, the application checks to see if there are any more
SCTs to be evaluated (step 421). If there are more SCTs to
be evaluated, the application advances to the next SCT (step
423) and extracts the SCT information from that SCT (step
413), and proceeds as described above. 11 there are no more
SCTs to be evaluated, and 1f all the rules evaluated were
evaluated correctly, then the Payload, Payload Part Number
(PN) and Payload Version (PV) from the data trailer are
installed on the target (step 411). If the rule for any SCT did
not evaluate correctly (determination made at step 427), the
payload and trailer are discarded (step 403).

10

15

20

25

30

35

40

45

50

55

60

65

8

A specific example of the manner in which an SCT 1s
evaluated at a target element 1s described in Example 1
below. A soltware application to be sent to a network node
only works at network nodes having part number 1233 and
a part number version number between 100 and 200, inclu-
sively, and at network nodes having part number 1234 and
a part number version number between 600 and 8350, exclu-
sively. The software 1s sent to a target node along with a data
trailer containing SC'Ts, which contain SCT rules retlecting

these requirements. In this case, four SCTs are required.
Table 6 1s a partial list of the contents of these SCTs:

TABLE 6
Required Bit Part Number Version Part Number SCT Rule
(REQ) (PNV) (PN) (SCTR)
100 1233 >=
200 1233 <=
600 1234 >
850 1234 <

When the application 1s sent to a node having a part
number of 1234 and a version number of 777, the following
cvaluation of the SCTs occurs at the target node. An appli-
cation at the target extracts the Required Bit from the first
SCT and determines that this rule 1s “required” (step 414).
Next, the target application extracts the part number from
the first SCT and compares it to the Part Number at the target
(step 416). If the part numbers do not match, the rule 1s
disregarded. In this case, the first two rules are disregarded
because the part number at the target (1234) 1s diflerent from
the part number specified in the SCT rule (1233). However,
the remaining two SCT rules do apply, because the part
number at the target (1234) matches that specified in these
rules. The target application then evaluates the remaiming
rules by applying each rule’s corresponding SCTR against
its PNV and the target node’s part number version (777)
(steps 417, 419). Thus, the third rule evaluates to “true”
because the target node’s part number version 1s greater than
the mimnmimum PNV specified for the incoming software
(600), and the fourth rule evaluates to “true” because the
target node’s part number version (777) 1s lower than the
maximum PNV specified for the incoming software (800).
Because both rules evaluated to true, the payload and 1ts

version would be 1nstalled locally at the target node. It either
rule had evaluated to “false,” the payload would have been

discarded.

It will be appreciated by those with ordinary skill 1n the
art that the above example involving hardware and a single
part number can easily be extended to more complex situ-
ations, including applying the scheme to software (or a
hardware/software mix) and to those targets that have mul-
tiple parts (e.g. an operating system, or a Fully Program-
mable Gate Array (FPGA) for an embedded chip) and
multiple part numbers. In the case of multiple parts, each
part would be assigned its own data trailer and 1ts own set
of SCTs. In these cases, each part would evaluate each rule
independently of the other parts (N rules and M part num-
bers would mean NxM rule evaluations).

When a software module 1s ready to be deployed to some
number of network elements, the module 1s run through an
application that creates zero or more rules, and creates and
attaches the trailer to the module. To use this encoding, the
application must be able to convert user-supplied version
data 1nto 26-bit numbers, as dictated by the PNV field. In a

Us 7,350,207 B2

9

preferred embodiment, the transformation from a custom
versioning scheme to a 26-bit integer 1s accomplished as
follows:

a. Remove any delimiters

b. Concatenate/convert the remaining values

c. Save the value to either the PNV or PV

For example:

12.90.003 =1290003 (base 10)
12/90/a =129097 (base 10, using ASCII as the transforma-
tion from character to integer)

The 26-bit field for PNV enables the application to handle
PNVs that have values of up to 67,108,863 (2°°-1). It is well
within the ability of those with ordinary skill i the art to
modily the above-described method—including by provid-
ing a field for PNV with more than 26 bits—to handle a PNV
with an even greater value.

Once the module 1s recerved by a network element and the
trailer 1s removed and analyzed, the rule engine on the target
will execute the steps described in FIG. 4 as follows (all

pseudocode 1s based on the C programming language):
1. Determine which trailer version (VER field, FI1G. 2, field

246) 1s being used to encapsulate the SCTs and other
trailer information:
a. Open a file pointer using a call such as fopen().
b. Move the pointer to position:
((s1ze of file)-103 bits)
using a call such as fseek().
c. If this position (which 1s VER field 246 on FIG. 2) does

not contain a zero, error out of the trailer evaluation
procedure.
2. Examine the override bit (OVR field, FIG. 2, ficld 245):

a. Move the pointer of position:
((s1ze of file)-104 bits)

using a call such as fseek().

b. I the bit contains a value of one, skip all the remaining
steps and unconditionally save the payload, the pay-
load’s PN and PV locally.

3. Loop over all the SCTs 1n the trailer. To determine the
outer bound (ending point) of the loop, extract the SCT
size (SCTS field, FIG. 2, fields 249-251) by using the
same file pointer in the previous step and moving the
pointer to position:

((s1ze of file)-96 baits)

using a call such as fseek(). The 96 bits will place the file
pointer at the beginning of the ‘SCTS[6:11] field (FIG. 2,
field 251).
To begin reading from the 1th SCT, move the pointer as
follows:
(s1ze of file)-n—((s—1+1)*v)
where:
n=104 bytes (combined size of PTCS, PCS, PV SCTS,
VER and OVR sections)
s=value 1 SCT Size field
v=64 bytes (si1ze of a single SCT)
1=SCT mdex

using a call such as fseek(). This starting position will be
labeled as startPtr for the remaining steps and will change
for each 1teration of 1.

For each SCT:

a) Parse out the SCTV (FIG. 3, field 301), REQ (FIG. 3,
field 303), SCTR (FIG. 3, field 305)as follows:
tseek(startPtr);
char byte=tgetc();
int sctv=(byte & 0xCO0)>>6;
int req=(byte & 0x20)>>5;
int sctr=(byte & 0x1C)>>2;

5

10

15

20

25

30

35

40

45

50

55

60

65

10

b) Make sure that sctv=0.

d. Read the req variable (FIG. 3, field 303) to decide 11 this
rule should be evaluated or not. If the req variable 1s set to
0, 1gnore the rule and advance to the next SCT. If 1t 1s set to
1, then:

1. Retrieve the PN from the SCT (FIG. 3, fields 315-321).
This can be done with the following pseudocode:

a. Read the next 4 bytes from the file (via fgetc() or a
similar system call) and shift their values into pn:
tseek(startptr+32 bits);
unsigned long pn=fgetc();
pn<<=24;
byte=igetc();
pnl=(bytel <<16);
byte=igetc();
pnl=(byte<<8);
byte=tgetc();
pnl=byte;

11. Retrieve all part numbers from the target node. It 1s not
pertinent how or where these values are stored on the
target, only that they can be retrieved and evaluated
individually.

111. Compare the variablepn to each of the target’s part
numbers. Reject all those part numbers that do not

matchpn exactly. If there 1s a match, then:
a. Retrieve the PNV from the SCT (FIG. 3, fields

307-313). This can be done by using the following

pseudocode:

1. Move the file pointer back to the beginning of the
SCT, parse out the two most signmificant bits of the
PNV and shift in the remaining three bytes:
tseek(startPtr);
byte=tgetc();
unsigned long pnv=byte & 0x03;
pnv<<=30;
byte=tgetc();
pnvi=(bytel <<16);
byte=tgetc();
pnvi=(byte<<8);
byte=tgetc();
pnvi=byte;

b. Retrieve the part number’s corresponding version
from the target node. It 1s not pertinent how or where
the version 1s stored on the target, only that 1t can be
retrieved. Assign 1t to variable lpnv.

c. Evaluate the rule lpnv sctr pnv:

switch (sctr)

{

case U:
result = (Ipnv == pnv);
break;

case 1:
result = (Ilpnv!= pnv);
break;

case 2:
result = (Ipnv < pnv);
break;

case 3:
result = (Ipnv <= pnv);
break;

case 4.
result = (Ilpnv > pnv);
break;

case J:
result = (Ipnv >= pnv);

break;
h

Us 7,350,207 B2

11

1. IT ‘result’ 1s “true’, then the rule passes and the rule
engine continues to the next rule.

11. I ‘result’ 1s ‘false’, then the rule fails, the rule
engine notifies the system of the error and does not
accept the software component.

4. If all the rules pass (or 1f the OVR 1s set to 1), then save
the payload, the payload’s PN and PV locally.

While various embodiments of the present invention have
been described above, 1t should be understood that they have
been presented by way of example only, and not limitation.
For example, the location and size of the various data fields
within the data trailer and SCT of the depicted embodiment
are merely exemplary and do not limit the scope of the
imnvention. It 1s also to be understood, of course, that the
present invention in various embodiments can be imple-
mented 1in hardware, software, or in combinations of hard-
ware and software. As such, the breadth and scope of the
present 1nvention should not be limited to any of the
above-described exemplary embodiments, but should be
defined only 1n accordance with the following claims and
their equivalents.

What 1s claimed 1s:

1. A method for providing downloadable software to a
target element, comprising:

providing a data unit having a payload and a data trailer;

storing a software program 1n the payload;
storing at least one software compatibility tag 1n the data
trailer, each software compatibility tag containing at
least one software compatibility tag rule associated
with the software compatibility tag, and each software
compatibility tag containing information specific to the
soltware program in the payload;
transmitting the data unit to a target element, the target
clement having information specific to at least one
clement located at the target element, and the target
clement having means for evaluating the software
compatibility tag rule;
automatically evaluating, at the target element, the soft-
ware compatibility tag rule;

determining, responsive to the rule-evaluating, whether to
install the payload at the target element wherein the
data trailer includes a plurality of elements selected
from a class which includes part number data, at least
one soltware compatibility tag, override data, trailer
version number of trailer, number of compatibility tags,

5

10

15

20

25

30

35

40

12

version number of payload, payload checksum, and
payload and trailer checksum;

reliability checking exclusively the data in the payload.,
and reliability checking the data unit as a whole; and

wherein the software compatibility tag contains at least
one of; rule evaluation data, software compatibility tag
rule data, part number information of the software
program, and part number version information of the
soltware program.

2. The method according to 1, wherein the software

program constitutes a data file.
3. A method for determining compatibility of download-
able software with a target unit, comprising:

providing a data unit having at least a data trailer;

storing at least one software compatibility tag 1n the data
trailer, each software compatibility tag containing at
least one soltware compatibility tag rule associated
with the software compatibility tag, and each software
compatibility tag containing information specific to the
software;

transmitting the data unit from a sending unit to a target
unit;

automatically evaluating at the target unit the software
compatibility tag rule in order to determine compat-
ibility of the software with the target unit;

sending, 11 evaluation of the software compatibility rule
indicates compatibility, a signal from the target unit to
the sending unit;

sending, in response to the signal, a data unit having a
payload containing the software from the sending unit
to the target unit;

wherein the data trailer contains at least one of; part
number data, at least one software compatibility tag,
override data, trailer version number of trailer, number
of compatibility tags, version number of payload, pay-
load checksum, and payload and trailer checksum:;

wherein the software compatibility tag contains at least
one of; rule evaluation data, software compatibility tag
rule data, part number information of the software, and
part number version information of the software; and

which includes conducting, at the target unit first and
second different checksum evaluations prior to install-
ing the software at the target unat.

	Front Page
	Drawings
	Specification
	Claims

