12 United States Patent

Dutt et al.

US007346902B2

US 7,346,902 B2
Mar. 18, 2008

(10) Patent No.:
45) Date of Patent:

(54)

(75)

(73)

(%)

(21)

(22)

(65)

(1)

(52)

(58)

(56)

SYSTEM AND METHOD FOR
BLOCK-BASED CONCURRENTIZATION OF
SOFTWARE CODE

Inventors: Bala Dutt, Bangalore (IN); Ajay
Kumar, Bangalore (IN); Hanumantha
R. Susarla, Bangalore (IN)

Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 134(b) by 672 days.

Appl. No.: 10/277,504

Filed: Oct. 22, 2002

Prior Publication Data

US 2004/0078780 Al Apr. 22, 2004

Int. CIL.

GO6F 9/45 (2006.01)

GO6F 9/46 (2006.01)

US.CL ..., 717/149; °717/136; 717/140;

717/151;718/102

Field of Classification Search 717/136-137,
717/140, 144, 149-161; 718/100-104
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,136,705 A 8/1992 Stubbs et al.

5,151,991 A 9/1992 Iwasawa et al.

5,179,702 A 1/1993 Spix et al.

5,230,053 A 7/1993 Zaiki

5,249,295 A * 9/1993 Briggs et al. 717/157
5,535,393 A 7/1996 Reeve et al.

5,598,561 A * 1/1997 Funakiccccoeveenn..... 717/149
5,701,430 A 12/1997 Jeremiah et al.

Induced Mulli-threading (IMT)
Framework

101

Automated
Code Marker

5,727,177 A 3/1998 McMinn et al.
5,768,594 A * 6/1998 Blelloch et al. 717/149
5,787,303 A 7/1998 Ishikawa
5,894,576 A 4/1999 Bharadwaj
5,946,487 A * 8/1999 Dangeloccoen.n..... 717/148
6,110,226 A * 82000 Bothner 717/153
6,195,676 Bl 2/2001 Spix et al.

(Continued)

OTHER PUBLICATIONS

Keeton, Cavaness and Friesen “Special Edition Using Java 2
Standard Edition” Dec. 2000, ch. 1,2 and appendix C.*

(Continued)

Primary Examiner—Meng-Al 1. An

Assistant Examiner—Jason Mitchell
(74) Attorney, Agent, or Firm—Robert C. Kowert;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

A method for inducing multi-threading 1n software code may
use blocks of code as the basis for scheduling and to suggest
concurrent execution for each block. The method may
comprise marking one or more blocks of code 1n an appli-
cation coded for sequential execution to generate marked
code. The marking may comprise inserting a marker at each
of the one or more blocks to suggest that block for potential
concurrent execution. Concurrent code may be generated
from the marked code. Generating the concurrent code may
comprise analyzing the marked code to estimate perfor-
mance benefits of concurrently executing the marked blocks
of code and determine which marked blocks would meet a
performance benefit threshold if executed concurrently.
Generating the concurrent code may also comprise trans-
forming one or more of the marked blocks into correspond-
ing concurrently executable tasks. The method may include
scheduling one or more of the concurrently executable tasks.

37 Claims, 10 Drawing Sheets

100
Enitial Sequential Cud;

. J

102

103

Concumrent
Codle

L Marked Code

Generator

102

Concurrency Support I
(scheduler, thread

manager, eic.)

107
Thread

Fool
109

Concurrent Code J/
’[Running Code]/

US 7,346,902 B2

Page 2
U.S. PATENT DOCUMENTS 2002/0147855 A1™* 10/2002 Lu .covevviviininniinininnnnnn. 709/310

| | 2004/0078420 Al 4/2004 Marrow et al.
6,272,517 BL ~ 8/2001 Yue et al. 2004/0078538 Al 4/2004 Dutt et al.
0,292,822 Bl 9/2001 Hardwick 718/105 2004/0078779 Al 4/2004 Dutt et al.
0,324,687 B1* 11/2001 Beadle et al. 717/148 2004/0078785 Al 4/2004 Dutt et al.
6,434,590 B1* 82002 Blelloch et al. 718/102 2004/0255296 Al1* 12/2004 Schmidt et al. 718/100
6,574,725 Bl 6/2003 Kranich et al. 2005/0172107 Al 82005 Carmean et al.
6,622,301 B1* 9/2003 Hirooka et al. 717/149
6,668,269 B1* 12/2003 Kamada et al. 718/103 OTHER PUBLICATIONS
0,675,575 Bl 172004 Czajkowskl 7177151 VanZandt, J. “Parallel Processing in Information Systems” 1992,
6,708,325 B2 3/2004 Cooke et al. . N

_ John Wiley & Sons, Inc. pp. 136-149.
6,708,331 B1* 3/2004 Schwartz 717/160 Hsu et al., Highly Concurrent Scalar Processing, IEEE, 1986 (pp.
6,742,083 Bl 5/2004 Grecar 386-395) ’ ’ ’

. .
6,779,114 Bl 8/2004 Chowetal. 713/189 ;;Supporting High-L@V@l Constructs for Data Depeﬂde]]t Parallel
0,813,766 B2 ~ 11/2004 Hay Loops™, IBM Technical Disclosure Bulletin, Oct. 1989, US, vol. 32
6,817,013 B2* 11/2004 Tabata et al. 717/151 [ssue 51’% 175-176 ’ L ’
6,832,214 BL1* 12/2004 NQUYEN .oevvverererereenn.. 706/15 » PP. '

Office Action from U.S. Appl. No. 10/277,503 mailed Apr. 6, 2006.
Office Action from U.S. Appl. No. 10/277,503 mailed Sep. 27, 2006.
Office Action from U.S. Appl. No. 10/277,503 mailed Mar. 5, 2007.
Oflice Action from U.S. Appl. No. 10/277,542 mailed Apr. 6, 2006.

G o ctonion 5 Al o 1027756 el . 2
2002/0095665 Al 7/2002 Chaudhry et al. o o ’ Y |

2002/0095666 Al* 7/2002 Tabata et al. 717/149 * cited by examiner

6,880,069 Bl 4/2005 Carmean et al.
6,965,982 B2 11/2005 Nemawarkar
7,069,549 B2 6/2006 Charnell
7,076,773 B2 7/2006 Schmudt

U.S. Patent Mar. 18, 2008 Sheet 1 of 10 US 7,346,902 B2

100
v

Induced Multi-threading (IMT) Initial Sequential Code
Framework ~ S
101
Y
Automated (\/ 102
Code1 IC\]/IBarker Marked Code
o J/
Y
Concurrent \\/ 104
Code | Concurrent Code
Generator
105 J

concurrency Support
(scheduler, thread

manager, etc.)
107

106

Running Code

Thread
Pool

109

FIGURE 1

U.S. Patent Mar. 18, 2008 Sheet 2 of 10 US 7,346,902 B2

Recelve sequential code
200

Y

Analyze the sequential code to identify
blocks for potential concurrent execution

210

S Y I

Insert markers into the sequential code to
suggest the identified blocks for
concurrent execution

220

FIGURE 2

U.S. Patent Mar. 18, 2008 Sheet 3 of 10 US 7,346,902 B2

Receive marked code
300

Y

From the marked code, generate

concurrent code that includes task(s)
310

Y

Schedule task(s) for multi-threaded
execution

330

FIGURE 3

U.S. Patent Mar. 18, 2008 Sheet 4 of 10 US 7,346,902 B2

Mark sequential code
400

y

—
From the marked code, generate
concurrent code that includes task(s)

410

Y N

Link concurrent code to concurrency

support code to generate running code
420 '

Y

Execute running code that includes task(s)
with concurrent processing
430

FIGURE 4

U.S. Patent Mar. 18, 2008 Sheet 5 of 10 US 7,346,902 B2

Node
205

veriex
500A

vertex vertex
5008 500D
vertex vertex
500H 500J
vertex
500L

vertex
o00M

Line
507

\ Connected Acyclic Directed Graph

Representation of Code
500

FIGURE 5

U.S. Patent Mar. 18, 2008 Sheet 6 of 10 US 7,346,902 B2

Receive marked code having block(s)
identified for potential concurrent
execution
600

Y

Initiate analysis of the marked code to
estimate performance benetits of
concurrently executing the block(s)
610

o

/\

,,/f S~
Does block meet ~

/ _
< performance benefit >
no T threshold? /,,/

620
_//
ves

L4 | | Y
Do not transform block into Transform block into task(s) for
task(s) for concurrent execution | concurrent execution
630 640

|
|
|

A
o T

T~ es
{,,/ More blocks? \\}y

650 i
\\\ /I L
\va/
no

Y

Schedule task(s) for multi-threaded

execution
660

FIGURE 6

U.S. Patent

Mar. 18, 2008 Sheet 7 of 10

US 7,346,902 B2

Receive concurrent code having block(s)

identified for potential concurrent
execution
/700

Y

Determine block-level performance
criterion for each block
710

Y

Initiate multi-threaded execution of the
block(s) in an order based on the block-

level performance criteria
720

FIGURE 7

U.S. Patent Mar. 18, 2008 Sheet 8 of 10 US 7,346,902 B2

L — T

Execute running code to generate
measured block-level performance data
800

Y

Evaluate measured block-level
performance data
810

Improve execution time of the running |
code based on results of the evaluation by
regenerating the running code |
820

FIGURE 8

US 7,346,902 B2

Sheet 9 of 10

Mar. 18, 2008

U.S. Patent

606

waisAg isindwon /

_ 806
WaISASQ

buneled |

H

10}
JoMmawes

x
_ LA

206
Alowan

NTE6 |
s01A8Q O/

056
}08UUO0DIBU|

506

6 44N

ovelBlu| O/

dlto

aolne(Aeldsig

906
NdD
0€6
aoBlI8ju| YI0MIBN
V1iE6

aAlIQ ¥SIa

US 7,346,902 B2

Sheet 10 of 10

Mar. 18, 2008

U.S. Patent

N9/.6
WalsAg

puaoeq

L]

eseqeieq |

E
G/6

181] pusyoeg

0L 44N9I4

€.6
18] SIPPIN

026 Sd.LLH/JdLLH

NCl6
UBHO

U —

joueljuj/]jouis]u]

1/6

i8] 1usl)

Us 7,346,902 B2

1

SYSTEM AND METHOD FOR
BLOCK-BASED CONCURRENTIZATION OF
SOFTWARE CODE

BACKGROUND

1. Field of the Invention

This ivention relates to computer systems, and more
particularly to concurrent execution of soiftware code.

2. Description of the Related Art

Developers often implement distributed transactional
applications as part of commercial and non-commercial
business solutions for an enterprise. For example, a com-
pany may leverage use of an enterprise application that
includes various databases distributed across multiple com-
puters. The time spent to complete operations for the appli-
cation, such as storing data 1n databases and manipulating
data received from users, may be considerable due to high
system loads and network latency (e.g., innumerable, simul-
taneous user requests and long waits for network commu-
nication). One technique to improve the efliciency of such
applications may involve running independent operations 1n
parallel. For example, a developer may modity application
code to include threads so that some of the code (e.g., code
that handles separate, independent operations) may execute
concurrently. A thread may be a single sequential flow of
control within an application program.

Developers may encounter various obstacles when trans-
forming code that 1s intended to execute sequentially nto
code fragments (e.g., method, routine, function, subroutine)
that may execute concurrently. For example, a particular
plattorm such as Java™ 2 Platform, Enterprise Edition
(JZEE™) may impose constraints on thread usage. J2EE
uses a multi-tiered distributed component application model.
Application logic may be divided into components (e.g.,
Java™ Servlets, JavaServer Pages™ and Enterprise Java-
Beans™) according to function and the various application
components may be installed on different computers
depending on factors such as security, performance, etc.
Although threads may be used in Java, for example, a
component model such as J2EE may prevent threads from
being started within the application code of a component.
Thus, usage of threads as an optimization technique for an
enterprise application may be limited or confined.

The typical manner of re-writing code that 1s intended to
execute sequentially into code fragments that may execute
concurrently may be burdensome for developers and
counter-intuitive for readers of the code (e.g. someone
maintaining the code). For example, sequential code may be
split between two concurrent methods which may be con-
trary to what a reader of the code might expect. The
relationship of logic between a caller (e.g., the code that
calls a method) and the two concurrent methods may be less
obvious or clear to a developer than the relationship of logic
between the caller and the sequential code. Also, the meth-
ods names to be called may be very diflerent from what
would be expected or intuitive. For example, in Java, a
method call may be object.start().

SUMMARY

A method for inducing multi-threading 1n software code
may use blocks of code as the basis for scheduling and to
suggest concurrent execution for each block. The method
may comprise marking one or more blocks of code 1n an
application coded for sequential execution to generate
marked code. The marking may comprise mserting a marker

10

15

20

25

30

35

40

45

50

55

60

65

2

at each of the one or more blocks to suggest that block for
potential concurrent execution. Concurrent code may be

generated from the marked code. Generating the concurrent
code may comprise analyzing the marked code to estimate
performance benefits of concurrently executing the marked
blocks of code and determine which marked blocks would
meet a performance benefit threshold if executed concur-
rently. Generating the concurrent code may also comprise
transforming one or more of the marked blocks 1nto corre-
sponding concurrently executable tasks. A marked block
may not be transformed 1nto one of the concurrently execut-
able tasks if the analyzing indicates that the performance
benefit threshold would not be met for that block. The
method may include scheduling one or more of the concur-
rently executable tasks for multi-threaded execution.

Marking the application coded for sequential execution
may comprise marking a sub-method portion of a program
method of the application as one of the blocks marked for
concurrent execution. The marking may comprise receiving
the application code, analyzing the application code to
identify potential concurrently executable blocks of the
application code, and inserting a marker into the application
code to suggest the 1dentified blocks for concurrent execu-
tion. The marker may comprise a method call that 1s
compatible with a programming language of the application.

Analyzing the marked code to generate concurrent code
may comprise estimating an execution time of each marked
block. For one or more of the marked blocks, the marker
may comprise a block duration weight used to estimate an
execution time. Estimating the execution time may comprise
estimating the execution time of one of the marked blocks
according to the block duration weight of the marker and a
path length of the block. Analyzing the marked code may
comprise comparing the estimated execution time of each
marked block to an overhead for scheduling concurrent

threads.

Generating the concurrent code may also comprise trans-
forming one or more of the marked blocks into correspond-
ing concurrently executable tasks. The scheduling may
comprise scheduling one of the tasks for multi-threaded
execution according to priority information included with
the marker for the corresponding marked block. The sched-
uling may comprise scheduling one of the tasks for multi-
threaded execution according to dependency information
included with the marker for the corresponding marked

block.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates one embodiment of an Induced Multi-
threading (IMT) framework for inducing multi-threading in
software code;

FIG. 2 shows a flowchart of one embodiment of a method
for specitying blocks of code for potential concurrent execu-
tion;

FIG. 3 shows a flowchart of one embodiment of a method
for transforming marked code 1nto concurrent code;

FIG. 4 shows a flowchart of a method for using an IMT
framework to induce multi-threading 1n software code,
according to one embodiment;

FIG. 5 1illustrates a connected acyclic directed graph
representation of the marked code;

FIG. 6 shows a flowchart of one embodiment of a method
for analyzing marked code and scheduling tasks for multi-
threaded execution based on the results of the analysis;

Us 7,346,902 B2

3

FI1G. 7 shows a flowchart of one embodiment of a method
for scheduling a plurality of concurrent blocks for multi-
threaded execution 1n an order determined by block-level
performance criteria;

FIG. 8 shows a flowchart of a method for using an IMT
framework to reduce the overall multi-threaded execution
time of a plurality of blocks, according to one embodiment;

FIG. 9 1llustrates a computer system that may that may
include one embodiment of an IMT framework to induce
multi-threading in software code; and

FIG. 10 1llustrates one embodiment of an IMT framework
configured as part of an application server.

While the mvention i1s described herein by way of
example for several embodiments and illustrative drawings,
those skilled 1n the art will recognize that the invention 1s not
limited to the embodiments or drawings described. It should
be understood, that the drawings and detailed description
thereto are not mtended to limit the mvention to the par-
ticular form disclosed, but on the contrary, the intention is to
cover all modifications, equivalents and alternatives falling
within the spinit and scope of the present invention as
defined by the appended claims. The headings used herein
are for organizational purposes only and are not meant to be
used to limit the scope of the description or the claims. As
used throughout this application, the word “may™ 1s used in
a permissive sense (1.e., meaning having the potential to),
rather than the mandatory sense (1.e., meaning must). Simi-
larly, the words “include”, “including”, and “includes™ mean

including, but not limited to.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1 illustrates one embodiment of an Induced Multi-
threading (IMT) framework 101 configured to induce multi-
threading 1n software code. The framework 101 may include
an automated code marker 103, a concurrent code generator
105, concurrency support (e.g., a scheduler, thread manager,
etc.) 107 and a thread pool 109. The framework 101 may
ecnable a developer, for example, to specily portions of
software code for concurrent execution. Embodiments of the
IMT framework 101 may address the specification, genera-
tion and run-time behavior of the software code. For
example, software code may be developed (e.g., specily
portions of the code for concurrent execution), compiled and
scheduled for execution with one embodiment of the frame-
work 101. In one embodiment, configured as part of an
application server, for example, the framework 101 may be
configured to manage the execution of application compo-
nents that operate across diflerent computers which may be
based on different platforms and architectures. In other
embodiments, configured as a software application, for
example, the IMT framework 101 may be configured to
operate on a single computer to run and manage software
code that specifies portions of the software code for con-
current execution.

Embodiments of the IMT framework 101 may be utilized
to 1improve the execution time of various types of applica-
tions or soltware code having portions of code that from
time-to-time may be blocked from execution. One embodi-
ment of an IMT framework 101 may be used to induce
multi-threaded execution of portions of Java 2 Enterprise
Edition (J2EE) software code for an Internet-based applica-
tion, for example, having portions of code that may encoun-
ter delays while waiting on completion of events. The
Internet-based application may be based on a three-tier
architecture and may contain code segments that may be
blocked from execution until some other operation outside

10

15

20

25

30

35

40

45

50

55

60

65

4

the scope of a host, or outside the scope of a processor within
the host, completes. For example, an application component
operating 1n a middle tier may contain code segments that
may be blocked from execution until a database transaction
operating in a backend tier completes. The Internet-based
application may wait for communication to occur over a
network. For example, network latency and/or processing of
an operation on a different host (e.g., operation mvolving a
legacy system 1n the backend tier) may delay communica-
tion between application components. The application may
wait for a user’s mput (e.g., via a Web browser) or other
input from a device such as an mput/output (I/0) device
(e.g., storage device used by the legacy system). Using the
IMT framework, portions of the Internet-based application,
for example, may be configured to induce concurrent execus-
tion ol certain blocks of code, such as tasks that are
independent of other tasks that may cause delays.

An Internet-based application operating across tiers typi-
cally has considerable potential for delays. Software code
developed and relying on various embodiments of the IMT
framework 101 may involve different types of software code
than an Internet-based application. For example, a software
program for a client-server application may be developed
and executed with the IMT framework 101. A simple
program configured with non-blocking code segments (e.g.,
assigning a value to two diflerent variables) may still benefit
from concurrent execution and may be modified to specity
multiple blocks of code for concurrent execution, e.g. to take
advantage of a computer configured with multiple proces-
sors. EHach specified block of the program may run concur-
rently and may each rely on a different processor of a
multi-CPU computer, for example. Thus, true multi-thread-
ing may be achieved by executing each thread with a

different processor and each portion of code may execute
faster.

Embodiments of the IMT framework 101 may be used to
transform 1nitial sequential code 100 1nto running code 106
configured for concurrent execution. Diflerent stages of the
software code are illustrated 1n FIG. 1 as code 100 to code
106. The mitial sequential code 100 may be for an applica-
tion, for example, configured for sequential execution. The
initial sequential code 100 may include one or more code
fragments (e.g., methods, procedures, subroutines, func-
tions) or blocks of code. As dictated by processing of
sequential code, each of the code fragments of sequential
code 100 may be configured to execute one after another
instead of concurrently. The sequential code 100 may be
developed with various types of compiled and/or interpreted
programming languages such as C++, Ada, Lisp and Java.
An itegrated development environment (e.g., Metrowerks
CodeWarrior™, Microsoft Visual C++®, Sun™ ONE Stu-
dio) may be used to automatically generate some or all of the
sequential code 100. In other cases, a developer, for
example, may use various frameworks to develop sequential
code 100. For example, several developers may use J2EE
from Sun Microsystems, Core Services Framework (CSP)
from Hewlett Packard, Sun™ ONE Framework from Sun
Microsystems, NET Framework from Microsoft or some
other framework to develop sequential code 100.

The following describes a code snippet of an exemplary
initial sequential code 100. The code snippet may be a
portion of sequential code for an Internet-based application,
for example, or sequential code for some other type of
application or purpose. The exemplary sequential code may
be configured to enable new users to register for continued
access to the application by creating new user accounts for
cach of the new users. For example, a new user of the

Us 7,346,902 B2

S

application may iput a login name, password and email
address via a Web browser and the login name, password

and email address may be used to create a new user account
tor the new user. After successtully registering, the new user
may continue to access the application without repeating a
registration process. The code snippet of a portion (e.g.,
excluding exception handling and other functionality) of an
exemplary initial sequential code 100 may be specified with
Java and may be configured as follows.

class AccountManager{
public void createNewAccount(String login, String passwd,
String address) {

// do operation on Database 1
DataSource ds=ctx.lookup(“passwdDataSource™);
java.sql.Connection con=ds.getConnection();
java.sql.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(“insert into
passwdTable values(*+login+,”+passwd+");”);
stmt.close();
con.close();

// do operation on Database 2
ds=ctx.lookup(“addressDataSource™);
con=ds.getConnection();
stmt=con.createStatement();
res=stmt.execute(“insert mto addressTable values
(“+login+”,”+address+7);”");
stmt.close();
con.close();

As part of a registration process, the sequential code 100
may be configured to receive the login, password and email
address and store that received information 1n two different
databases. Fach of the database tables may be part of two
different databases on separate computers due to different
performance demands and criticality of each of the database
tables. The separate computers may be part of a network and
the sequential code 100 may be configured to operate on a
different computer that i1s also a part of the same network.
The sequential code 100 may be configured to store the login
and password 1n a database table that may be frequently used
by the application for authentication of each user. The
sequential code 100 may also be configured to store the login
and address 1 a different database table which may be
mimmally used by the application. For example, the differ-
ent database table may be used when an administrator
requests a report or requests demographical profiles for a
user which may occur less frequently than authentication of
users.

One embodiment of the IMT framework 101 may include
a marking API (application programming interface) to iden-
tify portions of software code. The marking API may be used
by a developer, for example, and/or the automated code
marker 103 to embed one or more markers in software code
such as the sequential code 100. After modifying software
code using the marking API, the software code may be
referred to as marked code 102. Markers within the marked
code 102 may be used for various purposes. For example,
the markers may be used to i1dentify portions of software
code that may run concurrently during execution of the
soltware code. The markers may be used 1n code instrumen-
tation. For example, the markers may demarcate specific
portions of the software code so that run-time information
relevant to each specific portion may be obtained during
execution (e.g., profiling, tracing). In some embodiments,
the markers may be used for other purposes. For example, a

10

15

20

25

30

35

40

45

50

55

60

65

6

soltware program may be configured to use the markers to
generate documentation for the marked code 102.

The markers may indicate potential points (e.g., blocks of
code) within code fragments (e.g., methods, procedures,
subroutines, functions) where multi-threading may be 1ntro-
duced. These potential points may be specified during 1nitial
development of the code and/or may later be specified 1n an
existing sequential version ol the code. For example, a
typical use may mvolve a developer using the IMT frame-
work 101 to transform a sequential version of software code
to a multi-threaded version of that same soitware code.

The developer, for example, may use the marking API to
embed extra mformation for the sequential code 100. The
developer of the sequential code 100 may have knowledge
ol expected execution behavior of the sequential code 100.
For example, the developer may wish to reflect which
portions of the sequential code 100 are potential points for
concurrent execution based on the developer’s knowledge
that one portion of the sequential code 100 executes inde-
pendent from another portion of the sequential code 100.
The developer may also use the automated code marker 103
to embed extra information for the sequential code 100. In
one embodiment, the automated code marker 103 may be
configured to perform an analysis of the sequential code 100
and embed markers in the sequential code based on the
results of the analysis. For example, the automated code
marker 103 may be configured to parse the sequential code
100, evaluate dependencies among portions of the code to
identily points for potential concurrent execution and then
insert markers at those points. Many variations of an analy-
s1s may be performed by the automated code marker 103 to
identily potential points for concurrent execution.

In both scenarios (e.g., developer manually marks code or
uses the automated code marker 103), the markers may be
used and/or 1gnored by the IMT framework 101 since the
markers represent potential points for concurrent execution.
Thus, the markers may be removed and/or disregarded by
the IMT framework 101 at any point after specification in
marked code 102 to execution of the code. The developer or
automated code marker 103 may simply embed the markers,
and thus the extra information, without making assumptions
about semantic behavior (e.g., properties of a run-time
object) of the sequential code 100 at run-time since the
markers may be used and/or disregarded.

The marking API may be used within the scope of a code
fragment (e.g., methods, procedures, subroutines, functions)
or block of code. In one embodiment, a method may be the
unit of software code 1n which the markers are specified and
used to potentially induce multi-threading. In other embodi-
ments, portions of a method or sub-methods may be marked
for concurrency. One or more blocks of code within one or
more methods may be marked for potential concurrent
execution. The same markers across different methods may
be different. For example, a developer may specily blocks of
code within two different methods with the marking API and
the specified blocks of code may remain separate for each of
the different methods. In one embodiment, the IMT frame-
work 101 may implicitly assume a method 1s a block of
code. The portions of code specified for concurrent execu-
tion may be less than an entire method (e.g., implicit block)
of the code.

In one embodiment, the marker API may assign additional
meaning to pre-existing constructs of a programming lan-
guage to serve as a marker to identily blocks of code for
potential concurrentization. For example, markers may be
existing programming language statements such as C state-
ments, Lisp statements and FORTRAN statements. In one

Us 7,346,902 B2

7

embodiment, static method calls of a programming language
may be used for the marking API. For example, in an
object-oriented language such as Java, C++ and Smalltalk,
the marking API may include static methods or data mem-
bers of a class. A class may include pre-existing constructs
of the programming language that belong to a class instead
of to a given 1nstance of the class. These constructs may be
called static or class members. The constructs may be
assigned additional meamng so that software code that
includes the markers may be translated (e.g., compiled or
interpreted) 1n the same manner as soiftware code that
excludes the markers (e.g., sequential code 100). Thus, 1n
the absence of an IMT framework 100, marked code 102
may include pre-existing constructs of a programming lan-
guage already recognized by an existing compiler, for
example, for the programming language used. Thus, marked
code may remain compatible with a programming language
and traditionally executable even in the absence of IMT
framework 100.

In one embodiment, static methods of a Java class may be
used for the marking API. The following 1s an exemplary
class and methods of the class that may be used for marking
blocks of code 1n Java, for example. Each method may be
used to specily potential points (e.g., markers around blocks

ol code) for concurrent execution.

package com.xxx.codemarker:;
public class Marker{

public static void block() {}

public static void endBlock() {}

public static void block(String name) {}
public static void block(String name, int priority);
public static void block(String name, String [| dependencies);
public static void block(String name, int priority, String []
dependencies);

Each block call (e.g., block method) defined within a Marker
class may be used to specily potential points for concurrency
in soltware code such as the sequential code 100. One or
more blocks of code may be 1dentified within a method of
the software code as a potential point for concurrency. A
block of code may be marked by specilying a block call
(e.g., block method) at the beginning of the block of code
and specifying an end block (e.g., endBlock method) for that
same block of code at the end of the block of code. Thus,
programming statements between these two block calls may
identify a block of code as a potential point for concurrent
execution.

In one embodiment, the block of code may be preceded by
an opening statement (e.g., curly brace) and succeeded by a
closing statement (e.g., curly brace). The opening and clos-
ing statement may further identily the beginning and ending
programming statements between, for example, a block and
endBlock call. In other embodiments, although the opening
and closing statements may improve the readability of the
soltware code, the opening and closing statements may be
excluded. In one embodiment, variable scope within a block
of code may be limited to the block of code to prevent
variables from being accessed across two blocks of code that
may potentially execute concurrently. Arguments and local
variables (1f any) of the specified block of code may be used
as read-only data, in which case additional optimization may
be done.

A block of code may be qualified with extra information
that specifies hints for execution of the block of code in

10

15

20

25

30

35

40

45

50

55

60

65

8

relation to another block of code. As shown 1n the above
exemplary Marker class, the Marker class may include
several different block methods for specitying additional
arguments. In order to mark a block of code, one of the block
methods may be used to mark the beginming of a block of
code and an endBlock method may be used to mark the end
of the block of code. A block of code may be qualified with
extra information by using an overloaded block method. For
example, as shown 1n the above exemplary Marker class,
cach of the blocks of code may be assigned a specific name
(e.g., String). The extra information may be used and/or
disregarded during scheduling of the potential blocks of
code for concurrent execution.

In one embodiment, the following guidelines describe the
selection and usage of the block methods included 1n a class
such as the exemplary class. If one block of code within a
method 1s specified as a potential point for concurrent
execution, then the block method without arguments (e.g.,
block ()) may be used to indicate the block of code. For
example, a developer may know that a specific portion of a
method may execute independently of the remaining portion
of the method, and the developer may specily the specific
portion of code as a potential point for concurrent execution
with the block() call, or as the result of a code analysis an
automated code marker tool 103 may insert the block() at a
point the tool 1dentified for concurrentization. A method may
include the one block of code that may execute concurrently
with the remaining portion of the method. The opening
statement of such block call may not include a specific block
name or an indication of dependencies. Likewise, when the
block methods are simply used to segregate blocks of code
as potential points for concurrent execution, then the block
method without arguments (e.g., block ()) may be used to
indicate the block of code. For example, in one embodiment,
an automated code marker 103 may choose to use the
block() call when the code marker 103 determines that
qualitying a block of code with extra information (e.g., a
specific name) 1s not necessary based on results of an
analysis.

In one embodiment, a block opeming statement may
indicate a priority for execution of a concurrent block. Each
of the blocks of code may be assigned a priority. The priority
may be a thread priority in which the programming language
statements of the blocks of code may be executed. Although
the blocks may be marked for concurrent execution, only a
limited number of threads may be available for concurren-
tization. Thus, a developer may include priority information
with the markers to indicate certain blocks of code to be
started ahead of others.

In one embodiment, each of the blocks of code may be
assigned one or more dependencies on another block of
code. The dependencies may indicate other blocks of code
that may complete execution before a given block of code
begins execution. Complex dependencies between blocks of
code may be specified. In one embodiment, a block method
may be used to specity dependencies over blocks of code
that may be included 1n a later portion of a method as long
as a cycle 1s avoided.

In one embodiment, an estimated or measured running
duration (e.g., weight) of a block may be specified 1n the
marked code. A developer, for example, may know an
approximate duration for which a block of code may prevent
execution of other code, so the developer may assign a
weilght accordingly to that block of code. In one embodi-
ment, similar to priorities and dependencies, the weight may
be used during scheduling of the potential blocks of code for
concurrent execution. For example, blocks of code marked

Us 7,346,902 B2

9

with longer execution times may be scheduled ahead of

blocks with shorter execution times with a goal of the blocks
all completing execution at approximately the same time.

Referring back to the code smippet of the exemplary
sequential code 100, after modification and marking accord-
ing to the marking API, the code snippet may be configured
as follows.

import com.xxxX.codemarker.Marker;
class AccountManager{
public void createNewAccount(String login, String passwd, String
address){
Marker.block(*“updatel™);
{
//do operation on Database 1
DataSource ds=ctx.lookup(“passwdDataSource™);
java.sql.Connection con=ds.getConnection();
java.sql.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(“insert into
passwdTable values(*“+login+”, +passwd+");”");
stmt.close();

con.close();

h

Marker.endBlock();

Marker.block(*update2”);

{

//do operation on Database 2

DataSource ds=ctx.lookup(“addressDataSource”);
java.sql.Connection con=ds.getConnection();
java.sqgl.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(*‘insert into
addressTable values(*+login+”,”+address+7);”);
stmt.close();

con.close();

h

Marker.endBlock();

The exemplary sequential code 100 may have been manipu-
lated (e.g., by a developer and/or automated code marker
103) to specily potential points for concurrent execution.
Thus, two blocks of code are specified as “updatel” and
“update2”. Some of the variables of each of the two blocks
of code may have been duplicated (e.g., Resultset), for
example, because the two blocks of code shared those same
variables.

To further illustrate specification of dependencies
between blocks of code using the marking API, the same
code snippet may be manipulated to run the second block
only when the first block 1s complete. The code snippet of an
exemplary sequential code 100, after modification with the
marking API, may be configured as follows.

import com.xxx.codemarker.Marker;
class AccountManager {
public void createNewAccount (String login, String passwd, String
address) {
Marker.block(*“‘updatel™);
i
//do operation on Database 1
DataSource ds=ctx.lookup(“passwdDataSource™);
java.sql.Connection con=ds.getConnection();
java.sql.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(“insert into
passwdTable values(*“+login+”,”+passwd+");"");
stmt.close();

con.close();

;

Marker.endBlock();

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

Marker.block(*“update2”, {“updatel”});
{
//do operation on Database 2

DataSource ds=ctx.lookup(“addressDataSource”);
java.sql.Connection con=ds.getConnection();
java.sql.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(“‘insert into
addressTable values(*+login+”,”+address+7);”);
stmt.close();

con.close();

h

Marker.endBlock();

Use of static method calls to mark blocks of code for
potential concurrent execution may be more intuitive for a
developer than other forms of marking. For example, a
developer may expect the execution behavior of an appli-
cation to disregard comments as markers but expect static
method calls to change the execution behavior of the appli-
cation. In the absence of an IMT {framework 101, the
markers may be disregarded as empty method calls. For
example, the marked code 102 may be fully compatible with
an existing programming language 1n the absence of an IMT
framework 101 that can make use of the markers. As an
additional example, 1n the absence of the IMT framework,
an optimizing Java compiler and virtual machine (VM) may
remove the static method calls as empty method calls.

Use of the markers may help to hide implementation
details, for example. A developer may use the marking API
to 1dentily potential points for concurrent execution, but the
implementation details may be handled by the IMT frame-
work 100. The marking API may enable a developer and/or
the automated code marker 103 to mark the code fragments
with minimal modification to the sequential code 100. In one
embodiment, the markers may be mark-up language con-
structs such as eXtensible markup language (XML) and/or
hypertext markup language (HTML) statements. In another
embodiment, the markers may be programming language
comments. For example, comments may be added to the
sequential code 100 and used as markers to specily potential
points for concurrent execution. In some embodiments, the
markers may be entirely new constructs (e.g., data structure,
programming statement) that are unique to a programming
language. For example, the markers may be symbols rec-
ognizable by a programming language that indicate potential
points for concurrent execution.

In one embodiment, the IMT framework includes con-
current code generator 105. The concurrent code generator
105 may parse and modity the marked code 102 to generate
concurrent code 104. In one embodiment, the concurrent
code generator 105 may replace markers in the marked code
102 with other programming statements. Thus, the concur-
rent code generator 105 may be configured to transform
marked code 102 into concurrent code 104 that induces
concurrent execution of the blocks of code as initially
indicated by the markers. The concurrent code 104 may
include one or more tasks configured for concurrent execu-
tion 1n place of the one or more marked blocks of code. The
concurrent code 104 may 1include references to shared
programming language resources (e.g., dynamically linked
libraries, shared objects, shared libraries, built-in code) that
may provide concurrency lfunctionality. For example, the
concurrent code 104 may reference concurrency support
code 107 configured to schedule each task concurrently.

Us 7,346,902 B2

11

In one embodiment, the concurrent code generator 105
may be configured to generate the concurrent code 104 in
response to an mdicated option from one or more compilers,
interpreters and/or parsers, for example. Concurrent code
generator 105 may be included with a compiler or pre-
processor that includes an option, for example, that when
specified by a user, indicates that concurrent code 104
should be generated for the specified marked code 102. In
one embodiment, a separate tool may be configured to

receive the marked code 102 and generate the concurrent
code 104 from the marked code 102. For example, the IMT

framework 101 may be configured to include a tool to
generate the concurrent code 104 from the marked code 102.

In one embodiment, the concurrent code generator 105
may be configured to perform an analysis of the marked
code 102 to validate different rules and/or handle different
conditions before transiforming the marked code 102 into
concurrent code 104. The concurrent code generator may
analyze the marked code and determine for each marked
block of code whether or not that block should be trans-
tformed for concurrentization. For example, one block span-
ning over an entire method that cannot be executed in
parallel with any other code would be 1gnored during the
transformation process to reduce the overhead of scheduling
the one block that 1s essentially still sequential. In one
embodiment, even 1f the method 1includes a portion of code
outside of the one block, that portion of code may be
transformed only if the portion of code can execute in
parallel with the one block.

The following describes other rules and/or conditions for
transformation of marked code 102 into concurrent code
104, according to various embodiments. The following rules
and conditions are exemplary. Many other rules and/or
conditions may be handled by various embodiments of the
IMT framework 101. In one embodiment, marked code 102
may include blocks of code within loops (e.g., for loops,
while loops, do-while loops, etc.). For example, 1n marked
code 102, a loop may include an index to count iterations of
the loop and the loop may include one or more blocks of
code marked for concurrent execution. In one embodiment,
if the blocks of code (marked and unmarked) use the loop
index as a read-only variable, for example, the concurrent
code generator 105 may duplicate one or more independent
loops for each of the one or more concurrent blocks. Each
of the duplicated one or more loops may include one of the
one or more concurrent blocks to help parallel loops execute
more etliciently, for example.

To further illustrate handling of independent, blocks of
code within a loop, a code snippet of an exemplary marked
code 102 that includes a loop may be configured as follows.

for (int i=0;i<1000;i++) {
Marker.Block() {
a[1]=1;
i

Marker.endBlock();

Marker.Block() {
b[1]=1%i;

h

Marker.endBlock();

The code snippet that includes a loop may be transformed
into two loops (e.g., one loop for assignment of a value to
variable ‘a’ and another for variable ‘b’) within concurrent

10

15

20

25

30

35

40

45

50

55

60

65

12

code of that same code smippet. The parallel loops may
execute faster on a multi-CPU computer, for example.

In one embodiment, 1f an endBlock call 1s missing, nested
concurrent blocks may be implicitly assigned. In one
embodiment, for example, if an endBlock() call 1s missing
from a concurrent block and a new block call 1s specified, the
concurrent block may be assumed to be an enclosing con-
current block and thus, as directed, the new block call would
be nested.

In one embodiment, concurrent code generator 105 may
generate a task for each concurrent block of marked code
102. Tasks may be functions, methods or other portions of
code. A task may require access to data (e.g., arguments)
originally passed to a method of marked code 102 from
which the task 1s generated. Concurrent code generator 105
may generate from the data one or more instances of
variables accessible to the task. In one embodiment, a task
may modity local copies of the vaniables instead of using the
variables as read-only. If tasks do modity the variables, for
example, one embodiment of the concurrent code generator
107 may assume the variables will be modified by the task
for further use within the scope of the task.

In one embodiment, concurrent code generator 105 may
be configured to generate concurrent code 104 based on a
naming convention. For example, each concurrent block m1
(corresponding to a task) may be named “ITm1” to identily
the task within the block. Each task may be named
Tm]l_ <num>, where <num> indicates a serial number of the
block. Thus, tasks for ml, for example, may be named
Tml_ 0O, Tml_ 1, etc. Data (e.g., arguments) passed to each
block may be named aml_<num>, where <num> indicates
the serial number of the data. Other naming conventions, for
example, variables used to store exceptions (e.g., a run-time
error condition) mitiated during execution, may be defined
and used by the IMT framework 101 during transformation
of marked code 102 to concurrent code 104.

In one embodiment, concurrent code generator 105 may
include synchronization points (e.g., code that induces a
thread to enter a wait state) in concurrent code 104. Con-
current code generator 105 may include a synchronization
point to allow a method and/or code corresponding to a
concurrent block to wait for completion of another task (e.g.,
another method, another concurrent block, a resource
becoming available, etc.).

In one embodiment, concurrent code generator 105 may
generate programming language code in concurrent code
104 to reference a scheduler in concurrency support code
107 to schedule each task of concurrent code 104. The
scheduling may be based on information included in marked
code 102. For example, concurrent code generator 105 may
parse a concurrent block’s opening statement of marked
code 102 (e.g., as indicated with marking API). The opening
statement may include a priority, weight and/or dependen-
cies on one or more other concurrent blocks for the concur-
rent block. Concurrent code generator 105 may generate
code 1 concurrent code 104 to schedule the dependencies
for execution. Concurrent code generator 105 may generate
code 1n concurrent code 104 to schedule concurrent execu-
tion for each task based on specified priorities and/or
weights. For example, a task (as indicated by the marked
code 102) may be scheduled to begin execution before
another task.

Referring back to the code snippet of the exemplary
marked code 102, the following describes and shows exem-
plary concurrent code 104 generated from the exemplary
marked code 102. As described above, the concurrent code
104 may include references to concurrency support code 107

Us 7,346,902 B2

13

that may provide concurrency functionality. For example,
the concurrent code 104 may include references to a sched-
uler configured to schedule each task concurrently. In one
embodiment, one or more shared libraries may be config-
ured to include a Task class and Scheduler class. For
example, each concurrent block may be transformed 1nto a
derived class (e.g., mherited from) of Task. Each thread
scheduled to execute the concurrent block may begin by
executing a method class (e.g., method task of Task class 1s
overridden by method task of derived class) associated with
the derived class. The Scheduler class may be configured to
schedule the task for multi-threaded execution. An exem-
plary Task class may be configured as the following:

class Task{
private final int NOT__ BEGUN =1;
private final int BEGUN=2;
private final int DONE=3;
private it m__ status=
public Exception m__ex=null;
public void task(){}
public Exception waitForTask(}{
/1T state 1s DONE just return
/11 state 1s NOT__ BEGUN keep sleeping and waiting for the
task to begin
/1T state 1s BEGUN
synchronized(this){
wait();
return m__ex;
h
h

The code snippet for an exemplary Scheduler class may
be configured as the following:

class Scheduler{
private static int m__count=0;
private static int getNodeSNo(){return ++m__count;}
public static void schedule(Task t){
int sNo=getNodeSNo();
//select a thread and attach to it the info about the
node that began it
/fcommand thread to do the task,

h

public static Exception wait(Task t){
return t.waitForTask();
/fattach 1nfo to the thread about latest node info

After transformation of the exemplary marked code 102
to exemplary concurrent code 104, the code snippet for the
exemplary concurrent code 104, including references to

concurrency support 107, may be configured as the follow-
ng:

import com.xXxxX.concurrency.™;
class AccountManager{

String acreateNewAccount_ O=null;
String acreateNewAccount_ 1=null;
String acreateNewAccount_ 2=null;
class TcreateNewAccount updatel O extends Task{

public void synchronized task(){

try{

//do operation on Database 1
DataSource ds=ctx.lookup(“passwdDataSource™);

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

java.sql.Connection con=ds.getConnection();
java.sql.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(“insert into passwdTable
values(“+login+","+passwd+");”);
stmt.close();

con.close();
catch(java.lang.Exception ex){
M__eX=€X;

notifyall();

;
h
class TereateNewAccount update2 1 extends Task{

public void task(){
try{
//do operation on Database 2
DataSource ds=ctx.lookup(*“addressDataSource™);
java.sql.Connection con=ds.getConnection();
java.sql.Statement stmt=con.createStatement();
java.sql.Resultset res=stmt.execute(“insert into addressTable
* "+address+7);”);

Values(“+lc:-gin+ :
stmt.close();
con.close();

h

catch(java.lang.Exception ex){
M__eX=€X;

h

notifyall();

h
}
private TcreateNewAccount__updatel 0
tcreateNewAccount__updatel O=new
TcreateNewAccount__updatel 0);
private TcreateNewAccount__update2_ 1
tcreateNewAccount__update2 1=new
TcreateNewAccount__update2_ 1();
public void createNewAccount(String login, String passwd,
String address){
acreateNewAccount_ O=login;
acreateNewAccount__1=passwd;
acreateNewAccount_ 2=address;
Scheduler.schedule(tcreateNew Account__updatel _ 0);
Scheduler.schedule(tcreateNewAccount__update2_ 1);
java.lang.Exception ex =
Scheduler.wait{tcreateNewAccount__updatel _ 0);
if(ex!=null) throw ex;
ex = Scheduler.wait(tcreateNewAccount__update2__1);
if(ex!=null) throw ex;

In one embodiment, concurrent code generator 105 trans-
forms marked blocks of the marked code 102 into corre-
sponding tasks extending from a class of the concurrency
support code 107. A task of concurrent code 104 may
correspond to a concurrent block in a method of marked
code 102. In one embodiment, the concurrent code generator
105 may have used a specific naming convention to generate
the tasks. The concurrent code generator 105 may initiate
other types of actions to generate the concurrent code 104.
For example, in an object-oriented language as shown in the
exemplary concurrent code 104, classes (e.g., via an import
statement) referenced in the marked code 102 may be
replaced 1n the concurrent code 104 with a different class
(e.g., com.xxx.concurrency) because the markers (e.g., as
indicated by the marking API) are replaced 1n the concurrent

code 104.

—

The IMT framework 101 may reference other function-
ality of concurrency support 107. For example, one embodi-
ment of an IMT framework 101 may be configured to use a
Thread class of concurrency support 107 to implement a
thread pool 109. In one embodiment, concurrent code 104
may generate code to implement specialized threads (e.g.,

Us 7,346,902 B2

15

threads of the thread pool 109 that may be managed by a
thread manager of the IMT framework 101 at run-time) that
may require initialization before executing an arbitrary task.
A registration function, or hook, may be required so that a
thread of a thread pool 109 may signal (e.g., to a scheduler
of concurrency support 107) that the thread 1s initialized and
ready to be assigned a task to execute. In one embodiment,
a Scheduler class (e.g., Scheduler.submitThread, a member
of the Scheduler class described above) may provide the
registration function to be used by the threads. The code
smppet for an exemplary Thread class may be configured as
follows.

package cOm.XXX.Concurrency;
class Scheduler {

public static void submitThread();
public static void submitThread(ThreadEventHandler eHandler);

;

A ThreadEventHandler application programming interface to handle
events during execution of each thread may be configured as the
following:
package com.XXX.CONCUITency;
interface ThreadEventHandler {

void preTask(Thread parentThread);

void postTask();

Concurrent code 104 may include software code that may
later be translated into machine code by a compiler or
interpreter, for example, for the programming language.
Concurrent code 104 may include references to concurrency
support code 107 that may provide concurrency functional-
ity for the programming language. Concurrent code 104 may
be linked to the concurrency support code 107 to generate
running code 106.

Concurrency support 107 may include a scheduler, thread
manager and any other functionality to support multi-
threaded execution. In one embodiment, a scheduler may be
configured to schedule the tasks for multi-threaded execu-
tion. Threads of the thread pool 109 may be mitialized so
that the threads are ready to execute tasks. The threads, in
one embodiment, may be submitted to the scheduler by
calling, for example, registration functions (e.g., submit-

Thread()).

One embodiment of the IMT framework 101 may be
configured to 1nclude a tracking tool to log information for
tracing and/or profiling, for example, of concurrent tasks
during execution of the running code. The running code 106
may be mstrumented for logging in response to an indicated
compiler option, for example. The mstrumented running
code 106 may be configured to collect and output (e.g., via
the tracking tool) code coverage information for statements
and paths, for example, of each concurrent task during
execution. A log file may be created that includes profile
information (e.g., task execution counts, control tlow graph,
time taken for resources referenced such as memory, net-
work bandwidth, permanent storage accesses) for a particu-
lar execution, for example. Various external tools to the IMT
framework 101 may be configured to access the logged
information tracked during execution of running code 106.

The following guidelines describe handling of different
abnormal conditions, 1f encountered, during execution of the
running code 106, according to one embodiment. The fol-
lowing guidelines are exemplary. Many other conditions
may be handled by various embodiments of the IMT frame-
work 101. Various conditions occurring during execution of

5

10

15

20

25

30

35

40

45

50

55

60

65

16

the running code may be handled so that the external
behavior of the multi-threaded running code 1s the same as
the sequential code from which the running code was
derived. For example, 1in the case where multiple exceptions
(e.g., run-time error conditions) are initiated by more than
one concurrent block 1n a task, one of the exceptions may be
selected for return to a caller. In one embodiment, an
exception for the concurrent block that was started the
carliest may be returned and other exceptions may be
ignored. Selecting one exception may help insulate the caller
(e.g., code that calls a method) of the method from the
concurrency of the blocks.

The concurrent blocks may include conditional returns.
Thus, returning from each concurrent block may mean
returning from the concurrent block instead of the method.
In one embodiment, one of the multiple return values may
be selected from the multiple concurrent blocks. For
example, a method may return the return value from a
concurrent block that finishes execution last among the
method’s concurrent blocks. There may be other guidelines
for determining a single return value from a plurality of
return statements within a plurality of concurrent blocks of
a single method. For example, a method may return the
return value from a concurrent block that finishes execution
first among the method’s concurrent blocks.

In one embodiment, potential concurrent blocks may be
nested within other potential concurrent blocks. Thus, one
embodiment of an IMT framework 101 may require execu-
tion of nested concurrent blocks within an enclosing con-
current block to fimsh before execution of the enclosing
concurrent block may be deemed complete. In one embodi-
ment, a method may be implicitly assumed to be a block of
code. Thus, execution of concurrent blocks within a method
of the running code 106 may need to finish i order for
execution of the method to be deemed complete (e.g., for the
method to exit).

FIG. 2 shows a flowchart of one embodiment of a method
for specitying blocks of code for potential concurrent execu-
tion. In one embodiment, the method may include receiving
soltware code 1nitially configured for sequential execution,
as indicated 1n 200. For example, an automated code marker
tool may receive the sequential code or an editor being used
by a developer for marking. The sequential code may
include portions of code that may be blocked from execution
until some other operation outside the scope of a host, or
outside the scope of a processor within the host, completes.
The sequential code may be configured as a simple program
with non-blocking code segments (e.g., assigning a value to
two diflerent variables). Other types of sequential code
written 1n various languages may be received.

In one embodiment, the sequential code may be analyzed
to 1dentity blocks of code for potential concurrent execution,
as indicated 1n 210. The blocks of code may be portions of
code within the scope of a code fragment (e.g., methods,.
procedures, subroutines, functions). In one embodiment, a
program method may be the unit of software code analyzed
to 1dentily blocks of code for potential concurrent execution.
One or more blocks of code within one or more methods
may be analyzed for potential concurrent execution.

Analyzing the sequential code may be performed by a
developer with knowledge of the execution behavior of the
sequential code or by an automated code marker, for
example. For example, the developer may know that one
portion of the sequential code executes completely indepen-
dent from another portion of the sequential code. In one
embodiment, analyzing the sequential code may include
parsing the sequential code and evaluating dependencies

Us 7,346,902 B2

17

among portions of the code to i1dentily points for potential
concurrent execution. Many variations of an analysis may be
performed to 1dentify potential points for concurrent execu-
tion.

One embodiment may include a marking API to specily
one or more blocks of code that may run concurrently during
execution. One or more markers may be inserted in the
sequential code to suggest the 1dentified blocks for concur-
rent execution, as indicated in 220. In other embodiments,
markers within the marked code may be used for other
purposes. For example, the markers may be used to generate
documentation. After insertion of the markers into the
sequential code, the sequential code may be referred to as
marked code. The markers may indicate potential points
(e.g., blocks of code) within code fragments (e.g., methods,
procedures, subroutines, functions) where multi-threading
should be mtroduced. Since the markers represent potential
points for concurrent execution, the markers may be
removed and/or disregarded at any point after specification
to execution ol the code. The markers may simply be
inserted without making assumptions about semantic behav-
1or (e.g., properties of a run-time object) of the sequential
code at run-time since the markers may be used and/or
disregarded.

In one embodiment, the markers may assign additional
meaning to pre-existing constructs of a programming lan-
guage. For example, markers may be existing programming
language statements such as C statements, Lisp statements
and FORTRAN statements. In one embodiment, static
method calls of a programming language may be used for
the marking API. For example, in an object-oriented lan-
guage such as Java, C++ and Smalltalk, the marking API
may include the methods and members of a static class (e.g.,
procedures within an object-oriented class as a category of
objects, and associated data types and functions for each of
the procedures). The constructs may be assigned additional
meaning so that software code that includes the markers may
be translated (e.g., compiled or interpreted) in the same
manner as soltware code that excludes the markers (e.g.,
sequential code).

While inserting the markers, a block of code may be
qualified with extra information that specifies hints for
execution of the block of code 1n relation to another block
of code. In one embodiment, a block method may be
overloaded (e.g., one of many different methods) with other
block methods. A block of code may be qualified with extra
information by using an overloaded block method. For
example, each of the blocks of code may be assigned a
specific name (e.g., String), a priority, dependencies and/or
an execution duration (e.g., weight).

FI1G. 3 shows a flowchart of one embodiment of a method
for transforming marked code into concurrent code. The
method may include receiving marked code, as indicated in
300. In one embodiment, a concurrent code generator may
receive the marked code. The marked code 1dentifying one
or more blocks of code for potential concurrent execution,
may have been generated as described with FIG. 2. In one
embodiment, the marked code may be parsed and modified
to generate concurrent code, as indicated i 310. In one
embodiment, markers may be replaced 1n the marked code
with programming statements that exclude the block method
calls. Thus, the marked code may be transformed into
concurrent code that induces concurrent execution of the
blocks of code as initially indicated by the markers.

The concurrent code may include one or more tasks
configured for concurrent execution in place of the one or
more marked blocks of code. The concurrent code may

10

15

20

25

30

35

40

45

50

55

60

65

18

include references to shared programming language
resources (e.g., dynamically linked libraries, shared objects,
shared libraries, built-in code) that may provide concurrency
functionality for the programming language. In one embodi-
ment, the concurrent code may be generated 1n response to
an 1indicated option from one or more compilers, interpreters
and/or parsers, for example.

In one embodiment, an analysis of the marked code may
be performed to validate different rules and/or handle diit-
terent conditions before transforming the marked code into
concurrent code. For example, one block spanning over an
entire method would be 1gnored during the transformation
process to reduce the overhead of scheduling the one block
that 1s essentially still sequential. In one embodiment, the
concurrent code may be generated based on a naming
convention. In one embodiment, synchronization points
(e.g., code that induces a thread to enter a wait state) may be
included 1n the concurrent code.

In one embodiment, programming language code may be
included 1n the concurrent code to reference a scheduler to
schedule each task of concurrent code. The scheduling, as
indicated 1n 330, may be based on mformation included 1n
marked code. For example, an opening block statement of a
concurrent block in the concurrent code may include a
priority and dependencies on one or more other concurrent
blocks. For example, a task (as indicated by the marked
code) may be scheduled to begin execution before another
task.

FIG. 4 shows a flowchart of a method for using an IMT
framework to induce concurrent execution 1n software code,
according to one embodiment. One or more blocks of code
within a method, for example, of sequential code may be
marked for potential concurrent execution, as indicated in
400. As described with FIG. 2, the sequential code may be
marked manually, or with an automated code marker, to
identify the one or more blocks. For example, a developer
may use an automated code marker to analyze and mark the
sequential code.

From the marked code, concurrent code may be gener-
ated, as indicated 1n 410. The concurrent code may include
one or more tasks scheduled for potential concurrent execus-
tion, as described with FIG. 3. The concurrent code may
include references to shared programming language
resources that may provide concurrency functionality for the
programming language. For example, the concurrent code
may include references to code of one or more shared
libraries configured to schedule each task concurrently.

The concurrent code may be linked to concurrency sup-
port code to generate running code, as indicated in 420. For
example, the concurrency support code may include shared
libraries for scheduling the concurrent blocks of code for
concurrent execution. The developer may then execute the
running code that includes task(s) with concurrent process-
ing, as idicated in 430. The one or more tasks may have
been identified as tasks in the concurrent code and were
scheduled for concurrent execution.

In one embodiment, the concurrent code generator may be
configured to perform an analysis of marked code to esti-
mate performance benelfits of concurrent execution before
transforming the marked code into concurrent code. The
markers, as described with FIGS. 1 and 2, may be used
and/or 1gnored during the analysis since the markers repre-
sent potential points for concurrent execution. In one
embodiment, the results of the analysis may be used to
transform the marked code into concurrent code. FIG. 3
illustrates a connected acyclic directed graph representation
500 of the marked code generated during an analysis of the

Us 7,346,902 B2

19

marked code. In one embodiment, the analysis may repre-
sent the marked code as vertices (e.g., nodes 505) and edges
(c.g., lines 507). In one embodiment, each vertex may
represent a block of code that may be scheduled for execu-
tion. Fach line may correspond to a task which may be the
marked unit of code scheduled for execution by the IMT
framework 101. In one embodiment, the IMT framework
101 may be configured to output an actual graph represen-
tation (e.g., printout of the graph).

During the analysis, in one embodiment, each vertex may
represent the beginning or the end of a block of code. An
edge may begin at one vertex and end at another vertex. Two
vertices connected by an edge may be said to be adjacent. In
one embodiment, a path of the represented graph may
include a sequence of adjacent vertices. Referring back to
the exemplary concurrent code 106, each Scheduler.sched-
ule and Scheduler.wait call may be represented 1n a graph as
a vertex 500. An edge may begin at a vertex 500A repre-
senting a Scheduler.schedule call. The edge may end at a
vertex 5008 representing a Scheduler.wait call.

The properties of a vertex may apply to edges emanating
from the vertex. For example, a vertex may be associated
with properties that may include possible scheduling priori-
ties, possible exceptions and possible return values for
corresponding blocks of code (as represented by edges to the
vertex). In one embodiment, the analysis may use edges and
properties of the vertices to compute a running length or cost
for each path. For example, the analysis may traverse data
representing the graph to calculate the number of program-
ming statements of each vertex and each edge between a
beginning vertex and an ending vertex for each block.
During the analysis, modifications to the marked code may
be suggested by determining which marked blocks of code
would meet a performance benefit threshold 1t executed
concurrently. For example, the performance benefit thresh-
old may be determined by comparing the estimated execu-
tion duration of each marked block to an overhead for
scheduling the concurrent blocks.

In one embodiment, as described with the marking API, a
developer may specily a running duration (e.g., weight) of
cach block 1n the marked code. The analysis may include the
weight as a property of each vertex. The analysis may
traverse data representing the graph to determine the running
duration of each path by totaling the runming durations of
vertices 1n the path. The analysis may suggest a path that
may have a lower running cost than one or more other paths
represented by the graph. In one embodiment, the analysis
may suggest that blocks be scheduled to begin execution in
order of decreasing running duration. For example, a block
with a longest running duration may be scheduled to begin
execution first. In other embodiments, suggestions may be
based on other scheduling schemes. In one embodiment, the
concurrent code generator may modily the code to imple-
ment the suggestions from the analysis. In one embodiment,
cach block of code may be analyzed to determine 1f the
block of code meets the performance benefit threshold. If the
concurrent block meets the performance benefit threshold,
the block of code may be transformed into a task by the
concurrent code generator.

Exceptions thrown by blocks of the concurrent code may
be modeled on a graph such as the graph of FIG. 5. If an
exception 1s thrown, one or more executing concurrent
blocks may be interrupted. The block interruption may be
represented 1n the graph by a truncated edge. In one embodi-
ment, the graph may take dependencies between blocks in
concurrent code into account. If an exception 1s thrown, for
example, and an edge 1s truncated as a result of the thrown

10

15

20

25

30

35

40

45

50

55

60

65

20

exception, vertices and edges representing blocks dependent
on an interrupted block may be modified and/or removed. In
one embodiment, the edges may represent control flow. For
example, 11 a block 1s dependent on another block, an edge
of the other block may go from the other block to the
dependent block. I other blocks do not depend on a block,
an edge included in the block’s graph representation may
end at the vertex representing the end of a method including
the block.

In one embodiment, the analysis may also be used to
identily potential run-time problems with marked blocks of
code. In one embodiment, the data representing the graph
may 1ndicate cycles. A cycle may be a path 1n which the first
vertex 1s also the last vertex. In one embodiment, the
concurrent code generator may not determine a schedule for
beginning execution of the blocks represented in the cycle.
The concurrent code generator may signal an error condi-
tion. In one embodiment, the concurrent code generator may
automatically modily the concurrent code to remove the
cycle.

The specified blocks of code may be scheduled for
multi-threaded execution based on the results of the analy-
s1s. Although, in one embodiment, the markers have been
replaced 1n the concurrent code, the IMT framework may
still be configured to identify the concurrent blocks. For
example, variables used 1n the concurrent code may indicate
the concurrent blocks. In one embodiment, variables may be
passed to the scheduler when the thread 1s imitiated to
execute. The identified blocks of code may be used and/or
ignored during the analysis since the concurrent blocks
represent potential points for concurrent execution.

FIG. 6 shows a flowchart of one embodiment of a method
for analyzing marked code and scheduling tasks for multi-
threaded execution based on the results of the analysis. In
one embodiment, the method may 1nclude recerving marked
code having blocks 1dentified for potential concurrent execu-
tion, as indicated in 600. The marked code may have been
generated as described with FIG. 2. An analysis of the
marked code may be performed to estimate performance
benefits of concurrent execution before transforming the
marked code into concurrent code, as indicated in 610. For
example, a performance benefit threshold may be deter-
mined by comparing the estimated execution duration of
cach marked block to an overhead for scheduling the con-
current blocks. Markers may be used and/or 1gnored during
the analysis since the markers represent potential points for
concurrent execution.

A connected acyclic directed graph representation of the
marked code, as described with FIG. 5, may be used during
an analysis of the marked code. The marked code may be
modified to implement the suggestions from the analysis. In
one embodiment, each block of code may be analyzed to
determine 11 the block of code meets the performance benefit
threshold, as indicated 1n 620. If the concurrent block meets
the performance benefit threshold, the block of code may be
transformed 1nto a task, as indicated 1n 640. Otherwise, the
concurrent block may not be transformed, as indicated 1n
630. The analysis process may continue until all of the
concurrent blocks have been analyzed, as indicated in 650.

The specified blocks of code may be scheduled for
multi-threaded execution based on the results of the analy-
s1s, as indicated 1n 660. In one embodiment, the analysis
may suggest that blocks be scheduled to begin execution in
order of decreasing running time. For example, a block with
a longest running time may be scheduled to begin execution
first. In other embodiments, suggestions may be based on
other scheduling schemes.

Us 7,346,902 B2

21

One embodiment of the IMT framework may be config-
ured, as described with FIG. 6, to use blocks of code as the
basis for scheduling a plurality of blocks for potential
concurrent execution. A developer and/or an automated code
marker, for example, may have specified block-level per-
formance criteria for each block of code that may potentially
be executed concurrently. Markers may have been embed-
ded to i1dentily each block of code. Demarcation of block-
level code suggestive for concurrent execution may be
usetul 1 deciding a block-level performance criterion for
cach block marked for potential concurrent execution. For
example, one embodiment of the IMT framework may be
configured to perform an analysis of the generated concur-
rent code to determine block-level performance critera,
such as prionty, dependency and/or weight duration, for use
when scheduling a plurality of blocks. In one embodiment,
the analysis may be performed using data representative of
the concurrent code similar to the acyclic graph described
with FIG. 5.

Multi-threaded execution of the plurality of blocks may
be optimized to reduce the overall execution time of the
running code (as scheduled by the scheduler). In one
embodiment, a scheduler may be configured to mitiate
multi-threaded execution of the plurality of blocks 1n an
order determined by the block-level performance criteria to
reduce the overall execution time of the running code. For
example, priority and weight information for each concur-
rent block may have been specified in the marked code
(and/or determined during analysis of the concurrent code)
and the scheduler may schedule each concurrent block of the
plurality of blocks according to the priority and weight
information to reduce the overall execution time of the
running code. In one embodiment, the scheduler may be
configured to schedule concurrent blocks having longer
execution durations ahead of concurrent blocks having
shorter execution durations.

Demarcation of block-level code may be used 1n various
ways to optimize execution of the running code. The runming,
code may have been mstrumented to collect and log pertor-
mance data for each concurrent task during execution. For
example, 1n one embodiment, a tracking tool may log
information for tracing and/or profiling of concurrent tasks
during execution of the running code. A log file may be
created that includes measured block-level performance data
(e.g., block execution counts, block execution durations,
block paths and edges, block execution predictions) for a
particular execution, for example. In one embodiment, the
scheduler may be configured to access the measured block-
level performance data generated during previous execu-
tions of the running code. For example, the scheduler may
be configured to read previously stored measured block-
level performance data as indicated by a compiler option
during recompilation. In one embodiment, the scheduler
may be configured to determine the block-level performance
criteria for each block of concurrent code according to
measured block-level performance data generated from
prior executions of each concurrent block. Repeating the
process of feeding measured block-level performance data
back to the scheduler may optimize multi-threaded execu-
tion of the concurrent blocks because of the benelit of new
measured block-level performance data, for example.

Multi-threaded execution of the plurality of blocks may
be optimized by changing the markings in marked code
(e.g., move blocks of code around) and/or changing the
block-level performance criteria specified in the marked
code. For example, a developer may determine that certain
execution duration of a block (e.g., threshold weight of

10

15

20

25

30

35

40

45

50

55

60

65

22

block) causes the running code to execute faster. The block-
level performance criteria specified 1n the marked code, for
example, the priority and weight of each block, may be
modified to improve the overall execution time of the
running code. Thus, repeatedly executing the running code,
cvaluating measured block-level performance data and
repeatedly regenerating the running code may result with
running code that executes faster. The data that 1s collected
may be converted into performance metrics. Metrics may be
viewed 1n tabular form at the object, function, method, block
of code, source line or instruction level. Code that may be
responsible for resource usage, inefliciencies or time delays,
for example, may be modified to improve concurrent execus-
tion of the blocks. The markers may also be embedded
and/or changed within compiled code (e.g., Java byte-code).

FIG. 7 shows a flowchart of one embodiment of a method
for scheduling a plurality of concurrent blocks for multi-
threaded execution in an order determined by block-level
performance criteria. In one embodiment, the method may
include receiving concurrent code having blocks identified
for potential concurrent execution, as indicated i 700.
Blocks of code, as 1dentified 1in the concurrent code (1nitially
demarcated 1n marked code of the concurrent code), may be
used as the basis for scheduling the plurality of blocks for
potential concurrent execution.

An analysis of the concurrent code may be performed to
determine block-level performance criteria, such as priority,
dependency and/or weight duration, for use when schedul-
ing a plurality of blocks, as indicated in 710. In one
embodiment, the analysis of the concurrent code may be
performed to determine the block-level performance criteria.
In one embodiment, the analysis may be performed using
data representative ol the concurrent code similar to the
acyclic graph described with FIG. 6.

In one embodiment, multi-threaded execution of the plu-
rality of blocks 1n an order based on the block-level perfor-
mance criteria may be 1nitiated to reduce the overall execu-
tion time of the runming code. For example, each concurrent
block of the plurality of blocks may be scheduled according
to priority and weight information to reduce the overall
execution time of the running code. In one embodiment,
concurrent blocks having longer execution durations may be
scheduled ahead of concurrent blocks having shorter execu-
tion durations.

FIG. 8 shows a flowchart of a method for using an IMT
framework to reduce the overall multi-threaded execution
time of a plurality of blocks, according to one embodiment.
Multi-threaded execution of the plurality of blocks may be
optimized to reduce the overall execution time of the run-
ning code (as scheduled by a scheduler). A developer, for
example, may execute running code, as indicated in 800.
The running code may have been mstrumented during
compilation, for example, to collect and log performance
data for each concurrent task during execution. A log file
may be created that includes measured block-level perior-
mance data (e.g., block execution counts, block execution
durations, block paths and edges, block execution predic-
tions) for a particular execution, for example.

In one embodiment, the developer, for example, may
cvaluate the generated measured block-level performance
data to determine what types of changes may be imple-
mented to optimize execution of the running code, as
indicated in 800. The developer may attempt to 1mprove
execution time of the runming code based on results of the
evaluation by making enhancements and/or regenerating the
running code, as indicated 1n 820. Various enhancements
may be performed. The developer may decide to feed the

Us 7,346,902 B2

23

measured block-level performance data back to the sched-
uler. The scheduler may be configured to read previously
stored measured block-level performance data as indicated
by a compiler option during recompilation. In one embodi-
ment, the scheduler may be configured to determine the
block-level performance criteria for each block of concur-
rent code according to measured block-level performance
data generated from prior executions of each concurrent
block. The developer may continue to repeat the process of
teeding measured block-level performance data back to the
scheduler because of the benefit of new measured block-
level performance data, for example.

The markings in the marked code may also be changed.
For example, the developer may move blocks of code
around and/or change the block-level performance criteria
specified 1n the marked code. A developer may determine
that certain execution duration of a block (e.g., threshold
weight of block) causes the running code to execute faster.
The block-level performance criteria specified 1n the marked
code, for example, the priority and weight of each block,
may be modified to improve the overall execution time of
the running code. Thus, repeatedly executing the runming
code, evaluating measured block-level performance data and
repeatedly regenerating the running code may result with
running code that executes faster.

FIG. 9 illustrates a computer system 909 that may that
may include an IMT framework 101 to induce multi-thread-
ing in soltware code as described above, according to one
embodiment. Computer system 909 may include many
different components such as memory 907, a central pro-
cessing unit (CPU) or processor 906, an input/output (I/0)
intertace 905, operating system 908 and device-interconnect
950. Interconnect 950 is relied upon to communicate data
from one component to another. For example, interconnect
950 may be a point-to-point interconnect, a shared bus, a
combination of point-to-point interconnects and one or more
buses, and/or a bus hierarchy including a system bus, CPU
bus, memory bus and I/O buses such as a peripheral com-
ponent interconnect (PCI) bus. Memory 907 may store
program 1instructions accessed by the CPU 906. For
example, instructions and data implementing an IMT frame-
work 101 may be stored in memory 907. An operating
system 908 may also be stored 1n memory 907.

Computer system 909 may further include other software
and hardware components, such as a network interface 930,
that may be coupled to various. other components and
memory 907. The CPU 906 may acquire instructions and/or
data through the I/O mtertace 905. Through the I/O 1nterface
905, the CPU 906 may also be coupled to one or more other
components 931. As illustrated, components 931 may
include disk drive 931A, a display device 931B and other
I/0 devices 931C for use with computer system 909 such as
other CPUs, track balls, mice, keyboards, printers, plotters,
scanners, etc. Some computer systems 909 may include
additional and/or other components than shown 1n FIG. 9.

In one embodiment, the IMT framework 101 may be
configured as part of an application server, for example. The
application server may execute application components that
operate across diflerent computers based on different plat-
forms and architectures. One embodiment of an IMT frame-
work 101 may be implemented on a single computer. The
soltware code may be implemented, for example, on virtual
machines (VMs) (e.g., Java Virtual Machines) coupled to
one embodiment of an IMT framework 101. The wvirtual
machines may be implemented on one or more computers.
The IMT framework 101 may operate on different and
various types of computers that may communicate to each

10

15

20

25

30

35

40

45

50

55

60

65

24

other over a network. For example, a client (e.g., Web
browser) may operate on a desktop computer running Win-
dows™ NT from Microsoit and an IMT framework appli-
cation server, 1n one embodiment, may operate on a mini-
computer running an operating system such as Sun™ Linux
from Sun Microsystems.

FIG. 10 1illustrates an IMT framework 101 configured as
part of an application server 974 A, according to one embodi-
ment. The application server 974A including IMT frame-
work 101 may be configured to operate on a computer
system as described with FIG. 9. One or more developers
may use the IMT framework 101 to identify which blocks of
code within a portion of software code may run concurrently
during execution of the software code. The application
server 974A may execute application components (e.g.,
Java™ Servlets, JavaServer Pages™ and Enterprise Java-
Beans™), for example, of an Internet-based application. The
Internet-based application may be based on a three-tier
architecture including a client tier 971, a middle tier 973 and
a backend tier 975. Software code developed and executed
with various embodiments of the IMT framework 101 may
operate differently or on a different architecture than the
application server 974A shown in FIG. 10. Thus, FIG. 10
illustrates an exemplary type of software code and architec-
ture relying on the IMT framework 101. The IMT frame-
work 101 may be utilized to develop various types of
applications, or develop any type of software code having
portions of code that may run concurrently.

The Internet-based application logic may be divided into
application components according to function and the vari-
ous application components may be installed on different
computers depending on which tier the application compo-
nent belongs. The application components, for example,
may be specified and assembled with one embodiment of the
IMT framework 101. The application server 974 A, execut-
ing the application components operating across tiers, may
be a resource within the middle tier 973. For example, a Web
browser as a client 972 within the client tier 971 may operate
on a computer that 1s configured to access the application
server 974 A via an Internet/Intranet 970 using an underlying,
protocol such as HyperText Transter Protocol and Hyper-
Text Transfer Protocol Secure (HTTP/HTTPS). The
resources within each tier may operate on different and
various types of host computers that may communicate to
cach other over a network. For example, a client 972 (e.g.,
Web browser) may operate on a desktop computer running
various operating systems such as Windows™ from
Microsoit and Unix™ from Sun Microsystems, and the
application server 974A may operate on a minicomputer
running various operating systems such as Solaris™ and
Sun™ Linux from Sun Microsystems.

The flow charts described herein represent exemplary
embodiments of methods. The methods may be imple-
mented 1n software, hardware, or a combination thereof. The
order of method may be changed, and various elements may
be added, reordered, combined, omitted, modified, etc.

Various modifications and changes may be made to the
invention as would be obvious to a person skilled 1n the art
having the benefit of this disclosure. It 1s mntended that the
following claims be interpreted to embrace all such modi-
fications and changes and, accordingly, the specifications
and drawings are to be regarded 1n an 1llustrative rather than
a restrictive sense.

Various embodiments may further include receiving,
sending or storing instructions and/or data implemented 1n
accordance with the foregoing description upon a computer
readable medium. Generally speaking, a computer readable

Us 7,346,902 B2

25

medium may include storage media or memory media such
as magnetic or optical media, e.g., disk or CD-ROM, volatile

or non-volatile media such as RAM (e.g. SDRAM, DDR
SDRAM, RDRAM, SRAM, etc.), ROM, etc. as well as
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as network and/or a wireless link.

What 1s claimed 1s:

1. A computer-implemented method, comprising:

automatically marking a plurality blocks of code in an

application coded for sequential execution to provide a
marked code, wherein said marking comprises insert-
ing a marker at each of the blocks to suggest that block
for potential concurrent execution with other parts of
the code, wherein each of the markers comprises a
block duration weight for estimating an execution time
of the corresponding block, wherein the block duration
welght idicates a predetermined approximate execu-
tion duration for the corresponding block;

generating concurrent code from the marked code,

wherein said generating comprises:

analyzing the marked code, according to at least the
corresponding block duration weight of one or more
of the marked blocks, to estimate performance ben-
efits of concurrently executing the marked blocks of
code and determining which marked blocks would
meet a performance benefit threshold 1t executed
concurrently; and

transforming two or more of the marked blocks into
corresponding concurrently executable tasks,
wherein one of the marked blocks 1s not transformed
into one of the concurrently executable tasks 1f said
analyzing indicates that the performance benefit
threshold would not be met for that block; and

scheduling two or more of the concurrently executable

tasks for concurrent multi-threaded execution, wherein

a thread for one of the two or more concurrently

executable tasks executes concurrently with a thread

for another of the two or more concurrently executable

tasks corresponding to a different one of the blocks.

2. The method as recited in claim 1, wherein said ana-
lyzing comprises estimating an execution time of each
marked block.

3. The method as recited in claim 2, wherein said esti-
mating an execution time comprises estimating the execu-
tion time of one of the marked blocks according to the block
duration weight of the marker and a path length of the block.

4. The method as recited in claim 2, wherein said ana-
lyzing comprises comparing the estimated execution time of
cach marked block to an overhead for scheduling concurrent
threads.

5. The method as recited in claim 1, wherein said marking
comprises marking a sub-method portion of a program
method of the application as one of the blocks marked for
concurrent execution, wherein said generating comprises
transforming the marked sub-method block into a task
configured for concurrent execution.

6. The method as recited 1n claim 1, wherein said marking
COmMprises:

receiving the application code;

analyzing the application code to 1dentily potential con-

currently executable blocks of the application code; and

wherein said inserting a marker comprises inserting a

marker into the sequential code to suggest the 1dentified
blocks for concurrent execution.

7. The method as recited 1n claim 1, wherein said marker
comprises a method call.

10

15

20

25

30

35

40

45

50

55

60

65

26

8. The method as recited 1n claim 7, wherein said method
call 1s compatible with a programming language of the
application.
9. The method as recited 1n claim 1, wherein said sched-
uling comprises scheduling one of the tasks for multi-
threaded execution according to priority 1nformation
included with the marker for the corresponding marked
block.
10. The method as recited in claam 1, wherein said
scheduling comprises scheduling one of the tasks for multi-
threaded execution according to dependency information
included with the marker for the corresponding marked
block.
11. The method as recited in claim 1, wherein said
marking a plurality of blocks of code 1n an application
comprises marking Java byte-code for the application.
12. The method as recited in claim 1, wherein said
marking a plurality of blocks of code 1 an application
comprises marking Java source code for the application.
13. The method as recited 1n claim 1, wherein said
marking comprises marking each block so that no block
crosses the boundary of another unless the respective blocks
are Tully nested.
14. A system, comprising:
One Or more Processors;
a memory coupled to the one or more processors, wherein
the memory 1s configured to store program instructions
executable by the one or more processors to implement
a framework for suggestive multi-threading, wherein
the framework comprises:
an automated code marker tool configured to receive the
sequential code; analyze the sequential code to 1dentily
potential concurrently executable blocks of the sequen-
tial code; and insert a plurality of markers into the
sequential code to suggest the identified blocks for
concurrent execution;
a concurrent code generator configured to receive marked
code comprising sequential code having a plurality of
markers inserted i the sequential code to suggest
blocks of code for concurrent execution with other
parts of the code, wherein each of the markers com-
prises a block duration weight for estimating an execu-
tion time for the corresponding block, wherein the
block duration weight indicates a predetermined
approximate execution duration for the corresponding
block, wherein the concurrent code generator 1s con-
figured to:
perform an analysis of the marked code, according to at
least the corresponding block duration weight of one
or more ol the marked blocks, to estimate perfor-
mance benefits of concurrently executing the marked
blocks of code and determine which marked blocks
would meet a performance benefit threshold 1if
executed concurrently; and

transform two or more of the marked blocks nto
corresponding concurrently executable tasks,
wherein one of the marked blocks 1s not transformed
into one of the concurrently executable tasks it the
analysis 1ndicates that the performance benefit
threshold would not be met for that block; and

a scheduler configured to schedule two or more of the
tasks for concurrent multi-threaded execution,
wherein a thread for one of the two or more concur-
rently executable tasks executes concurrently with a
thread for another of the two or more concurrently
executable tasks corresponding to a different one of

the blocks.

Us 7,346,902 B2

27

15. The system as recited imn claim 14, wherein the
concurrent code generator 1s further configured to estimate
an execution time of each marked block.

16. The system as recited 1n claim 15, wherein the
concurrent code generator 1s configured to estimate the
execution time of one of the marked blocks according to the
block duration weight of that block and a path length of that
block.

17. The system as recited i claim 135, wherein the
concurrent code generator 1s further configured to compare
the estimated execution time of each marked block to an
overhead for scheduling concurrent threads.

18. The system as recited in claim 14, wherein the
plurality of markers mark a sub-method portion of a pro-
gram method of the sequential code as one of the blocks
marked for concurrent execution, wherein the concurrent
code generator 1s further configured to transform the marked
sub-method block mnto a task configured for concurrent
execution.

19. The system as recited 1n claim 14, wherein each of the
markers comprise a method call.

20. The system as recited 1n claim 19, wherein the method
call 1s compatible with a programming language of the
sequential code.

21. The system as recited in claim 14, wherein the
scheduler 1s further configured to schedule one of the tasks
for multi-threaded execution according to priority informa-
tion included with one of the markers for the corresponding
marked block.

22. The system as recited i claim 14, wherein the
scheduler 1s further configured to schedule one of the tasks
for multi-threaded execution according to dependency infor-
mation included with one of the markers for the correspond-
ing marked block.

23. The system as recited in claim 14, wherein the
markers mark Java byte-code for the sequential code.

24. The system as recited in claim 14, wherein the
markers mark Java source code for the sequential code.

25. The system as recited in claim 14, wherein the
markers mark each block so that no block crosses the
boundary of another unless the respective blocks are fully
nested.

26. A computer accessible storage medium comprising
program 1instructions, wherein the program instructions are
executable to implement a framework for suggestive multi-
threading, wherein the framework comprises:

an automated code marker tool configured to receive the
sequential code; analyze the sequential code to 1dentily
potential concurrently executable blocks of the sequen-
tial code; and insert two or more markers into the
sequential code to suggest the identified blocks for
concurrent execution;

a concurrent code generator configured to receive marked
code comprising sequential code having a plurality of
markers inserted 1n the sequential code to suggest
blocks of code for concurrent execution with other
parts of the code, wherein each of the markers com-
prises a block duration weight for estimating an execus-
tion time for the corresponding block, wherein the
block duration weight indicates a predetermined
approximate execution duration for the corresponding
block, wherein the concurrent code generator 1s con-
figured to:

perform an analysis of the marked code, according to at
least the corresponding block duration weight of one or

10

15

20

25

30

35

40

45

50

55

60

28

more of the marked blocks, to estimate performance
benefits of concurrently executing the marked blocks of
code and determine which marked blocks would meet
a performance benefit threshold 11 executed concur-
rently;

and transform two or more of the marked blocks 1nto

corresponding concurrently executable tasks, wherein
one of the marked blocks 1s not transformed into one of
the concurrently executable tasks 1f the analysis 1ndi-
cates that the performance benefit threshold would not
be met for that block; and

a scheduler configured to schedule two or more of the

tasks for concurrent multi-threaded execution, wherein
a thread for one of the two or more concurrently
executable tasks executes concurrently with a thread
for another of the two or more concurrently executable
tasks corresponding to a different one of the blocks.

277. The computer accessible medium as recited 1n claim
26, wherein the concurrent code generator i1s further con-
figured to estimate an execution time of each marked block.

28. The computer accessible medium as recited 1n claim
2’7, wherein the concurrent code generator 1s configured to
estimate the execution time of one of the marked blocks
according to the block duration weight of that block and a
path length of that block.

29. The computer accessible medium as recited 1n claim
277, wherein the concurrent code generator i1s further con-
figured to compare the estimated execution time of each
marked block to an overhead for scheduling concurrent

threads.

30. The computer accessible medium as recited 1n claim
26, wherein the markers mark a sub-method portion of a
program method of the sequential code as one of the blocks
marked for concurrent execution, wherein the concurrent
code generator 1s further configured to transform the marked
sub-method block mnto a task configured for concurrent
execution.

31. The computer accessible medium as recited 1n claim
26, wherein each of the markers comprises a method call.

32. The computer accessible medium as recited 1n claim
31, wherein the method call 1s compatible with a program-
ming language of the sequential code.

33. The computer accessible medium as recited 1n claim
26, wherein the scheduler 1s further configured to schedule
one of the tasks for multi-threaded execution according to
priority information included with one of the markers for the
corresponding marked block.

34. The computer accessible medium as recited 1n claim
26, wherein the scheduler 1s further configured to schedule
one of the tasks for multi-threaded execution according to
dependency information included with one of the markers
for the corresponding marked block.

35. The computer accessible medium as recited 1n claim
26, wherein the markers mark Java byte-code for the sequen-
tial code.

36. The computer accessible medium as recited 1n claim
26, wherein the markers mark Java source code for the

sequential code.

37. The computer accessible medium as recited 1n claim
26, wherein the markers mark each block so that no block
crosses the boundary of another unless the respective blocks
are Tully nested.

	Front Page
	Drawings
	Specification
	Claims

