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MACRO SECURITY PRIMITIVE SEQJRITY
OPERATIONS OPERATIONS
SECURITY NEGOTIATION +2 partial hash OPERATIONS
OPERATION | (1 MD5 and 1 SHAT)

—

KEY EXCHANGE OHERATION 1 — RSA OPERATION

| 20 Hash OPERATIONS (10
MD5 + 10 SHA1) for SSL 3.0

_—

76 Hash OPERATIONS (40
MDS5 + 36 SHATL) for TLS

2 partial hash OPERATIONS

: (1 MDS5 and 1 SHA1)
FINISHED OPERATION | 1 —decrypt OPERATION
| (RC4 Or 3DES or DES or
| AES)

| 2~ hash OPERATIONS for

# MAC (either MDS or SHAL)

| 4 — hash OPERATIONS(2
MDS + 2SHA1)

|
| 4 — hash OPERATIONS (2
| MDS5 + 2 SHA1D)

| 1 —encrypt OPERATION
(RC4 or 3DES or DESor
| AES)

r

2 — hash OPERATIONS for

| MAC (either MD5 or SHAI)
|

1——_—_——_[_————_—————————

FULL HANDSHAKE 1 — RSA OPERATION
OPERATION '

{ 20 -~ Hash OPERATIONS(10 MD5 +
10 SHA1) for SSL 3.0

[ |

76 Hash OPERATIONS (40MD5 +
| 36 SHA1)for TLS

1 6 — hash OPERATIONS (3MD5 +3
SHAT)

1 1 —encrypt OPERATION (RC4 or
| 3DES or DES or AES)

| 6 — hash OPERATIONS (3MD5 + 3
| SHAT1)

| 1 - encrypt OPERATIONS (RC4 or
3DES or DES or AES

2 — hash OPERATIONS for MAC
L _ (either M5 or SHAI)

Fig. 4
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1

APPARATUS AND METHOD FOR
ALLOCATING RESOURCES WITHIN A
SECURITY PROCESSOR

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of data pro-
cessors. More particularly, the invention relates to a network
security processor which provides for an intelligent and
cllicient allocation of processing and queuing resources.

2. Description of the Related Art

Communication networks and the number of users of such
networks continue to increase. Moreover, on-line sales
involving both business-to-business and business-to-con-
sumer transactions over the Internet continues to proliferate.
Additionally, the number of people that are telecommuting
continues to grow. Both on-line sales and telecommuting are
examples of the usage of communication networks that
typically involves private and sensitive data that needs to be
protected during transmission.

Accordingly, security protocols such as Transport Layer
Security (TLS), Secure Sockets Layer (SSL) 3.0, and Inter-
net Protocol Security (IPSec) have been developed to estab-
lish secure sessions between remote systems. These security
protocols allow remote systems to establish a secure session
through message exchange and calculations, thereby allow-
ing sensitive data being transmitted across the different
communication networks to remain secure and untampered.

FI1G. 1 1llustrates an exemplary two phase client-server or
peer-to-peer exchange to establish a secure session. In a first
phase 105, the security negotiation phase, a network element
101 (the client or the first peer) and a network element 103
(the server or the second peer) exchange messages to nego-
tiate security between the two network elements 101 and
103. The negotiation of security includes determining the
algorithms (e.g., hashing algorithms, encryption algorithms,
compression algorithms, . . . etc) to be employed by the two
network elements 101 and 103. In a second phase 107, a key
exchange phase, the network elements 101 and 103
exchange key information. The second phase 107 comprises
the network elements 101 and 103 exchanging messages
based on a selected public key algorithm and authenticating
received messages. While the specific primitive tasks of
these two phases vary for different security protocols, the
primitive tasks for establishing a secure session can include
the receiving of messages, transmitting ol messages, gener-
ating of keys, generating of secrets, hashing of data, encrypt-
ing of data, decrypting of data, and calculating of random
numbers.

Performing the tasks to establish a secure session 1s
processor-intensive. If a general purpose processor acting as
the host processor for a network element, performs these
tasks, then the network element’s system performance will
suller because processing resources will be consumed for
the tasks. The results of poor system performance can
impact a network and users 1n various ways depending on
the function of the network element (e.g., routing, switching,
serving, managing networked storage, . . . etc).

Security coprocessors have been developed to ofiload
some ol the tasks from the host processor. FIG. 2 1llustrates
an exemplary architecture for a security processor 200
which includes multiple execution cores 240. The network
clement 205 shown mn FIG. 2 (e.g., a router, gateway,
switch, . . . etc) transmits security operation requests to the
security processor 200 via an 1I/O interface 210 (e.g., a PCI
interface). The security requests are initially placed in an
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2

input queue 222. An execution core scheduler 230 reads the
security requests from the input queue in sequence and
farms out the security requests to each of the execution cores
240. For example, each execution core 240 may process a
single security request at a time and the execution core
scheduler may farm out individual security requests 1n a
round-robin fashion. When an execution core 240 completes
a security request, the results of the request are placed 1n an
output queue 220 and provided to the network element 205
via the I/0 interface. Various techniques for transmitting and
queuing data between the network element and the host
processor may be employed such as, for example, direct
memory access (“DMA”) read/write operations.

The execution cores may be programmed with microcode
to process different types of security operations such as SSL,
IPSEC, or XML Dagital Signature (“DSi1g”) operations. One
example of an execution core 300, illustrated i FIG. 3,
includes a microcode block 301, a microcontroller block
303, and an execution queue block 3035. The microcontroller
block 303 executes microcode stored within the microcode
block 301. In one embodiment, the microcontroller block
translates each security operation 1into one or more primitive
security operations which are then distributed to execution
queue block 305. Different microcode blocks may be loaded
within the execution core 300 (e.g., via a driver when the
system 1s powered up). For example, one type of microcode
block may be specifically adapted for processing SSL opera-
tions whereas another type of microcode block may be
adapted for processing IPSEC operations. By way of
example, and not limitation, several different security opera-
tions are 1llustrated in the table 1n FIG. 4 along with their
associated primitive security operations.

The execution queue block 305 is coupled to a set of
primitive security operation blocks including, by way of
example and not limitation, an Advanced Encryption Stan-

dard (AES) block 307, a Triple Data Encryption Standard
(3DES) block 309, a modular exponentiation block 311, a
hash block 313, a simple arithmetic and logic block 315, and
an alleged RC4® block 319. Alternative implementations
may include additional primitive security operation blocks
or fewer primitive security operation blocks. A bus 321
couples the primitive security operation blocks 307, 309,
311, 313, and 319 and the register file block 317 together.

The 1nput data for the operation (if any) 1s copied from the
I/O terface 210 to the register file 317. The microcontroller
block 303 retrieves the appropriate control information (f
any) from the register file 317. The microcontroller block
303 places the necessary primitive security operations into
the execution queue 305 for transier to the security operation

blocks 307, 309, 311, 313, 315, or 319. Once a primitive
security operation block 307, 309, 311, 313, 315, or 319 has
executed the primitive security operation, the results are
copied to the register file 317. The results of the security
operation (be 1t a macro or a primitive security operation),
are then placed in the output queue 220 and transmitted to
the network element 2035 via the I/O interface 210 (e.g., by
way ol a DMA transfer to the appropriate location within the
network element 205).

Current security processor configurations, such as those
described above, are incapable of concurrently processing
different types of data traflic and thereafter dynamically
adapting to changes in data traflic. For example, current
security processor configurations are incapable of concur-
rently processing both IPSEC and SSL data trathc. More-
over, no mechanisms currently exist for dynamically real-
locating processing resources 1n response to relative changes
in the processing requirements for each security protocol.
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Moreover, security coprocessors today are not capable of
guaranteeing a specified level of service or bandwidth for
certain types of secure data traflic.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description 1n conjunc-
tion with the following drawings, in which:

FIG. 1 1llustrates a two phase client/server exchange to
establish a secure session.

FIG. 2 illustrates an exemplary prior art system for
processing security operations.

FIG. 3 illustrates an exemplary execution core employed
in the prior art and 1n one embodiment of the mvention.

FIG. 4 1llustrates an exemplary set of macro security
operations and corresponding primitive security operations.

FIG. 5 illustrates one embodiment of the invention for
dynamically allocating processing resources and input/out-
put queues.

FIG. 6 illustrates a mainline processing architecture
employed 1n one embodiment of the invention.

FIG. 7 illustrates a request header format employed in one
embodiment of the invention.

FIGS. 8a—b illustrate one embodiment of the invention
which includes a mainline processing component and a
dynamic processing component.

FI1G. 8¢ illustrates one embodiment in which calls from an
application layer are transmitted to an appropriate process-
ing pipeline by a driver.

FIG. 9 illustrates an inline implementation of a security
processor employed 1n one embodiment of the invention.

FIG. 10 1illustrates one embodiment of an apparatus for
intelligently allocating resources and input/output queues.

DETAILED DESCRIPTION

A multi-service, multi-protocol security apparatus and
method are described which provide guaranteed bandwidth
and dynamic provisioming for secure data traflic. In the
tollowing description, numerous specific details are set forth
to provide a thorough understanding of the imnvention. How-
ever, 1t 1s understood that the invention may be practiced
without these specific details. In other instances, well-known
circuits, structures and techniques have not been shown 1n
detail 1n order not to obscure the invention.

One Embodiment of the Invention

The security processing architecture described below con-
currently supports multiple security algorithms including,
but not limited to the IP Security (“IPSEC”), Secure Sockets
Layer (*“SSL”) and XML Digital Signature (“XML DSi1g”)
security protocols. In addition, 1n one embodiment of the
security processing architecture, specified security process-
ing resources are allocated between the different security
algorithms. For example, 40% of the security processing
resources may initially be allocated to processing SSL data
traflic while the remaining 60% may be allocated to pro-
cessing IPSEC data tratlic. Moreover, 1n one embodiment,
following the initial security processing resource alloca-
tions, the security processing resources may be dynamically
reallocated, based on variables such as data traflic load
associated with each protocol and based on specified
resource allocation parameters. Finally, one embodiment of
the security processing architecture reserves certain process-
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Ing resources to a particular type of service and/or protocol,
thereby guaranteeing bandwidth availability for that service

and/or protocol.

-

The term “resources”™ 1s used broadly herein to mean any
clement or mechanism within the security processor related
to the processing or storage of data. For example processing
resources may include execution cores within the security
processor. Similarly, queuing resources or memory
resources may include the number of queues or the amount
of memory space allocated to a particular protocol or
service.

Resource Allocation

A security processor including an exemplary set of secu-
rity processing resources 540 and queuing resources 521,

526 1s illustrated 1n FIG. 5. In one embodiment, the security

processing resources 540 are a plurality of execution cores
EC1-EC9Y which implement base cryptographic operations

such as DES/3DES, AES, RC4, SHA-1, MD3, and modular
exponentiation, such as those 1llustrated in FIGS. 2-3 above.
However, the underlying principles of the invention are not
limited to an implementation which employs multiple
“execution cores.” For example, the resources of a single
processor or a single execution unit may also be allocated
(e.g., using time-division allocation techniques) while still
complying with the underlying principles of the invention.

The embodiment illustrated 1n FIG. 5 includes an alloca-
tion module 560 and a monitor module 550. The allocation
module 560 includes an 1nput queue allocation module 561,
a processing resource allocation module 562 and a output
queue allocation module. The monitor module 550 1includes
an 1mmput queue monitor module 551, a processing resource
monitor module 552 and an output queue monitor module
553. The monitor module 550 and the allocation module are
communicatively coupled, as indicated, such that data traflic
and processing information gathered by the monitor mod-
ules 551-5353 may be provided to any one of the allocation
modules 561-561 during runtime. The operation of each of
these modules will be described in greater detail below.

Incoming data traflic 501 i1s provided to the security
processor via input interface 503. Various diflerent types of
interfaces may be employed including, by way of example
and not limitation, a peripheral component interconnect

(“PCI”) mnterface, a System Packet Interface Level 3 (*“SPI-
37), or a System Packet Level 4 (*SPI-4”) interface. The
incoming data traflic 501 may be in the form of IPSEC
packets, SSL packets, XML DSig packets, proprietary data
packets generated by a network processing element (e.g., a
network processor), or may be in any other data format. The
underlying principles of the mvention are not limited to a
particular interface or a particular packet transmission for-
mat.

In one embodiment, data packets are provided over the
interface 505 to an mput queue scheduler 520 which selects
an input queue for each data packet. As described 1n greater
detail below, the mput queue scheduler 520 operates under
the control of the input queue allocation module 561. A
processing resource scheduler 530 reads the data packets
from each of the mput queues 521 and schedules the data
packets for processing by the security processing resources
540. The processing resource scheduler 330 operates under
the control of the processing resource allocation module
562. Data packets which have been processed are provided
to an output queue scheduler 525 which places each pro-
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cessed data packet 1n an appropriate output queue 526, based
on control signals provided from the output queue allocation
module 563.

The output queue scheduler 325 transmits the processed
data packets to an external network element (not shown)
over a communication interface 506. Once again, the inter-
tace 506 may be any type of interface suitable for commu-
nicating data including a PCI interface, a SPI-3 interface or
a SPI-4 interface. In one embodiment, interface 505 and
interface 506 are actually the same bi-directional interface
(1.e., capable of both receiving unprocessed data packets and
transmitting processed data packets).

In one embodiment of the invention, a specified set of
resource allocation parameters 563 provides an indication of
how the allocation module 560 should allocate the security
processing resources 540 and the queues 520, 525 both
iitially, and 1n response to changes 1n data traflic detected
by the monitor module 550. For example, the processing
resource allocation module 562 may be configured to 1ni-
tially reserve execution cores EC1 through EC3 for process-
ing SSL traflic only and to initially reserve execution cores
EC4 through EC9 for processing IPSEC traflic only. As a
result, when the security processor 1s mitialized, SSL-based
microcode will initially be loaded into EC1 through EC3 and
IPSEC-based microcode will mitially be loaded into EC4
through EC9. The end result 1s that a guaranteed level of
security processing bandwidth 1s 1nitially allocated for each
type of security protocol supported by the security proces-
SOF.

In addition to allocating security processing resources
540, the mput queue allocation module 561 (1n response to
the allocation parameters 565) may associate each of the
input queues 521 with a particular execution core EC1-EC9.
Returning to the example above, three mput queues may be
associated with the three execution cores EC1-EC3 config-
ured with SSL-based microcode, and six mput queues may
be associated with the six execution cores EC-4-EC9. Thus,
in one embodiment, each execution core will be associated
with 1ts own mput queue. The input queue scheduler 520
then forwards SSL data packets to each of the three input
queues associated with execution cores EC1-EC3 and {for-
wards IPSEC data packets to each of the six iput queues
associated with execution cores EC4-EC9. In one embodi-
ment, the mput queue scheduler 520 employs a round-robin
algorithm to fill the mput queues 521 (1.e., alternating
between each of the input queues 1n sequence as new data
packets arrive).

In one embodiment, the mput and output “queues™ are not
discrete storage elements. Rather, they are defined, addres-
sable memory blocks within a single, contiguous memory
space (e.g., such as SDRAM, DDRAMor RDRAM). Thus,
in this embodiment, different mnput and output queue sizes
may be selected based on protocol type or based on a
designated level of service, as described in more detail
below. For example, a threshold may be specified for each
input and/or output memory 1indicating the percentage of the
total available memory space that diflerent types of data
trailic are permitted to consume. If the data within the queue
or memory exceeds the defined threshold, then no additional
data may be placed 1n the queue/memory until space within
the queue/memory 1s freed (e.g., until additional packets are
processed and transmitted out through the interface 506).

In one embodiment, one contiguous block of memory
may be defined for all SSL trathic and another block of
memory may be defined for all IPSEC ftrafic. In this
embodiment, the input queue scheduler 520 will transter all
SSL-based data into the memory block designated for SSL
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traflic and will transfer all IPSEC-based data into the
memory block designated for IPSEC traflic.

The processing resource scheduler 531 may then read data
packets from each defined memory space (e.g., in the order
in which the packets are recerved) and provide them to the
appropriate execution cores in a round robin manner (or as
execution umts become available). Returning again to the
previous example, the processing resource scheduler 531
will transter SSL-based data packets from the first defined
memory space to execution units EC1-EC3 and will transter
IPSEC-based data packets from the second defined memory
space to execution cores EC4-EC9. It should be noted,
however, that the underlying principles of the invention are
not limited to any particular queuing or memory manage-
ment techmiques.

In one embodiment, the data stored within the input
queues 521 and output queues 526 does not include the
actual data to be processed by the security processing
resources (e.g., the underlying encrypted/decrypted con-
tent). Rather, to conserve space within the queues, the data
stored within the queues may include only packet header
information or pointers which i1dentity the location of the
underlying data and/or other pertinent information about the
data (e.g., the security protocol used to encrypt the data, the
level of service associated with the data, the type of content
included within the data, . . . etc). When an execution core
1s available to process the data, the resource scheduler 531
and/or the relevant execution core then uses the header
information to identily and retrieve the data for processing.
In one embodiment, the security processor 1s equipped with
an 1nput memory (not shown) for storing the underlying data
betore it 1s processed and an output memory (not shown) for
storing the data after 1t has been processed. In one embodi-
ment, the mput and output memories are configured within
an external memory (e.g., under the control of a host
processor). Data which has been processed by the execution
cores 1s stored within the output memory until 1t i1s trans-
mitted out over the interface 506. In one embodiment, the
monitor module 550 monitors the amount of data stored
within the mput memory and/or output memory, either in
addition to, or 1n lieu of monitoring the data within the input
and/or output queues 521 and 526, respectively.

In one embodiment, resource allocation 1s based on vari-
ables other than merely the security protocol type (e.g.,
IPSEC, SSL, XML DSig, . . . etc). For example, 1n one
embodiment, the initial allocations are based on a service
type associated with the data (either 1n addition to, or 1n lieu
of allocations based on security protocol type). For example,
in one embodiment, different quality of service (“QOS”)
levels may be defined for different types of content. Voice
data traflic, or other real-time data traflic, for example, may
be assigned a relatively higher level of service than standard
data traflic. In addition, different service levels may be
specified for different customers. For example, certain cus-
tomers may be willing to pay a relatively higher price for a
relatively higher level of guaranteed security processing
bandwidth.

Thus, returning to the previous example, the three execu-
tion cores EC1-EC3 allocated to SSL traflic may be further
divided based on defined prionty/service levels. For
example, the processing resource allocation module 562
may 1nitially allocate EC1-EC2 to “high” prionty data
traflic (e.g., voice data traflic and/or a data traflic having a
relatively higher guaranteed bandwidth level), whereas 1t
may 1itially allocate only EC1 to relatively “low” priority
data traflic (e.g., standard data traflic or data traflic having a
relatively lower service level). The six execution cores
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allocated to IPSEC tratlic may similarly be divided based on
priority/service level. For example, the processing resource
allocation module 540 may mnitially allocate EC4-EC7 to
“high” priority data traflic, whereas 1t may 1nitially allocate
only EC8-EC9 to relatively “low” priority data trathic (e.g.,
standard data traflic or data tratlic having a relatively lower
service level).

In one embodiment, the input queue allocation module
561 and the output queue allocation module 563 make
corresponding allocations to the input and output queues 521
and 526, respectively. For example, a relatively larger block
of memory may initially be allocated to the higher priority
data trathic and a relatively smaller block of memory may
iitially be allocated to the lower priority data traflic.

Dynamic Provisioning

As mentioned above, one embodiment of the invention
provides for dynamic provisioning ol security processing
resources. Accordingly, once the 1nitial security processing
and queue allocations have been made (as described above),
data traflic 1s continually monitored and analyzed to deter-
mine whether a more eflicient allocation 1s possible, taking
the guaranteed bandwidth constraints into account. If a more
cllicient allocation 1s possible, then the processing resources
are reallocated dynamically (i.e., 1n real-time, without pow-
ering down and reconfiguring the security processor).

Specifically, the monmitor module 550 continually tracks
input queue usage via an input queue monitor 551 and output
queue usage via output queue monitor 553. The amount of
data stored within each queue provides an indication of the
relative load on the execution unit serviced by that queue
and also the relative amount of data trathc associated with a
particular security protocol and/or service level. For
example, 1f a queue used to store IPSEC tratlic has reached
its threshold value, then this may indicate that the resources
currently allocated to IPSEC ftraflic are not suflicient. In
addition, 1n one embodiment, a resource monitor 552 1s
configured to directly monitor the usage of each of the
execution cores to 1dentily the relative load for each protocol
and/or service.

Regardless of how the relative load associated with each
protocol and/or service level 1s measured, in one embodi-
ment, 1t 1s provided to the allocation module 560 which uses
it to dynamically reallocate the security processing resources
540 and/or the input and output queues, 521 and 526,
respectively, associated with each protocol and/or service
level. Returning to the above example, execution cores
EC1-EC3 may imtially be allocated to processing SSL
trailic and execution cores EC4-EC9 may initially be allo-
cated to processing IPSEC tratlic. Over time, however, the
execution cores EC1-EC3 allocated to SSL traific may
become overloaded (e.g., as measured by the input or output
queue monitors, 351 or 553, respectively, or the resource
monitor 552).

As such, 1n one embodiment, the allocation module 560
compares the load the execution cores EC1-EC3 and the
queues dedicated to SSL with the load on the execution
cores EC4-E(C9 and the queues dedicated to IPSEC. Instead
of a direct comparison, the allocation module 560 may
simply evaluate the load on the execution cores EC4-EC9
and the queues dedicated to IPSEC. If the load on EC4-EC9
1s below some specified threshold value, then the processing
resource allocation module 562 will automatically reallocate
one or more of the execution cores from EC4-EC9 to the
SSL group, EC1-EC3, to process SSL ftrailic. In one
embodiment, the specified “threshold” 1s a determination
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that, 11 the execution cores are reallocated from EC4-EC9,
there will still be suflicient number of execution cores to
handle the IPSEC data traflic (i.e., based on the minimum
defined bandwidth requirements).

In addition, the mput queue allocation module 561 may
direct the input queue scheduler 520 to reallocate one or
more mput queues (or memory blocks) from IPSEC traflic to
SSL traflic, and the output queue allocation module 563 may
direct the output queue scheduler 525 to reallocate one or
more output queues (or memory blocks) from IPSEC traflic
to SSL traflic.

In one embodiment, even 1f a potentially more “ethicient”
resource allocation 1s possible, guaranteed bandwidth con-
strains may limit the manner in which resources may be
reallocated. For example, 11 a specified amount of processing
and queuing/memory bandwidth 1s guaranteed for IPSEC
data traflic, then an execution core and associated queues/
memory will not be removed from the group dedicated to
IPSEC data tratlic i doing so would cause the available
processing bandwidth to drop below the guaranteed thresh-
old value, even 1f the execution cores and queues/memory
dedicated to other types of data traflic are overloaded
relative to the IPSEC execution cores.

Resources may be intelligently provisioned based on
defined service levels as well. For example, in one embodi-
ment, the resource/queuing allocation parameters 565 may
specily a guaranteed level of throughput for a particular,
heightened service level, at the sacrifice of all subordinate
service levels. Thus, 1n this embodiment, resources dedi-
cated to the heightened service level (e.g., associated with a
particular customer) may not be reallocated unless suflicient
resources are available to guarantee the defined level or
processing and/or queuing bandwidth.

It should be noted that the specific examples set forth
above are for the purpose of 1llustration only and should not
be read to limit the scope of the invention. A virtually
unlimited number of resource allocations based on security
protocol and/or service level may be defined while still
complying with the underlying principles of the invention.

In one embodiment, the allocation module 560, the moni-
tor module 550 and the resource allocation parameters 565
are 1implemented 1n software. For example, each of these
modules and associated data may be programmed within a
soltware driver executed on a host processor (not shown).
However, the underlying principles of the imnvention are not
limited to a soltware implementation. For example, the
allocation module 560, the monitor module 550 and the
resource allocation parameters 5635 may also be embodied in
hardware or firmware, directly within the security processor
architecture.

A Second Embodiment of the Invention

Another embodiment of the invention will now be
described with respect to FIGS. 6-8c. This embodiment
logically separates the processing of security data mnto a
mainline processing pipeline and a dynamic provisioning
pipeline. Pertinent aspects of the mainline processing pipe-
line will now be brietly described with respect to FIGS. 6
and 7.

The embodiment illustrated i FIG. 6 includes a host
processor 602, a host memory 604, a security processor 612
and a request processing unit 634. Host processor 602, host
memory 604 and security processor 612 are communica-
tively coupled to system bus 610. In one embodiment,
request processing unit 634 1s a process or task which resides
within the host memory 604 and 1s executed within host
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processor 602. For example, request processing unit 634
may be a software driver for the security processor 612
executed by the host processor 602 and used to coordinate
security services provided by the security processor 612
(e.g., the driver may interface with Open SSL).

An external request queue 606, input data 608A—608I and
output data 609A—609] are maintained within the host
memory 604. In one embodiment, the external request queue
606 1s a circular queue (e.g., a ring bufler) for storing
security processing requests to be processed by the security
processor 612. The write pointer for the external request
queue 606 1s maintained by the request processing unit 634
and the read pointer for the external request queue 606 is
maintained by an execution core scheduler 614 of security
processor 612. Accordingly, the request processing unit 634
increments 1ts write pointer when storing security processing
requests mto external request queue 606, while execution
core scheduler 614 decrements 1ts read pointer when extract-
ing or retrieving requests from external request queue 606.

In one embodiment, mput data 608A—6081, output data
609A—-6091, and/or entries in the external request queue 606
are each contiguously stored in host memory 604. Accord-
ingly, blocks of data and/or security requests may be written
or read from these storage locations using direct memory
access (“DMA”) read and/or write operations. For example,
the execution core scheduler 614 within security processor
612 may extract the input data across multiple requests using
one direct memory access (“DMA™) read operation. Of
course, the underlying principles of the invention are not
limited to any particular memory access scheme.

In one embodiment, security processing requests mserted
into the external request queue 606 by request processing
unit 634 include instructions, such as an operation code,
which are associated with (e.g., point to) one of the input
data 608 A—6081. In one embodiment, these requests are 32
bytes 1n size. The types of requests can comprise diflerent
security operations including both macro-security opera-
tions such as key exchange and security negotiation opera-
tions and/or primitive security operations such as requests to
generate a random number, generate a prime numbers,
perform modular exponentiation, perform a hash operation,
generate keys for encryption/decryption, perform a hash-
message authentication code (“H-MAC”) operation, per-
form a handshake hash operation and perform a finish/verity
operation. As used herein, a single macro security operation
may be comprised of multiple primitive security operations.

FIG. 7 illustrates an exemplary request data format 700
which may be stored in the external request queue 606 for
processing by security processor 612. In particular, FIG. 7
illustrates request format 700 that includes operation code
702, size 704, parameters 706, data length 708, data pointer
710 and result pointer 712. Operation code 702 includes the
op-code to identify the different security operations to be
performed by security processor 612, such as an op-code for
hashing, modular exponentiation, etc. Size 704 can define
s1zes for different data related to the operation depending on
the type of operation. For example, size 704 for a modular
exponentiation operation could include the size of the modu-
lus or for a hash operation could include the size of the data
to be hashed.

Similar to the size 704, the parameters 706 define different
data related to the operation depending on the type of
operation. For example, for the operation for the generation
of keys for encryption/decryption, the parameters 706 could
define the length of the pre-master for the key.

Data length 708 defines the length of the data structure
within the associated input data 608 A—608I that 1s pointed to
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by data pointer 710 (within the request) and copied mto
security processor 612 for the security operation defined
within the request. The data structure stored 1n the associated
input data 608 A—608I and pointed to by the data pointer 710
may 1nclude different data depending on the type of security
operation to be performed. In one embodiment, for given
operations, this additional data structure 1s not needed,
thereby making data pointer 710 unused. For example, for
the operation to generate a random number, there 1s no input
data stored within one of mput data 608A—6081. To help
illustrate the type of data to be stored within such data
structures, for a key generation operation, the data structure
could include the client random number, the server random
number, the label and the pre-master number.

The result pointer 712 defines the location (one of output
data 609A—6091) within host memory 604 where security
processor 612 can write output results into a data structure.
Returning to the key generation operation to help illustrate,
the data structure stored 1n the associated output data
609A—-609]1 could include the master key, the key material
and the completion code.

Returning to FIG. 6, the security processor 612 includes
a bus iterface 630 over which the security processor and
host processor 602 communicate. In one embodiment, the
bus 1ntertace 630 1s a PCI bus interface (1.e., and the system
bus 610 1s a PCI bus). However, various alternate 1/O
schemes may be employed while still complying with the
underlying principles of the invention. For example, the bus
interface 630 may be a SPI-3/SPI-4 interface, a HyperTrans-
port iterface (also known as Lightening Data Transport), a
3GIO mterface, or a Rapid I/O (“RIO”) interface. The
security processor 612 also includes a key unit 644, execu-
tion core scheduler 614, doorbell register 620, a plurality of
execution cores 616, a random number generator 618 and an
internal request queue 622.

As mentioned above, security processing requests gener-
ated by the host processor 602 are initially stored within the
external request queue 606 managed by the request process-
ing unit 634. As described above 1n conjunction with FIG. 7,
requests can 1clude the operation code to be performed by
units within security processor 612, a pointer to other data
related to the operation that 1s stored in one of mput data
608 A—6081 and a pointer to the location 1n the host memory
604, such as the output data 609A—6091, where the output
results are to be placed by the security processor 612 after
completion of the given request.

The request processing unit 634 then writes the number of
request(s) added into external request queue 606 to doorbell
register 620 located on security processor 612. Although
described as a “register,” the data to be stored in doorbell
register 620 may include any other type of memory within
security processor 612.

In one embodiment, the execution core scheduler 614
polls the doorbell register 620 to determine the number of
pending security requests within the external request queue
606. Polling may occur periodically (e.g., every clock
cycle). Upon detecting that the external request queue 606
includes security requests, the execution core scheduler 614
then determines whether any one of execution cores 616 1s
available to process the requests and/or whether space 1s
available within internal request queue 622 to store the
requests. It so, the execution core scheduler 614 transfers the
requests (e.g., via a DMA transfer) to the internal request
queue 622. The execution core that recerves the request (one
of the group 616) retrieves the mput data 608A—6081 asso-
ciated with the requests from the host memory 604.
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The execution core scheduler 614 then farms out each of
the requests 1n succession to the execution cores 616.
Because, 1n one embodiment, each execution unit 616 1s
capable of processing any one of the different types of
security operations, the execution core scheduler 614 1s able
to transmit a request to the first of the execution cores 616
that becomes available. The execution core scheduler 616
continues to transier each request 1 succession to the next
available execution core until all of the requests are pro-
cessed.

Once an execution cores 616 completes the processing of
the request, the execution core 616 stores the result of the
request 1n the location (one of output data 609A—6091) in
host memory 604 pointed to by result pointer 612 of the
request (shown in FIG. 7). The result 1s subsequently read
from memory by the host processor.

Resource Allocation

In one embodiment of the invention, 1llustrated 1n FIGS.
8a—c, a dynamic provisioning pipeline 801 1s employed 1n
parallel with the mainline processing pipeline 800 (de-
scribed above with respect to FIGS. 6 and 7). As illustrated,
the dynamic provisioning pipeline 801 includes one or more
soltware request processors (“SRPs”) 805-806. In one
embodiment, the SRPs, 805 and 806, each include an SRP
request queue 801 and 802, respectively, and an SRP sched-
uler 810 and 811, respectively. Each SRP scheduler 810 and
811 schedules data traflic to a plurality of execution core
queues 820821 and 822825, respectively. As described 1n
greater detail below (see “Dynamic Provisioning” section),
once the 1nitial association 1s established between SRPs,
queues and execution cores, the SRPs and execution cores/
queues may therealter by dynamically reallocated based on
relative changes in data trathic (1.e., relative changes in
security protocol types and/or defined service levels).

Referring to FIG. 3¢, 1n one embodiment, when the
system 1s 1nitialized, a driver 880 (e.g., executed by the host
processor 602) assigns a particular device ID to each SRP
and links each SRP to a particular set of execution cores. For
example, SRP 805 1s assigned device ID #0 and 1s associated
with EC2-EC3; SRP 806 1s assigned device ID #1 and 1s
associated with EC4-EC7; and the remainder of the execu-
tion cores, ECO0-EC1, are assigned to the mainline process-
ing pipeline 800, including the request processing unit 634
and the execution core scheduler 614. In operation, the
driver 880 maps calls from the application level 870 to the
appropriate SRP, using the pre-configured device ID #’s, or
to the mainline processing pipeline 800. The SRPs 805 and
806 and/or the mainline processing pipeline then service the
calls (as described herein) by farming out processing
requests to the execution cores ECO-ECT.

In one embodiment, each individual SRP 805-806 and the
mainline processing pipeline 800 i1s configured to handle a
particular type of data trafhic (e.g., SSL, IPSEC, XML
DSig, . . . etc). In the specific example 1llustrated in FIGS.
8a—, SRP 806 1s configured to handle SSL-based data
traflic, SRP 805 i1s configured to handle IPSEC-based data
traflic, and the mainline processing pipeline 800 1s config-
ured to handle XML DSig traflic. Of course, these particular
allocations are used merely for the purpose of illustration.
The underlying principles of the invention are not limited to
any specific protocol/SRP allocation.

When the system 1s mitialized (1.e., when the host pro-
cessor 602 and security processor are initially powered), the
driver 880 loads the appropriate microcode into each of the
execution units. Returning to the above example, execution
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cores ECO0-EC1 are loaded with mainline microcode, con-
figured to process XML DSig traflic, using the mainline
queuing mechanisms described above (see FIGS. 67 and

associated text); EC2-EC3 are loaded with microcode to
process IPSEC-based data trathic; and EC4-EC7 are loaded
with microcode to process SSL-based data trafic.

Alternatively, 1n one embodiment, a single microcode
image containing microcode for each of the supported
security protocols 1s loaded within each of the execution
cores. Thus, 1n this embodiment, when reallocation of an
execution core 1s performed (as described herein with
respect to various different embodiments) it 1s not necessary
to load new microcode on the reallocated execution core.
Rather, the microcode 1s already loaded and is therelfore
immediately accessible by the execution core.

As mentioned above, i operation, the driver 880 maps
Incoming security processing requests to an appropriate SRP
or to the mainline processing pipeline 800 as the requests are
received by the security processor 612. Referring to SRP
806, for example, request headers 1dentifying the data are
initially placed, 1n order, 1n an SRP request queue 802. The
underlying mput data 608A—6081 1dentified by the request
headers 1s maintained within the host memory, as described
above. In one embodiment, the SRP request queue 802 1s a
circular queue maintained within the host memory 604.
Multiple request header entries may be concurrently loaded
in the SRP request queue 802 1n a linked list format. That 1s,
cach request header entry contains a pointer to the next
request header 1n sequence. The last request header contains
a null pointer, indicating that 1t 1s the last entry 1n the list. It
should be noted, however, that the underlying principles of
the i1nvention are not limited to any particular queuing
mechanism.

In one embodiment, the SRP scheduler 811 continually
checks the status of each of 1ts execution core queues
822825 1 a round robin manner. When 1t identifies an
available execution core queue (e.g., one which has been
emptied by 1ts corresponding execution core), 1t transfers the
linked request header list to the execution core queue. For
example, 11 execution core queue 823 1s empty, then the SRP
scheduler 811 transfers the linked request header list to that
queue. Once the linked request header list 1s placed in the
execution core queue 823, the execution core ECS associ-
ated with that queue processes the data identified by each
request header entry until the execution queue 823 1s once
again empty. The execution core EC5 reads the mput data
608A—608] 1dentified by the request headers from the host
memory and stores the results back as output data
609A—-6091. As illustrated, a set of output queues 860 may
temporarily bufler the request headers and/or output data
prior to transierring the output data to the host memory 604.
In one embodiment, the execution core ECS 1dentifies the
last request header entry in each linked list by 1ts null
pointer.

Dynamic Provisioning

As 1n the embodiment 1illustrated 1n FIG. 5, the embodi-
ment illustrated 1n FIGS. 8a—c provides for dynamic provi-
sioning of security processing resources. Accordingly, once
the 1mitial execution core and SRP allocations have been
made, data traflic 1s continually monitored and analyzed to
determine whether a more eflicient allocation is possible,
taking guaranteed bandwidth constraints into account. If a
more ellicient allocation 1s possible, then the processing
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resources are reallocated dynamically (1.e., in real-time,
without powering down and reconfiguring the security pro-

cessor 612).

FIG. 8b 1illustrates generally how wvarious monitoring,
modules 551-553 and allocation modules 561563 may be
configured to detect and dynamically adjust to different
trailic load conditions by reallocating SRPs, queues and/or
execution cores as needed. In one embodiment, these mod-

ules 551-553 and 561-563 form part of the driver 880
illustrated 1n FIG. 8c.

Input queue usage may be continually tracked via an input
queue monitor 551 and output queue usage may be continu-
ally tracked by an output queue monitor 553. As mentioned
above, the amount of data stored within the queues may
provide an indication of the relative amounts of data trathic
associated with particular security protocols and/or service
levels. For example, 11 a queue used to store IPSEC traflic
has reached its threshold value, then this may indicate that
the resources currently allocated to IPSEC traflic are not
sufficient. In one embodiment, a resource monitor 552 1s
configured to directly monitor the usage at each of the
execution cores to 1dentily the relative load for each protocol
and/or service.

Regardless of how the relative load associated with each
protocol and/or service level 1s measured, in one embodi-
ment, 1t 1s provided to the allocation modules 561-563

which use 1t to dynamically reallocate the execution cores
EC1-EC7, SRPs 805-805, and/or the input and output

queues, 801-802, 820825, 860, associated with each pro-
tocol and/or service level. Returming to the above example,
execution cores EC4-EC7 may mitially be allocated to
processing SSL traflic, execution cores EC2-EC3 may 1ni-
tially be allocated to processing IPSEC tratlic, and execution
cores ECO-EC1 may mitially be allocated to processing
XML DSig traflic. Over time, however, the execution cores
EC4-EC7 allocated to SSL traflic may become overloaded
(e.g., as measured by the mput or output queue monitors,
551 or 353, respectively, or the resource monitor 5352).

As such, 1n one embodiment, the allocation modules
561-563 may compare the load the execution cores
EC4-EC7 dedicated to SSL with the load on the execution
cores EC2-EC3 dedicated to IPSEC and the execution cores
ECO0-EC1 dedicated to XML DSig. Instead of a direct
comparison, the allocation to module 560 may simply evalu-
ate the load on the execution cores EC0—EC3 and the queues
dedicated to IPSEC and XML DSig. If the load on ECO0-EC1
or EC2-EC3 1s below some specified threshold value, then
the processing resource allocation module 562 will auto-
matically reallocate one or more of the execution cores from
ECO0-EC1 or EC2-EC3 to the EC4-ECT7 group, to process
SSL traflic. In one embodiment, the specified “threshold™ 1s
a determination that, it the execution cores are reallocated
from ECO-EC3, there will still be suflicient number of

execution cores to handle the IPSEC and XML DSig data
traflic.

In addition, the iput queue allocation module 561 will
reallocate the execution core queue(s) associated with the
reallocated execution core. For example, 1f execution core
ECO0 1s reallocated to process SSL traflic, then the queue
allocation module 561 will add a new execution core queue
to the execution core group 822825 associated with SRP
scheduler 811. The new execution core queue will then be
used as the execution core queue for ECO In one embodi-
ment, 1n the process of reassigning ECO0, the driver 880 will
reload EC0 with the appropriate microcode (i.e., SSL-based
microcode).
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The output queue allocation module 563 may also real-
locate one or more output queues 860 to processing SSL
traflic. If an execution core queue 1s reallocated from one
SRP to another, prior to reallocation, the input queue allo-
cation module 561 will wait until any pending requests
stored within the execution core queue have processed by
the execution core.

In one embodiment, even 1f a potentially more “efhicient”
resource allocation 1s possible, guaranteed bandwidth con-
strains may limit the manner in which resources may be
reallocated. For example, 11 a specified amount of processing
and queuing/memory bandwidth 1s guaranteed for IPSEC
data traflic, then an execution core and associated queues/
memory will not be removed from the group dedicated to
IPSEC data traflic 1f doing so would cause the available
processing bandwidth to drop below the guaranteed thresh-
old value, even 1f the execution cores and queues/memory
dedicated to other types of data traflic are overloaded
relative to the IPSEC execution cores.

Execution cores, SRPs and queues may be intelligently
provisioned based on service level as well as protocol. For
example, 1n one embodiment, the resource/queuing alloca-
tion parameters 565 may specily a guaranteed level of
throughput for a particular, heightened service level, at the
sacrifice of all subordinate service levels. Thus, in this
embodiment, resources dedicated to the heightened service
level may not be reallocated unless suflicient resources are
available to guarantee the defined level of processing and/or
queuing bandwidth.

In one embodiment, the SRPs 805-806, execution core
queues 820825, request processing unit 634 and external
request queue 606 are i1mplemented in software. For
example, each of these modules and associated data may be
generated and maintained by a software driver executed by
the host processor 602 processor. However, the underlying
principles of the mvention are not limited to a software
implementation. For example, any of the functional modules
illustrated in FIGS. 8a—¢ may be embodied 1n hardware or
firmware, while still complying with the underlying prin-
ciples of the invention.

A Third Embodiment of the Invention

Another embodiment of the invention will now be
described with respect to FIGS. 9-10. This embodiment
includes an advanced flow-through security processing
architecture capable of concurrently processing multiple
security protocols and dynamically reallocating processing
resources to different protocols and/or defined service levels
in response to detected changes 1n data traflic.

As 1n previous embodiments, the security processor 900
illustrated 1n FIG. 9 includes a plurality of programmable
execution cores 916 capable of performing a variety of
security processing operations (e.g., such as base crypto-
graphic operations DES/3DES, AES, RC4, SHA-1, MD?3,
and modular exponentiation). As in previous embodiments,
a different set of microcode 1s loaded into each execution
core to provide the execution core with the ability to process
a specific type of security protocol (e.g., IPSEC, SSL, Web
DSig, . . . etc).

In FIG. 9, the security processor 900 1s illustrated 1n an
in-line configuration between two diflerent network process-
ing elements 901 and 902. As such, the security processor
916 includes two (or more) bi-directional communication
interfaces 903 and 904, for enabling communication with
external network processing elements 901, and 902, respec-
tively. In one embodiment, the communication interfaces
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903, 904 arc System Packet Intertace Level 3 (*SPI-37)
interfaces and/or System Packet Level 4 (*SPI-4”) inter-
faces, each comprising a plurality of input and output
SPI-3/SPI-4 ports (e.g., 32 mnput ports and 32 output ports).
However, the specific type of interface employed to com-
municate with the external network processing elements 901

and 902 1s not pertinent to the underlying principles of the
invention.

The security processor 900 1s capable of processing a
variety of different data packet formats generated by the
network processing elements 901 and 902 and 1s capable of
being used 1n a variety of configurations. By way of
example, and not limitation, 1n one embodiment, network
processing eclement 901 1s a framer/MAC, coupling the
security processor to a plurality of different physical 1/O
interfaces used for networking IP packets (e.g., coupled to
the Internet), and network processing element 902 1s a
network processor (e.g., employed within a router or gate-
way). Alternatively, 1n one embodiment, network processing,
clement 901 1s a load balancer coupled between the security
processor 900 and an array of Web servers (not shown) and
network processing element 902 1s a TCP terminator for
processing TCP traflic to/from the Internet. In addition, the
security processor 900 may be configured as a coprocessor
to a single network element such as a single network
processor. It should be noted, however, that the network
processor may be employed 1n a variety of diflerent con-
figurations while still complying with the underlying prin-
ciples of the imnvention.

Packets transmitted through an mput port of either of the
communication interfaces 903 or 904 are initially builered
within an mput memory 923 managed by input memory
manager 905. In one embodiment, packets are not processed
until the complete packet has been received (and its CRC 1s
checked, 11 necessary). Processed packets (or packets which
are not meant to be processed) are bullered within an output
memory 922 managed by an output memory manager 907,
prior to being transmitted through an output port of one of
the communication interfaces 903 or 904 (e.g., a SPI-4
output port).

In one embodiment, both the 1input memory 923 and the
output memory 922 store packets as linked-lists of one or
more 2356-byte blocks. Although the blocks are shared
between packets from all ports, 1n one embodiment, the
memory input manager 905 and memory output manager
907 manage the allocation of the blocks on a per-port and/or
a per-interface basis. For example, a per-port counter may be
maintained for each builer which indicates the number of
blocks that are currently being used by a given port.

In addition, 1n one embodiment, a different maximum
threshold may be programmed for each port (e.g., stored
within a CSR register), indicating the number of blocks
which that port 1s allowed to consume. The counter values
may then be compared to the threshold values to determine
whether a given port exceeds its threshold. The input
memory manager 905 increments the corresponding input
memory port count incrementally each time 1t allocates a
block for an iput packet on the corresponding port, and
decrements the counts incrementally when the same blocks
are Iree up. Similarly, in one embodiment, the output
memory manager 907 maintains thresholds for each of the
output ports. The output memory manager 907 increments
the corresponding output port counter when an execution
unit allocates a complete packet to the corresponding port,
and decrements the counter incrementally as the blocks are
freed up (e.g., as processed data packets are 1s transmitted
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out of the port). In one embodiment, the same thresholds
may also be implemented on a per-interface basis.

As described below with respect to FIG. 10, one embodi-
ment of the mvention uses these thresholds to force back-
pressure. For the mput memory 923, the backpressure
applies to the input ports of the communication interfaces
903, 904. If the per-interface thresholds are exceeded in the
input memory 923, the input ports of that interface are
back-pressured. For the output memory 922, the backpres-
sure applies to the execution unit scheduling and allocation
(as described 1n detail below).

Once a complete packet i1s received within the input
memory 923, a parser 906 parses each packet header to
determine 1f the packet needs to be processed by the execu-
tion cores 916, or 1f 1t can simply be passed through the
security processor 916 without processing (e.g., if the packet
1s unencrypted). As indicated 1n FIG. 9, in one embodiment,
the parser 906 includes multiple layers of parsing logic
which 1t uses to parse different types ol packets. For
example, the parser 906 includes Level 2 (*L27) logic
(referring generally to data-link layer of the OSI model)
which parses any L2 headers, if present. In addition, 1n one
embodiment, the parser 906 includes L3 logic to parse layer
3 packets (e.g., referring generally to the network layer of
the OSI model). For example, the L3 logic of the parser may
parse each IP header to check for exception cases.

Regardless of the specific type of packet received by the
parser 906 (e.g., a MAC frame or an IP packet), the parser
906 extracts any information needed by the security proces-
sor 900 to perform the correct security operations on the
packet. For example, the parser 906 may extract crypto-
graphic context information needed to process the packet.
For IPSEC, cryptographic context information 1s required
for each security association (“SA”). For SSL, cryptographic
context information 1s required per each direction of an SSL
session. As understood by those of skill 1n the art, the context
information typically contains the secret keys needed for
symmetric encryption and authentication. Once again, the
particular type of context information extracted by the parser
906 and the particular type of security protocol employed 1s
not relevant to the underlying principles of the invention.

In one embodiment, the parser 906 also extracts a group
ID code from the packet header, identifying the packet’s
pre-assigned packet processing group. In one embodiment,
the group ID code 1s assigned by one of the network
processing elements 901-902. Alternatively, the group ID
code may be assigned by the security processor 900 1tself.
As will be described 1n greater detail below with respect to
FIG. 10, up to N group queues may be allocated for
processing packets from N diflerent groups. Packets may be
grouped and processed in a variety of ways including, but
not limited to, protocol type and/or quality of service
("QOS”) type.

The parser 906 transmits the parsed packet information,
including information identifying the position of the under-
lying data within the input memory 923 (e.g., an address
pointer), to a packet order manager (“POM”) 930 (e.g., in
sequential packet completion order). The POM 930 tempo-
rarily buflers the packet information 1n a packet information
bufler 931. In one embodiment, the packet information
bufler 931 contains a per-packet in-flight table that can hold
a plurality of packet entries (e.g., 2048) and a link memory
to order the packets in the packet information bufler 931. As
described below with respect to FIG. 10, the POM 930
maintains mformation about in-tlight packets and schedules
packets to the execution cores 916. Following packet pro-
cessing, the POM 930 schedules packets to the output of the
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communication interface 903. If a packet does not require
processing, the POM 930 forwards the packet directly from
the mput memory 923 to the relevant communication inter-
face output (1.e., but only after packet ordering constraints
are met).

If the packet requires processing, the POM 930 passes
control information associated with the packet to a context
processing unit 935 as it schedules the packet to an execu-
tion core 916. Using the control imnformation, the context
processing unit 935 retrieves the cryptographic context data
921 needed to process the packet, either from a local cache
(not shown) or from an external memory 920 (e.g., a DDR
SDRAM memory). The context processing unit 935 pushes
the cryptographic context data 921 into the register file of
one of the execution cores 916. The micro-coded execution
core 916 then retrieves the packet data from the input
memory 923 and performs the relevant security operations
on the packet (e.g., IPSEC/SSL transformations).

For IPSEC operations, more interactions between the
execution core and the context processing unit 935 may be
required since parallel execution cores may need atomic
access to the context data 921 to implement sequence
numbers and window checks. In one embodiment, these
atomic operations are performed locally, within the context
processing unit 935, The execution core 916 then pushes the
resultant packet ito the output memory 922 (via the output
memory manager 907). The parser 906 may also parse the
packet’s IP header to check for exception conditions.

The POM 930 1s notified of the resultant packet when 1t
1s completely written 1nto the output memory 922. The POM
930 then pulls the packet from the output memory 922 and
forwards it through to the output of one of the communica-
tion interfaces 901, 902, once ordering constraints allow.

Resource Allocation

As mentioned brietly above, the POM 930 1s responsible
for maintaining packet synchronization for multiple data
flows, each of which may require different types of security
processing (e.g., IPSEC, SSL). In addition, 1n one embodi-
ment, the POM 1s responsible for scheduling packets to the
execution cores as specified by the set of resource/queuing
allocation parameters 565. The POM 930 uses packet infor-
mation extracted from packet headers by the parser 906 to
make packet scheduling determinations.

FIG. 10 illustrates the logical flow of packet information
builer 931 entries (heremnafter “packet entries”) through the
POM 930. The elements shown in FIG. 10 include a packet
input scheduler 1002, X mput queues 1004, a sequential
ordering scheduler 1006 and associated ordering queues
1010, a group queue scheduler 1008 and N associated group
queues 1012, a plurality of execution cores 1014, a reorder
scheduler 1016 and associated reorder queues 1017, and a
set of Y output queues 1018.

In operation, incoming packet entries, each representing
data packets stored within the mput memory 923, are
torwarded to one of several destinations by an mnput sched-
uler 1002. Packet entries for packets which do not require
processing may be forwarded directly to one of Y output
queues 1018 or to a set of reorder queues 1017 (described
below). Packet entries associated with packets that require
processing are bufilered within one of the X mput queues
1004. In one embodiment, a separate input queue 1S asso-
ciated with a particular output port and/or with a particular
queue within the set of Y output queues 1018.

Sequential queuing logic 1006 determines whether the
packet entries within the mput queues 1004 require strict
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sequential ordering and, 1t so, transfers the packet entries to
a set of sequential ordering queues 1010. Certain types of
security processing protocols require precise sequential
packet ordering. For example, SSL encryption and decryp-
tion of records using the same cryptographic context
requires strict serialization. Thus, 1f the security processor
900 1s configured to process both SSL and IPSEC data
traflic, the sequential queuing logic 1006 forwards SSL
packet entries to the sequential ordering queues 1010 and
tforwards IPSEC packets (which may not require strict
serialization) directly through to the group queue scheduler
1008. In on embodiment, the sequential ordering logic 1006
includes a Tag content addressable memory (CAM) {for
associating each SSL session (or other security protocol-
based data flow) with a particular queue within the sequen-
tial ordering queues 1010. However, the underlying prin-
ciples of the ivention are not limited to any particular
serialization mechanism.

A group queue scheduler 1008 receives packet entries
from the sequential ordering queues 1010 and/or directly
from the sequential queuing logic 1006. In one embodiment,
the group queue scheduler 1008 1s the primary processing
resource allocation mechanism for the security processor
900. The group scheduler 1008 places packet entries within
one of N group queues 1012 based on the group ID code
associated with the packet entry (e.g., extracted from the
packet header by the parser 906). As mentioned above, the
group ID code may be inserted in the packet header by one
of the network processing elements 901-902.

Each group queue 1s serviced by a predefined group of
execution cores 1014. For example, in FIG. 10, execution
cores EC1-EC3 process packets 1dentified by packet entries
stored 1 group queue 1022; execution cores EC4-ECS
process packets 1dentified by packet entries stored 1n group
queue 1021; and execution cores EC6—EC8 process packets
identified by packet entries stored in group queue 1020. In
one embodiment, packet entries are removed from a group
queue as the corresponding packets are provided to the
execution cores servicing the group queue. As 1n previous
embodiments, packets may be provided to the processing
resources 1014 1n a round robin manner.

The 1nitial allocation of group queues 1012 and process-
ing resources 1014 1s provided by the processing resource
allocation module 562 (as programmed by the resource/
queuing allocation parameters 565). As in previous embodi-
ments, resources may be allocated based on security proto-
col, thereby providing a guaranteed level of processing
bandwidth for each supported protocol. For example, in
FIG. 10, execution cores EC1-EC3 and associated group
queue 1022 may mtially be allocated to IPSEC ftraflic;
execution cores EC4-ECS5 and associated group queue 1021
may 1nitially be allocated to XML DSig traflic; and execu-
tion cores EC6—EC8 and the associated group queue 1020
may mitially be allocated to SSL data traflic, thereby guar-
anteeing a specified level of bandwidth for data traflic
associated with each respective protocol.

In one embodiment, the execution cores EC1-EC3 allo-
cated to IPSEC data traflic process IPSEC data packets as
described in the co-pending application entitled IPSEC
PERFORMANCE OPTIMIZATION, Filed Apr. 12, 2003,
Ser. No. 10/411,967, which 1s assigned to the assignee of the
present application. It should be noted, however, that the
underlying principles of the invention are not limited to any
particular IPSEC 1implementation.

In one embodiment, an input queue allocation module 561
allocates a specified percentage of the input memory 923
and/or specified mput queues 1004 based on protocol type.
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Similarly, an output queue allocation module 563 allocates
a specified percentage of the output memory 922 and/or
specified output queues 1018 based on protocol type. In one
embodiment, the input memory 923 and output memory 922
are allocated by setting thresholds as described above (e.g.,
using threshold counters).

Returning to the previous example, 3% of the input
memory and output memory, 923 and 922, respectively, may
be imitially reserved for IPSEC ftraflic; %4 for XML DSig
traflic; and 3% for SSL trailic, thereby guaranteeing a speci-
fied amount of memory space for certain types of data traflic.
The mput queues 1004 and output queues 1018 of the POM
930 may be similarly reserved for packet entries (which
identily the actual data packets within the input memory 923
and output memory 922).

As 1n previous embodiments, processing resources and
queues may be allocated based on variables other than
merely the security protocol type. In one embodiment, for
example, the 1mtial allocations are based on a specified
service type (either in addition to, or 1 lieu of allocations
based on security protocol type). For example, in one
embodiment, different quality of service (“QOS) levels
may be defined for different types of content. Voice data
traflic, or other real-time data traflic, for example, may be
assigned a relatively higher level of service than standard
data traflic. In addition, as in previous embodiments, difler-
ent service levels may be specified for different customers.

In operation, a different group queue may be allocated for
cach defined level of service. For example, group queue
1022 may be allocated to “high” priority IPSEC data traflic
whereas group queue 1021 may be allocated to “low”
priority IPSEC data traflic. Because group queue 1022 1s
defined as “high” priority, the processing resource allocation
module 562 may imitially allocate it relatively more pro-
cessing resources 1014 and/or mput/output memory space
than group queue 1021. Of course, a virtually unlimited
number of group queue resource and memory allocations are
possible while still complying with the underlying principles
of the mvention.

Dynamic Provisioning

In one embodiment, once the 1mitial resource and memory
allocations are made (as described above), data traflic 1s
continually monitored and analyzed to determine whether a
more eilicient allocation 1s possible, taking the defined
guaranteed bandwidth constraints into account. If a more
cllicient allocation 1s possible, then the processing resources
are reallocated dynamically (i.e., 1n real-time, without pow-
ering down and reconfiguring the security processor 900).

The output queue monitor 553 tracks the amount of data
stored within the output memory 922 and/or the POM output
queues 1018 for each defined group. If the amount of data
exceeds its predefined threshold, then backpressure 1is
applied to the group queue scheduler 1008 and/or the
sequential queuing logic 1006, to ensure that no additional
data packets associated with that group are provided to the
set of execution umts dedicated to that group. In one
embodiment, the sequential ordering logic 1006 will not
extract an entry from a given mput queue 1004 when the
threshold in the output memory 922 of its expected output
port 1s exceeded, or the threshold 1n the output memory 922
of the mterface of its expected output port 1s exceeded.

In addition to backpressure, 1n one embodiment, the POM
930 will attempt to anticipate output buller consumption by
maintaining “uncertainty counters,” in addition to the known
counter values above. When the group queue scheduler 1008
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schedules an mput packet to an execution unit, in one
embodiment, 1t predicts the expected output memory block
usage and knows the expected output port. For example, for
encrypts and decrypts, the predicted output memory block
usage 1s a small amount larger than the predicted input
memory block usage. For other types of operations, (e.g.,
general purpose operations nitiated by a control processor),
the predicted output memory 1s provided via a field in the
input packet request header. Because the predictions may be
wrong, one embodiment of the security processor tracks and
resolves these predictions 1n the uncertainty counters. In one
embodiment, the security processor 900 increments the
uncertainty counts when 1t removes an mput packet from an
input queue, and decrements them when the execution unit
creates all output packets in response to the input packet.

Uncertainty counters and thresholds may be provided for
cach output port, for each output interface, and/or for the
total uncertainty of the system. In one embodiment, the
sequential queuing logic 1006 does not remove a packet
from an 1mput queue when either: the uncertainty threshold
for the expected output port has been exceeded; the uncer-
tainty threshold for the expected output interface has been
exceeded; or the total uncertainty threshold has been
exceeded.

Alternatively, or 1 addition to the application of back-
pressure, the input queue allocation module 561, output
queue allocation module 563 and/or processing resource
allocation module 562 may reallocate input/output memory
space, mput/output queues and processing resources to the
group requiring backpressure. Returning to the above
example, execution cores EC1-EC3 1n FIG. 10 are mitially
allocated to processing IPSEC traflic, execution cores
EC4-ECS are imitially allocated to processing XML DSig
traflic; and execution cores EC6—ECS8 are initially allocated
to processing SSL traflic. Over time, the execution cores
EC1-EC3 allocated to IPSEC ftratic may become over-
loaded, as indicated by the backpressure condition detected
by the mput or output queue monitors, 551 or 553, respec-
tively, or the resource monitor 5352.

As such, 1n one embodiment, the output queue allocation
module 563 compares the amount of IPSEC data buffered
within the output memory 922 (and/or the number of packet
entries within the output queues 1016) with the amount of
XML DSig and SSL traflic buffered within the output
memory 922. If the amount of XML DSi1g and SSL traflic 1s
below a specified amount (e.g., less than 50% the defined
threshold), then the processing resource allocation module
562 may automatically reallocate one or more of the execu-
tion cores from EC4-ECS8 to the IPSEC group of EC1-EC3.
The particular execution core may be selected based on the
relative load between SML DSig traflic and SSL traflic, as
measured by the output queue monitors, 551 or 553, respec-
tively, or the resource monitor 5352.

In one embodiment, execution cores may be shared across
different groups. For example, a first group may be defined
with execution cores EC1-EC4 and a second group may be
defined with execution cores EC3—EC4. Accordingly, either
the first group or the second group may use execution cores
EC3-EC4 under certain conditions. Moreover, the first
group may be designated as a “high” priority group with a
guaranteed bandwidth equal to that provided by two of the
four execution cores allocated to that group (e.g.,
EC1-EC2). In addition, because of 1its designation as a
“high” priority group, the first group will have priority over
the two execution cores, EC3-EC4, shared between the two
groups. Thus, even if the bandwidth requirements rise above
the “guaranteed” bandwidth level, the first group will be
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provided with access to EC3-EC4 cores, notwithstanding,
the load on the first group. In this embodiment, the shared
execution cores EC3-EC4 are equipped with microcode to
allow them to process data traflic from both groups.

In addition, the input and output queue allocation modules

561 and 563, respectively, may allocate additional memory
within the mput and output memories 923 and 922, respec-
tively, from the XML DSig group and/or the SSL group to
the IPSEC group. As 1n prior embodiments, the specified
“threshold” may be a determination that, if the execution
cores are reallocated from EC4-ECS8, there will still be
suflicient number of execution cores and memory to handle
the XML DSig and SSL data traflic.
In one embodiment, execution cores may be shared across
different groups. For example, a first group may be defined
with execution cores EC1-EC4 and a second group may be
defined with execution cores EC3-EC4. Accordingly, either
the first group or the second group may use execution cores
EC3-EC4 under certain conditions. Moreover, the first
group may be designated as a “high” priority group with a
guaranteed bandwidth equal to that provided by two of the
four execution cores allocated to that group (e.g.,
EC1-EC2). In addition, because of 1its designation as a
“high” priority group, the first group will have priority over
the two execution cores, EC3-EC4, shared between the two
groups. Thus, even 1f the bandwidth requirements rise above
the “guaranteed” bandwidth level, the first group will be
provided with access to EC3-EC4 cores, notwithstanding
the load on the first group. In this embodiment, the shared
execution cores EC3-EC4 are equipped with microcode to
allow them to process data traflic from both groups.

In one embodiment, even 1f a potentially more “eflicient™
resource allocation 1s possible, guaranteed bandwidth con-
strains may limit the manner in which resources may be
reallocated. For example, 1f a specified amount of processing,
and queuing/memory bandwidth i1s guaranteed for IPSEC
data traflic, then an execution core and associated queues/
memory will not be removed from the group dedicated to
IPSEC data trathic 11 doing so would cause the available
processing bandwidth to drop below the guaranteed thresh-
old value, even if the execution cores and queues/memory
dedicated to other types of data traflic are overloaded
relative to the IPSEC execution cores.

In addition, as 1n prior embodiments, new microcode 1s
loaded into the execution cores being reallocated. For
example, 1I an execution core 1s reallocated from the SSL
group EC6-ECS8 to the IPSEC group EC1-EC3, then the
SSL microcode 1s replaced by IPSEC microcode. Similarly,
il an execution core 1s reallocated from the XML DSig group
EC4-ECS to the IPSEC group EC1-EC3, then the XML
DSi1g microcode 1s replaced by IPSEC microcode.

Resources may be intelligently provisioned based on
service level as well. For example, 1n one embodiment, the
resource/queuing allocation parameters 365 may specily a
guaranteed level of throughput for a particular, heightened
service level, at the sacrifice of all subordinate service
levels. Thus, 1n this embodiment, resources dedicated to the
heightened service level may not be reallocated unless
suflicient resources are available to guarantee the defined
level or processing and/or queuing bandwidth.

After being processed by one of the execution cores, each
packet entry 1s provided to a reorder queue 1017 under
control of a reorder scheduler 1016. The reorder queues are
configured to maintain a per-port order as the security
processor processes each packet. In one embodiment, a
separate reorder queue 1s allocated to each output port, and
cach packet entry enters the queue for 1ts expected output
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port. As mentioned above, packet entries may enter a reorder
queue 1017 at the time that they arrive at the POM 930. A
packet entry may simultaneously be in the reorder queue
1017 and either an 1mput queue 1004, a sequential ordering
queue 1010, or a group queue 1020. Packet entries exit the
reorder queue 1017 and enter an actual output queue 1018
when the execution core produces all relevant output pack-
ets. Packet entries exit each reorder queue 1017 1n order, per
the associated output port.

The output queues 1018 maintain the order of packets that
have completed their execution unit processing require-
ments (or did not have any processing requirements) and
have satisfied all other ordering requirements. A packet entry
for an mput packet that does not require any execution unit
processing enters an output queue immediately upon arriv-
ing at the POM 930, 11 1t does not enter the reorder queue.
A packet entry for packet created by an execution unit enters
an output queue 1018 immediately when created if the
packet entry 1s not placed in a reorder queue. When a packet
entry 1s 1n a reorder queue, 1t enters the output queue 1018
once reordering and processing requirements are satisfied. In
one embodiment, a separate output queue 1018 1s allocated
for every output port, and once a packet entry enters an
output queue, the security processor 900 sends the relevant
packet out the selected port.

In one embodiment, the various “queues™ illustrated 1n
FIG. 10 are not discrete storage elements. Rather, they are
defined, addressable memory blocks within a single, con-
tiguous memory space (e.g., such as SDRAM, DDRAMor
RDRAM).

It should be noted that the specific examples set forth
above are for the purpose of 1llustration only and should not
be read to limit the scope of the invention. A virtually
unlimited number of resource allocations based on security
protocol and/or service level may be defined while still
complying with the underlying principles of the invention.

Embodiments of the invention may include various steps
as set forth above. The steps may be embodied 1n machine-
executable instructions. The instructions can be used to
cause a general-purpose or special-purpose processor to
perform certain steps. Alternatively, these steps may be
performed by specific hardware components that contain
hardwired logic for performing the steps, or by any combi-
nation of programmed computer components and custom
hardware components.

Elements of the present invention may also be provided as
a machine-readable medium for storing the machine-execut-
able 1nstructions. The machine-readable medium may
include, but 1s not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMSs, magnetic or optical cards, propaga-
tion media or other type of media/machine-readable medium
suitable for storing electronic instructions. For example, the
present invention may be downloaded as a computer pro-
gram which may be transierred from a remote computer
(e.g., a server) to a requesting computer (e.g., a client) by
way of data signals embodied in a carrier wave or other
propagation medium via a communication link (e.g., a
modem or network connection).

It 1s also important to note that the apparatus and method
described herein may be implemented 1n environments other
than a physical integrated circuit (“IC”). For example, the
circuitry may be incorporated into a format or machine-
readable medium for use within a software tool for design-
ing a semiconductor IC. Examples of such formats and/or
media mclude computer readable media having a VHSIC
Hardware Description Language (“VHDL”) description, a
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Register Transfer Level (“RTL”) netlist, and/or a GDSII
description with suitable mformation corresponding to the
described apparatus and method.

What 1s claimed 1s:

1. A method comprising:

allocating a first plurality of security processing resources

within a cryptographic processor to a first type of data
traflic associated with a first type of security protocol
and a first service level defined by a first level of
guaranteed processing bandwidth;

allocating a second plurality of security processing

resources within the cryptographic processor to a sec-
ond type of data traflic associated with a second type of
security protocol and a second service level defined by
a second level of guaranteed processing bandwidth,
wherein the second level of guaranteed processing
bandwidth 1s different from the first level of guaranteed
processing bandwidth, the first and second plurality of
security processing resources comprise a plurality of
cryptographic execution cores logically separated into
first and second groups, respectively, and the first type
of data traflic 1s data traflic requiring processing accord-
ing to the first type of security protocol and wherein the
second type of data traflic 1s data traflic requiring
processing according to the second type of security
protocol;

monitoring load on the first plurality of security process-

ing resources and the second plurality of security
processing resources as the first and second types of
data traflic are processed; and

reallocating some of the first plurality of security process-

ing resources irom processing the first type of data
traflic to processing the second type of data traflic i
detected load on the second plurality of resources is
above a specified threshold value, wherein said reallo-
cating some of the first plurality of resources to the
second plurality of resources comprises reallocating
execution cores from the first group to the second
group.

2. The method as 1n claim 1 wherein the first and second
plurality of security processing resources comprises a plu-
rality of queues logically separated into first and second
groups, respectively.

3. The method as 1n claim 2 wherein reallocating some of
the first plurality of resources to the second plurality of
resources Comprises:

reallocating queues from the first group to the second

group.

4. The method as 1n claam 1 wherein monitoring load on
the first plurality of security processing resources and the
second plurality of security processing resources comprises:

measuring a relative amount of input or output memory

space consumed by the first and second types of data
tratlic.

5. The method as 1 claam 1 wherein the first type of
security protocol 1s the secure sockets layer (“SSL”) proto-
col and the second type of security protocol is the IP security

(“IPSEC”) protocol.

6. A security processing apparatus comprising:
a cryptographic processor having a first plurality of secu-

rity processing resources initially allocated to process a
first type of data tratlic associated with a first service
level and according to a first type of security protocol
and a second plurality of security processing resources
mitially allocated to process a second type of data
traflic associated with a second service level and
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according to a second type of security protocol,
wherein the first and second service levels are defined
by different levels of guaranteed processing bandwidth,
wherein the first and second plurality of security pro-
cessing resources comprise a plurality of cryptographic
execution cores logically separated into first and second
groups, respectively;

a monitor module to monitor load on the first plurality of
security processing resources and the second plurality
of security processing resources as the first and second
types of data traflic are processed; and

a resource allocation module to reallocate some of the first
plurality of security processing resources from the first
type ol data traflic to the second type of data traflic 1T
detected load on the second plurality of security pro-
cessing resources 1s above a specified threshold value,
wherein the resource allocation module reallocates
execution cores from the first group to the second group
in response to the detected load.

7. The security processing apparatus as 1n claim 6 wherein
the first and second plurality of security processing
resources comprises a plurality of queues logically separated
into first and second groups, respectively.

8. The security processing apparatus as 1n claim 7 wherein
the resource allocation module comprises a queue allocation
module to reallocate queues from the first group to the
second group 1n response to the detected load.

9. The security processing apparatus as 1n claim 6 wherein
the monitor module detects load on the first plurality of
security processing resources and the second plurality of
security processing resources by measuring a relative
amount of input or output memory space consumed by the
first and second types of data traflic.

10. The security processing apparatus as 1 claim 6
wherein the first type of security protocol 1s the secure
sockets layer (“SSL”) protocol and the second type of
security protocol 1s the IP security (“IPSEC”) protocol.

11. A machine-readable medium having code stored
thereon which defines an integrated circuit (IC), said IC
comprising;

a cryptographic processor having a first plurality of secu-
rity processing resources initially allocated to process a
first type of data traflic associated with a first service
level and a second plurality of security processing
resources 1itially allocated to process a second type of
data traflic associated with a second service level,
wherein the first and second service levels are defined
by diflerent levels of guaranteed processing bandwidth,
wherein the first and second plurality of security pro-
cessing resources comprises a plurality of crypto-
graphic execution cores logically separated into {first
and second groups, respectively, and wherein the first
type of data traflic 1s data tratlic requiring processing,
according to a first type of security protocol and
wherein the second type of data trathic 1s data trathic
requiring processing according to a second type of
security protocol;

a monitor module to monitor load on the first plurality of
security processing resources and the second plurality
of security processing resources as the first and second
types of data tratlic are processed; and

a resource allocation module to reallocate some of the first
plurality of security processing resources from the first
type of data traflic to the second type of data traflic it
detected load on the second plurality of security pro-
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cessing resources 1s above a specified threshold value,
wherein the resource allocation module reallocates
execution cores from the first group to the second group
in response to the detected load.

12. The machine-readable medium as in claim 11 wherein
the first and second plurality of security processing
resources comprises a plurality of queues logically separated
into first and second groups, respectively.

13. The machine-readable medium as in claim 12 wherein
the resource allocation module comprises a queue allocation
module to reallocate queues from the first group to the
second group 1n response to the detected load.

5
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14. The machine-readable medium as 1n claim 11 wherein
the monitor module detects load on the first plurality of
security processing resources and the second plurality of
security processing resources by measuring a relative
amount ol mput or output memory space consumed by the
first and second types of data traflic.

15. The machine-readable medium as in claim 11 wherein
the first type of security protocol 1s the secure sockets layer
(“SSL”) protocol and the second type of security protocol 1s

10 the IP security (“IPSEC”) protocol.
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UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,337,314 B2 Page 1 of 1
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DATED : February 26, 2008

INVENTOR(S) : Muhammad Raghib Hussain et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specitication

Column 5, Line 51, delete “DDRAMor” and insert -- DDRAM or --;

Column 7, Line 3, delete “module 540 and insert -- module 562 --;

Column 11, Line 14, delete “result pointer 612” and insert -- result pointer 712 --;
Column 13, Line 45, delete “allocation to module” and 1nsert -- allocation module --;
Column 17, Lines 32-33, delete “communication interfaces 901, 902.” and

Insert -- communication interfaces 903, 904, --;

Column 18, Line 12, delete “In on™ and insert -- In one --;

Column 20, Line 43, delete “queues 1016)” and 1nsert -- queues 1018) --;

Column 20, Line 52, delete “output queue™ and insert -- mput or output queue --; and

Column 22, Line 29, delete “DDRAMor” and insert -- DDRAM or --.

Signed and Sealed this
Twenty-fourth Day of November, 2013

Tecbatle 7 Lo

Michelle K. Lee
Director of the United States Patent and Trademark Office
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