12 United States Patent

Greis et al.

US007333917B2

US 7,333,917 B2
Feb. 19, 2008

(10) Patent No.:
45) Date of Patent:

(54) NOVELTY DETECTION SYSTEMS,
METHODS AND COMPUTER PROGRAM
PRODUCTS FOR REAL-TIME
DIAGNOSTICS/PROGNOSTICS IN
COMPLEX PHYSICAL SYSTEMS

(75) Inventors: Noel P. Greis, Chapel Hill, NC (US);

Jack G. Olin, Chapel Hill, NC (US);
Manuel Aparicio, IV, Chapel Hill, NC
(US)

(73) The University of North Carolina at

Chapel Hill, Chapel Hill, NC (US);

Saffron Technology, Inc., Morrisville,

NC (US)

Assignees:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 154(b) by O days.

Notice:

(%)

(21) 11/463,448

(22)

Appl. No.:

Filed: Aug. 9, 2006

(65) Prior Publication Data

US 2007/0038838 Al Feb. 15, 2007

Related U.S. Application Data

Provisional application No. 60/707,272, filed on Aug.
11, 2003.

(60)

Int. CIL.
GO6F 11/30 (2006.01)
G21C 17/00 (2006.01)

US.CL o, 702/183; 702/184

Field of Classification Search 702/183,

702/184
See application file for complete search history.

(51)

(52)
(58)

(56) References Cited
U.S. PATENT DOCUMENTS

........... 702/183

6,446,027 B1* 9/2002 O’Keefle et al.

T T

172 |Potential
Response

5

o
R 2SR
L
[

»
——————

6,581,049 Bl 6/2003 Apariclo, IV et al.

0,745,151 B2 6/2004 Marko et al.

7,016,886 B2 3/2006 Cabana et al.

7,027,953 B2* 4/2006 Klem ......coovvvvvnnnnnennn. 702/184
2003/0065482 Al* 4/2003 Bechhoefer ................. 702/183
2003/0139908 Al* 7/2003 Wegerich et al. ........... 702/183
2005/0163347 Al 7/2005 Aparicio, IV et al.
2006/0095653 Al 5/2006 Fleming et al.

OTHER PUBLICATTONS

U.S. Appl. No. 11/426,520, filed Jun. 26, 2006, Aparicio, IV.
U.S. Appl. No. 11/196,871, filed Aug. 4, 2005, Lemen et al.

(Continued)

Primary Examiner—IJohn Barlow

Assistant Examiner—Victor 1. Taylor

(74) Attorney, Agent, or Firm—Myers Bigel Sibley &
Sajovec, P.A.

(57) ABSTRACT

Sensors are configured to repeatedly monitor variables of a
physical system during its operation. A novelty detection
system 1s responsive to the sensors and 1s configured to
repeatedly observe into an associative memory, states of
associations among the variables that are repeatedly moni-
tored, during a learming phase. The novelty detection system
1s Turther configured to thereafter observe at least one state
ol associations among the variables that are sensed relative
to the states of associations that are in the associative
memory, to 1dentify a novel state of associations among the
variables. The novelty detection system may determine
whether the novel state 1s indicative of normal operation or
ol a potential abnormal operation. Multiple layers of leamn-
ing for real-time diagnostics/prognostics also may be pro-

vided.
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NOVELTY DETECTION SYSTEMS,
METHODS AND COMPUTER PROGRAM
PRODUCTS FOR REAL-TIME
DIAGNOSTICS/PROGNOSTICS IN
COMPLEX PHYSICAL SYSTEMS

CROSS-REFERENCE TO PROVISIONAL
APPLICATION

This application claims the benefit of Provisional Appli-

cation Ser. No. 60/707,272, filed Aug. 11, 2005, entitled
In-The-Loop Novelty Detection Systems, Methods and
Computer Program Products For Real-Time Diagnostics
And Prognostics In Complex Physical Systems, assigned to
the assignee of the present application, the disclosure of
which 1s hereby incorporated herein by reference in its
entirety as 1f set forth fully herein.

FIELD OF THE INVENTION

This i1nvention relates to computer systems, methods
and/or computer program products, and more particularly to
systems, methods and/or computer program products that
are capable of performing real-time diagnostics/prognostics
on complex physical systems.

BACKGROUND OF THE INVENTION

Diagnostic and prognostic systems, methods and com-
puter program products are widely used to monitor, interpret
and/or predict the health of a physical system. As 1s well
known to those having skill in the art, diagnostics refers to
determining the state of a part, component, subsystem or
system with respect to its ability to perform its function
according to design-intended parameters, whereas prognos-
tics refers to predictive diagnostics which includes deter-
mimng the remaining life, anticipated operational time-to-
fallure, and/or failure trajectory of a part, component,
subsystem or system. In general, conventional diagnostic
systems may use physical models of the physical system
and/or predetermined nominal limits of sensor values to
determine the health of the physical system. A typical
scenario 1n the automotive industry may involve the on-
board retention of diagnostic data, such as misfire tlops in
automotive engine control applications, followed by batch
downloads of diagnostic information to base stations for
turther analysis and logistics decision support.

Conventional techmques that use predetermined normal
limits of sensor values may use electronic lookup tables.
Thus, current observations of sensor values may be com-
pared against a lookup table of case-based histories of
known behaviors. During field operations, baseline states of
the system may be recorded as either normal or abnormal.
Observed states are then compared with the historical states
to determine whether they have been seen before and
whether they are normal or not. While this approach can be
performed quickly enough for relatively well behaved
operations, 1t may not be suitable to complex behaviors,
especially 1 changing environments when new behavior
may be observed that 1s not in the library of observed states.
Moreover, lookup table-based analysis may become exceed-
ingly complex as the complexity of the physical system
increases. The experimental baseline determination for
vehicles, for example, may assume that all possible states
encountered in the field can be predicted and captured 1n
lookup tables for real-time diagnostics and prognostics.
Moreover, pre-established lookup tables also may be based
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on vehicle platform averages, and may not provide granu-
larity for individual vehicles. Finally, cross-sensor associa-
tions may be diflicult to capture in conventional lookup
tables.

Many other diagnostics and primitive prognostics tech-
niques may be based on physical models that describe
normal behavior under a range of different input parameters.
For example, engine management might be based on physi-
cal modeling 1n the form of a set of equations, which may
involve, for example, pressure, temperature and other vari-
ables. Such physical models, using a “reductionist”
approach, may often be constrained to small parameter sets
for mathematical tractability. As a result, comprehensive
physical modeling for diagnostics of complex systems may
be dithicult, 11 not impossible. As an alternative to physical
models, statistical approaches like neural computing may be
used 1n some applications for pattern recognition. In these
approaches, large data sets of attributes are obtained through
observation of the system, usually during a test-and-valida-
tion stage. This data may then be used to {it statistical models
that can be used to determine whether an observed state 1s
“normal”. These techniques may require large data sets for
model fitting, may not be adaptable over time and may be
computationally prohibitive in a real-time environment.

Several potential difliculties may be associated with the
use of the above approaches for complex systems and/or for
real-time diagnostics. In particular, comprehensive physical
modeling of complex systems for real-time applications may
be difficult 11 not impossible, and the computational require-
ments may well be prohibitive. Moreover, the experimental
baseline determination on sample physical systems may
assume all possible states encountered in the field can be
predicted and captured in lookup tables for real-time diag-
nostics and/or prognostics, and that the results are represen-
tative of an entire tleet of systems. Aging phenomena during
real world operation also may be diflicult to anticipate, since
aging patterns are biased by history of individual use, and
may not be easily extrapolated. Moreover, batch downloads
from a complex system can add response delay and make
real-time diagnostics difficult.

In summary, real-time diagnostics/prognostics during
field operation may use continuous comparison and inter-
pretation of the current system states with respect to design-
intended performance baselines. Practical development of
such onboard diagnostics may be hampered by the lack of
analytical tools that are fast enough to keep up with the
physical process 1n real-time, especially 1n the case of large,
complex systems, where physical models may not be prac-
tically possible.

SUMMARY OF THE INVENTION

Some embodiments of the present invention provide
diagnostic/prognostic systems for a physical system,
wherein a plurality of sensors 1s configured to repeatedly
monitor variables of the physical system during operation.
In some embodiments, the monitoring may be continuous
and/or periodic. A first associative memory 1s provided that
1s configured to learn associations of sensor values. A
novelty detection system also 1s provided, that 1s responsive
to the plurality of sensors and that i1s configured to repeatedly
observe 1nto the first associative memory, states of associa-
tions among the variables that are repeatedly monitored,
during a learning phase. The novelty detection system 1is
turther configured to thereafter imagine at least one state of
associations among the variables that are monitored relative
to the states of associations that are observed in the first
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associative memory, to 1dentily a novel state of associations
among the vanables. Accordingly, the novelty detection
system may be configured to track the outputs of the
plurality of sensor values and their associations, comparing,
them to previously learned associations 1n the first associa-
tive memory, and identifying novel (i.e., not previously
learned) associations. In some embodiments, the novelty
detection system 1s further configured to determine whether
the novel state 1s indicative of normal operation or of a
potential abnormal operation. In still other embodiments, the
novelty detection system may be further configured to
observe the novel state that 1s indicative of normal operation
into the associative memory.

In some embodiments, the variables that are repeatedly
monitored may be assigned to simple or “fuzzified” bins,
and the novelty system may be configured to repeatedly
observe into the associative memory, states of associations
among the binned variable values, during the learning phase.
Binning and/or fuzzification may be applied to continuous
and/or discrete variables. Other embodiments of the present
invention may provide sensor output pattern completion 1n
case of sensor failure. Such pattern completion may provide
limp-home capability by feeding to controllers sensor values
for proper operation.

In still other embodiments of the invention, a second
associative memory also 1s provided that includes therein
associations of attributes of failure modes of the physical
system. A failure mode learning system 1s also provided that
1s responsive to the novelty detection system and to the
second associative memory. The failure mode learning sys-
tem 1s configured to 1magine attributes of the novel state
relative to the associations of attributes of failure modes of
the physical system, to identify and/or predict a potential
tailure mode for the physical system. In other embodiments,
the failure mode learning system may be further configured
to 1dentily and/or learn a new failure mode for subsequent
associations. In still other embodiments of the invention, a
trend learning-enabled prognostic system 1s provided that 1s
configured to imagine time-line-based associations based on
previously learned time-stamped patterns. In these embodi-
ments, the time-stamped associations may also be observed
into the second associative memory of attributes of failure
modes to enable prognostics.

In yet other embodiments of the present invention, a third
associative memory 1s also provided that includes therein
associations of attributes of previous corrective actions
and/or responses to failure modes of the physical system. An
intervention learning system also 1s provided, that 1s respon-
sive to the failure mode learning system and to the third
associative memory. The intervention learning system 1is
configured to observe the attributes of the potential failure
mode relative to the responses in the third associative
memory, to identify a potential corrective action and/or
response to the potential failure mode. In some embodi-
ments, the intervention learning system 1s further configured
to apply the potential response to the physical system in
real-time. In other embodiments, the novelty detection sys-
tem, the failure mode learning system, the intervention
learning system and the first, second and third associative
memories operate on the physical system in real-time.

Still other embodiments of the present invention provide
a diagnostic/prognostic system for a physical system that
includes a plurality of sensors that are configured to repeat-
edly momnitor physical system variables during operation.
The diagnostic/prognostic system includes a novelty detec-
tion system, a failure mode learning system and an inter-
vention system. The novelty detection system 1s responsive
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4

to the plurality of sensors and 1s configured to identify a
novel state among the sensor values that 1s indicative of a
potential abnormal operation. The failure mode learming
system 1s responsive to the novelty detection system, and 1s
configured to 1dentily potential failure modes for the physi-
cal system 1n response to the novel state. The failure mode
learning system may include a trend learning system that 1s
responsive to the novelty detection system and 1s configured
to 1dentily and learn failure trends for prognostics. The
intervention system 1s responsive to the failure mode system
and 1s configured to i1dentily a potential response and/or
corrective action to the potential failure mode.

Embodiments of the invention have been described above
in connection with diagnostic/prognostic systems for a
physical system. However, analogous diagnostic/prognostic
methods and computer program products may also be pro-
vided according to other embodiments of the present inven-
tion. Moreover, embodiments of the invention that are
described herein may be used 1n various combinations and
subcombinations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of diagnostic/prognostic sys-
tems, methods and/or computer program products according
to various embodiments of the present invention.

FIG. 2A conceptually illustrates determining a novel
observation by vector distances according to some embodi-
ments of the present mvention.

FIG. 2B conceptually illustrates determining a novel
observation by bin covering according to some embodi-
ments of the present mvention.

FIGS. 3A-3D illustrate various examples of assessing
novel states according to some embodiments of the present
invention.

FIG. 4 1s a block diagram of novelty detection systems,
methods and computer program products according to other
embodiments of the present invention.

FIG. 5 1s a flowchart of operations that may be performed
for novelty detection according to some embodiments of the
present mvention.

FIG. 6 1s a flowchart of operations that may be performed
for failure mode 1dentification and learning, as well as trend
learning for prognostics according to some embodiments of
the present invention.

FIG. 7 1s a functional block diagram of layered learning
for diagnostics according to various embodiments of the
present 1nvention.

FIG. 8A 15 a simplified schematic diagram of a DC motor
and fan.

FIG. 8B graphically 1llustrates an equation for steady state
DC operation of FIG. 8A along with a normal state-space
distribution therefor and typical scatter indicating deviation
from previously learned state space.

FIG. 9 illustrates an example of binning of sensor values
for the fan of FIG. 8 according to some embodiments of the
present 1vention.

FIG. 10 1s a block diagram of novelty detection systems,
methods and/or computer program products according to yet
other embodiments of the present invention.

FIG. 11 graphically illustrates correlated behavior of
multiple sensor values according to some embodiments of
the present invention.
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DETAILED DESCRIPTION

The present invention now will be described more fully
hereinafter with reference to the accompanying drawings, in
which illustrative embodiments of the mnvention are shown.
However, this invention may be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein. Rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will filly convey the scope of the mvention to those
skilled 1n the art.

It will be understood that when an element 1s referred to
as being “coupled”, “connected” or “responsive” to another
clement, 1t can be directly coupled, connected or responsive
to the other element, or intervening elements may also be
present. In contrast, when an element 1s referred to as being
“directly coupled”, “directly connected” or “directly respon-
sive” to another element, there are no itervening elements
present. Like numbers refer to like elements throughout. As
used herein the term “and/or” includes any and all combi-
nations of one or more of the associated listed items and may
be abbreviated by */”.

It will also be understood that, although the terms first,
second, etc. may be used herein to describe various ele-
ments, these elements should not be limited by these terms.
These terms are only used to distinguish one element from
another element.

The terminology used herein 1s for the purpose of describ-
ing particular embodiments only and 1s not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises,” “compris-
ing,” “includes” and/or “including” when used herein,
specily the presence of stated features, steps, operations,
clements, and/or components, but do not preclude the pres-
ence or addition of one or more other features, steps,
operations, elements, components, and/or groups thereof.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood
that terms, such as those defined 1n commonly used dictio-
naries, should be interpreted as having a meaning that 1s
consistent with their meaning in the context of the relevant
art and will not be interpreted in an idealized or overly
formal sense unless expressly so defined herein.

The present invention 1s described 1n part below with
reference to block diagrams and flowcharts of methods,
systems and computer program products according to
embodiments of the invention. It will be understood that a
block of the block diagrams or flowcharts, and combinations
of blocks i the block diagrams or flowcharts, may be
implemented at least 1n part by computer program instruc-
tions. These computer program instructions may be pro-
vided to one or more enterprise, application, personal,
pervasive and/or embedded computer systems, such that the
instructions, which execute via the computer system(s)
create means, modules, devices or methods for implement-
ing the functions/acts specified in the block diagram block or
blocks. Combinations of general purpose computer systems
and/or special purpose hardware also may be used in other
embodiments.

These computer program instructions may also be stored
in memory of the computer system(s) that can direct the
computer system(s) to function in a particular manner, such
that the mstructions stored in the memory produce an article
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6

of manufacture including computer-readable program code
which implements the functions/acts specified 1n block or
blocks. The computer program instructions may also be
loaded into the computer system(s) to cause a series of
operational steps to be performed by the computer system(s)
to produce a computer implemented process such that the
instructions which execute on the processor provide steps
for implementing the functions/acts specified 1n the block or

blocks. Accordingly, a given block or blocks of the block
diagrams and/or tlowcharts provides support for methods,
computer program products and/or systems (structural and/
or means-plus-function).

It should also be noted that 1n some alternate implemen-
tations, the functions/acts noted 1n the flowcharts may occur
out of the order noted 1n the flowcharts. For example, two
blocks shown 1n succession may in fact be executed sub-
stantially concurrently or the blocks may sometimes be
executed 1n the reverse order, depending upon the function-
ality/acts mvolved. Finally, the functionality of one or more
blocks may be separated and/or combined with that of other
blocks. It will also be understood that, 1n many systems that
are already equipped with some form of microprocessor-
based computational capability, the blocks of the block
diagram may be embedded within operating and/or appli-
cation programs that execute on the microprocessor.

FIG. 1 1s a block diagram of diagnostic/prognostic sys-
tems, methods and/or computer program products according
to various embodiments of the present invention. These
diagnostic/prognostic systems, methods and/or computer
program products 100 may be used to monitor and/or predict
the health of a physical system 110. As used herein, a
physical system may include an individual physical com-
ponent, such as a motor or engine, or a more complex and
dynamic physical system, such as an entire manufacturing
system, power system, transportation system, supply chain
and/or other complex systems that are characterized by
interrelated subsystems with large numbers of operating
parameters and multiple modes of operation that depend
dynamically on the physical operating environment. Such
real-time system health and trend characterization not only
can enable condition-based maintenance and repair, but can
also provide real-time decision support to a supply chain,
command and control, engineering, research and develop-
ment, and/or other operations. A plurality of sensors 120
may be configured to repeatedly monitor variables 122 of
the physical system 110 1n operation. In some embodiments,
monitoring may take place continuously and/or periodically.
The design and operation of sensors 120 can vary widely,
depending on the physical system and/or the variables being
monitored, as 1s well known to those having skill 1n the art.
Signal conditioning, aggregating, pre-processing, post-pro-
cessing and/or other operations also may be performed using
techniques well known to those having skill in the art.
Moreover, as will be described 1n detail below, the variable
values 122 may be “fuzzified”, for example by assigning
values to bins, and embodiments of the mvention may
operate on the binned or otherwise tuzzified values.

As 1llustrated in FIG. 1, 1n some embodiments of the
present invention, a first layer 191 may include a first
associative memory 140 and a novelty detection Block 130.
An optional second layer 192 may include a second asso-
ciative memory 160 and a failure mode learning Block 150.
Finally, an optional third layer 193 may include a third

associative memory 180 and an intervention learning Block
170. Each of these layers 191-193 will now be described 1n
general, followed by more detailed description.
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In general, the novelty detection Block 130 1s responsive
to the plurality of sensors 120, and 1s configured to repeat-
edly observe 1nto the first associative memory 140 states of
associations among the variables 122 that are repeatedly
monitored, during a learning phase. The novelty detection
Block 130 1s further configured to thereafter imagine at least
one state of associations among the variables 122 that are
monitored relative to the states of associations that are
observed 1n the first associative memory 140, to identify a
novel state 132 of associations among the variables 122. In
some embodiments, the novelty detection Block 130 1s
turther configured to determine whether the novel state 132
1s indicative of normal operation or of a potential abnormal
operation. Moreover, 1f the novel state 1s indicative of
normal operation, the novelty detection Block 130 may be
turther configured to observe the novel state ito the first
associative memory 140. As was also described above, the
novelty detection Block 130 may be further configured to
assign the variables that are repeatedly sensed into bins
and/or to otherwise fuzzily the variable values, and to
repeatedly observe into the first associative memory 140
states of associations among the binned or otherwise fuzzi-
fied values during the learning phase.

Continuing with the description of FIG. 1, 1n the optional
second layer 192, the second associative memory 160
includes therein associations of attributes of failure modes of
the physical system 110. A failure mode learning Block 150
1s responsive to the novelty detection Block 130 and to the
second associative memory 160, and 1s configured to 1mag-
ine attributes of the novel state 132 relative to the associa-
tions of attributes of failure modes of the physical system
that are observed 1n the second associative memory 160, to
identify a potential failure mode 1352 for the physical system
110, and thereby provide failure diagnostics and/or prog-
nostics.

More specifically, in some embodiments of the invention,
the failure mode learning Block 150 can include a failure
mode 1dentification and diagnostics Block 154 and a trend
learning and prognostics Block 156. The second associative
memory 160 contains attributes of previously experienced
taillure modes that are observed during “strife” (stress-life)
testing, are observed during training and validation, and/or
are observed during operation and identified as failure
modes by experts, as well as contextual attributes. When a
novel state 1s observed by the novelty detection system 130
this state 1s observed into the second associative memory
160 by the failure mode 1dentification and diagnostics Block
154, to identify the potential failure mode based on previ-
ously learned failure modes. When the second associative
memory 160 contains time-stamped attributes of previously
observed failure modes, the trend learning and prognostics
Block 156 1s able to predict time to-failure and other
pPrognostics.

In other embodiments, the faillure mode learming Block
150 may be further configured to identily a potential new
faillure mode for the physical system 110 when the failure
learning mode 1s not able to correlate attributes of the current
potential failure trajectory with failure modes contained in
the second associative memory 160. The diflerence between
degradation and failure modes on one hand and benign
operational changes (e.g., aging) may be based on an inter-
pretation process that may rely both on associative memory
learning of patterns of previously experienced failure modes
and expert experience. Based on the imaginings of the
faillure mode learning system and expert experience, the
state space of normal operations can be updated 1n the
novelty detection Block 130 for future state tracking.
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Still referring to FIG. 1, the optional third layer 193 may
include the third associative memory 180 that includes
therein associations of attributes of corrective actions and/or
responses to failure modes of the physical system 110. An
intervention learning Block 170 1s responsive to the failure
mode learning system 150 and to the third associative
memory 180, and 1s configured to imagine attributes of the
potential faillure mode 152 relative to the responses in the
third associative memory, to identify a potential corrective
action and/or response 172 to the potential failure mode.

More specifically, 1n some embodiments of the invention,
the third associative memory 180 contains attributes of
experienced failure modes, successiul corrective actions or
responses, associated mean-times-to-faillure and contextual
attributes and 1s configured to make correlations between
fallure mode attributes and corrective responses that can be
implemented to return the physical system 110 to the normal
operating regime. In the event of a potential failure, the
intervention learning system 170 observes into the third
associative memory 180 the attributes of the current poten-
tial failure mode to 1magine a recommendation of a correc-
tive action or response 172 that can return the physical
system 110 to design-intended operating conditions.

In some embodiments, the intervention learning Block
170 1s further configured to apply the potential response 172
to the physical system 110 1n real-time, as shown by dashed
arrow 174. In other embodiments, the novelty detection
system 130, the faillure mode learning system 150, the
intervention learning system 170 and the first, second and
third associative memories 140, 160 and 180 all operate on
the physical system 110 in real-time, to thereby provide
real-time diagnostics, which may include real-time prognos-
tics.

Additional detailed description of the various blocks of
FIG. 1 will now be provided in connection with FIGS. 2-11.
In particular, some embodiments of the invention can extend
the operational capabilities of current diagnostics and prog-
nostics for monitoring, imnterpreting and predicting the health
of complex physical systems. By implementing novelty
detection, some embodiments of the invention are capable of
real-time state learning for the purpose of identifying system
states that are novel (outside the “normal” baseline, and
potential performance degradation indicators) as well as
identifving system states associated with previously learned
fallure modes. During a validation, learming or training
mode, novelty detection learns normal (baseline) system
behavior over a range ol design-intended operational
regimes using a non-symbolic, associative memory. During
an operational mode, these patterns of system-specific, nor-
mal behavior are used as a reference for identification of
novel and potential failure states that may warrant attention
and/or corrective action. Corrective action can be autono-
mous and/or human-implemented. As was described 1n FIG.
1, the novelty detection and prognostics/diagnostics capa-
bility may be implemented in a layered learning framework.

Thus, some embodiments of the invention can recognize
previously unobserved or “novel” system behavior that may
be associated with a potential failure state before failure
occurs. In some embodiments, the novelty detection Block
130, also referred to as a novelty detection engine, learns
normal system behavior that 1s consistent with design-
intended performance specifications during training. As used
herein, any system behavior that 1s consistent with the
design-intended performance specifications may be consid-
ered to be normal behavior. A normal baseline may be
established during standard product test and wvalidation.
During use, newly observed system states are compared
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with (imagined) a learned associative memory ol normal
states 1n order to identily behavior that 1s “novel” and
possibly associated with a failure state or performance
degradation trend potentially leading to future failure (prog-
nostics). Novelty detection can incorporate a non-symbolic
and memory eflicient associative memory technology that 1s
capable of very fast real-time state learning.

Embodiments of the invention need not use physical
models or pre-determined normal limits to sensor values.
Further, embodiments of the invention can be real-time
capable and, thus, adaptable to dynamic system behaviors.
Other conventional techniques oiten compare the observed
values of the current system state with known failure modes
or with previously experienced failure states of similar
systems obtained by “strife” (stress-life) testing during prod-
uct development. In contrast, embodiments of the invention
need not rely on a prior knowledge of known failure modes,
but rather can assess the “novelty” of a current state by
comparing 1t to an associative memory ol learned normal
behavior that may include not only system variables but also
may include contextual information related to the operating
environment. By comparing current in-use performance
with learned normal performance as captured 1n a design-
intended performance envelope and/or learned trends to
failure, 1t 1s possible to discern and anticipate potentially
fatal trajectories during system operations that may be

obtained during strife (stress-life) testing and/or physical
system operations and training.

In human cognition, an observed system state 1s new or
“novel” 11 1t has not been observed 1n the past or has not been
installed 1n human memory. Similarly, 1 exemplary
embodiments of the mvention, the novelty of an observed
state may be assessed against the backdrop of previously
observed and learned system states that have been accumu-
lated (observed) 1n an associative memory, such as associa-
tive memories 140, 160 and/or 180 of FIG. 1. As with human
learning, this associative memory 1s built through “experi-
ential” leaning 1n which a newly observed state 1s accumu-
lated 1n the associative memory as a basis for iterpreting
future events.

For the purposes of the discussion below, the health of a
physical system may be characterized by the simultaneous
and time-stamped combination of significant outputs 122 of
sensors 120 of the physical system 110 and their relation-
ships, plus any sensored contextual variables related to the
physical environment that might affect system performance.
Over a period of time, the accumulation of these multi-
parameter sensor outputs, any derived variables, and/or
contextual variables can determine an n-dimensional state
space 1n the first associative memory 140 that represents the
behavior of the physical system. Embodiments of the inven-
tion, thus, are able to learn through experience, one time-
stamped observation of simultaneous sensor readings at a
time. These observations may then be filtered through a
significance filter that may be included in the novelty
detection Block 130, as being consistent with design-in-
tended expectations, or inconsistent with design-intended
expectations, and thus subject to further interpretation and
response.

In some embodiments, the resulting state space that 1s
observed 1n the first associative memory 140 can serve as a
basis for evaluating future states. Newly observed states that
do not belong to this state space are considered to be novel
states 132 and may (or may not be) associated with a failure
mode or a trend towards failure. For example, the direction
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and rate at which a sequence of observed states moves away
from the state space can be used to help predict failure
patterns and time-to-failure.

The state space that 1s observed i1n the first associative
memory 140 can provide a useful tool for capturing
observed relationships, or associations, between state space
variables. In conventional single or multi-sensor systems,
individual sensor values are tracked to assure that they stay
within pre-determined limits. However, system-level mal-
functioning may occur even ii all individual sensor outputs
are within limits, due to inconsistent correlation of sensor
outputs. By defining the time-dynamic state of a system as
the complete time-stamped set of sensor outputs according
to some embodiments of the invention, one can compute the
correlated behavior of individual sensor values in defining
the acceptable state space. Moreover, 1n some embodiments,
pattern completion may also be used, for example, 1n the
case of a sensor failure.

Further, novelty detection according to some embodi-
ments of the invention can reflect system-specific behavior
on the premise that more efhicient and reliable prognostics
can be achieved by comparing system-specific multi-sensor
states to a system-specific learned normal baseline, rather
than a platform-based generic performance baseline. Nov-
clty generally has limited meaning for specific system
diagnostics and prognostics when based on averages over
multiple system performance histories, because a novel state
for one system may not be novel for another system under
the same or different operating conditions.

In some embodiments of the invention, the ability to
implement novelty detection may be enabled by a type of
machine learning called associative memory 140, for
example associative memory technology developed by Sat-
fron Technology, Inc., Mornsville, N.C. This associative
memory technology 1s described in U.S. Pat. No. 6,581,049
entitled “Artificial Neurons Including Power Series of
Weights and Counts That Represent Prior and Next Asso-
ciation”, U.S. Pat. No. 7,016,886 entitled “Artificial Neu-
rons Including Weights That Include Maximal Projections™,
U.S. Patent Application Publication No. 2005/0163347 Al,
published Jul. 28, 2005, entitled “Distance-Based Spatial
Representation and Prediction Systems, Methods and Com-
puter Program Products for Associative Memories™, U.S.
Application Publication No. 2006/00956353 Al, published
May 4, 2006, entitled “Network of Networks of Associative
Memory Networks for Knowledge Management”, U.S.
application Ser. No. 11/035,472, filed Jan. 14, 2003, entitled
“Methods, Systems And Computer Program Products For
Analogy Detection Among Entities Using Reciprocal Simi-
larity Measures”, application Ser. No. 11/196,871, filed Aug.
4, 2005, entitled “Associative Matrix Methods, Systems and
Computer Program Products Using Bit Plane Representa-
tions of Selected Segments” and/or application Ser. No.
11/426,520, filed Jun. 26, 2006, entitled Nonlinear Associa-
tive Memories Using Linear Arrays of Associative Memory
Cells, and Methods of Operating Same, the disclosures of
which are hereby incorporated herein by reference 1n their
entireties as 1f set forth fully herein. These patents and
applications may be referred to collectively herein as the
Saflron Technology. Associative memories 140, 160 and/or
180 may include the Saflron Technology and/or other con-
ventional associative memory technology.

An associative memory can allow storage, discovery, and
retrieval of learned associations between extremely large
numbers of attributes 1n real-time. At a most basic level, an
associative memory stores (observes) information about
how attributes and their respective features occur together.
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The predictive power of the associative memory technology
comes from 1ts potential ability to efliciently interpret and
analyze the frequency of these co-occurrences and to pro-
duce various metrics 1n real-time.

In some embodiments of the invention, a first associative
memory 140 can contain stored information about previ-
ously observed system states (such as sensor outputs within
a context) as “counts” between co-occurring sensor value
pairs, or attribute combinations, across all observations. As
new system states are observed, this co-occurrence matrix 1s
incremented and the “strength” of correlations across the
sensor variables 1s reflected in the increasing number of
counts of observed co-occurring value combinations. As 1n
human learning, this memory of learned associations and
experience can be queried (1magined) as a basis for inter-
preting the significance of new system states and identifying,
recommended responses as described above.

In the case of large complex systems involving up to
hundreds, thousands or more of sensors transmitting at small
time-steps, the size of the co-occurrence matrix may quickly
become tractable and unsuitable for real-time applications
using classical data mining and model-fitting approaches.
Other approaches may compress the memory to reduce
storage requirements, but may require that the memory be
uncompressed to add new observations or to respond to
queries. By allowing learning in a compressed state, how-
ever, the associative memory 1s able to learn extremely
quickly-enabling fast state learning for real-time prognostics
and diagnostics. By virtue of the above-cited Saflron Tech-
nology, Saflron’s implementation of associative memory has

been demonstrated to be able to handle up to one million or
more attributes.

The ability of associative memory to handle extremely
large and complex datasets makes 1t well suited for real-time
prognostics applications as well as for large-scale diagnos-
tics tasks. For example, using associative memory it 1s
possible to simultaneously monitor the operational perfor-
mance of a tleet of vehicles 1n order to observe broad trends
in system-wide behavior. Conventional techniques may not
be able to interpret hundreds of thousands of attribute values
in real-time (along with contextual variables) such as would
be used to monitor a fleet of vehicles operating 1n different
regimes and environments.

The state space of accumulated sensor and contextual
values that 1s accumulated 1n the first associative memory
140 by the novelty detection Block 130 obtained during
training, under both normal and in-use operations, may be
represented 1n a construct referred to as the design-intended
performance envelope. The disposition of a new observation
with respect to both novelty and normality 1s a function of
its “closeness” to the design-intended performance enve-
lope. A new observation 1s novel if 1t falls sufliciently
outside the envelope. Similarly, a new observation 1s normal
i 1t falls within the envelope or “close enough” to 1t. The
design-intended envelope 1s typically established based on
exercising the system 110 within the intended design enve-
lope, e.g., during a test and validation phase.

There are a number of ways to assess the “closeness™ of
a new observation. One direct approach would be to com-
pute the n-dimensional vector distance between the most
recent observation and the closest point on the state space
frontier, as illustrated 1n FIG. 2A for a simple two-attribute
problem and 20 observations. Computing this metric may be
computationally time-consuming when the state space 1is
defined by an extremely large number of observations and
attributes.
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According to other embodiments of the invention, an
alternative approach may be used that may be better aligned
with the machine representation of associative memory 140
as a matrix of co-occurrences of attribute values. In particu-
lar, some embodiments of the invention may approach the
building of the design-intended performance envelope as a
“covering” problem. The fullest possible range of attributes
1s mapped into bands, in essence creating fuzzy sets of
attribute values. Enumerating all possible combinations of
bands produces a set of “bins” that can fully cover the
potential normal performance envelope.

The use of fuzzy values instead of scalar data to represent
system states can be consistent with the particular way
associative memory understands and represents data. An
associative memory may not understand the semantics of the
values that 1t stores. Rather, 1t may understand them as
symbols, and the matching 1t does may be based on match-
ing ol symbols. For example, suppose a set of values 1s
observed as (23.4, 10.8, 2.5). An associative memory may
not determine that (20.6, 12.5, 1) 1s nearer than (29.23 16,
—-8). Both vectors are new values that haven’t been seen
betore. Similarly, the vectors (20.6, 12.5, 1.44) and (20.6,
12.5, and 1.42) may not be recognized as the “same” value
to one significant digit. The use of fuzzy sets can avoid the
potential problem of requiring an associative memory to
recognize both scalar values and ordinal relationships. The
covering approach can provide an elegant way for the
memory to store observed system states as “counts” between
co-occurring sensor values or attributes.

An example 1s shown in FIG. 2B. This figure shows the
same simple two-attribute problem as FIG. 2A. Belfore the
data are fed to the associative memory, they are prepro-
cessed 1nto bands or bins as described above. Collectively,
the adjoining bins define the normal design-intended per-
formance envelope. The size of the bands may be deter-
mined such that, during training, one might expect the
2-dimensional space of normal behavior to be well covered
by observed values. The bins need not be of the same size.
More than one observation may {fall into one bin. The
dimensions of the bins and the length of training may be
determined a prior1 by an analyst and/or may be dynamically
determined. Typically, with longer training periods, smaller
bin sizes will fully cover the normal envelope, but this may
depend on the specific dynamics on the physical system.
With adequate training, it 1s possible to increase or maximize
the possibility that all normal states are observed by adjust-
ing the granularity of the bin size.

An accurate map of system-operating-within-the-design-
intended-performance-envelope and the observed sensor
states may be desirable for the integrity of the system. In
some cases, 1ndependent performance indicators may be
used. For example, during training, the system can be
instrumented with performance tracking capabilities, for
example using a dynamometer, noise and vibration tracking
equipment, etc. These instruments would confirm that the
observed states represent normal states. Further, during
training, the physical systems should be operated i all
operating regimes that might be expected. For example, 1n
the case of a car engine one might include start-up mode, as
well as acceleration, deceleration and so forth.

During training, the behavior of the physical system 1s
assumed to be normal, subject to the discussion above, and
all observed values are added (observed) to memory unless
it 1s determined that there 1s a likelihood of aberrant system
behavior. During use, newly observed novel states may or
may not be normal. Novel states that indicate possible future
failure (a “potential failure”) can be characterized by vari-
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ables such as the speed of a shiit away from the normal
performance envelope, the magnitude of shift, and/or the
persistence of the shift. The determination of these variables
may be made based on a priori assessment of the dynamic
behavior of the system and/or may be determined dynami-
cally. Appropnate policies (such as alerts to operators) may
be implemented as rules within the novelty detection Block
130. Those novel states 1dentified as not normal or indeter-
minate may be passed for further analysis as described
below.

In some embodiments, observed states may be grouped by
the novelty detection Block 130 into three types: 1) novel
and normal; 2) novel and not normal; and 3) novel and
indeterminate. These three types are discussed below.

Type 1: Novel and Normal. As shown 1n FIG. 3A, a novel
state may indicate an external shock which momentarily
throws the system into a new behavioral regime, but which
returns to normal behavior quickly. This transient shock
dissipates with no lingering effect on system behavior. Alerts
might not be necessary 1n these situations. Alternatively, as
shown 1n FIG. 3B, the newly observed state is clearly inside
the normal performance envelope but 1s novel simply
because the system has not “hit” that bin during traiming. It
such an observation 1s followed by one or more states that
also fall within the normal performance envelope, it 1s likely
that the system 1s behaving normally.

Type 2: Novel and Not Normal. Novel states that are not
normal may be indicated by a number of different behaviors.
Non-normal behavior might be manifested by the rapid
divergence of observed states from the normal performance
envelope. As shown 1n FIG. 3C, repeated observation of
novel states with sudden and sustained movement away
from normal performance envelope might represent a shift
to a new and persistent abnormal operating regime.

Type 3: Novel and Indeterminate. Indeterminate behav-
10rs, as shown 1n FIG. 3D, manifest themselves as random
sequences of novel and not novel states that result in the
migration ol the performance envelope. Depending on the
nature of the sequence, this might indicate a new environ-
mental regime which quickly stabilizes, or might indicate
normal aging of the system which was not captured during
training. These behaviors and rule sets may be worked out
in advance by an expert who 1s extremely familiar with the
operating characteristics of the physical system and/or may
be dernived dynamically. Novelty detection Block 130
according to exemplary embodiments of the invention can
consider the context of a system’s behavior 1n the assess-
ment of 1ts performance. These contextual attributes may
assist 1n assessing whether a novel state 1s normal or not
normal, and also the root cause of failure. The learning
process can also observe clustering of states within a state
envelope. Such clusters may provide valuable information 1n
at least two ways: (1) a shift of such clusters may indicate
an environmentally induced change in system behavior
(desert heat or high altitudes), or (2) a degradation trend
towards failure.

Some embodiments of the invention can use the novelty
detection engine 130 for real-time diagnostics/prognostics.
Adaptive real-time control also may be provided, as illus-
trated by dashed arrow 174 of FI1G. 1, to the extent that may
not be possible 1n previous approaches.

FI1G. 4 1llustrates a novelty detection Block 130 embedded
in a feedback loop comprised of four functionalities: sensing
120, transmission 420, processing 430 and response 440.
Each of these four functionalities will now be described.

Sensing Block 120 was described earlier in connection
with FIG. 1. As discussed earlier, the state-space approach
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assumes that the state (i.e., health) of a physical system can
be characterized by the simultaneous and, 1n some embodi-
ments, time-stamped combination of significant sensor out-
puts 120 of a physical system 110. In a noise-rich environ-
ment, preprocessing 410 may be used to extract meaningiul
data from sensored data and signals. The preprocessor 410
can translate sensored data into meamngiul attributes that
can be interpreted by the associative memory 140, and can
build a context for these attributes. For example, vibrational
signatures may be best dealt with through some form of
spectral analysis such as a Fast Fourier Transform. Some
data may be represented as fuzzy values or sets that can be
expressed as linguistic variables. Contextual attributes might
include operating conditions such as temperature, pressure
or altitude.

Sensed (and, 1n some embodiments, pre-processed) data 1s
transmitted by the transmission Block 420 to the processing
Block 430 for interpretation. In many modern systems, a
data bus protocol such as CAN (Controller Area Network) or
one of its dertvatives may be used for sensor information
transmission 420 to process modules 1n real-time, 1.e., fast
enough to keep up with control cycles. In principle, embodi-
ments of the imnvention can pull sensor data from a central
processor, distributed modules, and/or plug directly into a
data bus.

The processing Block 430 represents the intelligence of
any system controller or logistics support function. It com-
prehends monitoring the system controller, data processing,
and analysis, if a closed-loop feedback controller 1s used, as
well as actuation outputs. In some embodiments of the
invention, the processing function 430 can be enhanced by
the real-time implementation of learming and novelty detec-
tion.

The response Block 440 can respond to outputs of the
novelty detection engine 130, 1n some embodiments of the
invention. Some embodiments of the invention can provide
a real-time response. In particular, while the execution time
of an action called for by a control function may not be
reduced beyond that dictated by physical limits (e.g., mil-
liseconds to inject fuel into the intake manifold of an
automobile engine or hours to deliver spare parts from a
warchouse to a maintenance location), the time taken to
compute actions based on sensor inputs may be a function of
the computational speed of the controller. Accordingly,
real-time 1n this context can mean fast enough to keep up
with the physical system, which might be quite slow 1n a
chemical factory, but much faster 1n electronic fuel injection.
Alternatively, 1n a real-time control application where the
observed states might be used for real-time adaptive control
(e.g., parametric adjustments for altitude and such), the
real tlme computation should be fast enough to keep up with
the parametric correction, which might be much slower than
the actual feedback control loop update interval itself.
Finally, for corrective action to diagnostics and prognostics
indicators, the alert to all stake holders (operator, mainte-
nance, spare parts, engineering, R&D), etc.) may be 1n near
real-time and near simultaneous, but the time required for
execution may be orders of magnitude higher. For example,
a real-time alert may be 1ssued to make a part available at a
specific location to repair an aircrait engine after landing.
However, actually transporting the part will take time. The
triggering action, however, may take place in real-time.

By recognizing potential performance degradation and
associated trends in real-time, a control system according to
some embodiments of the invention, be 1t a logistics support
function or an internal combustion engine, can drive cor-
rective response almost immediately. Appropriate correction
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can thus be accomplished 1n near real-time 1n some embodi-
ments of the invention, and can be compared with classical
techniques where data downloads and ofl-line data process-

ing may need to be performed belfore corrective action can
be taken.

Continuing with the description of FIG. 4, the novelty
detection engine 130 builds (i1.e., learns) a normal (i.e.,
performance-as-intended) state-space baseline that can serve
as a relference for recognition of novel (i.e., previously
unobserved) system states. Moreover, subsequent 1nterpre-
tation (Block 460) of these new states may be provide
indicators of either impeding failure or parametric shifts due
to aging and/or external factors for which human attention
and/or parametric updates may be desired. Data presentation
Block 450 may be used to format the data in a manner that
can be used by the novelty detection engine 130.

FIG. 5 15 a flowchart of operations that may be performed
by a novelty detection Block 130 of FIGS. 1 and/or 4,
according to various embodiments of the present invention.
As shown 1 FIG. 5, an 1mitial system state 1s observed at
Block 510 to mitiate learning and building of the first
associative memory 140. Two phases of state learning may
be defined: training and in-use operation. An associative
memory 140 of normal behavior 1s built during a training,
(1.e., test and validation) period during which the system
learns what 1s normal for that particular system and envi-
ronment with independent verification of normal perfor-
mance. Memory building and learning may also continue to
occur during in-use operation.

It 1s assumed that the system 110 1s operating normally
during training as verified through independent observation
(e.g., user assessment and/or independent performance test-
ing). The length of the traimning phase may depend on the
dynamics of the system 110 under consideration, and may be
comparable to the testing that an automobile engine might
undergo 1n an assembly plant prior to being released for sale.
While the system 110 1s training it will generally encounter
many novel states. The learning phase may continue sufli-
ciently long to learn almost all normal behaviors. IT a system
tailure occurs during learning, the process may need to be
restarted for validity.

During 1n-use operations, novelty 1s assessed (as
described earlier) depending on how “close” the currently
observed observation 1s from normal learned behavior. A
state 1s determined to be new 1f 1t 1s sufliciently “far away”
from the design-intended performance envelope accumulat-
ing 1n associative memory. Again, not all novel states
encountered during use are non-normal and associated with
fallure modes. When a novel state 1s detected, 1t 1s first
interpreted. Based on an accumulated history of experienced
system-specific failures accumulated during operation, the
novel states are characterized as eirther (1) normal behavior
(1.e., no history of associated failure) or performance shiits
due external influences that, while not normal, stabilize or
return to normal; (2) non-normal behavior (based on previ-
ously experienced failure histories) for which parametric
updates and/or corrective action may be desired; or (3)
possible states of performance degradation that may nor may
not lead to failure. Interpretation may be accomplished by
the failure mode learning Block 150 and may be aided by the
interpretation of human experts as was already described.

The granularity of the filter for acceptable novel states
may be set by a human analyst and/or automatically depend-
ing on, for example, the nature and application of the
physical system, and/or the cost of not recognizing non-
normal behaviors that lead to system {failure. In other
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embodiments, the granularity of the filter may be adaptively
set by a human analyst and/or by a data processing system.

Referring to the flowchart of the novelty detection Block
130 shown 1n FIG. 5, an 1nitial state of the physical system
1s observed at Block 510. Since no states have been previ-
ously observed, this state 1s a novel state and becomes the
first state 1n associative memory 140 at Block 520. A second
observation 1s made and checked for novelty at Block 530.
If this state 1s 1dentical to the previous state (1.e., not novel)
at Block 540, then the associative memory 1s reinforced (i.e.,
the “counts™ of co-occurring attributes are increased). It the
state 1s novel at Block 540, then 1t 1s determined at Block
550 whether the novelty detection engine 1s operating 1in
training mode or 1s 1n operational use. I the novelty detec-
tion engine 1s in traimning mode at Block 550, the observed
novel state 1s added to the memory to build the normal
performance envelope. IT the system 1s 1n use at Block 550,
the observed novel state 1s determined to be normal or
non-normal at Block 560 based on a previously developed
rule set described earlier. IT the state can be i1dentified at
Block 560 as normal, then the associative memory 1s rein-
forced. If the state 1s not normal according to the previously
developed rule set, or if 1t 1s indeterminate, the state is
passed to the diagnostics/prognostics engine at Block 570
for further analysis.

FIG. 6 1s a flowchart of operations that may be performed
by failure mode learning Block 150 and/or intervention
learning Block 170, according to various embodiments of
the present invention. The failure mode learning/interven-
tion learning Blocks 150/170 may also be referred to col-
lectively as a diagnostics/prognostics engine 570. In general,
when non-normal or indeterminate states are observed, the
novelty detection Block 130 passes information about the
novel state to the diagnostics/prognostics engine 570 that
can provide alerts to system operators who are dependent on
timely awareness ol current or anticipated problems, and
associated needs for maintenance, network reconfiguration,
and/or mission modifications. Information about the
observed state may also be passed to the intervention
learning Block 170 for turther analysis. The intervention
learning Block 170 can assist an analyst (or operator) in
determining whether this 1s a common failure mode or one
which has never been seen before-and what kind of response
1s appropriate. While failure mode analysis and the 1denti-
fication of underlying causes 1s often as much an art as a
science, some embodiments of the invention can aid analysts
by pattern completing currently observed symptoms to
related failure and failure correction history for similar
systems and environmental contexts.

Previously experienced {failure states and contextual
attributes may be contained in a library of failure modes and
tailure trajectories that can then be associated 1n a second
associative memory 160 with information such as likelihood
of associated failure, mean-time-to-failure, and corrective
measures (as appropriate). As the history of failures 1s
accumulated 1n the second associative memory 160, 1t 1s
possible to correlate observed performance problems to
previously captured failure mechanisms and their resolution
as the basis for near-real-time likelihood estimation of root
cause and/or recommendation for corrective actions.

In the event that the failure mode 1s known, appropriate
corrective response can be taken. Corrective actions, mean
times-to-failure, and appropriate responses can be included
in the third associative memory 180, so that appropriate and
previously successtul remedial actions can be recom-
mended, when similar states are observed in the future.
Moreover, 1n the event that the observed non-normal state 1s
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not a known failure mode, or 1s not on a known trajectory to
tallure, then the operator may need to decide how to
respond. The most likely choice may be to continue to
observe the system, to assess the subsequent behavior until
a decision can be made about possible corrective action.

Referring specifically to the flowchart of the diagnostics/
prognostics engine in FIG. 6, an observed novel state 132
that 1s etther not normal or indeterminate 1s passed to the
diagnostics/prognostics engine 370 for further review and
assessment. The state 1s first recorded at Block 610 in the
second associative memory 160 of previously observed
non-normal and indeterminate states along with any time-
stamped attributes of previously observed failure trajecto-
ries. The second associative memory 160 i1s queried to
determine whether the state 1s associated with a known
faillure mode at Block 620. If the state does not match a
known failure mode, then additional states may be observed
to better understand the system dynamics. I the state
matches a known failure mode, then the third associative
memory 180, that may also contain past responses, out-
comes and/or analyst notes, may be queried for information
such as estimated time-to-failure, number of previously
observed similar states, operating context, previous
responses, and/or outcomes, at Block 630. Depending on the
results of the query, real-time alerts may be provided to the
operators and response recommendations at Block 640. The
real-time alerts of Block 640 may correspond to the potential
response 172 of FIG. 1. At Block 650, response and/or
correction action, which may correspond to the dashed
arrow 174 of FI1G. 1, also may be provided.

FIG. 7 1s a block diagram of systems, methods and/or
computer program products according to other embodiments
of the present invention, and 1illustrates additional detail of
the functional processing by the first, second and third layers
191-193 of FIG. 1. Thus, mn FIG. 7, the systems, methods
and/or computer program products 700 include a first layer
191 for state space learning 130, a second layer 192 for
fallure mode learning 150, and a third layer 193 for inter-
vention learning 170. From a functional standpoint, each of
the layers 191-193 can provide
observe—learn—1interpret—respond functionality at the
given layer, to provide what may be referred to as a
“Learn-and-Respond Loop” 740. Thus, to implement real-
time prognostics/diagnostics capability for both dynamic
and static systems, the Learn-and-Respond Loop 740 may
be embedded within a set of nested tasks. “Layered” learn-
ing describes the paradigm in which learning occurs at
different levels 1n a prognostics/diagnostics system, accord-
ing to some embodiments of the present invention. The
layers 191-193 represent a hierarchy of tasks for prognos-
tics/diagnostics determination that transform inputs 1nto
outputs, or attributes into predictions, in the Learn-and-
Respond Loop 740. Further, this “layered” learning can
scamlessly integrate the learning tasks at each layer.
Embodiments of FIGS. 1 and 7 can provide three layers of
learning: pattern matching for state-space learning 130 to
determine novelty 132; failure mode learming 150 to deter-
mine failure trends 152; and intervention learning 170 to
recommend actions 172 to prevent failures. The elements of
and interactions among the learning layers, according to
some embodiments of the invention, are illustrated in FIG.
7 and will now be described 1n detail.

In some embodiments, the foundation of the layered
learning 1s a Learn-and-Respond Loop 740 by which the
design-specific performance envelope 1s determined, as was
described earlier. For the state space learning 130, ongoing
monitoring and state tracking 1s performed at Block 710.
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The accumulated sensor 120 attribute (parameter) values
122 determine a state-space 1n first associative memory 140
against which new states are assessed at Block 712 to
determine novelty at Block 714. It the state 1s determined
not to be novel, the design-specified performance envelope
1s reinforced. For an in-use operational system, most states
are expected to fall within the design-specified performance
envelope which 1s assumed to represent normal behavior. If
the state 1s determined to be novel and normal, the normal
performance envelope 1s extended as appropriate at Block
716. For example, the observation represented by State 2 1n
FIG. 3B would be added to the envelope. It 1s novel but
clearly falls within the envelope. Thus, determination of
normality can depend on the localized behavior of the
system and can be assessed using a layered learning
approach for failure mode tracking that observes the patterns
in sequences ol novel and not-novel observed states to
determine whether a particular pattern can be correlated with
a previously observed failure mode. In the example above,
all observed states prior to and after are normal, so a rule
could be learned that patterns which isolated novel states
within a sequence of normal states should be interpreted as
normal.

During Failure Mode and Trend Learning 150, as 1llus-
trated in FIG. 7, ongoing monitoring and state tracking also
takes place at Block 720. The novel states 132 are passed to
another Learn-and-Respond Loop that learns possible fail-
ure trends by matching pattern sequences of novel states
with previously experienced failure modes at Block 722. An
assessment 1s made as to potential failure 152 at Block 724
and alerts may be provided at Block 726.

During Intervention Learning 170, also shown 1n FIG. 7,
the novel states (Block 730), learned failure modes, and
successiul mterventions (Block 732) are passed to another
Learn-and-Respond Loop that classifies failure states (Block
734) and recommends human and/or machine response
(Block 736). For example, interventions might include com-
puter-controlled adaptive parametric updates, or human
maintenance mterventions. During learning, correlations are
made between successiul iterventions and failure modes.
The output of the Learn-and-Respond Loop may be a
recommendation for an action (e.g., ordering a repair part)
or parameter adjustment (e.g., adaptive parameter adjust-
ment 1n an engine controller) that has the highest likelihood
of successiully returning the system to design-specified
behavior.

Embodiments of the invention may have application over
a range of physical systems 110 that can be distinguished 1n
practice by the “cycle time”, where cycle time refers broadly
to the elapsed time to close the loop between sampling by
sensors 120, transmission of sensor outputs 122, processing,
by the three layers 191-193, and response 172.

At one end of the spectrum, one can think of fast cycle
applications such as control systems for optimizing engine
performance. In the event of fast cycle times, learned
parameter adjustments can be made 1n real-time (e.g., on the
order of seconds or milliseconds) to keep the system oper-
ating within normal boundaries. If real-time fixes should be
made, control parameters can be tuned to performance
criteria 1n real-time and parametric changes can be mnitiated
and electronically downloaded within the cycle time of the
physical process.

At the other end of the spectrum one can think of
examples like repair parts logistics in which the cycle time
may be as long as hours or days, and the response time for
providing the remedial action (e.g., get a spare part) of
similar order. Mean-time-to-failure predictions determined
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from learned history of previous failures can trigger a
re-supply decision for spare and repair parts that can avoid
costly delays. Alerts can be provided in real-time to the
various support personnel such as maintenance and logistics,

as well as command and control personnel 1n charge of 5

system operations.

Embodiments of the mnvention described herein may also
have significant application over a range of physical systems
that can be distinguished 1n practice by the whether they are
dynamic or static, and the degree of computer control, as
described, for example, in the following four categories:
static (and quasi-static) systems, dynamic systems, com-
puter-controlled closed loop systems and multiple complex
systems. Hach of these categories of systems will now be
described generally.

Static and quasi-static systems, 1n contrast to dynamic
systems, do not have interrelated moveable parts whose
behavior aflects the operation of other system parts. None-
theless, the behavior of these static systems can be learned
during operational use and failures can be predicted. An
example of the behavior of a static system might be the
fluctuations of gas pressure or o1l pressure 1 a system.
Quasi-static systems might include drive shaits in automo-
biles. Driveshaft failures can be attributed to one or a
combination of factors. These factors can include mainte-
nance, driver abuse, external damage, improper installation,
poor driveline geometry, and the quality and strength of the
components. Indicators such as increased vibrations and
ogrinding can be monitored to predict a future failure state.

A dynamic system refers to a system whose parts are
interrelated 1n such a way that a change in one part neces-
sarily aflects other parts of the system. Dynamic systems can
be well described through the state space framework.
Dynamic systems represent rapidly changing operational
variables, possibly including transient phenomena. While
dynamic systems, including transient behavior, can theoret-
cally be modeled with appropnate sets of state equations, 1n
highly complex nonlinear systems such modeling may
require a reductionist approach. For such highly complex
systems, some embodiments of the present invention may
provide an alternative based on a learn-and-respond
approach to system diagnostics and prognostics.

Computer-controlled closed-loop systems have the ability
to make observations about their current state, including the
environmental context, and to control some aspects of their
behavior with the goal of achieving some “good” or optimal
level of performance. Control 1s achieved by feedback
within the system, 1.e., by measuring the degree to which
actual system response conforms to desired system response
and utilizing the difference to drive the system into con-
formance. In response to environmental changes and/or
aging, such control systems may require an adaptive feature.
Some embodiments of the mvention may be applied for
parametric adaptation in computer-controlled closed-loop
systems 1n response to changes 1n environment and/or aging.

Finally, 1n addition to observing the performance of a
single system, some embodiments of the imnvention are able
to simultaneously analyze the performance of multiple sys-
tems. One example might be a fleet of aircraft or automo-
biles with common parts and components where information
about the behavior of the same part across multiple systems
can enhance the failure prediction. This may be especially
critical when failure events are rare and traditional statistical
approaches for predicting failure may be unrehiable. In
addition, by including environmental attributes, it 1s possible
to 1dentily operating regimes that may hasten failure or
wear-and-tear. In the case of a tleet of aircraft, for example,
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it may be possible to predict more frequent failures for
aircrait flying under more stressiul operating conditions. In
doing so, the associative memory can assess associations
between normal operating regimes 1n particular contexts or
environments and, by extension, adjustments to mean-time-
to-failure predictions based on site-specific contexts. More-
over, large-scale patterns 1n the failure behavior of multiple
systems also may be assessed. For example, the failure
history captured 1n the associative memory of one physical
system can be used to help predict the failure potential of
another system in similar environments.

EXAMPL

(L]

The following Example shall be regarded as merely
illustrative and shall not be construed as limiting the inven-
tion. It 1s intentionally simple for didactic purposes. An
embodiment of the present mvention i1s described in the
context of a real-time diagnostic applied to a Direct Current
(DC) motor and fan as shown in FIG. 8A. The system
includes a simple fan, which draws current from a battery-
powered direct current motor. Four independent variables
are sensored at regular intervals: temperature (T), speed (S),
battery voltage (V) and battery current (I,). As 15 well
known, the governing equation for steady state DC opera-
tion relating armature current 1, to speed S 1s I =A+BS,
which defines an offset negative ramp function where the
oflset coellicient A represents the stall current and the slope
parameter B represents the negative slope of the I (S) curve,
as shown in FIG. 8B.

Referring now to FIG. 9, ten “bands” were created for
cach attribute to yield a total of 10,000 possible states of
behavior. The system was calibrated so that between one and
three of the ten bands for each attribute can be expected to
cover the normal design-intended performance envelope, as
shown 1 FIG. 9. An additional two of the 10 bins represent
normal behavior at the “fringe”. The remaining four to six
bins represent non-normal operations. These guidelines
were mtended only to assure that the processing system can
accommodate the full range of experimental data. The
guidelines were not mtended to pre-define or limit novel or
normal behavior. It will also be understood that any other
banding/fuzzification scheme may be used. Sensored data
from the fan may be assessed by a novelty detection engine
as described herein. During training, the system rapidly
converges on a normal performance envelope over the
design-intended range of fan speed and associated torque
loads. During operation under stable conditions, the system
can be expected to perform as intended, wherein observed
states fall within the normal performance envelope. Devia-
tions from the normal performance envelope can be mnduced
for demonstration purposes, for example by increasing oper-
ating temperature, increasing bearing-related loss torque or
introducing a partial short shunt current added to the battery
current. When the stress to the system 1s relieved, operations
quickly return to normal.

Referring again to FIG. 8A, 1t will be understood that a
demonstration that can be modeled was used for verification
and didactic purposes. Embodiments of the invention need
not use mathematical models. During the learming phase the
observed I, (S) points will scatter narrowly (within instru-
mentation variability) along the shown ramp function of
FIG. 8B representing the normal state space. It for example,
a shunt (fault) current I, (S) 1s imntroduced, the I, (S) points
will fall above the ramp indicating novelty and a potential
degradation as shown by non-contiguous scatter above the
normal state space.
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FIG. 10 1s a block/flow diagram representing generic
hardware and software structure and interfaces for the
Example. This structure provides a high-level guide to
implementing some embodiments of the invention in a
physical system. The structure of FIG. 10 includes hardware
1010 for sensing and data acquisition; software 1020 for
pre-processing and attribute development; and associative
memory, such as Saflron Technology 1030 for associative
memory-based learning and decision support. The hardware
1010 can include sensing and data acquisition technology
1012 for the physical system, off-the-shelf components that
perform the analog-to-digital conversion 1014 of the sen-
sored data so that 1t can be interpreted by a personal
computer (PC), and a PC interface 1016 that moves the data
into the PC so that 1t can be manipulated by the Sailron
Technology 1030. Once the data has been loaded 1nto the PC
as a data file 1022, 1t can be pre-processed 1024 as was
described earlier. This may entail transforming or filtering
the data so that 1s may be nterpreted by the associative
memory 1030. As part of pre-processing, data may be placed
in “bins” and/or fuzzy sets at Block 1024, as was described
carlier. These bins can define a system-specific associative
memory 1026, including contextual data, which 1s ready for
training and 1n-use operation. Finally, novelty detection and
decision support functions operate to provide decision sup-
port to the analysts and operators. Normal states are learned
during training at Block 1032. Novel states that cannot be
identified as normal during use at Block 1034 are passed to
the diagnostics/prognostics engine at Block 1036.

Novelty detection according to exemplary embodiments
of the invention can offer an approach to prognostics which
can 1dentity previously unobserved or novel system states,
distinguish between normal and non-normal modes of
operation and/or provide alerts and recommendations for
remedial action, as appropriate. Current initiatives in prog-
nostics may assume that known baseline profiles or failure
modes are available as the basis for ongoing 1n-use com-
parison. They may focus on look-up tables, and use batch
downloads from the physical system to analyze system
behavior. In contrast, some embodiments of the invention
can use learning and novelty detection in real-time, a learned
baseline represented by a design-intended normal perior-
mance envelope. While 1n-use, novelty detection can com-
pare observed system behavior with the normal performance
envelope. Also, the associative memory can be expandable.
Information about new behavior can be added dynamically
while the physical system i1s in-use, which can make the
novelty detection smarter as time goes by.

Moreover, in some embodiments, novelty detection 1s
implemented by the Learn-and-Respond Loop using an
associative memory technology for fast state learning, While
a number of technologies can be considered to “learn”,
including neural nets, these approaches to machine learning
may suiler from computational burdens and/or modeling
difficulties that may result from the need to analyze very
large data sets 1n real-time. These potential deficiencies may
limit their extensibility to real-time, prognostics and inter-
vention applications. Associative memory technology is able
to surmount these barriers through a compression technol-
ogy, which enables learning 1n a compressed state. Associa-
tive memory technology 1s not only able to meet real-time
speed requirements, but also can provide a transparent view
of the associations between variables used for prognostics
interpretation and failure learning. Further, because the
technology 1s able to “learn” incrementally as information 1s
encountered, i1t 1s possible to recognize temporal shifts 1n
system performance and health.
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Since learning occurs in real-time, 1n some embodiments,
monitoring of (and, 1f possible, automated corrections to)
performance degradation can be handled in-step with the
cycle time of the process. In the case of slow-cycle appli-
cations such as logistics support with time constants on the
order of minutes or hours, anticipation of failure may enable
systems operators to provision spare parts where and when
needed. In the case of fast cycle applications such as engine
management with cycle times in the order of microseconds,
real-time fault mode tracking may enable an overlay of
adaptive tuning of control parameters and/or timely down-
loads of parametric changes. Further, as a history of failures
1s accumulated, some embodiments of the invention can, in
real-time, correlate observed performance problems to pre-
viously captured failure mechamisms and their resolution as
the basis for near-real-time likelithood estimation of root
cause and/or recommendation for corrective actions.

Novelty detection according to some embodiments of the
invention can be based on learned behavior for a specific
physical system. Thus, 1t 1s possible to monitor and assess
the unique behavior of that system without relying on
average behaviors. Reliance on average behaviors can make
it diflicult, for example, to recognize and anticipate normal
aging since aging patterns may be biased by history of
individual use and may not be easily extrapolated. Consider
a fleet of vehicles. A particular automobile may exhibit a
particular aging profile that does not {it the expected model
because the owner consistently rode the clutch. On the other
hand, shared knowledge about behaviors across an entire
fleet can provide usetful information at the vehicle level. For
example, 1t 1s not always possible able to assess whether a
novel state for a particular vehicle 1s a potential failure
mode. However, 1t that novel state has been associated with
fallure on a similar vehicle in similar operating environ-
ments, this information can be passed to an analyst for
consideration.

Typically, 1n single or multi-sensor systems, individual
sensor values are tracked to assure that they stay within
pre-determined limits. In complex systems, however, sys-
tem-level malfunctioning may occur even if all individual
sensor outputs are within limits. This point 1s illustrated 1n
FIG. 11. The values for Sensor 1 and Sensor 2 are both
within normal limits. However, using associative memory,
some embodiments of the invention can recognize that the
co-occurrence of sensor values that are “normal” when
considered 1n 1solation has been associated with system
failure 1n the past. Note that no impending failure would be
indicated i1f the sensors were being tracked individually
since each 1s within normal limits.

Using the notion of layered learning, the prognostics/
diagnostics process may be organized into a hierarchy of
three tasks that utilizes associative memory technology to
perform learning tasks. Three layers may be used: pattern
matching for state-space learning to determine novelty
(layer 191); failure mode learning to identity failure modes
and predict trends (layer 192); and intervention learning to
recommend actions to prevent failures (layer 193). Further,
this layered learning can seamlessly integrate the learning
tasks at each layer, and can allow the prognostics/diagnos-
tics process embodied herein to operate 1n a semi-autono-
mous mode and support operators of complex physical
systems who may be tasked with assuring continuous opera-
tion of these systems with design-intended parameters.

Accordingly, exemplary embodiments of the invention
can ofler an mmnovative approach to diagnostics for large,
complex systems with significant practical benefits. Cost
savings, performance improvements, more reliable product
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performance and/or less system downtime may be provided.
In addition, better predictions of system-specific impending
failure can lead to lower maintenance and operational costs,
plus extended product lifecycles. These benefits may be
attributed to the ability of some embodiments of the inven-
tion to provide earlier warning of failure, adaptive monitor-
ing and/or fewer prediction failures as a result of the
simultaneous monitoring of not only a small subset of
variables related to a subsystem, but rather a large number
(hundreds or thousands) of varniables including contextual
attributes that reflect the environment of use.

In the drawings and specification, there have been dis-
closed embodiments of the invention and, although specific
terms are emploved, they are used in a generic and descrip-
tive sense only and not for purposes of limitation, the scope
of the mvention being set forth 1n the following claims.

What 1s claimed 1s:

1. A diagnostic/prognostic system for a physical system
comprising;

a plurality of sensors that are configured to repeatedly
monitor variables of the physical system during opera-
tion;

a first associative memory;

a novelty detection system that 1s responsive to the
plurality of sensors and that 1s configured to repeatedly
observe into the first associative memory, states of
associations among the variables that are repeatedly
monitored during a learming phase, that i1s further
configured to thereafter imagine at least one state of
associations among the varnables that are monitored
relative to the states of associations that are observed 1n
the first associative memory, to 1dentify a novel state of
associations among the variables, and that 1s further
configured to determine whether the novel state is
indicative of normal operation or of a potential abnor-
mal operation;

a second associative memory that includes therein asso-
ciations of attributes of failure modes of the physical
system; and

a failure mode learning system that 1s responsive to the
novelty detection system and to the second associative
memory and that 1s configured to 1imagine attributes of
the novel state relative to the associations of attributes
of failure modes of the physical system to i1dentily
and/or predict a potential failure mode of the physical
system.

2. A diagnostic/prognostic system according to claim 1

wherein the failure mode learning system comprises:

a failure mode 1dentification and diagnostics system; and

a trend learning and prognostics system.

3. A diagnostic/prognostic system according to claim 1
turther comprising:

a third associative memory that includes therein associa-
tions of attributes of corrective actions and/or responses
to failure modes of the physical system; and

an intervention learning system that 1s responsive to the
failure mode learning system and to the third associa-
tive memory and that i1s configured to 1magine
attributes of the potential failure mode relative to the
responses 1n the third associative memory to identify a
potential corrective action and/or response to the poten-
tial failure mode.

4. A diagnostic/prognostic system according to claim 1
wherein the novelty detection system 1s further configured to
observe the novel state that 1s indicative of normal operation
into the first associative memory.
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5. A diagnostic/prognostic system according to claim 1
wherein the novelty detection system 1s further configured to
assign the variable values that are repeatedly monitored to
bins, and wherein the novelty detection system 1s configured
to repeatedly observe by repeatedly observing into the first

associative memory, states of associations among the binned
values during the learning phase.

6. A diagnostic/prognostic system according to claim 1
wherein the failure mode learning system 1s further config-
ured to 1dentily a new failure mode for the physical system.

7. A diagnostic/prognostic system according to claim 1
wherein the failure mode learning system 1s further config-
ured to provide trend learning for prognostics.

8. A diagnostic/prognostic system according to claim 3
wherein the intervention learning system 1s further config-
ured to apply the potential response to the physical system
in real-time.

9. A diagnostic/prognostic system according to claim 3
wherein the novelty detection system, the failure mode
learning system, the intervention learning system and the
first, second and third associative memories operate on the
physical system 1n real-time.

10. A computer program product, the computer program
product comprising computer program code embodied 1n a
computer-readable medium, the computer program code
configured to provide the first associative memory, the
second associative memory, the novelty detection system
and/or the failure mode learning system of claim 1.

11. A diagnostic/prognostic method of a physical system
the includes a plurality of sensors that are configured to
repeatedly monitor variables of the physical system during
operation, the diagnostic/prognostic method comprising:

repeatedly observing into a {first associative memory,
states of associations among the variables that are
repeatedly monitored, during learning phase;

imagiming at least one state of associations among the
variables that are monitored relative to the states of
associations that are observed in the first associative
memory to 1dentily a novel state of associations among
the variables;

determining whether the novel state 1s indicative of nor-
mal operation or of a potential abnormal operation; and

imagimng attributes of the novel state relative to associa-
tions of attributes of failure modes of the physical
system 1 a second associative memory to identily

and/or predict a potential failure mode for the physical
system.

12. A diagnostic/prognostic method according to claim 11
further comprising;:

imagining attributes of the potential failure relative to
associations of attributes of responses to failure modes
of the physical system 1n a third associative memory to
identify a potential corrective action and/or response to
the potential failure mode.

13. A diagnostic/prognostic method according to claim 11
wherein 1imagining attributes of the novel state relative to
associations of attributes of failure modes of the physical
system comprises determining failure trends and predictions
relative to associations of time-based attributes of failure
modes of the physical system.

14. A diagnostic/prognostic method according to claim 11
further comprising:

observing the novel state that i1s indicative of normal
operation 1nto the first associative memory.
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15. A diagnostic/prognostic method according to claim 12 17. A computer program product, the computer program
turther comprising: product comprising computer program code embodied 1n a
applying the potential response to the physical system in computer-readable medium, the computer program code
real-time. configured to perform the method of claim 11.

16. A diagnostic/prognostic method according to claim 12 5
wherein 1dentifying a potential response to the future failure
potential 1s performed on the physical system 1n real-time. S I



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,333,917 B2 Page 1 of 1
APPLICATION NO. : 11/463448

DATED : February 19, 2008

INVENTOR(S) . (reis et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 24, Claim 11, Line 31: Please correct “the includes”™
To read -- that includes--

Signed and Sealed this

First Day of July, 2008

hguo-

JON W. DUDAS
Director of the United States Patent and Trademark Office




	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

