US007325178B2
a2 United States Patent (10) Patent No.: US 7,325,178 B2
Damodaran et al. 45) Date of Patent: Jan. 29, 2008
(54) PROGRAMMABLE BUILT IN SELF TEST OF 5,157,664 A * 10/1992 Waiteoevvnvnvvinennnn... 714/710
MEMORY 5,640,509 A * 6/1997 Balmer et al. 714/42
6,321,320 B1* 11/2001 Fleischman et al. 711/217
(75) Inventors: Raguram Damodaran, Plano, TX 6,560,740 B1* 5/2003 Zuraski et al. 714/733
(US); Timothy D. Anderson, Dallas, 6,622,269 B1* 9/2003 Nego et al. .ooveveeeen.... 714/718
IX (US); Sanjive Agarwala, 6,769,081 BL* 7/2004 Parulkar 714/733
Richardson, TX (US); Joel J. Graber, 2002/0108073 AL* 82002 HUZNES vervvevvererrrereerenn. 714/7
Richardson, TX (US) 2002/0194545 A1* 12/2002 ADBDOLt veeverveeeeeeeenn... 714/42
(73) Assignee: Texas Instruments Incorporated. 2003/0084389 Af: 5/2003 Kottapalli et al. ... 714/733
Dallas, TX (US) 2004/0025095 Al* 2/2004 Nemani et al. 714/710
" 2004/0103355 Al* 5/2004 Correale et al. 714/733
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 222 days.
(21) Appl. No.: 11/003,206 © cited by examuner
_ Primary Examiner—Cynthia Brtt
(22) Filed: Dec. 3, 2004 (74) Attorney, Agent, or Firm—Robert D. Marshall, Jr.; W.
J Brady; Frederick J. Telecky, Jr.
(65) Prior Publication Data TS DAy, TIEHEHE SR A
US 2005/0172180 A1 Aug. 4, 2005 (57) ABSTRACT

Related U.S. Application Data

(60) Provisional application No. 60/527,310, filed on Dec.
5, 2003.

The pBIST solution to memory testing 1s a balanced hard-
ware-soltware orniented solution. pBIST hardware provides
access to all memories and other such logic (e.g. register
files) 1n pipelined logic allowing back-to-back accesses. The
approach then gives the user access to this logic through

(51) Int. CL

gﬁg 273(;30 888283 CPU-like logic 1n which the programmer can code any

579 US. Cl | 714/718: 365/201 algorithm to target any memory testing technique required.
S.CLo ; ccause hardware inside the chip is used at-speed. the fu
(). : . B hard inside the chip 1 d at-speed, the full

(58) Field of Classification Search 714/718 device speed capabilities are available. CPU-like hardware

See application file for complete search history. can be programmed and algorithms can be developed and

(56) References Cited executed after tape-out and while testing on devices 1n chip

form 1s 1n process.
U.S. PATENT DOCUMENTS

4,313,200 A * 1/1982 Nishmra 714/736 S Claims, 10 Drawing Sheets
468
460~ £ PROGRAMMING CPU IF

443 413 LOGIC 407
\ REGISTER FILE / INTERFACE TESTER F
PROGRAM PROGRAM MICROCODE (CONFIGURATION | 45
COUNTERA | | INCREMENT BRANCH COUNTER B PROGRAM CONTROL REGISTERS) ROM IF

. 230 t 469 404

s o
464 STATUS 420
BRANCH 465
TAKER 4661 INSTRUCTION REGISTER \ t
|
|
423
\
SOURCE SOURCE SOURCE
MUX MUX
421 422 M
Y | | J
il M-UNIT FUNIT A-UNIT C-UNIT
SCRAMBLER | -461| OPERATIONS [™-451 OPERATIONS | | OPERATIONS | | oPERATIONS

MEMORY 455:| 452 4567 453 457 454

7| [apoRess DATA
ACCESS
308 | | REGISTER [M409| REGISTER | "Nt 414

310 309 311
TO RAM UNDER TEST

U.S. Patent Jan. 29, 2008 Sheet 1 of 10 US 7,325,178 B2

101 BIST CONTROLLER 10
STATE MACHINE |==="y MULTIPLE

(HARDWIRED LOGIC) RAMS

UNDER

102 I TEST
103

113
C—— BIST DATA LOGGER K==

112 111
I FIG. 1

114 EXPECTED RESULTS (PRIOR ART)

205 201 203
206 210
TESTER IF pBIST — } DATA
EXTERNAL [N—] CONTROLLER |—— | [CODE
204 | PROGRAMMING o
ROM IF LOGIC t
INTERFACE DATAPATH
(PL}) BIST DATA
CPU IF == <l—— P occer | [G—— DATA
207 213 t 719 211
FIG. 2 EXPECTED

RESULTS 214

US 7,325,178 B2

/€€
-
=
&
S
S
Q
= Ve¢ OI4
=
0€

U.S. Patent

g€ Old OL

02€ GIE
mm%%.wm_m SIINf HOSS3I0Hd
H3ITI0HINO) 1SI19d

vV.ivd

Go¢
NI0T
HONVHE ANV 10HLNOD
XA SHILINNOD AVYdD04d
NVHDOH 3009-04H2IN
NNH/ANOA
SNLVLS

0tt

S53JJV
AJONZIN

1901
30V4441N|
WYHD04d

90¢

viva avid
V1vVd 3LHM
1531
S514Aav HIANN
AVH 01

13313S
TOHINQD

41 4341531

K ——— > JOV4HILINI NdD

0%

v0E

11 WOY

H31T041INOD 1S14d

US 7,325,178 B2

g¢ DIA
L0¢
41 N9 <=—" SHIISIDIY QIddVYIN-AHOWIN ¢0¢
Ove gee Jct 439907 VLva 1Sigd
£ee 27 Y4
- 1N0907 1NOHOT VYIS $S3HAav 1N0 SS3Haav _
m - V1VQ - XA Q1€
INNOI
ot
5 v OV ““ LINN NFEag VY NO¥ V1Y TYNLOY
= SALVYLS NMY —————— — FHVYdINQD | 439907 VLY
g 0EE ANOd 2o | ANVASVIA ——— NV NOH4 Y1va 03193d)X3
SYILSIHIY AVH OL
S1Nd1No SNLVLS TIv4 SS34aqav
= SN1VLS MSYIA
& -
Q LINN LNdLNC ZAS
=
S
NNH/ANOQ
A%

/|||I||I||.|ﬂ\|l|i\
Ve 9I4 INOHS

U.S. Patent

1541 HAANMN VY 01
34— ———————\

L LE 60t OIE

vy DIA
vly LINN Y3153 | 601 43151934 208

SS1JIV v1iva SS3HAQY
A% /Gy €6V 96y ¢GY GGY AHOW3IIN

US 7,325,178 B2

SNOLLVH3O | | SNOLLYY3dO | [SNOLVEIdO | | 1Gp~] SNOWEIdO | 19p~ [FLETTYES waEa P
1INN-9 LINN-Y 1INN-! LIND-IN 043z
LINN-WN
= | B _— o 1 cor
= XNIA
-t JOHNOS
E
= azy |[OvY | sep vy _ A
v o
= 09¢
Q 0GY H31S1934 NOILONYLSNI NIy
A GOt |
M SYILSI1HIY Y1IVa . . . HINV4d
z Ocy ec . XNIA 300940
oy —
41 WOH (SHLS[DIH TOHLNOD WYHD0Hd d HIINNOD HONVHE LNJWIHINI V H3INNOD
0V | \olvENOENGD) 3000040IN NVHI0Hd NYH90Hd
3714 431S193Y
41 431531 JOV4HILNI NOLLANYLSNI
L0V 907 ey Chv
41 NdH ONINNYHDOHd P 00t

89v

U.S. Patent

US 7,325,178 B2

4

LE |

S DIA
wo/m.. w\om Wum
_ _A LINN-§ e V01 ILVIAINN —————————————>le——— | INN-IN
m 6 3 | g y S
vk Haay JHS V1Va Haav IHS A
. SR
m 0 G 9 8 | 6 9| L1 02 12 b2 |62
= _Al:z: §— »le—— |INN- o\v_ﬂ|:z:-q v_AI:_,_: | — >l LINN-I
g\
w., A
Ilm ses[o[a[ows [a[2]
\ 51 |91 02| 12 vZ |52 82 62
GOS P0G €05 ¢0§ 106

U.S. Patent

4

LE |

1dAL GVO]

1VHANAD

U.S. Patent Jan. 29, 2008 Sheet 6 of 10 US 7,325,178 B2

31 25
610~ NOP| O 0 0O O O O o©
31 25

611\HALT| 0 0 0 0 0 0 1 I
31 25 24 17 16 O
608~_ MVI-MOVEIMMEDIATE| O 0 0 0 O 1 0O | ADDRESS l DATA |
31 25
601 \-READI| AD-READ IGNORE A0| 0 0 0 1 - - 0 |

3

1 25
GOZ\HEADI A1-RETDIGNOREAT|l O O 0 1 - - 1

31 30 29 28 27 26 25
1

607~ MVS-MOVESHADOW | 0 0 1 L1 LO A1 AQ

31 30 29 28 27 26 25

-]

28 | 2726

H
O

=l=l=lele]=]=8
m —h O E -
— —_

31130

READ 16-BIT

WRITE
WRITE_TRANSPOSE

-
—

A A

o

“i

2
o
1| o
o
. N
R OOOE
WRITE B 110
WRITE_TRANSPOSE | 0 :
0jojo|D1bo
1|0 D1,D0
0 | 1 E E1 EO
FIG. 0 DEDEE

1,EQ
o[[mR
o[e

-

U.S. Patent

WRITE 311

DATA
TO RAM

READ 317
DATA
FROM

RAM

Jan. 29, 2008 Sheet 7 of 10

707~J ADDRESS
INPUTS

DATA 701
STIMULUS 318

DATA LOGGER PIPELINE

703

WRITE DATA DATA n(ST ADDRESS
REGISTER REGISTER CON"TROLLER REGISTER
(DATA TO RAM) FILE A FILE B
17 705 718 70 719
READ DATA DATA ADDRESS
REGISTER (DATA BUFFER /08 21 BUFFER
FROM RAM) REGISTER A REGISTER B
730 728
MASK AND VASK ADDRESS
719 COMPARE UNIT QUTPUT
(14 713
COMPARE
OUTPUT
21 OUTPUT UNIT 716
STATUS 237
FAIL STATUS OUTPUTS
REGISTERS : DONE/RUN
DONE l
————— — RUN
In oG ipek STATUS
. COUNT 339 330
L DATA o
ADDRESS SERIAL LOGOUT LOGOUT
333
726 338 341 340
MEMORY-MAPPED REGISTERS K———=—">CPU IF
307

FIG. 7

US 7,325,178 B2

U.S. Patent Jan. 29, 2008 Sheet 8 of 10 US 7,325,178 B2

308/310
CONTROL/SELECT
309
ADDRESS | . I ' I__" ' ""—_
WRITE DATA . S
ot v
RAM-0 RAM-1 © 00 RAM-N
208 800 801 898 899
318
1 888 1 889
DATA LOGGER —
PIPELINE
828
MASK COMPARE
814 UNIT 812
I
OUTPUT UNIT
STATUS
819 FAIL STATUS OUTPUTS 337
REGIS_TERS DONE/RUN
DONE .
RUN
CAIL STATUS
SHARED : 339 330
DATA | -
LOGGER SERIAL LOGOUT L 0GOUT
816 333
33 5% 340
307

FIG. 8

U.S. Patent Jan. 29, 2008 Sheet 9 of 10 US 7,325,178 B2

308/310
CONTROL/ \ e
SELECT 0o
|
ADDRESS —— ——
—— \ | | |
EXPECTED - — e ——————
DATA
311/;317 \ '
RAM-0 RAM-1 | o ofo RAM-N
900 901 999
031 939
011 014 918 919
COMPARE .. COMPARE
T R0T 7T]
YRR R B R N
PASS/FAIL 926
OUTPUT UNIT
STATUS
97 | FAIL STATUS OUTPUTS 337
. | REGISTERS DONE/RUN
| DONE .
e —|—+|RUN
DATA .= FLAG CAIL STATUS
LOGGER COUNT 330 330
ADDRESS [A22RESS ADDRESS SERIAL LOGOUT LOGOUT
916 333
33 34 340

FIG. 9 MEMORY-MAPPED REGISTERS K——=">CPU IF

307

U.S. Patent Jan. 29, 2008 Sheet 10 of 10 US 7,325,178 B2

LOOP PROCESS
NEW FAILS
w031
1002 1001 LOOP IGNORE
1014 PREVIOUS FAILS
YES 1032
SEARCH FOR
NEW FAILS 1010
1033
EXECUTE INSTRUCTION
IGNORE RETURN DATA
1003 EXECUTE INSTRUCTION
COMPARE RETURN DATA
1004 REACHED
1620 VES TS FAIL MASK
TIME?
CAPTURE FAIL
1005~ siGNaTURe | 1021
PROCESS
1006-"| FAILURE
10197 TES

SET/UPDATE
1007-"| TS FAIL/TASK m
FIG. 10

UsS 7,325,178 B2

1

PROGRAMMABLE BUILT IN SELF TEST OF
MEMORY

This application claims priority under 35 USC §119(e)(1)
of Provisional Application No. 60/527,310 (T1I-36126PS),
filed Dec. 5, 2003.

TECHNICAL FIELD OF THE INVENTION

The technical field of this 1mmvention 1s manufacture
memory testing.

BACKGROUND OF THE INVENTION

In conventional VLSI systems memory testing 1s done in
three essential steps. In the first step, hardwired logic
employs algorithms developed belore the device 1s commit-
ted to tape-out. These are often available through third-party
vendors, examples are memBIST, MSIST. Deciding on the
detailed make-up of hardwired logic 1s not feasible because
it 1s 1mpossible to predict the necessary mnformation derived
from process model during the process qualification win-
dow. In the second step, conventional memory testing
attempts to close testing gaps using central processing unit
(CPU) based approaches. These have a number of limita-
tions. The major limitation 1s that there may be memory
tfunctions largely 1naccessible via a CPU interface. Another
severe limitation 1s the mabaility to do back-to-back accesses
to all memories. The third step uses DMA external memory
accesses while the device 1s 1n wafer form. Such DMA
external memory accesses cannot be accomplished at full
processor speed. Thus a significant number of failures are
not observable.

FIG. 1 illustrates a conventional memory built-in-seli-test
(BIST) block diagram. The core functions are: (1) the BIST
controller state machine 101 made up of hard-wired logic;
and (2) the BIST data logger 102. The BIST controller 101
communicates with the BIST data logger 102 via bus 115
and supplies stimulus to multiple RAMs under test 103 via
multiple buses 110. BIST data logger 102 accumulates the
test results via multiple buses 111 and passes them to an
external interface via bus 113. BIST data logger 102 com-
pares expected results 114 recerved via bus 112 with return
read data from the multiple RAMs 103 received via bus 111.

Major difliculties with conventional BIST memory test
systems include:

1. Test algorithms must be hard wired into the BIST
controller state machine 101;

2. Multiple RAMS must be driven with stimulus and
results must be extracted from these multiple RAMSs requir-
ing complex interconnect paths;

3. Back-to-back memory access to all memories are not
feasible; and

4. Memories cannot be tested at speed while 1n wafer
form.

These and other problems with the prior art provide a need
for a new kind of memory testing.

SUMMARY OF THE INVENTION

The pBIST (programmable built-in-seli-test) memory
testing of this invention 1s a combined hardware and soft-
ware solution. pBIST hardware provides access to all memo-
ries and other such logic such as register files 1n pipelined
logic allowing back-to-back accesses. The pBIST technique
gives the user access to this logic through CPU-like logic.
The user can program the pBIST hardware to employ any

10

15

20

25

30

35

40

45

50

55

60

65

2

algorithm to target any memory in any memory testing
technique required. Because hardware inside the chip 1s used
at-speed, the full device speed capabilities are available.
CPU-like hardware can be programmed and algorithms can
be developed and executed after tape-out and while testing
on devices in chip form.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of this invention are 1llustrated 1n
the drawings, 1n which:

FIG. 1 1illustrates conventional BIST architecture for
memory testing (Prior Art);

FIG. 2 illustrates the pBIST architecture block diagram;

FIGS. 3A and 3B together illustrate the interconnection
diagram of the pBIST controller, pBIST data logger and
interface;

FIG. 4 illustrates a lower level diagram of the pBIST
microcontroller hardware;

FIG. 5 1llustrates the pBIST instruction types and opcode
fields for general and load type instructions;

FIG. 6 illustrates the opcode details for the M-unat;

FIG. 7 illustrates the basic data logger structure;

FIG. 8 illustrates the shared data logger structure;

FI1G. 9 illustrates the distributed data logger structure; and

FIG. 10 1llustrates the time stamp mode program flow
chart.

DETAILED DESCRIPTION OF PR
EMBODIMENTS

(L]
Y

ERRED

Programmable Built-In Self Test (pBIST) performs
memory self test using a coherent hardware-to-software
interface allowing hardware access to testing logic at-speed
with software controlling the detailed manner of testing.
Devices employing conventional testing techniques such as
memBIST and MBIST are committed to hardware solutions
without programmable capabilities for modifying algo-
rithms that are found ineflicient after tape-out. All revisions
of the chip must have a corrected test algorithm. CPU BIST
and software BIST memory testing also have number of
deficiencies. First, CPUs will not ordinarily have access to
all memories. Providing such an interface increases the
device cost. CPU functionality must be proved belore
memory testing can begin. The CPU BIST technique 1s slow
and costly to develop because an expert device designer with
thorough knowledge of the CPU must program the CPU to
perform the testing. The CPU may not have back-to-back
access capability to all memory-like logic. Water DMA or
external BIST techniques are 1/O speed limited and hence
very slow. Dynamic memory failures like pre-charge and
speed Tailures cannot be detected except at full device speed.
The pBIST solution of this invention addresses all of these
issues with considerably less logic than any competing
techniques.

pBIST renders unnecessary the need to identily and deal
with all memory failure 1ssues and algorithms before tape-
out. Using pBIST one can employ process qualifiers and
processing on other devices with the advantage of making
changes to testing techniques after tape-out when desired.
Because the CPU-like logic 1s powertul, all useful compre-
hended algorithms are within the pBIST capabilities.

During activation of only a small portion of the chip, only
the pBIST logic and the path to and from the memories,
needs to be functional to validate the memories. This obvi-
ates the need for veritying 1in advance that the full CPU 1s
functional. pBIST allows operation both from a program-

UsS 7,325,178 B2

3

ming logic interface as well as the from the CPU interface.
This permits maximum flexibility. pBIST has two logging
teatures: (a) Failure-only logging technique; and (b) Stream-
out capability. Both are invaluable for failure analysis.

FI1G. 2 illustrates the pBIST architecture. pBIST has two
main functional units. These are the pBIST controller 201
and the pBIST data-logger 202. The PBIST controller 201
includes programmable logic that functions as a limited
capability CPU and performs the memory stimulus. The
pBIST data logger 202 compares the results from RAM
datapath 203 with the expected results 214 from bus 212 an
passes the comparison results to the external programming
logic interface block 205 via bus 213. At the tester interface
206, the status of the memory testing as requested by the
programmer 1s available. The external interface block 205
provides a CPU core interface bus 207 for configuration of
the testing through the path provided by the CPU on the chip
under test giving further leverage to the configuration task.
A ROM 1nterface 204 provides additional testing tlexibility.
RAM datapath block 203 provides the test mterface to the
multiple embedded RAMs under test and this includes:

1. Driving data 210 and instructions from pBIST control-
ler 201. A single bus 210 allows stimulus to be broadcast to
all RAMs. A code signal 220 accompanying bus 210 signals
to the target RAM that it 1s receiving data.

2. Output data on bus 211 (results of the test) 1s sent to
pBIST data logger 202. The code signal 220 also identifies

the RAM providing the return data source.

The crucial requirement of the RAM datapath block 203
addressed by the pBIST approach i1s that 1ts presence does
not significantly degrade the memory performance in normal
use. Reducing the required bus complexity of busses 210
and 211 using the coding scheme of signal 220 1s a key to
reducing complexity.

FIG. 3 illustrates the interconnection of the pBIST con-
troller 301 and pBIST data logger 302. The pBIST archi-
tecture includes program interface logic 305 and a micro-
code program control 313. The program interface logic 305
includes configuration registers loaded through CPU inter-
tace bus 307. Expensive, powerful test machines are ren-
dered unnecessary for pBIST testing using a very low cost
tester interface 306. The microcode program control 313
stores all user-programming inputs entered via CPU inter-
tace bus 307. The microcode program control 313 provides
the memory access unit 314 with all new control and data
information to drive the embedded RAM under test. This
information includes control 308, address 309, select 310
and write data 311 for the up-coming clock cycle. The
pBIST microcode program control 313 also drives func-
tional processor units within the pBIST controller processor
units 3135.

The data registers unit 320 receives outputs from three of
the functional units within the pBIST controller processor
units 315: I-unit, A-unit, and C-unit. The I-unit, A-unit,
C-unit are thus provided with two operands, (a) current
operands from the microcode program control 313 and (b)
next state operands, from the data register unit 320. Simi-
larly the memory access unit 314 1s also provided with two
operands, (a) current operands from the microcode program
control 313 and (b) next state operands, from the data
register unit 320.

The program counters and branch logic 3635 draws special
emphasis to the role of the B-Unit 1n forming the istructions
at bus 366. Instructions 366 can proceed from a direct path
from microcode program control 313 or from a branch route

directed by the B-Unit.

10

15

20

25

30

35

40

45

50

55

60

65

4

The data register unit 320 holds all memory mapped
register data, which includes:

Address Registers:

(1) Constant Registers CAQ and CA1l. These are 16 bits
wide and may be modified only by 1nitialization and external
load operations. They cannot be incremented or decre-
mented. CA0 and CA1l are assigned memory-mapped
address 00A0 and 00A4 respectively in Table 5 below.

(2) Variable Registers A0 and Al. These are 16 bits wide
and they can be mnitialized, incremented or decremented and
cleared. A0 and Al are assigned memory-mapped address
0080 and 0084 respectively 1n Table 5 below.

(3) Loop Count Registers include constants: CLO and
CL1. These are 16 bits wide and may be modified only by
initialization and external load operations. They cannot be
incremented or decremented. CLO and CL1 are assigned

memory-mapped address 00A8 and 00AC respectively in
Table 5 below.

(4) Vanable Registers L0 and L1. These are 16 bits wide
and can be initialized, incremented or decremented and
cleared. L0 and L1 are assigned memory-mapped address

0088 and 008C respectively 1n Table 5 below.

Data Registers:

(5) Constants D1, D0, and E1, E0, each of which 1s 32 bits
wide and may be modified by mitialization, C-unit and
external load operations. They cannot be incremented or
decremented. D0 and D1 are assigned memory-mapped
address 0090 in Table 5 below. E0 and E1 are assigned
memory-mapped address 0094 1n Table 5 below.

(6) The increment registers including constants 10 and I1.
These registers are 16 bits wide and may be modified only
by 1nitialization and external load operations. They cannot
be mncremented or decremented. 10 and I1 are assigned
memory-mapped addresses 00B0 and 00B4 respectively in
Table 5 below.

The memory access unit 314 passes to the pBIST data
logger 302 the following:

(a) expected results information (write data 311), and

(b) address information (address 309) to the pBIST data
logger input registers pipeline 318. Actual results, read data
317 directly from the RAM under test also passes to data
logger pipeline 318 for comparison in mask and compare
umt 322. Compare results may be masked i the mask and
compare unit 322 using mask 324 before being passed to the
pBIST data logger output unit registers 326. Address infor-
mation 1s tracked in the data logger via signal 329. Mask
teatures include: (a) data width, (b) column fail, and (¢) time
stamp. Data Logger Outputs include: Done, Fail, and Run
status outputs 330 and Logout 333. The CPU IF 307
interfaces with the memory mapped registers 341. The data
logger output unit 326 includes the status registers 338,
status output logic 339, the memory mapped registers 341,
and serial logout via serial logout 340. Further description of
the pBIST data logger 1s given below 1 FIGS. 7, 8, and 9.

FIG. 4 illustrates a lower level diagram of the pBIST
controller 301 hardware of FIG. 3. The pBIST controller
includes a microcode program control unit 413. The micro-
code program control unit 413 stores all user-programming
inputs entered into the programming logic interface unit 470
via paths: CPU IF 407; ROM IF 404; and tester IF 406.

Status information from each processor unit 1s also passed
to the microcode program control unit 413 via status input
330 from the data logger 302 of FIG. 3. The CPU IF 407
provides all data iformation and all control and address
information to drive the embedded RAM under test via 1ts

path 468 to the instruction register file 460 and to the data

UsS 7,325,178 B2

S

registers 420 via path 469. The data registers in turn feed the
main data bus 450. Main data bus information includes
control and data output signals: control 308; address 309;
select 310; and write data 311 all of which are current for the
up-coming clock cycle. The pBIST instruction register file
460 drives, via bus 440, the functional processor units within
the pBIST including: M-unit 451, I-unit 452, A-unit 453,
C-unit 454, B-unit 465, zero detect unit 455, and address
scrambler unit 461. The data registers 420 receives the
destination addresses 455, 456, and 457 from the [-unit 452,
the A-unit 453, and the C-unit 454 respectively. These
destination addresses are passed from the data registers 420
to the main bus 450. Four tunctional units within the pBIST
controller processor units: I-unit, A-unit, C-unit, and B-unit
are thus provided with operand addresses from which the
subsequent address and control inputs are computed 1n the
memory access unit 414.

The Branch-unit 465 performs tests on source addresses
and generates 1nstructions that are passed to the instruction
bus 440. The branch unit 465 performs the comparisons and
tests using program counter A 443 and program counter B
444 states as additional mputs. Opcode MUX 464 selects
and instruction register 466 stores the results of the com-
parisons and supplies instructions to the instruction bus 440.

The data registers 420 forms a holding register stage for
cach of the parameters distributed by the main bus. These
are: A0, A1, L0, L1, D0, D1, 10, I1, EO, and E1 and they are
described 1n the list of memory-mapped registers 1n Table 5.

pBIST logic supports a compact set of instructions that
allow a user to perform memory testing. The primary
assumption 1s that pBIST can be completely mitialized to
any state and then enabled to execute the required limited set
of mstructions. The preferred pBIST design can execute as
many as 32 separate mstructions. This 1s more than suflicient
for most of the testing found necessary 1 designs 1n process

or contemplated. The pBIST logic can be configured 1n two
steps:

1. Set maximum hardware requirements through specified
parameter 1 a soitware RIL. Parameters including, the
number of entries and the maximum pipeline latency, for
example, are defined below.

2. Programming RAM(s) specific requirements and
memory testing algorithms. The current implementations
(memBIST from Logic Vision and mBIST from Mentor)
have the limitation that they must be programmed before
tape-out. This assumes that the memory testing 1ssues are all
identified and bounded 1nto a set of vectors before tape-out,
which 1s almost always not true for process drivers. Most
algorithms are based on the previous technology used in
carlier devices. Designers often do not have a clear under-
standing of the current technology 1ssues. As a result, the
engineering evaluation effort often attempts to proceed using
a CPU BIST, which of itseltf has a number of limitations.
Back-to-back accesses are often impossible due to architec-
tural limitations. As another example, 11 the L2 memory
receives a burst iside a bank 1n current methodology pBIST
provides a fast and thorough testing platform allowing this
feature to be exercised.

pBIST supports two 1nstruction types classified as general
and load. The instruction width 1s 32-bits. The valid bit in the
A-, I-, and C-, units can be combined with operation bits to
expand the opcode if this provides the user additional
teatures. The opcode formats for the M-, I-, A-, C-, and
B-units are illustrated 1in FIG. 5 (501-505) general instruc-
tions. The second portion of FIG. 5 labeled 506-508 illus-

trates load-type 1nstructions.

10

15

20

25

30

35

40

45

50

55

60

65

6

pBIST Utilizes the Following Processor Units:

The M-unit (Main Unit) handles the RAM read/write,
program tlow and load controls. It uses 7 bits of the pBIST
opcode (see 501 and 506 1n FIG. §).

The I-unit (Increment/Decrement Unit) performs addi-
tion/subtraction on addresses A0, Al, .0 and L1 with an

increment or decrement of 1. The I-unit uses a 4-bit opcode
(see 502 of FIG. 5 and Table 1).

TABLE 1

Valid INCR/DECR

[-Unit Instructions Source

Operation Bits 2
INCREMENT LO
INCREMENT L1
INCREMENT AO
INCREMENT Al
DECREMENT LO
DECREMENT L1
DECREMENT AO
DECREMENT Al

NOP 0 X

24 2

e e T e R e S A B P

— = O = = O R
— T et T et () = (Ot

e
e

The A-umit (Addition/Subtraction Unit) performs 16-bit
addition and/or subtraction on addresses A0, A1, .0, .1 with
10 and I1 increment sizes. The A-unit employs a 5-bit opcode

(see 503 of FIG. 5 and Table 2).

TABLE 2

A-Unit Instructions Valid ADD/SUB SRC 1 SRC 2

Operation Bits 1 1 1
ADD: A0 + LO
ADD: Al + LO
ADD: I0 + L1
ADD: I1 + L1
SUB: A0 - 1O
SUB: Al - LO
SUB: 10 - L1

SUB: 11 - L1

NOP 0 X

20 1

— O O O O ND
— = D D = = D D 00
— O = O = O Ol
el S R B S L G 4

e
o
i

The C-unit (Combination Unit) performs shift/rotate/logic
operation on addresses A0, Al, D1:D0, and constants E1:EQ.

The C-umt can support 16 or 32 bit operands and uses an
8-bit opcode (see 504 of FIG. 5 and Table 3).

TABLE 3

C-Unit Instructions

Operation Bits 14 13 12 11
NOP 0 0 0 0
A=AANDRB 0 0 0 1
A=AO0ORB 0 0 1 0
A=A XORB 0 0 1 1
A=NOTA 0 1 0 0
A = NOT (A AND B) 0 1 0 1
A = NOT (A OR B) 0 1 1 0
A = NOT (A XOR B) 0 1 1 1
A=SHLA] 0 0 0
A=ROTLA 0 0 1
A = SHRU A 0 1 0
A=ROTR A 0 1 1
A=NOTB 1 0 0
A=0 0 1
A=1 1 0
A =GRAY B 1 1

The B-unit (Branch Unit) performs zero detection and
branch decision logic. It uses an 8-bit opcode (see 505 and

508 of FIG. 5 and Table 4).

UsS 7,325,178 B2

TABLE 4

B-Unit Instructions

Operation Bits 8 7 6 5:0

BNZ LO 0 0 0 ADDRESS
BNZ L1 0 0 1 ADDRESS
BNZ A0 0 1 0 ADDRESS
BNZ Al 0 1 1 ADDRESS
BNZ FAIL 1 0 0 ADDRESS
BNZ REP 1 0 1 ADDRESS

FIG. 6 1llustrates M unit instructions in greater detail. For
clanity these M umit instructions may be broken down into
the following major types.

(1) READ—This instruction reads the memory under test.
It has two major variations and other possibly useful ones
are available. The return data may be compared with an
expected value. If a mismatch occurs the pBIST controller
may stop or log and continue based on the setup. Also this

option can be disabled. Its variations are: Read 603, Read
without compare, and Sub-Width Reads 601 and 602 with or
without compare.

2) WRITE—This instruction writes to the memory. The
return data may or may not be compared. Vanations are: (a)
Write, (b) Write with return data compared, (c) write-
through with return data compared and (d) write modified
read with return data compared (see 603 of FIG. 6).

(3) NOP—This 1nstruction does nothing as i1ts name
suggests. It 15 used to perform internal activities internal to

the pBIST controller or to add a delay slot (see 610 of FIG.
6).
(4) LOAD—The LOAD instructions are of two types: (a)

move shadow (MVS) and move immediate (MVI1) opcodes
used are 1llustrated 1n FIG. 6).

(5) Move Shadow (MVS) instruction performs register
loading inside the pBIST. All registers enabled get loaded
with their shadow value. The MVS instruction operand has
three options (see 607 of FIG. 6):

1) Load all registers with shadow
2) Load only enabled registers with shadow
3) Load none of the registers

(6) MVI (Move Immediate) mnstruction acts as a Load
Immediate which loads the data to the byte pointed to by the

address See 608 of FIG. 6).

(7) HALT—On this instruction the execution stops and
the CPU 1s not modified. Data logging stops after a delay of

N clock cycles where N 1s the number of pipeline stages in
the pBIST controller (see 611 of FIG. 6).

A summary of processing in other microcontroller pro-
cessing units follows.

The I-unit increments or decrements either 1.0, .1, A0 or
Al according to the code 502 1n FIG. 5. Bit 20 1s a valid b1t
allowing enabling or disabling of the increment operation.

The A-unit adds or subtracts combinations of sources

from registers L0, L1, A0 or Al according to the code 503
in FI1G. 5. Bit 20 1s a valid bit allowing enabling or disabling
of the addition/subtraction operation.

The C-unit performs shift/rotate/logic operation on A0,
Al, D1:D0, and E1:E0 according to the code 504 of FIG. 5.
The C-unit can support 16 or 32 bit operands.

The B-unit performs branching as follows. The program
counter (PC) takes the address pointed to by the instruction.
IT the valid bit 1s active, then the LOOP count [A0, Al, L0,
or L1] i1 zero will transfer the program counter content to
address+1. It the LOOP count 1s not zero the branch 1s taken.

10

15

20

25

30

35

40

45

50

55

60

65

8

Address Scrambling

Address scrambling registers SCR0O and SCR1 are a
teature of pBIST that 1s available through the M-unit and 1s
illustrated by M-unit address scrambler 461 of FIG. 4.
Incorrect address connections detected after the device has
been submitted for tape-out do not allow the correct opera-
tion of the algorithms developed. Address scrambling 1s a
technique by which the programmer can correct the address
problem. The address scrambler provides a one-to-one con-

nection for all 16-bits of A0 and Al to the RAMs. The
default value of the SCR register at reset 1s: SCR[63:0]
=hexadecimal FEDCBA9876543210. By modilying these
values any address mapping may be achieved. As an
example consider the case wherein the address values 8 and

7 are reversed. The programmer needs merely to modify the
SCR to become: SCR[63:0]=hexadecimal FED-

CBA97863543210. With this change the memory map can be
properly accessed as the algorithm intended. Address scram-
bling has two dedicated memory-mapped registers listed in

Table 5 under addresses 00D0 and 00D4.

Configuration Registers

There are five configuration registers in pBIST included
in programming logic interface configuration registers 470
of FIG. 4. These registers and the configuration options they
select are:

(1) Clock Multiplexer Select (CMS): selects between (a)
test clock, (b) base maximum Irequency CPU clock, and
clock domains (¢) halt-frequency clock, clock2, and (d) one
fourth frequency clock, clockd. CMS 1s listed with memory-
mapped registers under address 00C8 1n Table 5

(2) Sense Margin Select (SMS): selects between (a) slow
functional, (b) test slow, (¢) fast functional, and (d) test fast.

(3) Pipeline Latency Select (PLS): selects between O
through 135 cycle latency for comparison of data from RAM
interface with expected data. The data logger employs
optional pipeline register stages that may be configured for
this range of latency.

(4) RAM Latency Select: pBIST supports four RAM
latency selections: 0, 1, 2, or 3 clock cycles. The pBIST
controller sends one access for every N cycles. This 1s
necessary for RAMs, which are clocked at a higher 1fre-
quency to reduce latency. Pipeline latency 1s the sum of the
datapath latency plus the RAM latency. The programmer
must assure that the expected data arrives alter the pro-
grammed delay. This register 1s part of the RAMT register
which mcludes (1) RGS; (2) RDS; (3) Data Width; (4) Pipe
Latency; and (5) RAM Data.

(5) Chip Select CSR: pBIST implements a chip select for
up to 32 RAMs. When a READ or WRITE command 1s
executed, the corresponding chip select 1s driven active and
enables the selected RAM. Chip select (CSR) 1s listed with
memory-mapped registers under address 00D8 1n Table 5

(6) Program Control Register STR[4:0]: this register 1s
five bits wide as listed under address 00CC with memory-
mapped registers 1n Table 5. Each bit 1s an active high enable
for program control features.

STR(0) pBIST Start. Begins testing after pBIST has been
cnabled.

STR(0) Resume Testing. STR(1) going high resumes
execution after an error 1s detected. When pBIST
detects an error, 1t will log a fail signature. Using the
configuration bus the programmer reads the status
register and can resume operation. If only one error 1s
detected, pBIST continues execution and will 1gnore
the resume code occurrence. If a second error 1s
detected, pBIST will stall. The second failure will be

UsS 7,325,178 B2

9

loaded to the failure signature registers. These fail
signature registers include FSRFE, FSRC, FSRA, and
FSRD included in memory-mapped register list in
Table 5 under addresses 00F0, 0014, 0018, and 00FC
respectively. Assume after a resume operation that a fail
1s encountered and a second interrupt 1s 1ssued. When
a configuration bus read of the second failure 1s com-
pleted, the pBIST will continue operation.

STR(2) Stop Testing. Stop operation bit acts to stop
execution of the memory testing for any assigned
reason.

STR(3) Step Testing. In step test mode the test engineer
may execute one instruction and stop for a time to
review the results and then proceed one test at a time 11
desired.

STR(4) Enables pBIST. Enable mode selects the pBIST
controller if multiple controllers are supported. Cycle
begins by resetting the CPU and starting execution
from the 1mitialized state.

(7) Data Width Register DWR][7:0] 1s part of RAMT
register: This register 1s used to decide the data width to the
RAMs. The value DWR represents the data width of the
RAM. The decoded bits that are enabled will be compared
for return data with the constant data registers selected.
RAMT 1s listed 1n Table 5 of the memory-mapped registers
under address 00C0.

(8) Column Mask Register [31:0] (Internal, not a memory
mapped register): In the column mask mode, this register
stores the multiple bit fails within a column and masks this
column from the next column fail detect. This allows
detection of a failed column but excludes multiple failures
within a given column from triggering unnecessary failures.

(9) Time Stamp and Time Stamp Fail Mask Registers
[31:0] (Internal, not memory mapped): These registers are
enabled in the time stamp mask mode when it 1s useful to
skip all instructions until the previous failure and then
cnable failure logging. This preserves the algorithms
intended operation.

(10) Data Logger Control Register [7:0] DLR: The data
logger 1s controlled from this 8-bit register as listed under
address 00C4 with memory-mapped registers in Table 5.
DLR(7:3) are active high enables for data logger features.
The remaining bits DLR(2:0) are reserved for added further
functions.

DLR(7) activates time stamping;

DLR(6) activates column fail masking;

DLR(S) activates stream mode;

DLR(4) activates configuration inputs;

DLR(3) activates TCK gated mode.

DLR(2) reserved.

DLR(1) reserved.

DLR(0) reserved.

(11) RAM Group Seclect [15:8] (RGS, part of RAMT
register): In order to support more than 32 RAMs this RAM
group select register has been provided. This extends the
total number of RAMs that can be tested from 32 to 8192
RAMs of 32 bits or less. RAMs with data width larger than
32 are tested as more than one RAM and data logged
separately.

(12) Return Data Register RDS 31:16, 1s part of RAMT
register.

Status Outputs and Fail Status Registers

There are three status outputs from the pBIST output unit
326 that are included in status 330. These are (1) Done and
(2) Run signals generated in micro-code program control

313, and (3) fail, generated in the output unit 326 from the

10

15

20

25

30

35

40

45

50

55

60

65

10

flag (FSRF) signal in the status register 338. Fail Status
Registers 338 of the pBIST output unit 326 includes four
registers: (1) FSRF (fail flag); (2) FSRC (fail count); (3)
FSRA (fail address) and (4) FSRD (fail data).

(1) Fail Flag Register FSRF[0]. This one bit register 1s
cleared at reset and when start or pBIST_enable 1s activated.
This I-bit register represents the failure status of the current
execution phase at that point. It 1s driven high the moment
the data logger makes a negative compare. It 1s also con-
nected to the pBIST_fail output bit of the pBIST controller.
Memory-Mapped address 1s 00F0 1 Table 5.

(2) Fall Count Register FSRC [7:0]. This register 1s
cleared at reset and when start or pBIST_enable 1s activated.
This 8-bit register represents the failure count of the current
execution phase at that point.

(3) Fail Address Register FSRA [135:0]: This register
stores the event of a negative compare on address when the

finite state machine signal FSR 1s logical 1. Memory-
Mapped address 1s 00F8 1n Table 5.

(4) Fail Data Register FSRD [31:0]: This logout register
stores the compare status by data width. It 1s valid only when
Fail Status Register 1s a logical 1. The register 1s cleared
during reset or when start or PBIST_enable 1s activated.
When a failure 1s detected, the pBIST controller stops
immediately and, based on the mode selected, either scans
the failure out, broadcasts 1t to the I/O pins or waits for the
user to read 1t out before continuing. If the user mode 1s
selected, then the Restart register must be toggled to con-
tinue. The Compare Status register and Address register are

valid only 1f data logging i1s enabled. Memory-Mapped
address of FSRD 1s 00FC 1n Table 5.

Memory Mapped Registers

All pBIST registers of interest to the user are memory
mapped to be accessible from Tester IF 406 or CPU IF 407.
The CPU interface 1s for parallel accesses and usually for
speed. Scan based imitialization 1s also available. The
memory mapping of all the pBIST internal registers 1s
described below. A tull listing of memory mapped registers,
addresses and contents 1s 1llustrated in Table 5.

TABLE 5
Address Bits Bits Bits Bits
(hex) Register Description 31:24 23:16 15:8 7:0
0000 RFO Register RFO REFO RFO REFO
003C RF15 File RF15 REF15 RF15 REF15
004C RF16 — RF16 RF16 RF16 RF16
007C RF31 Expansion RF31 REF31 RF31 REF31
00RO A0 Address A0 A0
0084 Al Address Al Al
008 LO Variable LO LO
008C L1 Variable L1 L1
Shadow Registers
0090 D1:D0 Constant D1 D1 DO DO
0094 E1:EO Constant El El EO EO
00AO CAO Constant CAO CAO
00A4 CAl Constant CAl CAl
O0AR CLO Loop Count CLO CLO
00AC CL1 Loop Count CL1 CL1
00BO 10 Increment 10 10
00B4 I1 Increment I1 I1
00CO RAMT RAM Info RDS RDS RGS DWR
31:24 23:16 15:8 7:0
00C4 DLRT Data Logger DLRT 7:0
Mode
00C8 CMS Clock CMS 1:0
Mux Select
00CC STR Program STR 4:0
Control

UsS 7,325,178 B2

11

TABLE 5-continued

Address Bits Bits Bits Bits
(hex) Register Description 31:24 23:16 15:8 7:0
00DO SCRO Address SCRO SCRO SCRO SCRO
00D4 SCR1 Scramble SCR1 SCR1 SCRI1 SCR1
00D8 CSR Chip CSR CSR CSR CSR

Select

Fail Status

00F0 FSREF Fail Flag Flag bitO
00F4 FSRC Fail Count Count 7:0
00F% FSRA Fail Addr FSRA FSRA
00FC FSRD Fail Data FSRD FSRD FSRD FSRD

Configuration Bus Interface

In the configuration mode, the programmer has complete
flexibility on how to test and debug the pBIST operations.
With the iterrupt handshake between the CPU and pBIST
controller, the programmer can test any memory in the chip
and does not have to be concerned with any particular RAM.
For example, in a current design using CPU BIST when
testing the L1I RAM or TAG, the programmer needs to be
concerned as to what memory 1s being tested and how to run
the program without the memory testing interfering with the
CPU operation. By contrast using pBIST mode the program-
mer can run the code, setup the pBIST controller and go 1nto
IDLE and when the interrupt occurs, the programmer codes
the 1nterrupt handler such that no bad code 1s executed.

The operations performed are as follows:

1. Setup the pBIST controller.

2. Belore start all functional memories/register files that
will be tested by pBIST must be set 1n bypass mode. Any
memory content modified by pBIST for testing purposes
should not impact normal pBIST testing sequences.

3. Start pBIST.

4. CPU goes mto IDLE mode.

5. pBIST Testing 1n progress. pBIST imterrupts CPU on
tailure.
6. CPU Interrupt routine 1s initiated with two possible
options.
A. Check failure status, make code modifications to work
around failure and restart pBIST.

B. Interrupt routine 1s non-cacheable or L11 1s turned off.

Programming Logic Interface

The programming logic interface (PLI), 470 of FIG. 4, 1s
necessary to avoid RAM testing dependence on CPU func-
tionality. Using the PLIL, pBIST mitialization and operation
1s controlled from outside the chip. Only the pBIST logic
functionality 1s necessary for performing RAM testing.

The steps involved PLI interface testing are:

1. Enable pBIST test mode.

2. Imtialize pBIST controller.

3. Load program.

4. Start testing

5. pBIST controller starts RAM testing.

6. Failure will log status and scan 1t out at TCK frequency

7. Testing continues until multiple failure and then waill
run lock step with data logging and scan-out.

8. Program completion triggers the done signal and PASS/
FAIL signature 1s output.

Micro Architecture (Repairable RAMS)

Repairable RAMS require multiple fail data logging for
row/column error correction. In this mode there are a

number of options. These tests can be run via CPU IF or PLI

10

15

20

25

30

35

40

45

50

55

60

65

12

interfaces. In the configuration bus interface CPU interrupts
or time-out modes are supported. The programmer starts the
pBIST controller. The pBIST controller runs until 1t captures
a Tailure. The CPU can start the testing on pBIST and go nto
IDLE mode. The pBIST controller activates the interrupt
both on failures and on end of test. When interrupted, the
CPU can then read the fail status registers and determine the
next step. The pBIST controller 1s stalled when a second
tailure happens. The CPU writes a logical 1 to the resume bat
to continue to the next failure.

FIG. 7 illustrates the structure of a basic data logger
function. The pBIST data logger includes three parallel
pipelines passing address and data information in-step to
preserve latency timing. Data stimulus 701 for the RAM
under test 1s sent to two parallel registers. Register 703 1s the
data path to the RAM under test and data register file A 705
preserves a copy lfor test comparison. Address enters at
address 1inputs 707 and enters address register file B 709. As
read data from the RAM under test returns at 317 1t 1s stored
in read data register 706. At the same clock time, registers
706, 708, and 711 are clocked to receive actual data 317,
expected data 718 and corresponding address value 719.
Data 317 and 718 as stored in registers 706 and 708
respectively are submitted to mask and compare unit 712.
Mask imnputs are provided by mask 714 and mask and
compare unmt output 715 1s sent to pBIST data logger output
umt 726 for processing into outputs 330 and 333 as
described in FIG. 3. Corresponding address information 716
1s passed from address output stage 713 to data logger output
unmit registers to be matched to compare output 715 for
presentation of output results. Memory mapped registers
341 hold all fail status information including Fail, Fail
Count, Fail Data, and Fail Address as stored 1n the fail status
registers 338. This mnformation 1s accessible at the CPU IF
307. An interrupt 1s also sent to the CPU via CPU IF 307.
Serial logout 340 allows passage of the same mnformation to
the user at logout 333. Status outputs 330 from block 339
include Done and Run which are derived from the program
control 313 at mnput 337 and the Fail output derived from
mask and compare output 715.

pBIST provides additional RAM datapath interface
options with 1mproved throughput. Two possible designs
include the shared data logger and the distributed data
logger. The shared data logger structure illustrated 1n FIG. 8
has a relatively simple implementation and requires minimal
additional hardware. The shared data logger uses the data
logger pipeline 318 described in FIG. 3 and FIG. 7 and
multiple RAMs connected and driven from busses 308, 309,
310 and 311. In FIG. 8 the RAM return data from all RAMS
800 through 899 passes to multiplexer 820 via paths 810,
811, 888, 889 for return to the pBIST data logger mask and
compare unit 812 via 830. Compare results may be masked
in the mask and compare unit 812 using mask 814 before
being passed to the pBIST data logger output unit 826. Mask
teatures 1include: (a) data width, (b) column fail, and (¢) time
stamp. Expected Data 828 and Address 816 are supplied by
the data logger pipeline 318. Data Logger Outputs include:
Done, Fail, and Run status outputs 330 and Logout 333. The
CPU IF 307 interfaces with the memory mapped registers
341. The data logger output unit 326 includes the fail status
registers 338, status output logic 339, the memory mapped
registers 341, and serial logout via serial logout 340.

The advantage of the shared data logger 1s that the
designer needs merely to route and multiplex down the
RAM return data and bring 1t back to the pBIST. The pBIS
controller (710 of FIG. 7) takes care of data logging and
stalling on {fails.

UsS 7,325,178 B2

13

FIG. 9 1llustrates the distributed data logger 1n which data
logging 1s done at the individual RAM locations. The
distributed data logger also uses the data logger pipeline 318
described 1in FIG. 3 and FIG. 7 and multiple RAMs con-
nected and driven from busses 308, 309, 310 and 311 as well
as expected data from bus 317. The RAMSs are illustrated as
900, 901, 998, and 999. Compare blocks 910, 911, 918 and
919 perform the same mask and compare described earlier
with masking coming from mask 914. The logic for compare
of the return data 930,931, 938, 939 with the expected data
989 1s placed at the RAM output and two signals are
retrieved from the individual RAMs. These are Pass/Fail 926
and logout 917. Address 916 1s supplied by the data logger
pipeline 318. Data Logger Outputs include: Done, Fail, and
Run status outputs 330 and Logout 333. The CPU IF 307
interfaces with the memory mapped registers 341. The data
logger output unit 326 includes the fail status registers 338,
status output logic 339, the memory mapped registers 341,
and serial logout via serial logout 340. The distributed data
logger option allows parallel testing of RAMs but requires
additional replicated logic at the RAMs.

Time Stamping Mask Mode

In the absence of a time stamping mask, failures that
occur cause the pBIST controller to cease testing, process
the failure, and continue testing from the point where the
testing had ceased. Then when the testing operation 1s
continued, back-to-back testing has been interrupted and
hidden failures may result. Time Stamp Mask Mode opera-
tion remedies this difliculty. Using the time stamp fail mask

pBIST saves the time stamp of the last failure and generates
a TS fail mask.

FIG. 10 illustrates the pBIST time stamp mask mode
operation. Assume the user initiates the start of testing in the
time stamp mask mode. The pBIST controller begins at start
block 1000 and because no failures have yet occurred, it
bypasses error checking at the TS fail mask block 1002
where only an existing TS fail mask record would cause
1gnoring of previously processed fails. The pBIST controller
then executes an instruction and captures and compares
return data i block 1003. If test 1004 detects a fail (a Y
result) the path 1020 into a return loop 1031 is taken. Loop
1031 can be referred to as the process new fails loop. If test
1004 results 1n a pass (a N result), another test 1s performed
in block 1008 to determine whether end of testing has
occurred. If end of testing has not been reached, the path
1009 back to the start of loop 1033 1s taken. Loop 1033 can
be referred to as the search for new fails loop. If end of
testing has been reached in test 1008 path 1019 1s taken to
a done state.

The steps 1n return loop 1031 are (a) to capture the fail
signature 1005, (b) process the fail information 1006 and (c)
set TS fail mask as the time of failure 1n block 1007. Fail
information 1s processed by: (1) logging a fail at output 331
of the data logger (FIG. 7) and (2) passing the fail signature
through data logout 333 of FIG. 7. The fail signature 1s
stored 1n memory mapped registers within the pBIST data
logger 716 and may passed to the CPU IF as an alternative
means of outputting fail signature data. Once this 1s accom-
plished and the time stamp recording of the TS fail mask
time of block 1007 has been completed, testing returns to the
loop 1031 return point 1001 where the attempt to capture a
fail mask 1n block 1002 1s re-initiated. The updated TS fail
mask information from block 1007 1s then used to perform
later occurring tests 1 block 1002.

A positive result 1 block 1002 results in an exit to loop
1032 where instructions are executed but return data 1is

10

15

20

25

30

35

40

45

50

55

60

65

14

ignored 1n block 1010. Loop 1032 can be referred to as the
1gnore previous fails loop. Query on whether TS fail mask
time has been reached 1s performed block 1011. A positive
result causes entry via 1012 into loop 1033 to search for new
fails; a negative result 1n block 1011 continues loop 1032 via
path 1013 and previous fails are 1ignored until TS fail mask
time 1s reached 1n test 1011.

On entering loop 1033 the next instruction 1s executed and
return data 1s compared to expected results in block 1003. A
fail 1 block 1004 causes a return to loop 1031. No fail 1n
block 1004 leads to end of testing query 1n block 1008. If the
testing 1s not ended path 1009 1s taken with the continuing
of loop 1033 and the search for new fails. Data logging is
enabled and testing continues. At the end of the test 1019 the
result 1s that all failures were detected only once and the
expected testing operation of the algorithm 1s achieved in the
done state.

pBIST programming for specific testing 1s based on
knowledge of the structure and operation of the RAM to be
tested. The row-column structure of a typical RAM and the
addressing, write operations, and read operations collec-
tively give the task of testing clear initial direction. Test
sequences that generate interactions between cells or rows or
columns can be used to verity the robustness of the design
or the topology of the RAM layout. Test sequences that force
stores bits in the RAM alternately from °1° to ‘0’ and back
to ‘1’ exercise worst cases involving sense amplifier opera-
tion are another common means used to identily weakness
in the design or layout.

An extremely large effort to address these test cases has
resulted 1n sophisticated algorithms being developed for
almost any RAM design weaknesses that have been 1denti-
fied 1n the past or expected as new designs place pressure on
the parameters of the fabrication process. The capability to
develop these algorithms 1s clearly usetul to complete test-
ing of new designs i waler form using pBIST. Once the
device has been fabricated, pBIST testing can be applied to
exercising even the most extreme states that a design can
encounter. If any weaknesses are uncovered, then the pro-
grammability features of pBIST allow for tracking RAM
failures in even unrealistically extreme operating conditions.

The full width testing sequence illustrates a simple
example of pBIST programming. The code and a line-by-
line description of the code i1s illustrated below.

Full Width Testing Algorithm

* INIT Involves Two Steps:
* Load CLO with M-1; Load CAO with hex 0’
* Load D1:D0O with hex:0.

* Initialize all RAM bits to O by looping from 0 to (N-1)

Address Mnemonics

LINE NUMBER

1100 M MVS A0, LO

1101 LOOP1: M WRITE A0, D1: DO
1102 A ADD A0, 10

1103 I DEC L.O

1104 .B BNZ L.O LOOP1
* LOAD Re-initialize Address and Loop Count

* for “Read-Write-Read” Loop

1105 M MVS A0, LO

*TEST

* Read zeros, Write ones, Read ones on address O to N-1
1106 LOOP2: M READ A0, D1:DO

1107 M WRITE A0, ~D1:D0O
1108 M READ A0, ~D1:DO
1109 | .A ADD A0, 10

1110 . I DEC L.O

UsS 7,325,178 B2

15

-continued

Full Width Testing Algorithm

1111
* HALT

* Test Complete
1113

| .B BNZ L.O LOOP2

.M HALT

Comments by Line Number:

1100: Move Shadow MVS moves CA0 to A0 and CL0 to L0
1101: Start of LOOP1;

WRITE M-struction writes address A0 into concat-
enated registers D1:D0.

Three parallel operations 1n lines 1102, 1103, and 1104
follow.

1102: ADD A-operation adds 10 to A0 and places result into
register A0.

1103: DEC I-operation decrements register L0.

1104: Branch B-operation branches to LOOP1 1f L0 has

been decremented to zero in line 1103.

1105: Move Shadow MVS moves CA0 to A0 and CL0 to L0

1106: READ M-instruction reads from address A0 the
concatenated registers D1:D0.

1107: WRITE M-nstruction writes to address A0 the
inverted bits ~(D1:D0); tilde indicates all bits imverted.

1108: READ M-mstruction reads from address A0 the
previously written data ~(D1:D0).

1109: ADD A-operation adds 10 to A0 and places result into
register A0.

1110: DEC I-instruction decrements L0 register.

1111: Branch B-operation branches to LOOP2 11 L0 has been

decremented to zero 1in line 1110.

1112: HALT Ends testing.

What 1s claimed 1s:

1. A data processor system comprising:

at least one read/write memory;

a programmable memory test controller operable to per-
form a sequence of memory test operations according
to an alterable set of 1nstructions,

said programmable memory test controller including a
plurality of special functional units of differing types
cach controlled by a corresponding part of said instruc-
tions; and

a results logger operable to compare data read from said
at least one read/write memory with expected results.

2. The data processor system of claim 1, further compris-

ng:

a set of data registers including at least one data register
operable to store data to be written to said at least one
read/write memory; and

wherein said plural special functional units include an
arithmetic unit operable to selectively add or subtract
data stored 1n said data registers.

10

15

20

25

30

35

40

45

50

55

16

3. A data processor system comprising:
a plurality of read/write memories;

a programmable memory test controller operable to per-
form a sequence of memory test operations according
to an alterable set of 1nstructions;

a results logger operable to compare data read from said
at least one read/write memory with expected results,
said results logger including

a multiplexer having a plurality of mputs, each input
receives read data from a corresponding one of said
plurality of read/write memories, said

multiplexer further having a control mput and an output,
said multiplexer coupled to a selected one of said
plurality of mputs to said output dependent upon said
control signal, and

a comparator connected to said output of said multiplexer
operable to compare data from said read/write memory
selected by said multiplexer with corresponding
expected results.

4. A data processor system comprising:

a plurality of read/write memories; a programmable
memory test controller operable to perform a sequence
of memory test operations according to an alterable set
of instructions; and

a results logger operable to compare data read from said
at least one read/write memory with expected results,

said results logger including a time stamp register oper-
able to store a time stamp upon detection of a mismatch
of said data read from said at least one read/write
memory with said expected results, and

said results logger operable 1n a time stamp mask mode to
indicate a match when an elapsed time of a current test
1s less than or equal to said time stamp stored in said
time stamp register, whereby said data processing sys-
tem 1s operable to re-execute a sequence of memory
test operations from a start and ignore previously
detected mismatches.

5. A data processor system comprising: at least one
read/write memory;

a programmable memory test controller operable to per-
form a sequence of memory test operations according,
to an alternate set of instructions; and

a result logger operable to compare data read from said at
least one read/write memory with expected results, said
results logger operable to stop said sequence of
memory test operations upon detection of a mismatch
between data read from said at least one read/write
memory and said expected results, and

resume said sequence of memory test operations upon
receipt of a resume command.

	Front Page
	Drawings
	Specification
	Claims

