12 United States Patent

US007319997B1

(10) Patent No.:

US 7,319,997 B1

Morris et al. 45) Date of Patent: Jan. 15, 2008
(54) DYNAMIC PARTITION ENHANCED (56) References Cited
JOINING U.S. PATENT DOCUMENTS
(75) Inventors: 1. Mark Morris, Poway, CA (US) SORI2LS A % 111999 Ross ot al. oo 70712
Bhashyam Ramesh, San Diego, CA 6167399 A * 12/2000 HOANE w.veoveeververeesrereenn 707/5
(US) 6,226,639 B1* 5/2001 Lindsay et al. ...oove......... 707/5
6,505,189 Bl1* 1/2003 On Auetal. 707/2
(73) Assignee: NCR Corp., Dayton, OH (US) 2003/0074348 Al1* 4/2003 Sinclair et al. 707/2
2004/0260684 Al* 12/2004 Agrawal et al. 707/3
(*) Notice: Subject. to any disclaimer{ the term of this * cited by examiner
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 450 days. Primary Examiner—Apu Mofiz
Assistant Examiner—Jared M Bibbee
(21) Appl. No.: 10/862,686 (74) Attorney, Agent, or Firm—Howard Speigut
(22) Filed: Jun. 7, 2004 (57) ABSTRACT
Methods, computer programs, and database systems for
(51) Intl Cll f * d t b th _t * 1 d * *
COGE 7/00 (2006.01) performing a database query that includes a join on an
e equality condition are disclosed. The method includes defin-
GOG6L 17/30 (2006'03“) ing two or more first-table partitions and two or more
GO6E 17/00 (2006.01) corresponding second-table partitions. The method 1ncludes
(52) US.CL ... 707/3,J 707/100,J 707/101:J perfonning the join on the first-table par‘[ition and the
707/104.1 second-table partition, storing the result, and merging the
(58) Field of Classification Search 7077/1-10, results.
707/100-104.1, 200206
See application file for complete search history. 36 Claims, 9 Drawing Sheets
¢ 405
’
FOR EACH JOIN:
415

DEMOGRAPHIC
DATA FOR JOIN
COLUMNS ?

420

Y _ EVALUATE OTHER
JOIN DEMOGRAPHIC JOIN METHODS
DATA FOR COLUMNS

430

PARTITION JOIN TABLES

435
p

I JOIN CORRESPONDING
PARTITIONED JOIN TABLES

MERGE RESULTS

LOOP

US 7,319,997 B1

_ “
_ _
" |
| |
“ ® & & ¢ "
| |
“ "
" "
m m
m 3INAOW e 3INAON 3INAONW IINAON |
. | ONISS300Hd ONISSIO0Hd HNISSIO0Hd ONISS300Hd |
S Y ¢ 2 . "
- 0% 0L 0Ll 0Ll 0L m
= S3AON m oLl m
“ "
o | INIONT "
= | 01—} DNISHVYd "
) "r JAON |
.H. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII - o wm mm d e e o e - . . e . . e = o e = e == - == == e - o |
S ﬂ_mo_

oL —7 ANVHANIVIA
Gel
NILSAS
ovt—] N3O

[OIA

U.S. Patent

U.S. Patent Jan. 15, 2008 Sheet 2 of 9 US 7,319,997 B1

FIG. 2 FIG. 3
1y SOLQUERY e SQLQUERY
I U i W
200 300
SESSION INTERPRETER
CONTROL
305

205

SYNTAX
CHECKER

-----------1

210 310
DISPATCHER SEMANTIC
CHECKER
aiinieiniabed Aaieieieiinia 315

DATA DICTIONARY
CHECKER

320
OPTIMIZER

EXECUTABLE STEPS

U.S. Patent Jan. 15, 2008 Sheet 3 of 9 US 7,319,997 B1

40
FOR EACH JOIN:

415

5

DEMOGRAPRIC
DATA FOR JOIN

COLUMNS 7
420

425 Y
EVALUATE OTHER
JOIN DEMOGRAPHIC JOIN METHODS
DATA FOR COLUMNS
430
PARTITION JOIN TABLES
435
JOIN CORRESPONDING
PARTITIONED JOIN TABLES
440
MERGE RESULTS
410
Tolo):

U.S. Patent Jan. 15, 2008 Sheet 4 of 9 US 7,319,997 B1
KFIG. 5
415
505 reg
FOR EACH COLUMN:
515 500
VALUE
COUNT INDEX FOR > USE VCI FOR
COLUMN ? COLUMN
N
525 530
COMPRESSED y USE COMPRESSED
VALUE LIST FOR VALUE LIST FOR
COLUMN ? COLUMN
230 540
STATISTICS Y USE STATISTICS
FOR COLUMN FOR COLUMN
?
545

RETURN "N’

510

LOOP
RETURN "Y"

550

U.S. Patent Jan. 15, 2008 Sheet 5 of 9 US 7,319,997 B1

605 610
DEMOGRAPHIC DEMOGRAPHIC
DATAFOR T1.A DATA FOR T2.B

615

DETERMINE VALUES THAT
SATISFY JOIN CONDITION

620

RETURN Q1

U.S. Patent Jan. 15, 2008 Sheet 6 of 9 US 7,319,997 B1

FIG. 7 30

705

CREATE WORKTABLES
51, 52, S3, S4

FOR EACH ROW IN T1.

ADD ROW TO S . ADD ROW TO S3

LOOP
FOR EACH ROW IN T2:

ADD HOW TO S2 . ADD ROW TO S4

LOOP

U.S. Patent Jan. 15, 2008 Sheet 7 of 9 US 7,319,997 B1

FIG. 8 y

805
CREATE WORKTABLE P1 WITH
PARTITIONED PRIMARY INDEX
81

DEFINE PPI ON P1 SO THAT P1.A
VALUES IN Q1 ARE IN PARTITION 1 (S1)
AND P1.A VALUES NOT IN Q1 ARE IN

PARTITION 2 (S3)

81
INSERT SELECT FROM T1 INTO P1

820
CREATE WORKTABLE P2 WITH
PARTITIONED PRIMARY INDEX
82

DEFINE PPI ON P2 SO THAT P2.B
VALUES IN Q1 ARE IN PARTITION 1 (S2)
AND P2.B VALUES NOT IN Q1 ARE IN

PARTITION 2 (S4)

83
INGERT SELECT FROM T2 INTO P2

0

0

<

0

U.S. Patent Jan. 15, 2008 Sheet 8 of 9 US 7,319,997 B1

430 ~
JOIN S1 AND S2 ON
EQUALITY CONDITION
STORE RESULT IN S5
JOIN S3 AND S4 ON
EQUALITY CONDITION

STORE RESULT IN S6

905

910

FIG. 9

915

920

1005

MERGE S5 AND S6
KFI1G. 10 (OPTIONAL)
STORE RESULT
(OPTIONAL)
MAKE RESULT UNIQUE

1020
RETURN RESULT

1010

1015

US 7,319,997 B1

1D ONIAZSILYS LON
1D AG @3141YND >
SMOY 21 = 2S SMOH 61 =75

&N
m 0ed-7 NN o A 0 ONIAJSILYS LON
5 L R e AT NIOPINDI B = O SMOY 11 =£5
7 azl--" |
=
® 10 AG GIHITVND
- SMOH 11 = 1S
E

U.S. Patent
-

L1 °Old

US 7,319,997 Bl

1

DYNAMIC PARTITION ENHANCED
JOINING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s related to the U.S. patent application
Ser. No. 10/862,689 entitled Dynamic Partition Enhanced
Joiming Using A Value-Count Index by Mark Morrs and
Bhashyam Ramesh, filed on even date.

This application 1s related to the U.S. patent application
Ser. No. 10/862,649 entitled Dynamic Partition Enhanced

Inequality Joining Using A Value-Count Index by Mark
Morris and Bhashyam Ramesh, filed on even date.

BACKGROUND

One mmportant feature in relational database system
(RDBMS) i1s the ability to perform queries that join columns
from two or more tables. An example of a query including
a]o1n 1s:

SELECT T1.%, T2.* FROM T1, T2 WHERE T1.A equali-
ty_condition 12.B;

where T1 and T2 are tables, T1.A 1s a column 1n T1, T2.B

1s a column 1n T2, and equality_condition 1s any condition
requiring equality between the operands to the condition.
The example query above will return all of the columns 1n
T1 horizontally concatenated with all of the columns 1n T2,
for rows where T1.A and T2.B satisty the equality condition.
In mathematical terms, this query may be described as a
Cartesian product with a condition or cross product with a
condition.

SUMMARY

In general, 1n one aspect, the mvention features a method
of performing a database query that includes a join on an
equality condition between one or more columns in a {first
table and one or more columns 1n a second table. The first
table and the second table each include zero or more rows.
The method includes defining two or more first-table parti-
tions, where each row 1n the first table appears 1n exactly one
first-table partition. The method includes defining two or
more second-table partitions. Each second-table partition
corresponds to a first-table partition. Each row 1n the second
table appears in exactly one second-table partition. The
method includes performing the join on the first-table par-
tition and the second-table partition for one or more corre-
sponding {irst-table partitions and second-table partition.
Storing the result, and merging the results.

Implementations of the invention may include one or
more of the following. Defining the two or more first-table
partitions and the two or more second-table row sets may
include acquiring first-table-demographic data for the one or
more columns in the first table. The demographic data may
include zero or more first-table-column values. Defining the
two or more first-table partitions and the two or more
second-table row sets may include acquiring second-table-
demographic data for the one or more columns 1n the second
table. The demographic data may include zero or more
second-table-column values. Defining the two or more first-
table partitions and the two or more second-table row sets
may include creating a qualifying set by joining the first
table demographic data and the second table demographic
data on the equality condition. Defining the two or more
first-table partitions and the two or more second-table row

10

15

20

25

30

35

40

45

50

55

60

65

2

sets may include partitioning the first table into the two or
more first-table partitions, using the qualifying set. Defining
the two or more first-table partitions and the two or more
second-table row sets may include partitioning the second
table mto the two or more second-table partitions using the
qualitying set. The demographic data may include one or
more value count indexes. The demographic data may
include one or more compressed value lists. The demo-
graphic data includes one or more column statistics.

Partitioning the first table into the two or more first-table
partitions may include creating two or more work tables.
Partitioning the first table into the two or more first-table
partitions may include selecting a target work table based on
the qualitying set and one or more first-table-row values for
cach first-table row. Partitioning the first table 1nto the two
or more {irst-table partitions may include placing the first-
table row 1n the target work table for each first-table row.
Selecting a target work table may include determining
whether one of the first-table-row values 1s 1n the qualifying
set. Partitioning the first table into the two or more first-table
partitions may include creating a work table with a parti-
tioned-primary index. Partitioning the first table 1nto the two
or more first-table partitions may include defiming the par-
titioned-primary index based on the qualifying set. Parti-
tioning the first table into the two or more first-table parti-
tions may include populating the work table from the first
table. Defining the partitioned-primary index based on the
qualifying set may include defining the partitioned-primary
index so that rows with first-table-column values 1n the
qualitying set are placed in a first partition. Defining the
partitioned-primary index based on the qualifying set may
include defining the partitioned-primary index so that rows
with first-table-column values that are not in the qualifying
set are placed 1n a second partition.

Partitioning the second table 1into the two or more second-
table partitions may include creating two or more work
tables. Partitioning the second table into the two or more
second-table partitions may include, for each second-table
row: selecting a target work table based on the qualifying set
and one or more second-table-row values. Partitioning the
second table into the two or more second-table partitions
may 1nclude, for each second-table row: placing the second-
table row 1n the target work table. Selecting a target work
table may include determining whether one of the second-
table-row values 1s 1n the qualifying set.

Partitioning the second table into the two or more second-
table partitions may include creating a work table with a
partitioned-primary index. Partitioning the second table into
the two or more second-table partitions may include defining
the partitioned-primary index based on the qualifying set.
Partitioning the second table into the two or more second-
table partitions may include populating the work table from
the second table. Defining the partitioned-primary index
based on the qualifying set may include defining the parti-
tioned-primary index so that rows with second-table-column
values 1n the qualifying set are placed 1n a first partition and
rows with second-table-column values not 1 the qualifying
set are placed 1n a second partition.

In general, 1n another aspect, the invention features a
computer program, that i1s stored on a tangible storage
medium. The computer program 1s for use 1n performing a
database query that includes a join on an equality condition
between one or more columns 1n a first table and one or more
columns 1n a second table. The first table and the second
table each include zero or more rows. The computer pro-
gram 1ncludes executable instructions. The executable
instructions cause a computer to define two or more first-

US 7,319,997 Bl

3

table partitions. Each row in the first table appears in exactly
one first-table partition. The executable 1nstructions cause a
computer to define two or more second-table partitions.
Each second-table partition corresponds to a first-table par-
tition. Each row in the second table appears in exactly one 5
second-table partition. The executable instructions cause a
computer to perform the join on the first-table partition and
the second-table partition for one or more corresponding
first-table partitions and second-table partitions. The execut-
able 1nstructions cause a computer to store a result for one 10
or more corresponding first-table partitions and second-table
partitions. The executable instructions cause a computer to
merge the results.

In general, 1n another aspect, the invention features a
database system that includes a massively parallel process- 15
ing system. The massively parallel processing system
includes one or more nodes, a plurality of CPUs, a plurality
of data storage facilities, and a process for execution on the
massively parallel processing system for performing a data-
base query including a join on an equality condition between 20
one or more columns 1n a first table and one or more columns
in a second table. Each of the one or more nodes provides
access to one or more CPUs. Each of the one or more CPUs
provide access to one or more data storage facilities. The
first table and the second table each include zero or more 25
rows. The process includes defining two or more first-table
partitions, where each row in the first table appears in
exactly one first-table partition. The process includes defin-
ing two or more second-table partitions. Each second-table
partition corresponds to a first-table partition. Each row in 30
the second table appears 1n exactly one second-table parti-
tion. The process includes, for one or more corresponding
first-table partitions and second-table partitions: performing
the join on the first-table partition and the second-table
partition, storing the result, and merging the results. 35

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram of a node of a database system.

FIG. 2 1s a block diagram of a parsing engine. 40

FIG. 3 1s a flow chart a flow chart of a parser.

FIG. 4 1s a flow chart of a system for performing a join.

FIG. 5 1s a flow chart of a system for determining if
demographic data exists for columns.

FIG. 6 1s a flow chart of a system for joining demographic 45
data.

FIG. 7 1s a flow chart of a system for partitioning join
tables.

FIG. 8 1s a flow chart of a system for partitioning join
tables. 50
FIG. 9 1s a flow chart of a system for joining partitioned

tables.

FIG. 10 1s a flow chart of a system for merging.

FIG. 11 1s a illustration of a Vinh diagram of the system
for performing a join. 55

DETAILED DESCRIPTION

The techniques for performing joins disclosed herein have
particular application, but are not limited, to large databases 60
that might contain many millions or billions of records
managed by a database system (“DBS”) 100, such as a
Teradata Active Data Warehousing System available from
NCR Corporation. FIG. 1 shows a sample architecture for
one node 105, of the DBS 100. The DBS node 105, includes 65
one or more processing modules 110, .. connected by a
network 115, that manage the storage and retrieval of data in

4

data-storage facilities 120, .. Each of the processing
modules 110, . may be one or more physical processors
or each may be a virtual processor, with one or more virtual
processors running on one or more physical processors.

For the case 1n which one or more virtual processors are
running on a single physical processor, the single physical
processor swaps between the set of N virtual processors.

For the case 1in which N virtual processors are running on
an M-processor node, the node’s operating system schedules
the N wvirtual processors to run on 1ts set of M physical
processors. If there are 4 virtual processors and 4 physical
processors, then typically each virtual processor would run
on 1ts own physical processor. I1 there are 8 virtual proces-
sors and 4 physical processors, the operating system would
schedule the 8 wvirtual processors against the 4 physical

processors, in which case swapping of the virtual processors
would occur.

Each of the processing modules 110, ,, manages a
portion of a database that 1s stored in a corresponding one of
the data-storage facilities 120, .. Each of the data-storage
facilities 120, ,, includes one or more disk drives. The
DBS may include multiple nodes 105, , 1n addition to the
illustrated node 105,, connected by extending the network

115.

The system stores data in one or more tables in the
data-storage facilities 120, .. Therows 125, _ ofthe
tables are stored across multiple data-storage facilities
120, ,,to ensure that the system workload 1s distributed
evenly across the processing modules 110, .. A parsing
engine 130 organizes the storage of data and the distribution
of table rows 125, . among the processing modules
110, .. The parsing engine 130 also coordinates the
retrieval of data from the data-storage facilities 120, ., in
response to queries received from a user at a mainirame 1335
or a client computer 140. The DBS 100 usually receives

queries and commands to build tables 1n a standard format,
such as SQL.

In one implementation, the rows 125, _ are distributed
across the data-storage facilities 120, ., by the parsing
engine 130 in accordance with their primary index. The
primary index defines the columns of the rows that are used
for calculating a hash value. The function that produces the
hash value from the values in the columns specified by the
primary index 1s called the hash function. Some portion,
possibly the entirety, of the hash value 1s designated a “hash
bucket.” The hash buckets are assigned to data-storage
tacilities 120, ., and associated processing modules
110, . by a hash bucket map. The characteristics of the
columns chosen for the primary index determine how evenly
the rows are distributed.

In one example system, the parsing engine 130 1s made up
ol three components: a session control 200, a parser 205, and
a dispatcher 210, as shown in FIG. 2. The session control
200 provides the logon and logofl function. It accepts a
request for authorization to access the database, verifies it,
and then either allows or disallows the access.

Once the session control 200 allows a session to begin, a
user may submit a SQL query, which 1s routed to the parser
205. As illustrated 1in FIG. 3, the parser 205 interprets the
SQL query (block 300), checks 1t for proper SQL syntax
(block 305), evaluates i1t semantically (block 310), and
consults a data dictionary to ensure that all of the objects
specified 1 the SQL query actually exist and that the user
has the authority to perform the request (block 315). Finally,
the parser 205 runs an optimizer (block 320), which devel-
ops the least expensive plan to perform the request.

US 7,319,997 Bl

S

An example system for performing a SQL query including
one or more joins 1s shown in FIG. 4. The system starts and
enters a loop defined by blocks 405 and 410. The system will
loop once for each join 1n the SQL query (block 405). For
example, assume the system receives the following SQL
query.

SELECT T1.%, T2.*, T3.* FROM T1, T2, T3 WHERE
T1.A equahty_condltlon 12.B AND T1.A equality condition
13.C;

where T1, T2, and T3 are tables, T1.A 1s a column 1n T1,
12.B 1s a column 1n T2, and T3.C 1s a column 1n T3. In one
example implementation, the system will first perform a join
between 11 and T2 on the condition T1.A equality_condi-
tion T2.B. Next, the system will perform a join between T1
and T3 on the condition T1.A equality_condition T3.C.
Finally, the system will perform a join of the two previous
results. In this example implementation, the query 1s decom-

posed into three join operations and the system will loop
(block 405 and 410) three times.

Another example system for performing a SQL query
including one or more joins performs the example SQL
query above using two joins. The system performs a join
between 11 and T2 on the condition T1.A equality_condi-
tion T2.B and stores the result. In one example 1implemen-
tation, the result 1s stored 1n a work table or a spool table S1.
The system then performs a join between T3 and S1 on the
condition S1.A equality_condition T3.C.

Within the loop defined by blocks 405 and 410 the system
determines 1if there 1s demographic data for all join columns
(block 415), where demographic data 1s described below. It
there 1s not demographic data for all join columns the system

evaluates one or more other methods to perform the join
between the two columns (block 420) and proceeds to block
410.

An example system for determiming 1f there 1s demo-
graphic data for all join columns (block 415) 1s shown 1n
FIG. 5. The system enters a loop defined by block 5035 and
510 and loops once for each column involved 1n the join.
Within the loop, the system determines if there 1s a value-
count index (VCI) for the column (block 515). One example
V(I 1s an aggregate join index that 1s automatically updated
each time a value 1n indexed column 1s added, deleted, or
altered. The VCI typically contains two columns: a value
column and a count column. The value column represents
the value 1n the indexed column and the count column
represents the number of occurrences of the value in the
column. In certain example implementations, the VCI 1s the
preferred demographic data to use when performing the join

operation due to 1ts accuracy. Therefore, if the column has
a VCI 1t 1s used (block 520) and the system proceeds to block
510.

If there 1s no VCI for the column, the system determines
if there 1s a compressed value list for the column (block
525). An example compressed value list 1s a set of one or
more values representing values 1n a column. In certain
example 1mplementations, the compressed value list 1s
stored 1n the table header. In certain example implementa-
tions, values appearing 1n the compressed value list
appeared 1n a minimum number or a percentage of rows 1n
the column the last time the compressed value list was
created or updated. In these implementations, the DBS 100
updates the compressed value list from time to time to reflect
the frequently occurring values 1n the column. If the com-
pressed value list 1s not updated continuously, 1t may contain
one or more values to do not appear 1n the column. Likewise,
it may not contain one or more values that appear frequently

10

15

20

25

30

35

40

45

50

55

60

65

6

in the column. It there 1s a compressed value list the system
will use the compressed value list for the column (block 530)
and proceed to block 510.

If there 1s not a compressed value list for the column, the
system will then determine 1f there are statistics for the
column (block 535). The statistics represent the values 1n the
column and may track the number or percentage of rows 1n
which each of the values appeared the last time the statistics
were created or updated. In certamn example systems, the
statistics may be updated from time to time to assist the DBS
100 in performing SQL queries or other operations. If the
statistics not updated continuously, they may contain one or
more values that do not appear 1n the column. Likewise,
statistics may not contain one or more values that appear
frequently in the column. If there are statistics for the
column the system uses the statistics for the column (block
540) and proceeds to block 510.

If there 1s not a VCI for the column (block 513), a
compressed value list for the column (block 5235), or statis-
tics for the column (block 535), the system returns “N”
(block 545) and ends. If, however, there 1s at least one source
of demographic data for each of the columns the system will
return Y™ (block 550).

Returning to FIG. 4, 1f there 1s demographic data for all
join columns the system joins the demographic data for the
join columns (block 425). FIG. 6 shows an example system
for joiming the demographic data for the join columns. The

system receives demographic data for the first column (e.g.,
T1.A) (block 605) and demographic data for the second

column (e.g., T2.B) (block 610). Regardless of the source of
demographic data selected for each column 1n block 415, the
demographic data will contain zero or more values that
appear 1n each of the columns. The system then determines
which demographic-data values for the join columns satisiy
the join condition (block 615). For example, assume the
system recerves the query:

SELECT T1.*, T2.*, T3.* FROM T1, T2, T3 WHERE
T1.A equahty_condltlon 1T2.B AND T1.A equahty condition
13.C;

and 1s currently evaluating the join condition “T1.A equali-
ty_condition 1T2.B.” The system receives a set of zero or
more demographic-data values for T1.A (block 605) and
zero or more demographic-data values appearing 1n 1T2.B
(block 610) and determines which of these values satisly
“equality_condition” (block 615). The system returns the
values that satisty the equality_condition as qualifying set

Q1 (block 620).

Returning to FIG. 4, after joining the demographic data
(block 425), the system partitions the join tables mnto row
sets (block 430). An example system for partitioning the join
tables (block 430) 1s shown in FIG. 7. The system creates
four work tables S1, S2, S3, and S4 (block 705) for
partitioning each of the tables T1 and T2 into two partitions.
In other example systems, the system 425 partitions each of
the tables into R partitions and creates 2R work tables to
represent the partitions.

After creating the worktables (block 705), the system
enters a loop defined by block 710 and 715. The system
loops once for each row 1 T1 (block 710). In certain
example systems, this loop 1s implemented as a scan of T1.
Within the loop, the system determines 1f the value 1n
column A of the row 1s 1n Q1 (block 720) and, 1f so, the
system adds the row to S1 (block 725), otherwise the system
adds the row to S3 (block 730). In certain example 1mple-
mentations, block 720 may be implemented by determining
if T1.A 1s 1n an IN list, where the IN list 1s populated with

US 7,319,997 Bl

7

the values from Q1. Although this example implementation
partitions T1 into two partitions, 1n general, the system may
partition T1 into any number of partitions. Also, although the
example implementation adds the entire row from 11 to S1

or S3, other example implementations add only a subset of >

the columns from T1 to S1 or S3.

After partitioning 11, the system proceeds to block 735
where 1t enters a loop defined by block 735 and 740. The
system loops once for each row 1n 12 (block 733). In certain
example systems, this loop 1s implemented as a scan of T2.
Within the loop, the system determines if the value in
column B 1n the row 1s 1n Q1 (block 745) and, 1t so, the
system adds the row to S2 (block 750), otherwise the system
adds the row to S4 (block 755). In certain example 1imple-
mentations, block 745 may be implemented by determiming
if T2.B 1s 1n an IN list, where the IN list 1s populated with
the values from Q1. Although this example implementation
partitions T2 into two partitions, 1n general, the system may
partition T2 mnto N partitions. The N partitions of T2
correspond to the N partitions of T1 because the same
operation 1s performed to partition the tables (e.g., deter-
mimng 11 the values 1n a column appear 1n a IN list populated
with values from Q1). Also, although the example 1mple-
mentation adds the entire row from T2 to S2 or S4, other
example implementations add only a subset of the columns

from T2 to S1 or S3.

Another example system for partitioning the join tables
(block 430) 1s shown m FIG. 8. The system creates a
worktable P1 with a partitioned primary index (PPI) (block
805). A PPI 1s mechanism for arranging and segregating the
table rows based on the value of the primary index. The
system defines the PPI for P1 so that rows where P1.A 1s 1n
Q1 are placed 1n a first partition (S1) and rows where P2.A
1s not 1n Q1 are placed 1n a second partition (S3) (block 810).
The system then performs an INSERT SELECT from T1
into P1 (block 815), resulting mn a partitioned T1 1 P1.
Although this example implementation partitions 11 1nto
two partitions, in general, the system may partition T1 1nto
an arbitrary number of partitions. Also, although the
example implementation adds entire rows of T1 to P1, other

example implementations add only a subset of the columns
from T1 into P1.

After partitioning 11, the example system creates a work-
table P2 with a partitioned primary index (block 820), and
defines the partitioned primary index so that rows where
P2.B 1s 1 Q1 are placed 1n a first partition (S2) and rows

where P2.B are not mn Q1 are placed 1n a second partition
(S4) (block 825). The system then performs an INSERT

SELECT from T2 mto P2 (block 825), resulting in a
partitioned T2 1n P2. Although this example implementation
partitions 12 into two partitions, 1n general, the system may
partition T2 1nto an arbitrary number of partitions. As 1n the
previous example system for partitioming T1 and T2, each
table has an equal number of partitions, because the same
operation 1s performed on each table to create the partitions.
Also, although the example implementation adds the entire
rows from 12 to P2, other example implementations add
only a subset of the columns from T2 into P2.

Returming to FIG. 4, after partitioning the join tables, the
system jo1ins corresponding partitions 1n the partitioned join
tables (block 435). An example system for joining the
partitioned join tables 1s shown 1n FIG. 9. The system joins
S1 and S2 on the equality condition (e.g., SELECT S1.%,
S2.%* FROM S1, S2 WHERE S1.A equality_condition S2.B)
(block 905) and stores the result in worktable S5. The system
joins S3 and S4 on the equality condition (e.g., SELECT

10

15

20

25

30

35

40

45

50

55

60

65

8

S3.%, S4.%* FROM 53, S4 WHERE S3.A equality_condition
S4.B) (block 915) and stores the result in S6 (block 920).

Returning to FIG. 4, after joining the corresponding
partitions in the partitioned tables, the system merges the
results to create a final result for the join (block 440). FIG.
10 shows an example system for merging the results to
create a final result for the join. The system merges work-
tables S5 and S6 (block 1005). In one example implemen-
tation, the system vertically concatenates the rows of S5 and
S6. In some example implementations, the system may sort
(block 1010) and make the resulting table unique for one or
more column values (block 1015). Finally, the system
returns the resulting table (block 1020).

An alternative representation of an example system for
performing a SQL query including one or more joins 1s
shown 1n FIG. 11 1n diagram form.

The foregoing description of the preferred embodiment of
the mvention has been presented for the purposes of illus-
tration and description. It 1s not intended to be exhaustive or
to limit the invention to the precise form disclosed. Many
modifications and variations are possible 1 light of the
above teaching. It 1s intended that the scope of the mnvention
be limited not by this detailed description, but rather by the
claims appended hereto.

What 1s claimed 1s:

1. A method of performing a database query including a
101n on an equality condition between one or more columns
in a first table and one or more columns 1n a second table,
cach of the first table and the second table including zero or
more rows, the method including:

defining two or more first-table partitions, where each row

in the first table appears 1 exactly one first-table
partition;

defining two or more second-table partitions, each sec-

ond-table partition corresponding to a first-table parti-
tion, and where each row 1n the second table appears 1n
exactly one second-table partition;

where defining the two or more first-table partitions and

the two or more second-table partitions icludes:

acquiring first-table-demographic data for the one or
more columuns 1n the first table, the demographic data
including zero or more first-table-column values;

acquiring second-table-demographic data for the one or
more columns 1n the second table, the demographic
data including zero or more second-table-column
values;

creating a qualifying set by joining the first table
demographic data and the second table demographic
data on the equality condition;

partitioning the first table into the two or more first-
table partitions, using the qualifying set; and

partitioning the second table into the two or more
second-table partitions, using the qualifying set; and

for one or more corresponding first-table partitions and
second-table partitions:

performing the join on the first-table partition and the
second-table partition; and

storing the result; and
merging the results.

2. The method of claim 1, where the demographic data
includes one or more value count indexes.

3. The method of claim 1, where the demographic data
includes one or more compressed value lists.

4. The method of claim 1, where the demographic data
includes one or more column statistics.

US 7,319,997 Bl

9

5. The method of claim 1, where partitioning the first table
into the two or more first-table partitions includes:
creating two or more work tables;
for each first-table row:
selecting a target work table based on the qualifying set
and one or more first-table-row values; and
placing the first-table row in the target work table.

6. The method of claim 35, where selecting a target work
table 1includes:
determining whether one of the first-table-row values 1s in
the qualilying set.
7. The method of claim 1, where partitioning the first table
into the two or more first-table partitions includes:
creating a work table with a partitioned-primary index;
defining the partitioned-primary index based on the quali-
fying set; and
populating the work table from the first table.
8. The method of claim 7, where defining the partitioned-
primary index based on the qualifying set includes:
defiming the partitioned-primary index so that:
rows with {first-table-column values 1n the qualifying
set are placed 1n a first partition; and
rows with first-table-column values not 1n the qualify-
ing set are placed 1n a second partition.
9. The method of claim 1, where partitioning the second
table 1nto the two or more second-table partitions 1ncludes:

creating two or more work tables; and
for each second-table row:
selecting a target work table based on the qualifying set
and one or more second-table-row values; and
placing the second-table row 1n the target work table.
10. The method of claim 9, where selecting a target work
table 1includes:
determining whether one of the second-table-row values
1s 1n the qualilying set.
11. The method of claim 1, where partitioning the second
table 1nto the two or more second-table partitions 1ncludes:
creating a work table with a partitioned-primary index;
defining the partitioned-primary index based on the quali-
tying set; and
populating the work table from the second table.
12. The method of claim 11, where defining the parti-
tioned-primary mdex based on the qualifying set includes:
defiming the partitioned-primary index so that;
rows with second-table-column values 1n the qualitying
set are placed 1n a first partition; and

rows with second-table-column values not 1n the quali-
fying set are placed 1n a second partition.

13. A computer program, stored on a tangible storage
medium, for use in performing a database query including a
j01n on an equality condition between one or more columns
in a first table and one or more columns 1n a second table,
cach of the first table and the second table including zero or
more rows, the computer program including executable
instructions that cause a computer to:

define two or more first-table partitions, where each row

in the first table appears 1n exactly one first-table
partition;

define two or more second-table partitions, each second-

table partition corresponding to a first-table partition,
and where each row in the second table appears 1n
exactly one second-table partition;

where the executable mstructions that cause the computer

to define the two or more first-table partitions and the
two or more second-table partitions further cause the
computer 1o:

10

15

20

25

30

35

40

45

50

55

60

65

10

acquire {irst-table-demographic data for the one or
more columuns 1n the first table, the demographic data
including zero or more first-table-column values;

acquire second-table-demographic data for the one or
more columns in the second table, the demographic
data including zero or more second-table-column
values;

create a qualifying set by joining the first table demo-
graphic data and the second table demographic data
on the equality condition; and

partition the first table into the two or more first-table
partitions, using the qualifying set;

partition the second table into the two or more second-
table partitions, using the qualifying set; and

for one or more corresponding first-table partitions and

second-table partitions:

perform the jomn on the first-table partition and the
second-table partition; and

store a result; and

merge the results.

14. The computer program of claim 13, where the demo-
graphic data includes one or more value count indexes.

15. The computer program of claim 13, where the demo-
graphic data includes one or more compressed value lists.

16. The computer program of claim 13, where the demo-
graphic data includes one or more column statistics.

17. The computer program of claim 13, where the execut-
able 1nstructions that cause the computer to partition the first
table 1into the two or more first-table partitions further cause
the computer to:

create two or more work tables;

for each first-table row:

select a target work table based on the qualifying set
and one or more first-table-row values; and
place the first-table row 1n the target work table.

18. The computer program of claim 17, where the execut-
able instructions that cause the computer to select a target
work table further cause the computer to:

determine whether one of the first-table-row values 1s 1n

the qualifying set.

19. The computer program of claim 13, where the execut-
able 1nstructions that cause the computer to partition the first
table 1nto the two or more first-table partitions further cause
the computer to:

create a work table with a partitioned-primary index;

define the partitioned-primary index based on the quali-

tying set; and

populate the work table from the first table.

20. The computer program of claim 19, where the execut-
able 1nstructions that cause the computer to define the
partitioned-primary index based on the qualifying set further
cause the computer to:

defining the partitioned-primary index so that:

rows with first-table-column values in the qualifying
set are placed 1n a first partition; and

rows with first-table-column values not 1n the qualify-
ing set are placed 1 a second partition.

21. The computer program of claim 13, where the execut-
able instructions that cause the computer to partition the
second table into the two or more second-table partitions
further cause the computer to:

create two or more work tables;

for each second-table row:

select a target work table based on the qualifying set
and one or more second-table-row values; and

place the second-table row 1n the target work table.

US 7,319,997 Bl

11

22. The computer program of claim 21, where the execut-
able instructions that cause the computer to select a target
work table further cause the computer to:

determine whether one of the second-table-row values 1s
in the qualifying set.

23. The computer program of claim 13, where the execut-
able instructions that cause the computer to partition the
second table into the two or more second-table partitions
turther cause the computer to:

create a work table with a partitioned-primary index;

define the partitioned-primary imndex based on the quali-
ftying set; and

populate the work table from the second table.

24. The computer program of claim 23, where the execut-
able mstructions that cause the computer to define the
partitioned-primary index based on the qualitying set further
cause the computer to:

define the partitioned-primary index so that:
rows with second-table-column values 1n the qualifying

set are placed 1n a first partition; and
rows with second-table-column values not 1n the quali-
fying set are placed 1n a second partition.

25. A database system including:

a massively parallel processing system including:

one or more nodes;

a plurality of CPUs, each of the one or more nodes
providing access to one or more CPUs;

a plurality of data storage facilities each of the one or
more CPUs providing access to one or more data
storage facilities;

a process for execution on the massively parallel process-
ing system for performing a database query including a
join on an equality condition between one or more
columns 1n a first table and one or more columns 1n a
second table, each of the first table and the second table
including zero or more rows, the process including:
defining two or more first-table partitions, where each

row 1n the first table appears 1n exactly one first-table
partition;
defining two or more second-table partitions, each
second-table partition corresponding to a first-table
partition, and where each row 1n the second table
appears 1n exactly one second-table partition;
where defining the two or more first-table partitions and
the two or more second-table partitions includes:
acquiring first-table-demographic data for the one or
more columns 1n the first table, the demographic
data including zero or more first-table-column
values;
acquiring second-table-demographic data for the one
or more columns in the second table, the demo-
graphic data including zero or more second-table-
column values;
creating a qualifying set by joining the first table
demographic data and the second table demo-
graphic data on the equality condition;
partitioning the first table mto the two or more
first-table partitions, using the qualifying set; and
partitioning the second table into the two or more
second-table partitions, using the qualifying set;
and
for one or more corresponding first-table partitions and
second-table partitions:
performing the join on the first-table partition and the
second-table partition;

10

15

20

25

30

35

40

45

50

55

60

12

storing the result; and
merging the results.
26. The database system of claim 25, where the demo-
graphic data includes one or more value count indexes.
277. The database system of claim 25, where the demo-
graphic data includes one or more compressed value lists.
28. The database system of claim 25, where the demo-

graphic data includes one or more column statistics.

29. The database system of claim 25, where partitioning,
the first table into the two or more first-table partitions
includes:

creating two or more work tables;

for each first-table row:

selecting a target work table based on the qualifying set
and one or more first-table-row values; and
placing the first-table row 1n the target work table.

30. The database system of claim 29, where selecting a
target work table 1ncludes:

determining whether one of the first-table-row values 1s 1n

the qualifying set.

31. The database system of claim 25, where partitioning,
the first table into the two or more first-table partitions
includes:

creating a work table with a partitioned-primary index;

defining the partitioned-primary index based on the quali-

tying set; and

populating the work table from the first table.

32. The database system of claim 25, where defining the
partitioned-primary 1index based on the qualilying set
includes:

defining the partitioned-primary index so that:

rows with {first-table-column values 1n the qualifying
set are placed 1n a first partition; and

rows with first-table-column values not in the qualify-
ing set are placed 1n a second partition.

33. The database system of claim 25, where partitioning,
the second table 1nto the two or more second-table partitions
includes:

creating two or more work tables;

for each second-table row:

selecting a target work table based on the qualifying set
and one or more second-table-row values; and
placing the second-table row 1n the target work table.

34. The database system of claim 33, where selecting a
target work table includes:

determining whether one of the second-table-row values

1s 1n the qualilying set.

35. The database system of claim 25, where partitioning
the second table into the two or more second-table partitions
includes:

creating a work table with a partitioned-primary index;

defining the partitioned-primary index based on the quali-

tying set; and

populating the work table from the second table.

36. The database system of claim 35, where defining the
partitioned-primary 1index based on the qualilying set
includes:

defining the partitioned-primary index so that:

rows with second-table-column values 1n the qualitying
set are placed 1n a first partition; and

rows with second-table-column values not 1n the quali-
tying set are placed 1n a second partition.

	Front Page
	Drawings
	Specification
	Claims

