United States Patent

US007318169B2

(12) (10) Patent No.: US 7.318,169 B2
Czajkowski 45) Date of Patent: Jan. 8, 2008
(54) FAULT TOLERANT COMPUTER 6,754,846 B2* 6/2004 Rasmussen et al. 714/11
2005/0055607 Al* 3/2005 Czakowsk: et al. 714/25
(76) Inventor: David CZ&jkOWSkL 332 Alviso ‘,ﬁ,[ay:J 2005/0138485 Al* 6/2005 Osecky et al. 714/48
Encinitas, CA (US) 92024 2005/0172196 Al* 82005 Osecky et al. 714/746
(*) Notice: Subject to any disclaimer, the term of this FORBIGN PATENT DOCUMENTS
patent 1s extended or adjusted under 35 GB 2 903 614 * 9/1982
U.S.C. 154(b) by 372 days.
(b) by S OTHER PUBLICATIONS
(21) Appl. No.: 10/435,626 Mukherjee et al.; “Detailed Design and Evaluation of Redundant
_ Multithreading Alternatives”; International Conference on Com-
(22) Filed: May 6, 2003 puter Architecture, Proceedings of the 29" Annual International
Symposium on Computer Architecture; published 2002; pp.
(65) Prior Publication Data 99-110.*
Reimnhardt et al.; *““Iransient Fault Detection Via Simultaneous
US 2004/0153747 Al Aug. 5, 2004 Multithreading™; International conference on Computer Architec-
o ture, Proceedings of the 27th Annual International Symposium on
Related U.S. Application Data Computer Architecture; published 2000; pp. 25-36.%
(60) Provisional appliqation No. '60/442,,727,, filed on Jan. * cited by examiner
28, 2003, provisional application No. 60/408,203,
filed on Sep. 5, 2002, provisional application No. Primary Examiner—Scott Baderman
60/380,476, filed on May 15, 2002. Assistant Examiner—Joshua Lohn
(74) Attorney, Agent, or Firm—The Nath Law Group;
(51) Int. CL Robert P. Cogan
GO6l’ 11/00 (2006.01)
(52) U.S. CLl oo, 714/17; 714/21 (57) ABSTRACT
(58) Field of Classification Search 714/16, _ _
714/17. 21 827 A new method for the detection and correction of errors or
See application file for complete search histjory.j faults induced 1n a computer or microprocessor caused by
external sources of single event upsets (SEU). This method
(56) References Cited 1s named Time-Triple Modular Redundancy (TTMR) and 1s
P Y

U.S. PATENT DOCUMENTS

based upon the 1dea that very long instruction word (VLIW)
style microprocessors provide externally controllable paral-

4,132,975 A * 1/1979 Koike .ooevvvvereeeeeinnnnn.., 714/797 lel computing elements which can be used to combine time
4616312 A * 10/1986 Uebelcccoeevevvvvnnnnn. 714/11 redundant and spatially redundant fault error detection and
4,670,880 A * 6/1987 Jitsukawa et al. 7147797 correction techniques. This method is completed in a single
4,817,094 A : 31989 Lebizay et al. 7147797 microprocessor, which substitute for the traditional multi-
4,943,969 A 7/1990 Criswell ...coovviieni.n. 7__h4/820 processor redundancy techniques, such as Triple Modular
4,959,836 A * 9/1990 Berard et al. 714/822 Redundancy (TMR)
5,235,220 A * 8/1993 Takizawa 326/35 M e
5414,722 A * 5/1995 Tollumcce.... 714/822
5,706,423 A * 1/1998 Sugimoto 714/49 7 Claims, 4 Drawing Sheets
Instruction|
....... et | IRISETUCHION
| 430
L

400
E
%

: Software . Instruction| : - 408
i Instructions 2\ A1 VLIW CPU

a4 Instruction -ALU 4o 412
\ A2 :
A3 _.-— ALU #3 416

Instruction

Compare
i |A1-A2-A3

Branch or
Compare 420

#1

FIG. 1

. Patent an. 8, 2008 Sheet 1 of 4

1

e
ol

.
-

i

i,
whak

Lot

-t

whadd

o

p o r

KRR SR T

US 7,318,169 B2

1
1

rer— ——w s L

Floating-Point
Capabilities

Multiplier
Uni

> |
© O
— O Cc .
¥ O ;
:_ID;
<
O
—
D O
Eg)c
= 5 2
N
<

US 7,318,169 B2

g1
IU‘

“ m<
R uoljoniisu|

Y N PIb

E |ﬂ suoponisu|
uonoN.ISU| 0y 3lem}jos

8%

Sheet 2 of 4

cly

NdO MI'IA

30V

001 *

Jan. 8, 2008

Oy

0ch 00t
1 UONONUISU| |

e OPY
-uoljjonlisui

--

U.S. Patent

¢ Old

US 7,318,169 B2

Sheet 3 of 4

Jan. 8, 2008

U.S. Patent

9Cs

CCS

8IS

ClS

306

c0s

CH NIV

NdO MI'TA

.....................
.....................

__._.“.“.“_,"““m.“__,.mm,“..mwm.mmmw.__,.mmmm“.“m__.mmMm._mm.n_mm.“.“mmm.__.m.m“m"_.u.w.“."m.m___...“._m.m“.”_". eI e e O _H. O 3 ._ H.m C —

” _L O _ “_.U _1: ”_.w L _

O r— e <7 'V |
S ————— |

e————

0cCS

4

| LY 91¢ sSUuoljonijsuj

: 9l1BM]1]O0S
PrrrrrrrT e
905 —/ » 9ouUaIdIp

L 0€S uo Ajuo

: Uononasy| paiinbay

‘uoljonuisuj

¢ Old

T4

US 7,318,169 B2

Sheet 4 of 4

Jan. 8, 2008

U.S. Patent

§]00 I, JudurdoaAa(
d18M]J0S [edIdAT,

719 |||\

Z19 pd

019 Il\

309 |\

009 |~

b09 pd

c09 |I|\

]
JMPON
31grINIIX7]

S[NPON JoYUI']

ANPOJY 1931q0

J[NPOJA IS[QUIISSY

3INPOJA 0IN0Y
IJQUISSSY

dmMpoN Iopidwo) H

SINPOIA]
20IN0S PO)

S[00 [, JUWdOIAd(]
o1EMIJOS HIALLL

DOTN

JATQUIASS -]

dNLL Y
- 819

U

Hmmm&oo-@ﬂ

dNLL

919

¥ Ola

Us 7,318,169 B2

1
FAULI TOLERANT COMPUTER

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Patent
Application No. 60/380,476, filed on May 15, 2002 now

abandoned U.S. Provisional Patent Application No. 60/408,
203, filed on Sep. 5, 2002, entitled “Functional Interrupt
Mitigation for Fault Tolerant Computer,” naming David

Czajkowski as first named inventor, and U.S. Provisional
Patent No. 60/442.,727, filed on Jan. 28, 2003, each of which
1s hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

During use, microprocessors may be exposed to external
conditions which may cause internal data bits within or
being processed by the microprocessor to change. Com-
monly, these events are classified as single event upsets
(SEU). Conditions giving rise to SEU may include ambient
radiation (including protons, x-rays, neutrons, cosmic rays,
clectrons, alpha partciles, etc.), electrical noise (including
voltage spikes, electromagnetic interference, wireless high
frequency signals, etc.), and/or improper sequencing of
clectronic signals or other similar events. The eflects of SEU
conditions can include the processing of incorrect data or the
microprocessor may temporarily or permanent hang, which
may be reference to as single event functional interrupt
(SEFI), for a temporary or permanent condition.

A number of solutions to avoid or correct for these events
have been developed, and include modifying the manufac-
turing process for the microprocessor. For example, micro-
processor may utilize temporal redundancy or spatial redun-
dancy 1n an effort to mitigate the likelihood of SEUs. While
these systems have proven somewhat eflective in reducing
or avoiding SEU and SEFI events, several shortcomings
have been 1dentified. For example, radiation tolerant inte-
grated circuits (IC) processes historically lag commercial
devices by two to three generations. More specifically,
today’s radiation-tolerant IC production processes produce
devices utilizing 0.35 micrometer geometries while non-
radiation tolerant devices typically utilize 0.13 micro-meter
geometry. The eflect of the larger geometry 1s much slower
performance and higher power consumption for the micro-
Processor.

In light of the foregoing, there 1s an ongoing need for high
performance, low power consumption radiation tolerant
systems and devices.

BRIEF SUMMARY OF THE

INVENTION

The present application discloses fault tolerant computer
systems and method of use. In one embodiment, a computer
system with improved fault tolerance from microprocessor
data errors 1s disclosed and includes a microprocessor, a
fault tolerant software routine configured to send a first
instruction and at least a second instruction to the micro-
processor, the first and at least the second 1nstructions being
identical and spatially separated from functional computa-
tional units of the VLIW microprocessor 1n at different clock
cycles, a first and at least a second memory device 1n
communication with the microprocessor, the first memory
device configured to store the first instruction, the second
memory device configured to store at least the second
istruction, a soltware instruction to compare the {irst

10

15

20

25

30

35

40

45

50

55

60

65

2

instruction to at least the second instruction, and a compari-
tor to compare the first instruction to the second instruction.

In another embodiment, a software and hardware com-
puter system with improved fault tolerance from micropro-
cessor data errors 1s disclosed and includes a very long
istruction word microprocessor, a fault tolerant software
routine comprising a first instruction and a second 1nstruc-
tion, each inserted into two spatially separate functional
computational units 1 the VLIW microprocessor at two
different clock cycles and stored 1n a memory device 1n
communication with the microprocessor, the first and second
instructions being i1dentical, a software instruction to com-
pare the first and second mstruction in the memory device in
communication with a VLIW microprocessor compare or
branch units, and configured to perform an action 1f the first
and second instruction match, the fault tolerant software
routine comprising a third inserted mnto a third spatially
separate functional computational units 1n the VLIW micro-
processor at a third different clock cycles and stored 1n a
third memory device in communication with the micropro-
cessor, the first, second, and third instructions being 1denti-
cal, and the software 1nstruction to compare the first, second,
and third mstructions 1n the memory devices in communi-
cation with a VLIW microprocessor compare or branch
units, and configured to perform an action 1f any of the first,
second and third instructions match.

The present application further discloses a method of
processing data in a fault tolerant computer system and
includes generating a first instruction at a first time interval,
generating a second instruction identical to the first mstruc-
tion at a second time interval, generating a third mstruction
identical to the first and second instructions at a third time
interval, comparing the first, second and third instructions,
matching anyone of the first, second, or third instructions to
cach other, and performing an action based on the match
instruction.

In another embodiment, a method of processing data 1n a
fault tolerant computer system 1s disclosed and includes
generating a first mstruction at a first time interval, gener-
ating a second istruction identical to the first mstruction at
a second time interval, comparing the first and second
instructions to each other, performing an action based on the
matched first and second instructions, generating a third
instruction identical to the first and second instructions at a
third time 1nterval 1s the first and second instructions do not
match, matching the first, second, and third instructions to
cach other, and performing an action based on a match
between anyone of the first, second, and third instructions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an operational schematic of a microproces-
SOr;

FIG. 2 shows an operational schematic of an embodiment
of a TTMR redundant architecture;

FIG. 3 shows an operational schematic of an embodiment
of a TTMR redundant architecture using a Master/Shadow
architecture; and

FIG. 4 shows an embodiment of a development flowchart
used for developing TTMR software;

DETAILED DESCRIPTION OF TH.
INVENTION

(Ll

The Time-Triple Modular Redundancy (T'TMR) system
disclosed herein 1s an error detection and correction system
capable of being implemented in a very long instruction

Us 7,318,169 B2

3

word (VLIW) microprocessors. In one embodiment, the
VLIW microprocessor includes specialized software rou-
tines known as “ultra long instruction word” and/or “soft-
ware controlled instruction level parallelism.” These soft-
ware routines include parallel functional units configured to
execute 1nstructions simultaneously wherein the instruction
scheduling decisions are moved to the software compiler.
The TTMR systems combines time redundant and spatially
redundant (including TMR and/or Master/Shadow architec-
tures) instruction routines together on a single VLIW micro-
Processor.

FIG. 1 shows a typical VLIW microprocessor. As shown,
the VLIW microprocessor 10 includes a first data path 12
and at least a second data path 14. The first and second data
paths 12, 14, respectively, may operate in parallel. Option-
ally, the first and second data paths 12, 14, respectively, may
operate 1n series. As shown, the first data path 12 includes or
1s otherwise in communication with a first arithmetic logic
unit L1, a first auxiliary logic unit S1, a first multiplier unit
M1, and first floating-point capabilities D1. Similarly, the
second data path 14 includes or i1s otherwise 1n communi-
cation with a second arnithmetic logic unit 1.2, a second
auxiliary logic unit S2, a second multiplier unit M2, and
second floating-point capabilities D2. Exemplary VLIW
microprocessors include, for example, th320C6201 manu-
factured by the Texas Instrument’s Corporation, although
those skilled in the art will appreciate that the TTMR system
disclosed herein 1s configured to operate with a variety of
different VLIW microprocessors having varying architec-
tures.

FIG. 2 illustrates an operational flowchart of an embodi-
ment of the TTMR software routine. As shown, an instruc-
tion may be repeated any number of times across diflerent
internal parallel cores in a TMR fashion to provide a basis
ol comparing one nstruction to at least another instruction.
However, each repeated instruction 1s completed during a
later clock cycle(s), thereby providing temporal and spatial
redundancy. As illustrated, at clock cycle or time T1 a first
instruction 406 1s sent from a software controller unit 400 to
a first arithmetic logic unit 408 within or in communication
with a CPU 402. Thereafter, the first instruction 1s retained
by a first memory device in communication therewith. At
some later clock cycle or time interval T2, at least a second
instruction 410 1s sent from a software controller unit 400 to
a second arithmetic logic unit 412 within or 1 communi-
cation with a CPU 402 and retained 1n a second memory
device 1 communication therewith. In the illustrated
embodiment, at some later clock cycle or time interval T3,
a third mstruction 414 1s sent from a software controller unit
400 to a third arithmetic logic unit 416 within or 1n com-
munication with a CPU 402 and retained 1n a third memory
device 1n communication therewith. The instructions 406,
410, 414, respectively, are identical instructions sent at
different time intervals, T1, T2, T3, respectively. Those
skilled 1n the art will appreciate any number greater than 1
of 1instructions may be sent from the software controller unit
400 to the CPU 402 thereby permitting a comparison of
instructions to occur within the CPU 402.

Referring again to FIG. 2, at a later clock cycle or time
interval T4 a compare instruction 418 1s then sent from the
software controller unit 400 to the branch or compare unit
420 within or in communication with the CPU 402. Exem-
plary branch or compare umts 420 may include, without
limitation, at least one comparitor in communication with
the CPU 402. The branch or compare unit 420 accesses and
compares the three instructions retained within the indi-
vidual memory device in commumnication with the arithmetic

10

15

20

25

30

35

40

45

50

55

60

65

4

logic units 408, 412, 416, respectively. It all three instruction
stored within the individual memory device in communica-
tion the arithmetic logic units 408, 412, 416 match no error
has occurred and the instruction 1s accepted and performed.
It a discrepancy 1s detected between the instructions 406,
410, 414, respectively, stored within the individual memory
device in communication with the arithmetic logic units 408,
412, 416, the arithmetic logic units 408, 412, 416 are polled
to determine which two nstructions match. Like TMR and
time redundancy systems, in the present system the two
matching instructions are assumed to be. Additionally, the
TTMR system disclosed herein permits a second instruction
430 and a third nstruction 440 to be completed in parallel
with the first instruction 406 when three or more parallel
functional units are available.

FIG. 3 shows an alternate embodiment of a TTMP system
using a spatial technique similar to the Master/Shadow
method 1n combination with a time redundancy architecture.
In the illustrated embodiment, a TTMR sequence for an
instruction 1s repeated twice across diflerent internal parallel
cores, such as arithmetic logic units, 1n a Master/Shadow
fashion. However, each repeated instruction 1s completed
during a later clock cycle or time interval, similar to a time
redundancy architecture. As illustrated, at clock cycle or
time T1 a first mstruction 506 1s sent from a software
controller unit 500 to a first arithmetic logic unit 308 within
or in communication with a CPU 502. Thereafter, the first
instruction 1s retammed within a first memory device 1n
communication therewith. At some later clock cycle or time
interval 12, at least a second 1nstruction 510 1s sent from a
soltware controller unit 500 to a second arithmetic logic unit
512 within or in communication with a CPU 502 and
retained a second memory device i communication there-
with.

At a later clock cycle or time interval 13, a compare
instruction 516 1s then sent from the software controller unit
500 to the branch or compare unit 518 within or 1n com-
munication with the CPU 502. Exemplary branch or com-
pare units 520 may include, without limitation, at least one
comparitor in communication with the CPU 502. The branch
or compare unit 520 accesses and compares the two struc-
tions retained within the memory devices 1n communication
with arithmetic logic units 508, 512, respectively. It the two
instructions stored within the memory devices in commu-
nication with the arithmetic logic units 508, 512 match no
error has occurred and the instruction 1s accepted and
performed. IT a discrepancy is detected between the mnstruc-
tions 506, 510, respectively, stored within the memory
devices 1 communication with the arithmetic logic units
508, 512, a third instruction 520 1s sent from a software
controller unit 500 to a third arithmetic logic unit 522 within
or in commumnication with a CPU 502 and retained within a
third memory device in communication therewith. The third
instruction 520 1s sent from the software controller unit 500
to the third arithmetic logic unit 522 at a later clock cycle or
time interval T4 as compared with time interval T3. The
instructions 506, 510, 520, respectively, are identical
instructions sent at diflerent time intervals, T1, T2, T4,
respectively. Those skilled i the art will appreciate any
number greater than 1 of instructions may be sent from the
software controller unit 500 to the CPU 502 thereby per-
mitting a comparison ol instructions to occur within the
CPU 3502. The nstructions stored within the memory
devices 1n commumnication with the respective arithmetic
logic units 508, 512, 522 are compared and any match
therein 1s assumed to be a correct instruction. thereafter, the
instruction may be performed. Like the previous embodi-

Us 7,318,169 B2

S

ment, the TTMR system disclosed herein permits a second
instruction 530 and a third instruction 540 to be completed
in parallel with the first instruction 506 when three or more
parallel functional units are available.

In another embodiment, the TTMR system may include or
otherwise incorporate a SEU watchdog circuit. The SEU
watchdog circuit may comprise a separate field program-
mable gate array (FPGA). In an alternate embodiments, the
SEU watchdog circuit may include an application specific
integrated circuit (ASIC) or other electronic circuit imple-
mentation. The SEU watchdog circuit provides a periodic
signal to the microprocessor. For example, a very low duty
cycle signal may be sent to the microprocessor. The micro-
processor must respond to the SEU watchdog circuit with a
correct “answer’” 1n a pre-determined period of time. It the
processor 1s hung 1 a SEFI, the response from the micro-
processor will not be received 1n within the pre-determined
time-period and the circuit will force a series of escalating
corrections to regain control of the processor. The escalating
corrections may include, without limitation, hardware CPU
reset(s), hardware power down cycle(s), activate interrupt
signal(s), activate non-maskable interrupt(s), and activate
functional unit resets (subsets logic areas of CPU).

Implementation and control of the TTMR system takes
place through software control of the VLIW microprocessor.
TTMR soitware code can be developed using a variety of
methods, which are dependent upon the individual micro-
processor development environment and operating system
(s). As shown i FIG. 4, TTMR software may be developed
in high level programming languages (examples: Fortran, C,
C++, Basic, etc.) or at the microprocessor assembly lan-
guage (also known as machine code). As shown, the source
module 602 may simultaneously sent to the compiler mod-
ule 604 and the TTMR compiler module 616. The TTMR
pre-compiler module 616 amends the data received from the
source module to include the TTMR instruction set and
sends the modified data module to the compiler module 604.
The compiler module 604 compiles both the source data and
the modified source data producing an assembler source
module 606 and a TTMR pre-assembler module 618. The
assembler source module 606 1s sent to the assembler
module 608. The TTMR pre-assembler module 618 sched-
uled and sert a TTMR format into the data recerved from
the assembler source module 606 and forward the modified
data to the assembler module 608. Thereatter, the assembler
module 608 produces an object data module 610 which may
be forwarded to a linker module 612. The linker odule
outputs an exectuable file module 614. To facilitate and
simplily programming for users, automated development
and management of TTMR 1nstruction sets and cycles may
be accomplished by the addition of a “Pre-Compiler” or
“Pre-Assembler”, where the original (no TTMR) software
code 1s automatically duplicated and scheduled 1n a TTMR
format, (for a C code language system as an example).

What 1s claimed 1s:

1. A computer system with improved fault tolerance from
microprocessor data errors, comprising: a miCroprocessor; a
fault tolerant software routine configured to send a first
instruction and at least a second instruction to the micro-
processor, the first and at least the second 1nstructions being

5

10

15

20

25

30

35

40

45

50

55

6

identical and inserted mto spatially separated functional
computational units of a VLIW microprocessor at difierent
clock cycles; a first and at least a second memory device 1n
communication with the microprocessor, the first memory
device configured to store the first instruction, the second
memory device configured to store at least the second
instruction; a soltware instruction to compare the {irst
instruction to at least the second instruction; and a compara-
tor to compare the first instruction to the second instruction.

2. The system of claim 1 further comprising a third
instruction sent by the fault tolerant software routine to the
microprocessor, the third instruction stored mm a third
memory device in communication with the microprocessor.

3. The system of claim 2 wherein the software 1nstruction
directs the comparator to compare the first, second, and third
instruction.

4. The system of claim 3 wherein a match of any of the
first, second, and third instructions 1s accepted by the
MICroprocessor.

5. The system of claim 1 wherein the VLIW micropro-
cessor comprises a first, a second and a third spatially
separated functional computational unait.

6. A software and hardware computer system with
improved fault tolerance from microprocessor data errors,
comprising: a very long instruction word (VLIW) micro-
processor; a fault tolerant software routine comprising a first
istruction and a second instruction, each inserted into two
spatially separate functional computational units in the
VLIW microprocessor at two different clock cycles and
stored 1n a memory device i communication with the
microprocessor, the first and second instructions being iden-
tical; a software mstruction to compare the first and second
instruction in the memory device in communication with the
VLIW microprocessor compare or branch units, and con-
figured to perform an action if the first and second instruc-
tion match, the fault tolerant software routine comprising a
third instruction inserted into a third spatially separate
functional computational unit 1n the VLIW microprocessor
at a third different clock cycle and stored 1n a third memory
device 1n communication with the microprocessor, the first,
second, and third instructions being identical; and the soft-
ware 1nstruction to compare the first, second, and third
instructions 1n the memory devices in communication with
a VLIW microprocessor compare or branch umits, and
configured to perform an action if any of the first, second and
third 1nstructions match.

7. A method of processing data 1n a fault tolerant com-
puter system, comprising: generating a first instruction at a
first time 1nterval; generating a second instruction i1dentical
to the first 1nstruction at a second time interval; comparing
the first and second 1nstructions to each other; performing an
action based on the matched first and second instructions;
generating a third istruction identical to the first and second
istructions at a third time interval 1t the first and second
instructions do not match; matching the first, second, and
third instructions to each other; and performing an action
based on a match between any one of the first, second, and
third instructions.

	Front Page
	Drawings
	Specification
	Claims

