US007313730B1
a2y United States Patent (10) Patent No.: US 7,313,730 B1
Ryser 45) Date of Patent: Dec. 25, 2007
(54) CONFIGURATION LOGIC FOR EMBEDDED 7.149.927 B2* 12/2006 Stancil ......cccoeeevveuennn.n. 714/31
SOF1IWARE OTHER PUBLICATTIONS

(75) Inventor: Peter Ryser, San Jose, CA (US) Xilinx, Inc.; “Virtex-II Pro Platform FPGA Handbook”; Oct. 14,
2002; pp. 27-69, available from Xilinx, Inc., 2100 Logic Drive, San

(73) Assignee: Xilinx, Inc., San Jose, CA (US) Jose, California 95124.

Xilinx, Inc.; “System ACE CompactFlash Solution,” Advance Prod-

(*) Notice:  Subject to any disclaimer, the term of this uct Specification, Apr. 5, 2002, pp. 1-69, DS080 V1.5, available
patent is extended or adjusted under 35 from Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124,

U.S.C. 154(b) by 620 days. * cited by examiner
(21) Appl. No.: 10/850,123 Primary Examiner—Robert Beausoliel
Assistant Examiner—Joseph D Manoskey
22) Filed: May 20, 2004 74) Attorney, Agent, or Firm—William L. Paradice, 111
y V, AZ
51) Int. CL 57 ABSTRACT
(
GO6F 11/00 (2006.01) _ o .

(52) U.S. Cle oo 714/30; 714/25; 714/27; ~ Anintegrated circuit such as an FPGA containing an embed-

714/28: 714/31: 714/45 716/16 716/17:] ded Proccssor hElViIlg test Cil’Cllitl'y capable OfCOIltl'OlliIlg the
(58) Field of Classiﬁcatijon Sea;ch j ’71 1/98 processor’s resources using JTAG commands includes a

714/30, 25,27, 31, 45,51 716/16, 17 formatting circuit th{-zlt f(:,rrmats soit data recefived from an

external storage device mto a JTAG-compatible bitstream
that can be used by the processor’s test circuitry to access
(56) References Cited and/or control the processor’s resources at any time, thereby
allowing the embedded processor’s resources to be accessed
and controlled during FPGA configuration operations before

See application file for complete search history.

U.S. PATENT DOCUMENTS

5,869,979 A *  2/1999 Bocchino .....oeveeveene.... 326/38  the processor has been initialized to an operational state
6,134,707 A * 10/2000 Herrmann et al. .......... 717/139 without using an external configuration tool. For some
6,429,682 Bl * 82002 Schultz et al. ................ 326/41 embodiments, the formatting circuit 1s a state machine that
6,751,723 B1* 6/2004 Kundu et al. ................. 712/36 formats soft data such as firmware code, software programs,
6,918,057 BL*  7/2005 Brophy et al. .............. 714/30  processor commands, and the like received from the external
6,954,879 B1* 10/2005 Tobias et al. ................. 7;4/30 storage device into a JTAG-compatible hitstream that can be
6,983,441 B2 1/2006 Wescott RZEIER PP 716/17 loaded into and/or used to access the resources of the
7,089,140 B1* 82006 McKenzie et al. .......... 702/122 . \ . )
7,109,750 B2*  9/2006 Vadi et al. ...o.ocovovvevv... 326/40 ~ cmbedded processor via the processors’ test circutry.
7,111,217 B1* 9/2006 Schultz ......ccoevveeene..... 714/727

7,149,926 B2* 12/2006 Ahmad et al. ................ 714/30 46 Claims, 10 Drawing Sheets

Configuration _
800 — ™ Memory Cells |——————————————~ Configurable
104 140 Elements
[ 107 [ ? | - 150
NI ™ OSC Block RAM - =
130
( 105
102
External COLK L_$ el 0
Storage > DIN - Configuration
Device C Circuit
320 106
Cache
- - Int?:f?ce Unit
Formatting — 112
EN —» Circuit
310
SCLK —» = |
MODE 110 —1 CPU Execution
Units
[ 108 120 113
'—) TDl  ——————————= TDI
i } +i Boundary Scan B >
i TCK Architecture
I I
L ——, 199 Select | TCK 1 JTAG Debug
: I TMS | === —- e Circuit Port Unit
: "0 7Ap Controlier || - o 802 | TMs | 115 | 14
:—jﬂ-'rio"—:_____i?%____}d—l _‘TDO




US 7,313,730 B1

Sheet 1 of 10

Dec. 25, 2007

U.S. Patent

_ 1218 StE

Hun yod
bngaq OVLM

err
I
uonnaax3 NdD

Tl
aoepa)u|

0S1
sjuawa|3

a|qe.nbijuon

OLL

Odl
SWL

AOL

10l

cOl

(MY Joud) | 'OI

12l
alnjoelydly

ueos Aepunog

INANYH
uoneinbiyuon

oct
NYH %9018

orl
S(187) Ao
uoneJnbiyuon

mo_.\
901
NId _

_
o
i
|

! [T

01

1001

. uoneinbiyuon

AT0D m_

SOl

080

1402

091
90INS(]

abei0)g

L v

1l

NI




U.S. Patent Dec. 25, 2007 Sheet 2 of 10 US 7,313,730 B1

200

s

Test-Logic-
0 Reset
@ Run-Test/Idle

Select DR scan Select IR scan

DI

Capture DR Capture IR

Y

0

Shift DR~ 10 )
1
Coon -
ﬂ Pause IR

Update DR Update IR
T °

a

FIG. 2



R SR T B S 5| 8

o . 18]|04u0) dv1

US 7,313,730 Bl
&
o,
-
|_

PIT -
wn | uWod T _ o _ "
_
6Naoq OV L[ I 8JN]o8llydly _ AOL _.“
, ueog Arepunog Tl
— - T aL _..I.“
i )
- 801
SHUN OLL
—
= uoinNdax3 NdD A0S
Qo
= 83 <— N3
- - HNoJ1) buew.od
S (4N}
m\nu QMMMO a0BlBIU|
- 901 0ce
— 90IAS
. co;m_:m%coo — @_> :
N | | NIC — OOEINS
BUI)IX
A.m.m, 01 . A100 | -
w =10]!
g (o[ ]8
00
_>_<|I 3 _.m NSO ] LINI
Sjuswa|] ovl i o
a|qeinbiuon e oo
uoneinbyuo)

U.S. Patent



U.S. Patent Dec. 25, 2007 Sheet 4 of 10 US 7,313,730 B1

store configuration data
and soft data in

respective first and
second partitions of 401
400 external storage device

assert INIT 402

load configuration data
into configuration

memory cells and/or
block RAM

load soft data from DIN
. . . 405
into formatting circuit and
format into JTAG-
compatible bitstream

403

forward JTAG-
compatible bitstream to
pDrocessor

406

oad JTAG-compatible 407

bitstream into processor




U.S. Patent

First

Second
Partition

3208

First
Partition
320A

Second
Partition
3208

CCLK_U

Dec. 25, 2007

partion | [ 1 —
320A -

CCLK_U
N

104

105

CCLK
106

OSC

DIN

EN

Sheet 5 of 10

Formatting
Circuit

109 310A
SCLK
104
OSC
105
CCLK
B
106 o
-
Formatting
B Circuit
109 EN 310B
SCLK

US 7,313,730 B1

Processor
110

TDI
TCK

™S

FIG. 5B

Processor
110




U.S. Patent Dec. 25, 2007 Sheet 6 of 10 US 7,313,730 B1

105
B CCLK
"'. DIN[O] | \
e DING ™
e o [
s | -

Second ' %1 DIN[7] : Formatting ToK .
Partition '_J N Circuit FOffgsor
2 310C 110
5205 106(0)-(7) TMS

] SCLK
CCLK_U
B —
109

FIG. 5C

104
300
OSC

First

Partition e
TDI

Second
Partition Forr_natt'ing TCK Processor

3208 . Circuit 110

310D TMS '
CCLK_U —
109




U.S. Patent Dec. 25, 2007 Sheet 7 of 10 US 7,313,730 B1

I E
QA
-
O

603

600

CCLK_U

-
1

a
LL]

1

DIN

.

O
T O
Z
LL



U.S. Patent Dec. 25, 2007 Sheet 8 of 10 US 7,313,730 B1

705
704

700

FIG. 7

DIN=1
703

702

701
&
EN=0

Write pair O

EN=1
DIN=0
CCLK_U



US 7,313,730 B1

Sheet 9 of 10

Dec. 25, 2007

U.S. Patent

8 DOl

c08
Tak]le

109|195 21N}o8}IYdIY
ueds Alepunog

el

SHun
uoniNIaxX3 NdHD OLI
1N2JID N3
AN T Bumew.io
Hun
4o aJepua|
S a0t 0ce
HN3JIY — 3901A8(]
uoneinbiyuon NIQ obeiolg
’UIB)X
201 A10D - | -
. GOl
oct
INVYH 3°0|d
950 LINI
0ST — L0l
SUENTEE Ovl Vol 008
a|qeinbiyuon s||80 Aows|y
uoneinbyuon)




US 7,313,730 B1

N 6 DI
FIT | ST | DIPTR YL
N Hod SNL CTET

_
bngaqg OVv.Lr ! 21N}o8IYYy

_

ueog Aiepunog

Sheet 10 of 10

Dec. 25, 2007

elr
SHun Ok L
uonnosaxy Nd-H 5TE AT0S
HNaAYD 206
STT Bumew.o NId 21607
Hun womr._lp_mﬁc_ \ENN haiatioid
ayoen
901 0ce
UMD B 92IN3(]
uoieinbyuon) NIG 96eI01S
euIa)X
201 00 - EUIoP
GOl
o€l
WVYH 390|g
L 950 B LIN!
oSt
a|qeinbiuon S||180 Alows\ 006
uoneinbyuon

U.S. Patent




UsS 7,313,730 Bl

1

CONFIGURATION LOGIC FOR EMBEDDED
SOFTWARE

FIELD OF INVENTION

The present invention relates generally to integrated cir-
cuits, and more specifically to the configuration of embed-

ded processors.

DESCRIPTION OF RELATED ART

A programmable logic device (PLD) 1s a well-known
general purpose device that can be programmed by a user to
implement a variety of selected functions. PLDs are becom-
ing increasingly popular with circuit designers because they
are less expensive, more tlexible, and require less time to
implement than custom-designed integrated circuits such as
Application Specific Integrated Circuits (ASICs).

There are many types of PLDs such as Field Program-
mable Gate Arrays (FPGAs) and complex PLDs (CPLDs).
For example, an FPGA typically includes an array of con-
figurable logic blocks (CLBs) and block RAM surrounded
by a plurality of input/output blocks (I10Bs). The CLBs are
individually programmable and can be configured to per-
form a variety of logic functions. The I0Bs are selectively
connected to various I/O pins of the FPGA, and can be
configured as eirther mput bufllers or output builers. The
block RAM can store data during operation of the FPGA
and/or can be configured to implement various functions
such as FIFO memories and state machines. The CLBs,
IOBs, and block RAM are selectively connected to each
other to implement more complex logic functions by a
programmable interconnect structure.

The CLBs, I0Bs, and the programmable interconnect
structure are typically programmed by loading configuration
data into configuration memory cells which control the
states of various configurable elements (e.g., switches, mul-
tiplexers, and the like) that configure the CLBs, 10Bs, and
the 1nterconnect structure to implement a desired function.
The configuration data, which 1s usually stored 1n an external
non-volatile memory such as a Programmable Read Only
Memory (PROM), an Electrlcally Erasable PROM (EE-
PROM), or a Flash memory, 1s provided via one or more
configuration mput pins to a well-known configuration cir-
cuit within the FPGA. The configuration circuit routes the
configuration data to corresponding configuration memory
cells to configure the FPGA to implement the circuit design
embodied by the configuration data.

More recent FPGAs such as the Virtex-1I Pro™ FPGASs
from Xilinx, Inc. include an embedded microprocessor to
provide additional functionality. The embedded processor
typically includes well-known components such as CPU
execution units, fetch and decode units, instruction units,
cache memory, architectural registers, bus systems, test
circuitry, and the like. The processor’s firmware code 1s
typically stored with the configuration data 1n the external
storage device and loaded into a selected portion of block
RAM during configuration of the FPGA. After the FPGA 1s
configured, the processor can retrieve the firmware code
from the selected portion of block RAM to 1nitialize itself to
an operational state.

Unfortunately, conventional FPGA configuration circuits
cannot access the embedded processor’s cache memory,
internal registers, bus system, or other CPU resources during
configuration of the FPGA because the processor 1s not yet
operational. The 1nability to access and/or control the pro-
cessor’s iternal resources during configuration of the FPGA

10

15

20

25

30

35

40

45

50

55

60

65

2

can be disadvantageous. For example, if the embedded
processor’s firmware code 1s suiliciently small to be stored
in cache memory, then loading the firmware code into the
processor’s cache memory during configuration of the
FPGA would allow the processor to mnitialize itself using
firmware code retrieved from cache memory rather than
from block RAM, thereby improving performance by reduc-
ing memory latencies during initialization of the embedded
Processor.

One solution 1s to use well-known JTAG test circuitry
included on the FPGA to access the processor’s internal
resources during configuration of the FPGA. The JTAG test
circuitry, which was developed by the Joint Test Action
Group and 1s commonly referred to as the IEEE standard
1149.1, includes a boundary scan architecture, a test access
port (TAP) controller, and four dedicated JTAG I/O pins.
The boundary scan architecture, which includes a chain of
registers placed around the periphery of the FPGA, 1s
connected to the dedicated JTAG I/O pins via the TAP
controller, which 1n turn controls operation of the boundary
scan architecture using well-known JTAG signals provided
on the dedicated JTAG I/O pins. As known 1n the art, the
JTAG test circuitry can be used to configure the FPGA and
to access and/or control the internal resources of the FPGA’s
embedded processor during configuration of the FPGA. For
example, an external configuration tool can be connected to
the FPGA’s dedicated JTAG pins and used to load soit data
such as firmware code 1nto the embedded processor’s cache
memory during configuration of the FPGA by controlling
the processor’s JTAG test circuitry.

However, using an external configuration tool to config-
ure an FPGA and/or 1ts embedded processor via its JTAG
test circuitry may be disadvantageous. For example, the
JTAG test circuitry and 1ts governing standards were devel-
oped for testing purposes, and thus are not optimized for
configuring FPGA components. Further, many customers
prefer to configure the FPGA and 1ts embedded processor
using the FPGA’s serial or parallel configuration port, which
does not require an external configuration tool. For example,
because an FPGA’s parallel configuration port allows for
higher data bandwidth than does the JTAG test circuitry’s
serial input pin, the FPGA can typically be configured much
faster by using its parallel configuration port rather than
using an external configuration tool connected to the
FPGA’s JTAG test circuitry.

Thus, 1t would be desirable to access and/or control the
internal resources of an FPGA’s, or other integrated circuit,
embedded processor during configuration of the FPGA
without using an external configuration tool.

SUMMARY

An mtegrated circuit (IC), such as an FPGA, 1s disclosed
that allows access to an embedded processor’s internal
resources using data provided to the IC from an external
storage device via the IC’s configuration port. In accordance
with the present invention, an IC containing an embedded
processor having test circuitry capable of controlling the
processor’s 1nternal resources using JTAG commands
includes a formatting circuit that formats soft data received
from an external storage device mto a JTAG-compatible
bitstream that can be used by the processor’s test circuitry to
access and/or control the processor’s internal resources at
any time. In this manner, embodiments of the present
invention allow the embedded processor’s internal resources
to be accessed and controlled during IC configuration opera-
tions before the processor has been iitialized to an opera-



UsS 7,313,730 Bl

3

tional state without using an external configuration tool
connected to the IC’s own test circuitry. For one embodi-
ment, firmware code stored 1n an external storage device that
also stores configuration data for the IC’s configurable
clements may be recerved into the IC via 1ts configuration
port and then loaded into the embedded processor’s cache
memory during IC configuration using the formatting cir-
cuit. The ability to access the embedded processor’s internal
resources during IC configuration without using an external
configuration tool may result 1n cost savings, reductions 1n
configuration time, increased durability, and less burden on
customers.

The formatting circuit includes an input to receive data
from the external memory via the IC configuration port, and
includes outputs connected to corresponding inputs of the
embedded processor’s test circuitry. For some embodiments,
the formatting circuit 1s a state machine that formats soft
data such as firmware code, software programs, processor
commands, and the like received from the external storage
device into a JTAG-compatible bitstream that can be used to
access, control, and/or load data into the embedded proces-
sor’s internal resources using the processors’ test circuitry.
In this manner, the formatting circuit emulates the operation
of an IC’s JTAG test circuitry 1n providing data from an
external configuration tool to the processor. For some
embodiments, the soit data 1s stored in the external storage
device as a plurality of JTTAG data and mode select bit pairs.
Configuration data for the configurable elements may also
be stored in the external storage device as a plurality of
JTAG test and mode select bit pairs. For some embodiments,
the configuration data 1s stored i1n a first partition of the
external storage device, and the soit data i1s stored in a
second partition of the external storage device. For one
embodiment, the soit data includes a start code that may be
used to transition the formatting circuit state machine into an
operational state.

Embodiments of the present invention support various
serial and parallel configuration modes. For some embodi-
ments, the IC includes a plurality of formatting circuits, each
configured to recerve data from the external storage device
using a different configuration mode. For other embodi-
ments, the formatting circuit 1s programmable to operate
using one ol a plurality of different configuration modes in
response to a mode select signal. Present embodiments may
also be used 1n an FPGA having multiple processors.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention are
illustrated by way of example and are by no means intended
to limit the scope of the present invention to the particular
embodiments shown, and 1n which:

FIG. 1 1s a functional block diagram illustrating a prior
configuration architecture of an FPGA;

FIG. 2 1s a state diagram of the TAP controller of the
FPGA of FIG. 1;

FIG. 3 1s a functional block diagram of an FPGA gener-
ally representative ol embodiments of the present invention;

FIG. 4 1s a flow chart illustrating an exemplary configu-
ration operation of the FPGA of FIG. 3;

FIGS. 5A-5D are more detailed functional block diagrams
of embodiments of FIG. 3 that utilize various configuration
modes 1n accordance with the present invention;

FIG. 6 1s a state diagram for exemplary embodiments of
the formatting circuits of FIGS. SA and 3B;

FIG. 7 1s a state diagram for exemplary embodiments of
the formatting circuits of FIGS. 5C and 5D;

5

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 8 1s a functional block diagram of another embodi-
ment of the FPGA of FIG. 3; and

FIG. 9 1s a functional block diagram of an FPGA 1n

accordance with another embodiment of the present inven-
tion.

Like reference numerals refer to corresponding parts
throughout the drawing figures.

DETAILED DESCRIPTION

Embodiments of the present mmvention are described
below with respect to an exemplary FPGA architecture that
1s generally representative of the Virtex-II Pro™ FPGAs
from Xilinx, Inc. for simplicity only. It 1s to be understood
that embodiments of the present invention are equally appli-
cable other FPGA architectures and to other integrated
circuits (ICs), including programmable logic devices such as
complex PLDS, that include a processor having JTAG test
circuitry. In the following description, for purposes of expla-
nation, specific nomenclature 1s set forth to provide a
thorough understanding of the present invention. For
example, as used herein, configuration data generally refers
to data that controls the configuration state ol various
configurable elements such as CLBs, IOBs, and program-
mable routing structures, and soft data generally refers to
data such as software and firmware code that can be used to
loaded into the IC processor’s internal resources and to
instructions that can be used to access and/or control pro-
cessor’s internal resources. In other instances, well-known
circuits and devices are shown in block diagram form to
avoid obscuring the present invention. Further, the logic
levels assigned to various signals in the description below
are arbitrary and, thus, can be modified (e.g., reversed
polarity) as desired. Accordingly, the present invention 1s not
to be construed as limited to specific examples described
herein but rather includes within 1ts scope all embodiments
defined by the appended claims.

FIG. 1 1s a functional block diagram of a prior FPGA
architecture 100 which 1s generally representative of the
Virtex-1I Pro™ family of FPGA products that are commer-
cially available from Xilinx, Inc. As known 1n the art, FPGA
100 can be configured using data supplied to the FPGA from
an external storage device 160 or using data supplied by an
external configuration tool 170. External storage device 160
can be any suitable storage element such as a non-volatile
memory (e.g., a PROM, EEPROM or flash memory device),
an external processor, or another FPGA. Configuration tool
170 1s a well-known external tool that configures FPGA 100
using the FPGA’s internal test circuitry (e.g., the JTTAG test
circuitry). FPGA 100 1s shown to include a configuration
circuit 102, an oscillator 104, a configuration clock pin 105,
one or more data configuration pins 106 (only one data pin

106 1s shown 1n FIG. 1 for simplicity), an initialization pin
107, dedicated JTAG pins 108, an embedded processor 110,

a JTAG-compliant test circuit 120, block RAM 130, con-
figuration memory cells 140, and configurable elements 150.
Other well-known components of FPGA 100 are not shown
in FIG. 1 for simplicity. Further information regarding the
general layout and operation of FPGA 100 can be found 1n
the “Platform FPGA Handbook 2002,” pages 27-68, which
1s available from Xilinx, Inc. and incorporated herein by
reference.

Configuration circuit 102 includes a data mput to receive
input data DIN from external storage device 160 via pin 106,
and includes a data output connected to block RAM 130 and
to configuration memory cells 140. Configuration circuit
102, whose architecture 1s well-known, may be used to load




UsS 7,313,730 Bl

S

configuration data received from external storage device 160
into configuration memory cells 140 and into block RAM
130. Configuration circuit 102 may also be used to load soft
data received from external storage device 160 into block
RAM 130. Block RAM 130, which 1s well-known, typically
stores data that can be accessed by configurable elements
150 and by processor 110. Configuration memory cells 140,
which are well-known, typically store configuration data
that controls the configuration states of configurable ele-
ments 150. Configurable elements 150 represent various
well-known FPGA programmable components such as

CLBs, 10Bs, general interconnect and routing structures,
and the like.

Processor 110 can be any well-known microprocessor that
includes I'TAG-compliant test and/or debug circuitry. For the
Virtex-1I Pro™ FPGAs, processor 110 1s a well-known

PowerPC processor core available from IBM Corporation.
Processor 110 1s shown in FIG. 1 as including an FPGA
interface unit 111, a cache unit 112, CPU execution units
113, a debug unit 114, and a JTAG port 115. Interface unit
111 1s well-known, and {facilitates communication between
processor 110 and FPGA components such as block RAM
130 and configurable elements 150. Cache umt 112 1s
well-known, and includes a cache memory that can store
data and mstructions frequently requested by execution units
113. For some embodiments, cache unit 112 includes an
instruction cache and a data cache. CPU execution units 113
are well-known, and typically include a plurality of general
purpose registers, an architectural register, an arithmetic
logic unit (ALU), a media access controller (MAC), fetch
and decode logic, and other well-known components. Debug
unit 114 1s well-known, and provides external access to CPU

resources such as the general purpose and architectural
registers, cache memory, and the CPU bus system. The
debug unit 114 has read-write access to all registers, can set
hardware or software breakpoints, and can start the CPU
core, step an instruction, freeze the timers, and set hardware
or soltware breakpoints. JTAG port 115, which 15 well-
known and complies with the IEEE 1149.1 standard, pro-
vides basic JTAG chip testing functionality and allows
external configuration tool 170 to gain control of processor
110 and its internal resources using well-known JTAG
commands. Other well-known components of processor 110
such as the processor’s switch fabric, clock signals, memory
controllers, bus systems, and the like are not shown in FIG.
1 for simplicity.

Test circuit 120 1s a well-known test circuit that complies
with IEEE standard 1149.1, and 1s shown to include a
boundary scan architecture 121 and a TAP controller 122.
Boundary scan architecture 121 and TAP controller 122 are
conventional and operate according to well-known JTAG
protocols. TAP controller 122 includes three input connec-
tions for recerving the test clock mnput (TCK) signal, the test
mode select (TMS) signal, and the test data input (TDI)
signal from corresponding dedicated JTAG 1/O pins 108.
The TMS signal 1s used to control the state of TAP controller
122, as discussed below. The TDI signal 1s used for serial
transmission of data or instruction bits, depending upon the
state of TAP controller 122. TAP controller 122 also includes
an output connected to a corresponding JTAG pin 108
through which the test data out (1DO) signals are transmuit-
ted. Depending upon the state of TAP controller 122, the
TDO signal 1s used to senially shift data out of JTAG test
circuit 120. TAP controller 122 also includes three outputs to
provide TDI, TCK, and TMS to corresponding inputs of

10

15

20

25

30

35

40

45

50

55

60

65

6

processor 110°s JTAG port 115, and includes an input to
receive TDO from a corresponding output of the processor’s
JTAG port 115.

FIG. 2 1s a state diagram for explaining the operation of
TAP controller 122. The basic tunction of TAP controller
122 1s to generate clock and control signals required for the
correct sequence of operations of boundary scan architecture
121 and processor 110°s debug unit 114. Specifically, TAP
controller 122 generates control signals that facilitate load-
ing ol instructions and data into boundary scan architecture
121 and processor debug unit 114, and performing test
actions such as capture, shift and update test data. As known
in the art, TAP controller 122 can be used to configure
configurable elements 150 via boundary scan architecture
121 and can be used to access and/or control the internal
resources of processor 110 via the processor’s JTAG port
115 and debug unit 114.

In operation, TAP controller 122 1s mitialized to the
Test-Logic Reset state. From the Test-Logic Reset state, TAP
controller 122 enters a Run-Test/Idle state when TMS 1s held
low (e.g., TMS=0) for at least one TCK pulse. TAP con-
troller 122 1s placed 1n this state, for example, while pro-
gram, erase, blank and verity operations are performed on
block RAM 130, configuration memory cells 140, and/or
configurable elements 150 via boundary scan architecture
121 and while such operation are performed within proces-
sor 110 via debug unit 114. During test procedures, TAP
controller 122 either enters a data register (DR ) branch of the
state machine or an 1nstruction register (IR) branch of the
state machine.

When TAP controller 122 enters the DR branch of the
state diagram, either a selected data register(s) in boundary
scan architecture 121 or in processor 110 1s connected
between TDI and TDO to load data therein. Specifically, the
Capture-DR state 1s used to load data into the data register
(s). The Shift-DR state 1s used to shiit previously captured
data toward the TDO connector in response to TCK pulses.
The Exit1-DR state, Pause-DR state, and Exit2-DR state are
used to switch between selected states and to temporarily
halt a shifting process. TAP controller 122 remains in the
Pause-DR state until TMS 1s held high (e.g., TMS=1), at
which time 1t enters the Exit2-DR state. From the Exit2-DR
state, TAP controller 122 either returns to the Shift-DR state
or enters the Update-DR state. Once TAP controller 122 1s
in the Update-DR state, data shifting to/between the selected
register(s) 1s completed, and the data stored in the selected
register(s) can be passed to the JTAG outputs. From the
Update-DR state, TAP controller 122 either returns to the
Run-Test/Idle state or to the Select-DR state.

The IR branch of the state machine 1s used to load
instructions into boundary scan architecture 121 and/or
processor 110 for subsequent test data operations. The states
of the IR branch are similar to the states of the DR branch,
and are therefore not discussed 1n further detail.

Referring again to FIG. 1, external storage device 160 can
store configuration data for configurable elements 150 and
soit data for processor 110. External storage device 160 has
an output connected to configuration data pin(s) 106, and has
a clock input that can receive a configuration clock signal
CCLK from oscillator 104 via FPGA clock pin 105. External
storage device 160 can support both serial and parallel data
transiers to configuration circuit 102 via FPGA data pin(s)
106. As known 1n the art, Virtex-1I Pro™ FPGAs support
multiple configuration modes that can be selected, for
example, by a user. For example, in a {irst configuration
mode commonly known as the master-serial mode, CCLK 1s
generated internally by oscillator 104 and 1s provided to




UsS 7,313,730 Bl

7

external storage device 160 via pin 105 to clock a serial
configuration bitstream from external storage device 160 to
configuration circuit 102 via data pin 106. In a second
configuration mode commonly known as the slave-serial
mode, external storage device 160 provides a serial bit-
stream to FPGA 100 via pin 106 1n response to an externally
generated CCLK signal. In a third configuration mode
commonly known as the master SelectMap mode, external
storage device 160 provides data in parallel (e.g., in a
byte-wide format) via multiple data pins 106 1n response to
an internally generated CCLK signal. In a fourth configu-
ration mode commonly known as the slave SelectMap
mode, external storage device 160 provides parallel data to
FPGA 100 in response to an externally generated CCLK
signal. The selection of configuration modes for FPGA 100
1s well-known, and 1s thus not described herein. For more
information regarding the various configuration modes of
FPGA 100, refer to the “Platform FPGA Handbook 2002
pages 68-69, which i1s incorporated herein by reference.

Configuration tool 170 includes 1/0 terminals connected
to FPGA 100’°s dedicated JTAG pins 108. Configuration tool
170 may be used to load configuration data into block RAM
130 and/or configuration memory cells 140 using JTAG
commands via TAP controller 122 and boundary scan archi-
tecture 121 1n a well-known manner. Further, configuration
tool 170 may be used to access and/or control the internal
resources of processor 110 by using TAP controller 122 as
a conduit to transmit JTAG-compliant commands from
configuration tool 170 to processor 110°s debug unit 114 via
JTAG port 115 in a well-known manner. For example,
configuration tool 170 can be used to load soft data such as
firmware code 1nto the processor 110°s cache memory after
configuration of the FPGA.

As discussed above, FPGA 100 can be configured using
data recerved from either external storage device 160 or
from configuration tool 170 1mn a well-known manner. For
example, to configure FPGA 100 and processor 110 from
external storage device 160, the configuration data and the
processor’s firmware code are first stored in external storage
device 160. An mitialization signal INIT provided to FPGA
pin 107 1s asserted to indicate the start of the configuration
operation and to commence the retrieval of data from
external storage device 160 to configuration circuit 102. For
example, 1n the master serial mode, oscillator 104 outputs
CCLK to external storage device 160 via FPGA pin 105 1n
response to the asserted state of INIT, and external storage
device 160 uses CCLK to clock the configuration data and
the soft data into FPGA 100 via FPGA pin(s) 106. Configu-
ration circuit 102 first loads the configuration data into
configuration memory cells 140, and then loads the firmware
code into a selected portion of block RAM 130. The
configuration data configures the configurable elements 150
to implement a desired circuit design, and also maps the
selected portion of block RAM 130 to processor 110. INIT
1s then de-asserted, and oscillator 104 drives the CCLK pin
105 to a high impedance state, which prevents external
storage device 160 from outputting additional data to FPGA
100. Thereafter, configurable elements 130 can be config-
ured using the configuration data stored in configuration
memory cells 140 1 a well-known manner. After FPGA 100
1s configured, processor 110 can retrieve the firmware code
from the selected portion of block RAM 130 and thereafter
initialize itself in a well-known manner.

To configure FPGA 100 and processor 110 using configu-
ration tool 170, the configuration data and the firmware code
may be stored 1n a JTAG format in an external device such
as a memory card (not shown for simplicity) within or

10

15

20

25

30

35

40

45

50

55

60

65

8

associated with configuration tool 170. When INIT 1s
asserted, configuration tool generates TCK and TMS to
clock the configuration data and the firmware code as a serial
bitstream TDI into TAP controller 122. TAP controller 122
uses boundary scan architecture 121 to load the configura-
tion data into configuration memory cells 140, and uses
processor 110°s debug unit 114 to load the firmware code
into processor 110. Then, INIT 1s de-asserted, and processor
110 can mitialize 1tself by retrieving the firmware code from
cache memory rather than from block RAM 130. In addi-
tion, configuration tool 170 can use JTAG circuitry 120 to
load new data (e.g., new firmware code) 1nto the embedded
processor’s cache memory without having to re-configure
other portions (e.g., configurable elements 150) of FPGA
100. The operation of configuration tool 170 to configure
FPGA 100’s configurable elements 150 and to access, con-
trol, and load data into the internal resources of processor
110 during configuration of FPGA 100 1s well-known, and
1s therefore not described 1n further detail herein. For some
embodiments, the well-known System ACE tool available
from Xilinx, Inc. may be used as configuration tool 170.
Information detailing operation of the System ACE tool can
be found 1n the Advanced Product Specification for the
System ACE CompactFlash Solution dated Apr. 5, 2002
(DSO80 v1.5), which 1s available at www.xilinx.com and 1s
incorporated by reference herein.

As described above, configuration circuit 102 1s not
normally used to access, control, or load data into processor
110’°s internal resources during configuration of FPGA 100
because processor 110 1s typically not operational until after
FPGA 100 has been configured. Further, although configu-
ration tool 170 can be used to access, control, and load data
into processor 110 during configuration of FPGA 100, using
configuration tool 170 to configure FPGA 100 may be
disadvantageous, as discussed above. Further, because con-
figuration tool 170 typically includes a removable device
such as a compact flash memory card to store the data file
that configures FPGA 100, configuration tool 170 may not
be desirable for applications that are exposed to physically
stressful environments (e.g., for military and space applica-
tions).

FIG. 3 1s a functional block diagram of an FPGA archi-
tecture 300 1n accordance with the present imnvention that
allows soft data stored 1n external storage device 160 to be
loaded into and/or used to control various internal resources
of the embedded processor 110 during configuration of
FPGA 300 without using an external configuration tool. The
architecture of FPGA 300, which 1s consistent with the
Virtex-1I Pro™ FPGA devices from Xilinx, Inc., 1s similar to
and may include all the components of the FPGA architec-
ture of FIG. 1. Thus, because the architecture and operation
of configuration circuit 102, processor 110, test circuit 120,
block RAM 130, configuration memory cells 140, and
configurable elements 150 of FPGA 300 are well-known, a
detailed description 1s not repeated here. Further, although
for some embodiments processor 110 1s PowerPC processor
core from IBM Corporation, other embodiments of FPGA
300 may use other processor cores that include JTAG-
compliant test and debug circuitry. In addition, although
FPGA 300 1s shown to include one processor core 110, for
other embodiments, FPGA 300 may include multiple pro-
cessor cores 110. For simplicity, connections between test
circuit 120 and other components of FPGA 300 are not
shown 1n FIG. 3. For other embodiments, test circuitry 120
can be eliminated, and JTAG pins 108 can be used for other
(e.g., non-JTAG) purposes.




UsS 7,313,730 Bl

9

FPGA 300 1s shown connected to an external storage
device 320 via 1ts configuration port 106 and a configuration
clock pin 105. External storage device 320 can be any
well-known device (e.g., a PROM, EEPROM, flash
memory, processor, FPGA) that can be used to load data into
FPGA 300 via 1ts configuration port 106. For some embodi-
ments, external storage device 320 1s divided into first and
second partitions, where the first partition stores configura-
tion data that 1s to be used to configure configurable ele-
ments 150 and the second partition stores soit data that 1s to
be loaded 1nto and/or used to control the resources available
to embedded processor 110. For other embodiments, exter-
nal storage device 320 may not be partitioned. For still other
embodiments, storage device 320 may be included within
FPGA 300.

In accordance with the present invention, FPGA 300
includes a formatting circuit 310 that can be used to access
the internal resources of processor 110 via the processor’s
JTAG port 115 and debug umt 114 during configuration
operations of FPGA 300. Formatting circuit 310 1s a state
machine that includes a data input port to receive input data
DIN from external storage device 320 via configuration data
port 106, a clock mput to receive a clock signal SCLK, a
control input to receive an enable signal EN, and an output
port having three outputs connected to corresponding TDI,
TCK, and TMS 1nputs of the processor’s JTAG port 115. The
clock signal SCLK can be any suitable clock signal that can
control operation of formatting circuit 310. For some
embodiments, SCLK 1s the FPGA system clock, although
other clock signals can be used. The enable signal EN can be
any suitable signal that enables formatting circuit 310 to
receive and process solt data recerved from external storage
device 320 via DIN. For some embodiments, EN 1s asserted
when the FPGA’s configurable elements 150 are initialized
(e.g., configured) to their desired states. For other embodi-
ments, EN can be generated when all the configuration data

stored 1n external storage device 320 has been loaded into
FPGA 300. When enabled, formatting circuit 310 formats

the soft data from DIN into a JTAG-compatible TDI bit-
stream that can be loaded into processor 110 via its JTAG
port 115 using the well-known TMS and TCK signals. Once
provided to processor 110, the bitstream may be used by
debug unit 114 to access, control, and/or load data into the
processor’s internal resources 1 a well-known manner.

For some embodiments, formatting circuit 310 generates
the TDI, TCK, and TMS signals 1n response to input data in
the same manner as TAP controller 122 of FPGA 100. Thus,
for such embodiments, formatting circuit 310 emulates the
operation of TAP controller 122 and configuration tool 170
to access and control the iternal resources of processor 110
during configuration of FPGA 300. Further, formatting cir-
cuit 310 may generate TCK 1n any suitable manner. For
some embodiments, formatting circuit 310 uses SCLK to
generate TCK. For other embodiments, other clock signals
may be used to generate TCK.

An exemplary, simplified configuration operation for one
embodiment of FPGA 300 1n which external storage device
320 1s partitioned 1s described below with respect to the tlow
chart of FIG. 4. However, it 1s to be understood that for other
embodiments, external storage device 320 may not be par-
titioned. First, the configuration data for configurable ele-
ments 150 1s stored 1n the first partition of external storage
device 320, and the soit data for processor 110 is stored 1n
the second partition of external storage device 320 (401).
Then, the 1mitialization signal INIT 1s asserted to commence
configuration of FPGA 300 (402). In response to the asserted
state of INIT, the configuration data stored in the first

10

15

20

25

30

35

40

45

50

55

60

65

10

partition of external storage device 320 1s clocked mto
configuration circuit 102 via configuration port 106, and
configuration circuit 102 loads the configuration data into
configuration memory cells 140 and/or block RAM 130 to
configure the configurable elements 150 to desired states 1n
a well-known manner (403).

After the configuration data from the first partition of
external storage device 160 1s loaded 1into FPGA 300, EN 1s
asserted to enable formatting circuit 310 to recerve soit data
from the second partition of external storage device 320
(404). For some embodiments, EN may be asserted by
configuration circuit 102 in response to receiving all the
configuration data from the first partition of the external
storage device. For other embodiments, EN may be asserted
in response to the configuration of configurable elements
150, or by another suitable circuit. In response to the
asserted state of EN, formatting circuit 310 receives the soft
data contained in DIN and formats the soft data into a
JTAG-compatible bitstream (405). The JTAG-compatible
bitstream 1s provided to debug unit 114 of processor 110 via
its JTAG port 115 (406), and thereafter may be used to
access, control, and/or load data into the internal resources
of processor 110 1 a well-known manner (407). Steps
402-408 may be subsequently repeated, for example, to
re-configure FPGA 300 and/or to update firmware code or
other software stored within embedded processor 110.

The soft data embodied within the JTAG-compatible
bitstream provided to processor 110 by formatting circuit
310 can include data and/or instructions to access, write,
and/or control various 1nternal resources of processor 110 as
well as any external resources available to processor 110 (for
simplicity, specific external resources available to processor
110 are not shown in FIG. 3). For some embodiments, the
soit data 1s firmware code for processor 110. For example,
firmware code stored 1n external storage device 320 can be
formatted 1nto a JTAG-compatible bitstream by formatting
circuit 110 and loaded into the processor’s cache memory
112 via its JTAG port 115 and debug unit 114 during initial
configuration of the FPGA. For another embodiment, the
soft data 1s a well-known bus command for the embedded
processor’s bus system. For yet another embodiment, the
soit data 1s data that may be loaded into the embedded
processor’s architectural register and/or general purpose
registers.

The ability to load firmware code into the processor’s
cache memory during configuration of FPGA 300 allows
processor 110 to 1mitialize itself using data retrieved from
cache memory, thereby eliminating latencies associated with
retrieving data from block RAM 130. In addition, present
embodiments allow firmware code and other software stored
in the processor’s cache memory, internal registers, or other
memory resources to be updated without having to re-
configure the FPGA configurable elements 150 of FPGA
300, thereby allowing data stored in the embedded proces-
sor’s mternal resources to be easily modified, for example,
to fix a software glitch.

Because embodiments of the present invention allow the
internal resources of an embedded processor 110 in an
FPGA to be accessed, controlled, and/or configured via the
FPGA’s configuration port 106 at any time, prior external
configuration tools which access the embedded processor
via the FPGA’s JTAG test circuitry 120 are not required, for
example, to gain access to the internal resources of the
processor prior to 1mitialization of the processor (e.g., during
configuration of the FPGA). The ability to access the inter-
nal resources of the processor using the FPGA configuration
port 1s advantageous because 1t allows customers to easily




UsS 7,313,730 Bl

11

pre-load or modily data within the embedded processor
using data stored 1n the external storage device, which as
discussed above may result 1n cost savings, faster configu-
ration operations, and increased durability. In addition,
because formatting circuit 310 formats soit data recerved
from external storage device 320 into a JTAG-compatible
bitstream, any embedded processor having JTAG test cir-
cuitry may used with present embodiments without modi-
fication.

As mentioned above, formatting circuit 310 converts soft
data contained 1n DIN from external storage device 320 into
a JTAG-compatible format (e.g., a TDI bitstream) that can
be loaded into processor 110 using well-known TMS and
TCK signals. For many embodiments, the configuration data
and the soft data are stored 1n corresponding partitions of
external storage device 320 as a plurality of TMS/TDI bait
pairs. For some embodiments, a start code 1s mserted at the
beginning of the soit data. The start code may be any
predetermined sequence ol bit pairs that can be used by
formatting circuit 310 to detect the beginning of the soft
data. For one embodiment, the start code 1s a predetermined
number of [1,1] bit pairs followed by a [1,0] bit parr,
although other start codes may be used.

Exemplary operations of formatting circuit 310 are
described below with respect to various configuration modes
common to the Virtex-II FPGA product family. For the
exemplary operations described below, the TMS/TDI bait
pairs that form the configuration data are stored in a byte-
wide format 1n a first partition 320A of external storage
device 320 such that each byte of configuration data contains
tour TMS/TDI b1t pairs, and the TMS/TDI b1t pairs that form
the soft data are stored in a byte-wide format 1n a second
partition 320B of external storage device 320 such that each
byte of soit data contains four TMS/TDI bit pairs. However,
it 1s to be understood that for other embodiments, the
configuration data and the soit data may be stored in external
storage device 320 1n other formats.

FIG. 5A shows a portion of FPGA 300 having a format-
ting circuit 310A that 1s configured to operate 1n the master-
serial configuration mode, and FIG. 6 shows a state diagram
generally descriptive of the operation of formatting circuit
310A. Formatting circuit 310A includes a clock output to
generate a user configuration clock signal CCLK_U that 1s
used to clock a senal bitstream from external storage device
320 into FPGA 100 via 1ts configuration input pin 106.
CCLK_U 1s provided to an FPGA I/O pin 109, which 1n turn
1s coupled externally to the mput clock pin of external
storage device 320, as 1llustrated 1n FIG. SA. Referring also
to FIG. 3, during configuration of FPGA 300, configuration
data 1s clocked from first storage partition 320A 1into the
FPGA using CCLK and thereafter loaded into configuration
memory 140 and/or block RAM 130 via configuration
circuit 102 1n a well-known manner. Then, oscillator 104
pulls clock pin 105 to a high impedance state to prevent
external storage device 320 from outputting additional data
to the FPGA.

Thereafter, EN 1s asserted (e.g., to logic high), which
initializes formatting circuit 310A to a wait state 601. In
response thereto, formatting circuit 310A generates
CCLK_U, which 1s used to clock the soft data TMS/TDI bt
pairs from second storage partition 320B into formatting
circuit 310A via data pin 106. When formatting circuit 310A
detects the first DIN=0 bit, which as described above 1s part
of the start code [1,0], formatting circuit 310A transitions to
state 602 and receives the next DIN bit as TMS. On the next
transition of CCLK_U, formatting circuit 310A transitions
to state 603 and receives the next DIN bit as TDI. The next

10

15

20

25

30

35

40

45

50

55

60

65

12

transition of CCLK_U causes formatting circuit 310A to
transition to state 602 and receive the next DIN bit as TMS,

and so on, until the all the TMS and TDI bit pairs of the soft

data received from second storage partition 320B are pro-
cessed by formatting circuit 310A. Formatting circuit 310A
uses the TMS bits and TCK to clock the TDI bits as a
JTTAG-compatible bitstream to processor 110. Then, EN 1s
de-asserted (e.g., to logic low), which causes formatting
circuit 310A to return to the wait state 601. Thereafter, debug
unit 114 can access, control, and/or load data into the
internal resources ol processor 110 using the JTAG bat-
stream and associated control signals generated provided by
formatting circuit 310A 1 a well-known manner.

FIG. 5B shows a portion of FPGA 300 having a format-
ting circuit 3108 that 1s configured to operate in the slave-
serial configuration mode. Operation of formatting circuit
310B 1n the slave serial mode 1s 1dentical to that of format-
ting circuit 310A, except that CCLK_U 1s generated exter-
nally and provided to formatting circuit 310 via pin 109.

FIG. 5C shows a portion of FPGA 300 having a format-
ting circuit 310C that 1s configured to operate 1n the master
SelectMap configuration mode, and FIG. 7 shows a state
diagram generally descriptive of the operation of formatting
circuit 310C. Formatting circuit 310C includes 8 data inputs
to receive soit data 1n a byte-wide format DIN[O:7] from
second partition 320B of external storage device 320 via
corresponding configuration data pins 106(0)-106(7). For
other embodiments, formatting circuit 310C can include
other numbers of data input pins to receive other numbers of
bits in parallel from external storage device 320. During
configuration of FPGA 300, oscillator 104 pulls clock pin
105 to a high impedance state after the configuration data 1s
loaded from first partition 320A of external storage device

320 to configuration circuit 102, as described above with
respect to FIG. SA.

Thereafter, EN 1s asserted, which initializes formatting
circuit 310C 1n a wait state 701. In response thereto, for-
matting circuit 310C generates CCLK_U, which 1s used to
clock the soft data from second partition 320B 1n parallel
format to formatting circuit 310C via configuration data pins
106. When formatting circuit 310C receives the start code,
¢.g., the first data byte that include a series of 1’°s followed
by a 0, formatting circuit 310C transitions to state 702, and
receives the first byte D[0:7] of the soit data. When
CCLK_U transition states, formatting circuit 310C outputs
D[0] as TDI and outputs D[1] as TMS, then transitions to
state 703 and outputs D[2] as TDI and outputs D[3] as TMS,
then transitions to state 704 and outputs D[4] as TDI and
outputs D[5] as TMS, and then transitions to state 705 and
outputs D[6] as TDI and outputs D[7] as TMS. Formatting
circuit 310C then transitions back to state 702 and waits for
the next logic transition of CCLK_U, after which formatting
circuit 310C processes the next data byte received via pins
106(0)-106(7) mto TDI and TMS signals as described
above. This process continues until EN 1s de-asserted (e.g.,
to logic low), which causes formatting circuit 310C to return
to the wait state 701. Thereatiter, debug unit 114 can access,
control, and/or load data into the internal resources of
processor 110 using the JTAG signals generated by format-
ting circuit 310C 1n a well-known manner.

FIG. 5D shows a portion of FPGA 300 having a format-
ting circuit 310D that 1s configured to operate 1n the slave
SelectMap configuration mode. Operation of formatting
circuit 310D 1n the slave SelectMap mode 1s 1dentical to that
of formatting circuit 310C, except that CCLK_U 1s gener-
ated externally.




UsS 7,313,730 Bl

13

The above described embodiments show CCLK_U being
externally coupled to the FPGA configuration clock pin 105
via pin 109, which 1s consistent with current Virtex-II Pro
architectures. However, for other embodiments, CCLK U
can be internally coupled to the FPGA clock pin 105.

As described above, formatting circuits 310A-310D tran-
sition states 1n response to logic transitions of CCLK_U. For
some embodiments, formatting circuits 310A-310D transi-
tion states in response to rising edges of CCLK_U. For other
embodiments, formatting circuits 310A-310D transition
states 1n response to falling edges of CCLK_U. For still
other embodiments, formatting circuits 310A-310D can
transition states in response to both rising and falling edges
of CCLK_U.

For some embodiments, FPGA 300 may include more
than one of formatting circuits 310A-310D to allow 1tself to
be configured using various configuration modes described
above. For other embodiments, formatting circuit 310 may
be programmable to selectively implement any one of the
various configuration modes describe above.

For other embodiments, the outputs of JTTAG test circuitry
120 and formatting circuit 310 can be selectively connected
to the embedded processor’s JTAG port 115 so that an
external controller (e.g., configuration tool 170 of FIG. 1)
connected to JTAG pins 108 can utilize the FPGA’s JTAG
test circuitry 120 to access, control, and/or load data mto the

processor’s internal resources. FIG. 8 shows an FPGA 800
that 1s another embodiment of FPGA 300 of FIG. 3. FPGA

800, which includes all the elements of FPGA 300, also
includes a select circuit 802 having first inputs to receive the
TDI, TCK, and TMS signals from JTAG test circuit 120,
second inputs to receive the TDI, TCK, and TMS signals
from formatting circuit 310, outputs to provide TDI, TCK,
and TMS signals to corresponding mnputs of processor 110°s
JTAG port 115, and a control terminal to receive a mode
select signal MODE. When MODE is 1n a first state, select
circuit 802 forwards the JTAG signals from formatting
circuit 310 to processor 110. When MODE 1s 1n a second
state, select circuit 802 forwards the JTAG signals from
JTAG test circuitry 120 to processor 110. MODE can be
generated 1n any suitable manner. For some embodiments,
MODE can be generated by internal FPGA components. For
other embodiments, MODE can be generated externally
(e.g., by a user), and provided to FPGA 800 via FPGA 1I/O
pin (not shown for simplicity).

For the embodiments described above, the configuration
data 1s stored 1n a first partition of external storage device
320, and the soit data 1s stored i a second partition of
external storage device 320. For other embodiments, the
configuration data and the soft data may be stored in the
same partition of external storage device 320. For such
embodiments, a trigger signal may be inserted between the
configuration data and the soft data to indicate a boundary
between the configuration data and the soft data. For
example, FIG. 9 shows an FPGA 900 that 1s a modified
embodiment of FPGA 300 of FIG. 3. In addition to all the
elements of FPGA 300 described above, FPGA 900 includes
detection logic 902 having an input to receive DIN, a first
output to selectively provide DIN to formatting circuit 310,
and a second output to generate EN. Detection logic 902
monitors DIN for the trigger signal that indicates the bound-
ary between the configuration data and the soft data con-
tained 1n DIN. While configuration data contained 1n DIN 1s
provided to configuration circuit 102, detection logic 902
maintains EN 1n a de-asserted (e.g., logic low) state that
enables configuration circuit 102 and disables formatting
circuit 310. When the trigger signal 1s detected, thereby

10

15

20

25

30

35

40

45

50

55

60

65

14

indicating that subsequent portions of DIN are soft data to be
loaded 1into processor 110, detection logic 902 asserts EN
(e.g., to logic high), which 1n turn disables configuration
circuit 102 and enables formatting circuit 310. Once
cnabled, formatting circuit 310 receives the soit data con-
tamned 1 DIN and formats 1t into a JTAG-compatible bit-
stream that can be loaded into processor 110 to access,
control, and/or load data into its internal resources in the
manner described above. For other embodiments of FIG. 9,
EN may be provided to oscillator 104 to cause oscillator 104
to drive configuration clock pin 105 to a high impedance
state when all of the configuration data stored in external
storage device 320 has been loaded into FPGA 900.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled 1n the art that changes and modifications may be
made without departing from this invention in 1ts broader
aspects, and therefore, the appended claims are to encom-
pass within their scope all such changes and modifications as
fall within the true spirit and scope of this invention. For
example, although described above as controlling resources
internal to processor 110, for other embodiments, embodi-
ments of the present invention may be used to access,
control, and/or load data into external resources available to
processor 110 (e.g., external cache, register files, or other
memory). In addition, although present embodiments are
described above in the context of JTAG-compliant test
circuitry, embodiments of the present invention can be used
with other suitable test architectures and standards.

What 1s claimed 1s:

1. An mtegrated circuit (IC), comprising;:

one or more configurable elements;

one or more configuration memory cells to store configu-
ration data for the configurable elements;

an embedded processor having one or more resources, a
test port to receive a test bitstream, and a debug umt
capable of accessing the one or more resources 1n
response to the test bitstream;

wherein the test port comprises a JTAG port, and the test
bitstream comprises a JTAG-compatible bitstream;

a configuration circuit having an input to receive the
confliguration data from an external storage device, and
having an output connected to the configuration
memory cells;

a formatting circuit having an input to receive soft data

from the external storage device and having outputs
connected to the processor’s test port;

a plurality of JTAG mput/output (I/0) pins;

a JTAG-compliant test circuit having a plurality of
inputs coupled to corresponding JTAG I/O pins, and
having a plurality of outputs; and

a select circuit having first inputs coupled to correspond-
ing outputs of the JTAG-compliant test circuit, second
inputs coupled to corresponding outputs of the format-
ting circuit, outputs coupled to the processor’s JTAG
port, and a control terminal to recetve a mode signal.

2. The IC of claim 1, wherein the formatting circuit
formats the soit data into the test bitstream.

3. The IC of claim 1, further comprising:

test circuitry having an input port coupled to one or more
corresponding test pins of the IC and having an output
port selectively coupled to the processor’s test port.

4. The IC of claim 1, wherein the formatting circuit
further comprises a control input to receive an enable signal
for enabling the formatting circuit to process the soit data.




UsS 7,313,730 Bl

15

5. The IC of claim 4, wherein de-assertion of the enable
signal prevents the formatting circuit from processing data
received from the external storage device.

6. The IC of claim 1, wherein the soft data comprises
information for controlling the one or more resources of the
Processor.

7. The IC of claim 6, wherein the test bitstream comprises

bus commands for the processor.

8. The IC of claim 1, wherein the test bitstream comprises
firmware code to be loaded into a cache memory of the
Processor.

9. The IC of claim 1, wherein the test bitstream comprises
data to be loaded mnto an architectural register of the pro-
CESSOT.

10. The IC of claim 1, wherein the soft data comprises
firmware code.

11. The IC of claim 10, wherein the one or more resources
comprises a cache memory.

12. The IC of claim 1, wherein the soft data 1s stored in
the external storage device as a plurality of bit pairs, each bit
pair comprising a JTAG-compatible test data input (TDI) bit
and a JTAG-compatible test mode select (TMS) bat.

13. The IC of claim 12, wherein the soft data includes a
start code that instructs the formatting circuit to format
subsequent portions of the soft data into the JTAG-compat-
ible bitstream.

14. The IC of claim 12, wherein the external storage
device comprises:

a first partition for storing the configuration data; and

a second partition for storing the soit data.

15. The IC of claim 12, wherein the formatting circuit 1s
configurable to receive the bit pairs from the external storage
device etther serially or 1n parallel.

16. The IC of claim 1, wherein the select circuit forwards
the JTAG-compatible bitstream from the formatting circuit
to the processor’s JTAG port when the mode signal 1s 1n a
first state, and connects the JTAG-compliant test circuit to
the processor’s JTAG port when the mode signal 1s in a
second state.

17. The IC of claim 1, wherein the formatting circuit
COmMprises:

one or more first formatting circuits configured to receive

the soit data serially from the external storage device;
and

one or more second formatting circuits configured to

receive the soft data in parallel from the external
storage device.

18. The IC of claim 1, wherein the formatting circuit 1s
configurable to receive the soit data from the external
storage device either serially or 1n parallel.

19. An mtegrated circuit (IC), comprising:

a plurality of configurable elements;

an embedded processor having one or more resources, a

test port to receive a test bitstream, and means for
accessing the one or more resources;
wherein the test port comprises a JTAG port, and the test
bitstream comprises a JTAG-compatible bitstream;

one or more configuration pins to receive data from an
external storage device during configuration of the IC,
the data including configuration data for configuring
the configurable elements and soft data for use by the
Processor;

means for formatting the soft data received from the
external storage device via the one or more configura-
tion pins to generate the test bitstream:;

plurality of JTAG mput/output (I/O) pins;

10

15

20

25

30

35

40

45

50

55

60

65

16

a JTAG-compliant test circuit having a plurality of inputs
coupled to corresponding JTAG I/O pins, and having a
plurality of outputs; and

a select circuit having first inputs coupled to correspond-
ing outputs of the JTAG-compliant test circuit, second
inputs coupled to corresponding outputs of the means
for formatting, outputs coupled to the processor’s
JTAG port, and a control terminal to receive a mode
signal.

20. The IC of claim 19, further comprising;

test circuitry having an 1mput port coupled to one or more
corresponding test pins of the IC and having an output
port selectively coupled to the processor’s test port.

21. The IC of claim 19, wherein the one or more resources
comprise a cache memory and the soft data comprises
firmware code for the processor.

22. The IC of claim 19, wherein the one or more resources
comprise a bus system and the soit data comprises a bus
command.

23. The IC of claim 19, wherein the means for formatting
1s configurable to receive the soit data from the external
storage device either serially or 1n parallel.

24. The IC of claim 19, wherein the soft data 1s stored in
the external storage device as a plurality of bit pairs, each bit
pair comprising a JTAG-compatible test data mnput (TDI) bit
and a JTAG-compatible test mode select (ITMS) bit.

25. The IC of claim 24, wherein the soft data includes a
start code that instructs the means for formatting to format
subsequent portions of the soft data into the JTAG-compat-
ible bitstream.

26. The IC of claim 19, wherein the external storage
device comprises:

a first partition for storing the configuration data; and

a second partition for storing the soft data.

27. The IC of claim 19, further comprising;

means for configuring the configurable elements with the
configuration data.

28. The IC of claim 19, wherein the select circuit forwards
the JTAG-compatible bitstream from the formatting circuit
to the processor’s JTAG port when the mode signal 1s 1n a
first state, and connects the JTAG-compliant test circuit to
the processor’s JTAG port when the mode signal 1s 1n a
second state.

29. A method of controlling one or more resources of a
processor embedded 1n an integrated circuit (IC), the pro-
cessor mcluding a test port and test circuitry, comprising:

loading soft data from an external storage device into the
IC via one or more configuration pins on the IC;

formatting the soit data into a test bitstream and associ-
ated test control signals;

forwarding the test bitstream and the associated test
control signals to the processor via a select circuit
coupled to recerve the test bitstream and the associated
test control signals as a first mput and coupled to
receive outputs of a JTAG-compliant test circuit as a
second 1nput;

loading the test bitstream and the associated test control
signals 1nto the processor via the test port; and

implementing one or more functions in the processor as
specified by the test bitstream via the test circuitry.

30. The method of claim 29, wherein the test port com-
prises a JTAG port and the test bitstream comprises a
JTAG-compliant bitstream.

31. The method of claim 29, wherein implementing one or
more functions comprises loading firmware code stored in
the external storage device into a cache memory within the
Processor.




UsS 7,313,730 Bl

17

32. The method of claim 29, wherein implementing one or
more functions comprises updating data stored 1n a memory
clement within the processor with soft data retrieved from
the external storage device.

33. The method of claim 29, wherein implementing one or
more functions comprises providing instructions recerved
from the external storage device to the processor to 1nitialize
one or more of the resources to a desired state.

34. The method of claim 30, further comprising:

storing the soft data in the external storage device as a

plurality of JTAG test data input (TDI) and test mode
select (TMS) bit pairs.

35. The method of claim 34, further comprising:

inserting a start code as an 1nitial set of bit pairs of the soft

data stored in the external storage device.

36. The method of claim 35, further comprising:

cnabling the formatting 1n response to detection of the

start code.

37. The method of claim 29, further comprising:

storing configuration data for one or more configurable

clements of the IC in a first partition of the external
storage device; and

storing the soft data 1n a second partition of the external

storage device.

38. The method of claim 37, further comprising:

loading the configuration data into a configuration

memory associated with one or more configurable
clements of the IC.

39. A method of configuring an integrated circuit (IC)
having an embedded processor that includes test circuitry,
comprising;

storing configuration data capable of configuring one or

more configurable elements of the IC 1n an external
storage device;

storing soift data capable of accessing one or more

resources ol the embedded processor into the external
storage device;

10

15

20

25

30

35

18

loading the configuration data from the external storage
device 1nto a configuration memory of the IC via one or
more IC configuration pins;

loading the soft data from the external storage device 1nto

the IC via the one or more IC configuration pins;
formatting the soit data into a test bitstream and associ-
ated test control signals;

forwarding the test bitstream and the associated test

control signals to the processor via a select circuit
coupled to recerve the test bitstream and the associated
test control signals as a first mput and coupled to
receive outputs of a JTAG-compliant test circuit as a
second 1nput; and

loading the data embodied in the test bitstream 1nto one or

more resources selected by the processor’s test circuitry
in response to the associated test control signals.

40. The method of claim 39, wherein the soft data
comprises firmware code for the processor and one of the
resources comprises a cache memory of the processor.

41. The method of claim 39, wherein one of the resources
comprises an architectural register of the processor.

42. The method of claim 39, wherein the test bitstream
comprises a JTAG-compliant bitstream.

43. The method of claim 42, further comprising;

disabling a JTAG-compliant test architecture associated

with the IC.

44. The method of claim 42, further comprising:

storing the soft data in the external storage device as a

plurality of JTAG data and mode select bit pairs.

45. The method of claim 44, wherein the soft data further
comprises a start code capable of enabling the formatting.

46. The method of claim 39, further comprising;

storing the configuration data in a first partition of the

external storage device and storing the soft data 1n a
second partition of the external storage device.




	Front Page
	Drawings
	Specification
	Claims

