12 United States Patent

Teig et al.

US007310793B1

US 7,310,793 B1
*Dec. 18, 2007

(10) Patent No.:
45) Date of Patent:

(54) INTERCONNECT LINES WITH
NON-RECTILINEAR TERMINATIONS

(75) TInventors: Steven Teig, Menlo Park, CA (US);
Andrew Caldwell, Santa Clara, CA
(US)

(73) Assignee: Cadence Design Systems, Inc., San
Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 1189 days.

This patent 1s subject to a terminal dis-
claimer.

(21) Appl. No.: 10/061,641

(22) Filed: Jan. 31, 2002

Related U.S. Application Data

(60) Provisional application No. 60/298,146, filed on Jun.
12, 2001, provisional application No. 60/295,733,

filed on Jun. 3, 2001.

(51) Int. CL.

GO6F 17/50 (2006.01)
(52) US.CL e, 716/13
(58) Field of Classification Search 716/2,

716/13, 14, 15, 11; 257/210
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9/1986 Linsker
6/1987 Shimoyama

4,615,011 A
4,673,966 A

6810

R

\

6815

|

4,700,016 A 10/1987 Hitchcock et al.
(Continued)

FOREIGN PATENT DOCUMENTS
7/1991

JP 03-173471
(Continued)

OTHER PUBLICATTIONS

U.S. Appl. No. 10/066,060, filed Jan. 31, 2002, Steven Teig,

Application with the same specification and drawings as the present
application, with the exception of summary and abstract.

(Continued)

Primary Examiner—Thuan Do
(74) Attorney, Agent, or Firm—Adelh Law Group PLC

(57) ABSTRACT

Some embodiments of the invention provide vias that are not
in shape of quadrlaterals. In some embodiments, some or all
vias are 1n shape ol non-quadrilateral polygons, such as
octagons and hexagons. In some embodiments, some or all
vias have a circular shape. Some embodiments provide a
first set of vias that have a diamond shape and a second set
of vias that have a rectangular shape. In some embodiments,
a via can also be formed by a diamond contact and a
rectangular contact. The diamond contact has four sides. In
the embodiments described below, all four sides of a dia-
mond via contact have equal sides. However, in other
embodiments, a via contact can be 1n shape of a diamond
with a pair of sides that are longer than the other pair of
sides. Similarly, 1n the embodiments described below, the
rectangular via contacts are squares with four equal sides.
However, 1n other embodiments, the length and width of a
rectangular via contact can differ. Some embodiments of the
invention provide interconnect lines that have non-rectan-
gular ends. In some embodiments, the interconnect-line ends
are partial octagons, hexagons, and/or circles. Also, some
embodiments provide Steiner points that are not rectangular.
In some embodiments, the Steiner points are octagonal,
hexagonal, or circles.

18 Claims, 59 Drawing Sheets

US 7,310,793 B1

Page 2
U.S. PATENT DOCUMENTS JP 2000-082743 3/2002
4,782,193 A 11/1988 Linsker OTHER PUBIICATIONS
5,117,277 A * 5/1992 Yuyama et al. 257/210
5,360,948 A 11/1994 Thornberg U.S. Appl. No. 10/066,160, filed Jan. 31, 2002, Steven Teig et al.,
5,578,840 A 11/1996 Scepanovic et al. Application with the same specification and drawings as the present
5,618,744 A 4/1997 Suzuki et al. application, with the exception of summary and abstract.
5,633.479 A 5/1997 Hirano U.S. Appl. No. 10/066,095, filed Jan. 31, 2002, Steven Teig et al.,
5,650,653 A 7/1997 Rostoker et al. Application with the same specification and drawings as the present
5,657,242 A 8/1997 Sekiyama et al. application, with the exception of summary and abstract.
5,742,086 A 4/1998 Rostoker et al. U.S. Appl. No. 10/066,047, filed Jan. 31, 2002, Steven Teig et al.,
5,757,656 A 5/1998 Hershberger et al. Application with the same specification and drawings as the present
5,777,360 A 7/1998 Rostoker et al. application, with the exception of summary and abstract.
5,784,262 A 7/1998 Sherman U.S. Appl. No. 10/066,094, filed Jan. 31, 2002, Steven Teig et al.,
5,811,863 A 9/1998 Rostoker et al. Application with the same specification and drawings as the present
5,822,214 A * 10/1998 Rostoker et al. 716/10 application, with the exception of summary and abstract.
5,889,320 A 3/1999 Rostoker et al. U.S. Appl. No. 10/076,121, filed Feb. 12, 2002, Steven Teig, CIP of
5,914,887 A 6/1999 Scepanovic et al. U.S. Appl. No. 10/066,094.
5,973,376 A 10/1999 Rostoker et al. U.S. Appl. No. 10/062,995, filed Jan. 31, 2002, Steven Teig et al.,
6,035,108 A 3/2000 Kikuchi Application with the same specification and drawings as the present
6,067,409 A 5/2000 Scepanovic et al. application, with the exception of summary and abstract.
6,128,767 A 10/2000 Chapman U.S. Appl. No. 10/066,102, filed Jan. 31, 2002, Steven Teig,
6,166,441 A 12/2000 Geryk Application with the same specification and drawings as the present
6,209,123 Bl 3/2001 Maziasz et al. application, with the exception of summary and abstract.
6,226,560 Bl 5/2001 Hama et al. U.S. Appl. No. 10/066,187, filed Jan. 31, 2002, Steven Teig et al.,
6,247,853 Bl 6/2001 Papadopoulou et al. Application with the same specification and drawings as the present
6,262,487 Bl 7/2001 Igarashi et al. application, with the exception of summary and abstract.
0,292,929 B2 9/2001 Scepanovic et al. U.S. Appl. No. 10/233,202, filed Aug. 28, 2002, Steven Teig, Per the
6,301,686 Bl 10/2001 Kikuchi et al. preliminary amendment dated May 30, 2003, this application is a
6,320,391 Bl 11/2001 Bui CIP of the present application.
6,324,675 Bl 11/2001 Dutta et al. U.S. Appl. No. 10/229,196, filed Aug. 26, 2002, Steven Teig, Per the
6,342,682 Bl 1/2002 Mor et al. preliminary amendment dated May 30, 2003, this application is a
6,365,958 Bl 4/2002 Ibnabdeljalil et al. CIP of the present application.
6,385,758 Bl 5/2002 Kikuchi et al. U.S. Appl. No. 10/288,870, filed Nov. 6, 2002, Steven Teig, Per the
6,407,434 Bl 6/2002 Rostoker et al. preliminary amendment dated May 30, 2003, this application is a
6,412,097 Bl 6/2002 Kikuchi et al. CIP of the present application.
6,436,804 B2 8/2002 Igarashi et al. U.S. Appl. No. 10/219,923, filed Aug. 14, 2002, Steven Teig, Per the
6,483,481 Bl 11/2002 Sievenpiper et al. preliminary amendment dated May 30, 2003, this application is a
6,512,292 Bl 172003 Armbrust et al. CIP of the present application.
6,546,540 Bl 4/2003 Igarashi et al. Berger, B. et al., Nearly Optimal Algorithms and Bounds for
6,586,281 Bl 7/2003 - Gabara et al. Multilayer Channel Routing, Journal of the Association for Com-
6,615,400 Bl 9/2003 Lukanc. puting Machinery, pp. 500-542, Mar. 1995.
6,645842 B2 11/2003 Igarashi et al. Chen, H., Routing L-Shaped Channels i Nonslicing-Structure
6,680,130 B2 1/2004 BlatCthK_L Ir. et al. Placement, 24™ ACM-IEEE Design Automation Conference, pp.
2001/0003843 Al 6/2001 Scepanowrﬁ'lc_ et al. 152-165. 1987.
2002/0024115 Ath 2/2002 Ibnabdeljalil et al. Cheng, K. et al, Manhattan or Non Manhattan? A Study of
2002/0174415 AL 1172002 Tanaka Alternative VLSI Routing Architectu 47-52, 2000
_ . g Architectures, pp. : .
2002/0182844 Al 12/2002 Igarashi et al. . - . e
_ . Chiang, C. et al., Wirability of Knock-Knee Layouts with 45° Wires,
2003/0005399 Al 1/2005 " Igarashi et al. IEEE Transactions on Circuits and Systems, vol. 38, Issue 6, pp
2003/0025205 Al 2/2003 Shively 613-624. Jun. 1991, T P
20030121017 Al 6/2003 Andreev et al. NN71091316, Use of Relatively Diagonal And Rectangular Wiring
FORFEIGN PATENT DOCUMENTS Planes n Multilayer Packages, Sep. 1971, IBM Technical Disclosure
Bulletin, vol. No. 14, Issue No. 4, pp. 1316-1317.
JP 04-000677 1/1992 Overtone, G., EDA Underwriter 2 Finding Space 1n a Multi-Layer
JP 05-102305 4/1993 Board, Electronic Engineering, Morgan-Grampian L'TD, Mar. 1995,
JP 05-243379 9/1993 vol. 67, No. 819, pp. 29-30.
JP 07-086407 3/1995
JP 09-162279 6/1997 * cited by examiner

US 7,310,793 B1

Sheet 1 of 59

Dec. 18, 2007

U.S. Patent

] 2iN31]

[19AeT 1IR2UI[ID0

7 1aAeT] Eon:ﬁoo

¢ JaAeT IBQUI[}O0)
b 19ART TeaulI[l1o()

G I9AeT IBaUI[1}D()

001

S01
O11

Gl
0C1
GCl

U.S. Patent Dec. 18, 2007 Sheet 2 of 59 US 7,310,793 B1

200

Select a sub-region to detail route

[dentify topological route
for each net within the selected sub-region

2035

210

215
\ No
Routable?

Yes

220
| Generate a geometric route for each topological route, and store the
resutls in the detailed-routing and global-routing databases

229 All sub-

regions
routed?

No

Yes

END

Figure 2

US 7,310,793 B1

Sheet 3 of 59

Dec. 18, 2007

U.S. Patent

41

NN

oI

u

U.S. Patent Dec. 18, 2007 Sheet 4 of 59 US 7,310,793 B1

U.S. Patent Dec. 18, 2007 Sheet 5 of 59 US 7,310,793 B1

TS W e AR W T i S e R R W W T S W M e et N R SRR e B e ey e N e T N A T T W W T T b e e e i U e o O e
- N W]

r--—-—---—--—--‘-.p------- N N T N T A T E T R ER A T A AT SN A e S =S W el o 0 e ol D e i o i M o oy e o o e = 0 0 o o e o e e W A WA e m

Figure 5

Sa0e.]--

S8 --
SOPON -
aulAjoads ydels e ‘1ahe] yoro 10]-
SOLIJOWIOT JO 13S ® SulAJIdads od yoeg--
s110d Jo j9s e ul{groads uid yoeyg--
surd Jo 19s B SuIAJ10ads jou yoeyg--
S1au Jo Jaquunu e FulfJ1oads ISIpaN-

US 7,310,793 B1

/ AN

HU1/1800)--
S9ZIS BIA --
Suroeds wnNWIUI--
A 9Z1S 11M WUNLUIUTA]--
— sonradold 1a4e] JO Avlly -
,M uo13a1 a1} JO X0q Juipunog-
= A113W033 uId ora apIsul SIpOU UONIUUOD JO ISI--
@ yuswudisse 194e[7 sjutod Jo adouanbas e Juipn|oul Anauoan yoey--
2 SALI}AWOAN) JO ISIT-
~
—
&
o SO11)9WU033 JO 138 ' BulAj1oads j1od yory--
— s110d Jo j9s e SurfJroads uid yoeg--
& suld Jo)as e SulAj10ads jau yoey--
o S19U JO IaquuNu B Sur4j1oads 1Sj1aN-

1U/1S0))--
9 2iN31 soz18 v1p -
’ suroeds winwirury--
9ZIS 2I1M TWNWIUTA--
sanadoad 1a4ef Jo Keiry-
UOI3a1 3} JO XOq JuIpunog-
Jjuawiusisse 1ade] 39 syuiod jo asuanbas e surpnjoul Aljawoan yovsg--
S21112W03N) JO ISIT-

U.S. Patent

310,793 Bl

s 2UINGT

%

U Q ° rg‘

=X

\F,

S

-

-

.m apOou I3JO S}I)M Sulpla pue

2 S9POU §,95Pa 31} JO 3UO YIm FulIe)s
953 31| UO SWI)I JO ISI] payuUIT-

SUIRIISUO))-

S 006 poul " U-

= MO

) Adede))-

o

5 a5p3 a1}

~ JO s398] 0M] 0] dn J0J S2JURID31 OM | -

U.S. Patent

008

Wa}1 90B]

OM} 0} dn 10J SaJUaIdJa1 oMm) 0} d)-
SOpOU € 0] 9OUAIJY-
S98Pa € 0] DU -

208.]

US 7,310,793 B1

Sheet 8 of 59

Dec. 18, 2007

U.S. Patent

00CI

I 2431,

SaOUR)SI(] puB S0 SUIuIensuo))-
SUOI)B20] W3}l 298]

[eD3] Sauljap eyl uogAjod 3uipunog-
SWIA)I BIA [ED130[0d0) UMOP pUR

dn 10J saouaxayal yed-eia jo 1red y-
(1ed Jeueid

JWES 3} ul stud)l [earsorodo) juaoelpe
10] saoua1djal Yred-1euerd € 01 dny-

I21J1UP] 1ON-
Q0B]J S}1 0} 9OUAIJNY-

WId)] 208,

(0] 21N31]

0011

[] 24n381

263

d1]) U0 W) [ed130[0d0o) snotaaid pue
1XaU 31} 0} SADUAIJAI 33pa JO Jed -

_ yied Jeuefd

ATUBS Y3 UT SWa)I [eaisojodo) juaoelpe
0] S201a19)a1 jed-reue(d Jo qned -

121JHHU9D] 19N~
98P S11 0] DU

o) A5p7

JpoU 3} JO UONBIOT-
A1}3W035 Y] JO XA Y] SUIAINUIPI I2qUUNU XU -
2pOoU 3y} JO ATI3W0A3 3} 0] OUIAIAI -

93P oy] uo wal [es1gojodoy

SNO1AJIA 10 1X3U 9Y) 0] 90UAIJAL 2BPI UR ‘93P2 or? 10.]-
3POU 31} 0} P2122UU0D S3BP2 JO ISI] 0 SAOUIAI -

0001

SW)L

BIA [2150[0d0} UmOp pue dn 0} S3dualtayal yied-eia Jo Jied y-
(ed reued awes oty U ST

[eo150]0d0) Jude{pe 0} sadualajal ied-1euer(d a10W 10 (-
I21J1IUIP] I9N-

JPON

US 7,310,793 B1

Sheet 9 of 59

Dec. 18, 2007

U.S. Patent

—
w 76C] pGET 09€1
- 08, AP 3PS
|
m., ﬁN. Q.NN\N.%-NK..N‘ JOUDIQY Y 1S17] 1S1] —
) g
~
N
-
““
€ 124p7] acet
&N
\r,
-~
-
&
< Y R
ﬂ)
2 _ 7T < 80€1
7 i / I
Yy y Y
- ?E A.Y_ bZE1 [S1E1 | OI€T |wed pOCT
— A A A A
o w . N Y
= 9T IIE] |——— By 701
5 m e
S " A Y \
= Y | R
7 124DT e - N
> Pitl ST
A .. @
“ 0¢1
Y r_ v__ y 23pg
1SI7] 32UD12JY 18T IS 1SI7] 1517
PEl ph I 9CCT 8CC1 0Z€1 cltl
a5pT 300, 5P I5p: 28p7 0P

U.S. Patent

U.S. Patent Dec. 18, 2007 Sheet 11 of 59 US 7,310,793 B1

(Stj“ > 1500

) ¥

Triangulate sub-region

il S——

' Group nets 1n the sub-region

Select a group of nets From 1580

1520

Specify a depth limit, a maximum depth-limit threshold, r's From 1555
and max pushes for the group of nets or 1560

1525

Call solving engine to find topological solution for all or some of the
r nets in the group within the specified depth limit and max pushes.

1530
Return / Yes
| solution for all nets
In group?
| No 1535
Increment depth limit To 1565
1540

Depth hmit > Max?
No

Figure 154

To 1545 -
Figure 154

Figure 158

Figure 15:

U.S. Patent Dec. 18, 2007 Sheet 12 of 59 US 7,310,793 B1

From 1540

To 1520 44—
1545 “

[s solution Accept returned best
empty? No solution

N

1555

Yes

_ - 1550
Pick a net and create solution

with just its cheapeast path

1560

'Y

All nets
1n group
solved?

No

Yes
1565

Assign face item From 1530

shapes (and locations)

1570

Triangulate based on face items,
and modity route descriptions

1575

Perform edge-flipping and
modify route description

1580

Yes)‘/

To 1515

No Figure 15B

END

U.S. Patent Dec. 18, 2007 Sheet 13 of 59 US 7,310,793 B1

Start 1600

1605
Select a layer
1619 Define a node
for each corner vertex of the regions

1615 Define a node
for each geometry point of a port or obstacle
1620 Define one or more connection nodes
for each port geometry
162 Create two triangle
by dividing the region 1n two
163C IS
Triangulate layer
by succesively inserting port or obstacle nodes
1635

Ta Perform an edge-flipping operation

1640 Constrain all edges of port and obstacle

geometries

1645

Perform follow-up edge-flipping operation

1650 |
No |

Yes Figure 16

END

U.S. Patent Dec. 18, 2007 Sheet 14 of 59 US 7,310,793 B1

. ——— : :
i A s O
b ' X '
E oo B 4 I OE . T E
: e E é E :
s s e z
' = ! :
i m; * E :
N i :
P . : :
b Soroeee i :
: &-4 4 .
| a :
Bttt et bt et ittt bttt Sttt T
oo ' s ;
H ' " ¢
: 2 S —— - :
¢ T E -
E : 4 . ’ : \
E E i'--';i ----- ‘ :
R GRLEE E SER LR R e -) :
< —P 5 | : ‘N:
i i a R
E L AN E :
i <L i ! (0 ;
G ' o i A ?
H ® I ! ' :
: : L
: ®-cacorenvans *-oeee : i b
: : Pvoensrvnonan 4
: i :
[T 1
: i :
: i :
: i :
: | :
5 S S ¢
B I R S
- = I
a © T R S
E L . E E e
' . O *------ *----8
: Q) - l
&:._ - r_lh‘ -

US 7,310,793 B1

Sheet 15 of 59

Dec. 18, 2007

U.S. Patent

0C 2AN31]

0161

CLOI

$061

61 2in31.]

DEOI

0181

0Col

US 7,310,793 B1

Sheet 16 of 59

[7 2IN51,] [o -~

---'---—---‘--.--h
-

Dec. 18, 2007

U.S. Patent

U.S. Patent Dec. 18, 2007 Sheet 17 of 59 US 7,310,793 B1

U.S. Patent Dec. 18, 2007 Sheet 18 of 59 US 7,310,793 B1

Figure 24

U.S. Patent Dec. 18, 2007 Sheet 19 of 59 US 7,310,793 B1

2500
v

2505

¥ 2510
Either end _
node of edge a - - Idenuity
Yes capacity vector as the edge

vpin?

|
No 2515

—

[dentify capacity vector as the vector that traverses
shortest distance between geometry sides abutting one
edge node and geometry sides abuttin other edge node |

2520
Edge capacity = largest projection of capacity
vector on one of the legal routing directions

END

Figure 25

U.S. Patent Dec. 18, 2007 Sheet 20 of 59 US 7,310,793 B1

2620

O
N
W
Ny
- §
l
‘. Ny
Je l nll k
~F l ™
= I -
2
Rl
\0 :
™ :
i o
2 S
|

| 80

US 7,310,793 B1

Sheet 21 of 59

Dec. 18, 2007

U.S. Patent

YVOb/ 7 _
0Vl gseic VSELT d45¢Le VSCLT d0tLT VOCLT ggiLz

CJ1aN 10 VSILL
N 10 (L (Ve e e() (e e 8 .ooo..ooo.?

SaInoy [eordojodo |

7 19N 10] (V) %90 O e () e e e A
sanoy [eordojodoy D0ELT 90€LT VOELT Nolia (
801LC VOILT
[19N 10] Mmonm
59IN0Y [Bd150j0do | () €950L¢ V0L (.
o

U.S. Patent Dec. 18, 2007 Sheet 22 of 59 US 7,310,793 B1

2800

Start

2802
Current Net 1s first net in the received net list.
Push Count =0

—

For Current Net, produce all legal routes that ; _
- P 5 -t———from 2828
have an acceptabie cost

2806
Any 1.'0utes To 7838
returned? No
Yes 23808

l Store returned solutions ,

i 2810
‘ >elect route for Current Net L}G——From 2836

1 2812

l Increment Push by 1 /

:

To 2814

Figure 28A4

Fioure 284 |

Fioure 288 |
Figure 28C

Figure 28:

U.S. Patent Dec. 18, 2007 Sheet 23 of 59 US 7,310,793 B1

—_—

L Insert selected route in region.

I 2816

Compute increase in total cost)
due to addition on of selected route

addition of increase in

Yes
downstream-net cost make To 2832
current total cost exceed
depth Iimit?
N 2820 2822
Best solution Yes | Store solut: |
thus far? Ore Solution |
No |
'- 2824 |
¥ |
Yes Push =
Max_Push?
2826 To 2808
| Is N)
0 -
Current Net the q et Ctm e?.t -]?:Et 1o ble
[ast __Net'? 1€ l‘-]-EX net 1 the net 11st
Ve 2830

Return best solution seen

and 1dentify nets solved From 2832

END Figure 28B

U.S. Patent Dec. 18, 2007 Sheet 24 of 59 US 7,310,793 B1

2832

¥

" Push = Yes
From 2812 Max_Push? » To 2830
2834
Remove route from region
To 2810 }836
T_'N_(_? ! All Current-Net's -
routes explored? 1 5847
Ves Set Current Net .I
2838 | tothe previous net in the net list

» 2840

.. rent_Net tl . .)
'rom 2806 ——» CuuenLT_ v e No Clear Current_Net solution pool
first net in the net -
Ve 2844
END

Figure 28C

U.S. Patent Dec. 18, 2007 Sheet 25 of 59 US 7,310,793 B1

2900

2902

Break net inte one or more pairs of pins

2904
Select a pair of pins From 2924
- 2906
Determine list of source and targets for the
selected pair
_ 2908
Set Depth Limit to straight line distance
between closest source and target
2910
Set Solution Count to O
2912
Generate all legal pzﬁhg From 2918

tor the selected pin-pair

To 2914

Figure 294

U.S. Patent Dec. 18, 2007 Sheet 26 of 59 US 7,310,793 B1

2926
[s there Yes |
any path for current Record solutions
Depth Limit?
2928

¥

2916

Solution Count

Increment Depth Linut

YVes < Desired Count?
2918
To 29012 No Depth Limit = No
02912 Max_Limit? |
2927 82920
— / —— o Any /
eturn laiuare P solutions
to find paths found?
) NG ound”
Yes 2024
To No
2904

Yes /

Identify K cheapest routes

2934

Pass through generated routes
and create Steiner points whenever possible

L

Figure 29B

€€ 2INS1]

US 7,310,793 B1

Sheet 27 of 59

Dec. 18, 2007

qgos mkEanN Fo§ Nkﬁ%mh

AP

U.S. Patent

S 24n31]

U.S. Patent Dec. 18, 2007 Sheet 28 of 59 US 7,310,793 B1

3100

,

Set one of the source nodes as starting point of path, define
Current_Point to be this source node, and set Path Cost to 0.

3104

From 3116

For Current Point, generate all expansions

and 3134
3106
From 3128 ———» Select one of the expansions
3108
L To 3128
3110

Yes

Define Current_Point to be the selected expansion
pomt, and add Current_Point to path

Calculate cost due to the expansion and revise Path _Cost of the path.

Y
To 3114

Figure 31A4

Figure 31A4

Figure 31: W

U.S. Patent Dec. 18, 2007 Sheet 29 of 59 US 7,310,793 B1

Does

Path Cost exceed Mo Current_Point a
depth limit? Target?
Ves Yes 3120

3122 y'd

Record path with cost,
and increment
Solution Count by 1 |

.

Remove Current Point from path

Set Current_Point to last topological item in path

3126
Adjust

Path Cost
To 3106
3128
All y'd
No int’
CUI‘Tem_?Umt S From 3108
eXpansions
explored?
Yes
53130
No [s | /
Current Point a
source node?
TE 5104
3134
Yes :
3132 /

Is 1t the
last one?

Set one of the source nodes as]

starting point of path, define
Current_Point to be this source
node, and set Path Costto 0.

END Figure 318

US 7,310,793 B1

qg8E 24n31,y
@
¢S CS

= |
m A\ €M
S
e °
= £S ¢S

€ 24n31,y

M

U.S. Patent

US 7,310,793 B1

Sheet 31 of 59

Dec. 18, 2007

U.S. Patent

Alioeden
9bp3
SEIN
Alueue|d

L& 24N31

seIn
SEIN e Ajlieue|d

Ayoeden

obp3
SEIA

SEIA o SBINA

Aoeden
abp3

Ajteueld

waj)| s p

SEIA

ST

SEIN Anieue|g

LIEN] EE RN | IPON

Uy AspyY

W3} 8

9PON

LU0

U.S. Patent Dec. 18, 2007 Sheet 32 of 59 US 7,310,793 B1

tart
Star 3900

3905 /

No

Any face
item 1n the expansion
face?
3910

Yes /

I Identity constraints

3915

No

Run optimizer?

Yes 3025

Any region

Formulate function to optimize 5
too small’

3930 | |
YeS
Optimize function
3935 3940
T s
All constraints met? Not Legal
Yes 3945

Legal
END

Figure 394

U.S. Patent Dec. 18, 2007

Yes

face 1tem 1n a face that
contains the destination

Sheet 33 of 59 US 7,310,793 B1

3950

s

39355

3960

| Compute bounding polygon of face item I‘

Y
Inter

Compute
with bounding polygons

space?

END

Figure

Suificient

3965
section
abovq_a_nd below
3970 3975

Not legal; reset
bounding polygon

N C

398

U.S. Patent Dec. 18, 2007 Sheet 34 of 59 US 7,310,793 B1

/ j 4000
K Start '/
} 4002

¥

Break net into one or more pairs of pins

4004

———— > Select a pair of pins

4006

Determine list of source and targets for the
selected pair

' } 4008
Set Depth Limut to straight line distance
between closest source and target
l - 4010

i B Generate all legal patl{s
for the selected pin-pair

[s there

Yes
any path for current No
Depth Limit? 4014
4020
I Record solutions / Increment Depth Limit

4016

4022
No / /

Last pair?

No

4018
Yes 4024 Yes

— . Return failure to find

| If multiple pirs, generate cheapest path paths

END

Figure 40

U.S. Patent Dec. 18, 2007 Sheet 35 of 59 US 7,310,793 B1

4100
Start

4105

Identify congestion graph for each layer, and
capacity and flow of edges in each graph

4110
Examine congestion about vias, move vias to improve congestion
around them, and adjust capacity and flow after movement

4115

) Compute congestion value
for each edge 1n the graphs

4120

No
Any congested edge?

Ves 4125

Inform the topological engine of the
congested edges

END

Figure 41

US 7,310,793 B1

Sheet 36 of 59

pUONSOZU0Y) XB —Y .

Dec. 18, 2007

- i

U.S. Patent

CUONSABUOD) XBIA] \\1. .._ @ O :

lllll
-_

[UONSITUOD) NN —¥

r

ZUONSITUOY) NN

09t

Cp 24nal,]

O\y/O.
O &)

@@@

U.S. Patent Dec. 18, 2007 Sheet 37 of 59 US 7,310,793 B1

Start 4300
ar /

\) ¥

l | 4305

[nitialize Max_Overtlow for each sector

r———» Select an edge connected to the via
I 4315

| Compute selected edge's overflow #“

Identify sector for edge

Selected edge's overtlow >
Sector's Max_ Overflow?

Yes

Sector's Max_Overflow = Selected edge's overflow

— - vla—— - L e L .

4335

N C

Last edge?

Yes 4340
o Yy

Compute Max_Congestions

Figure 43

END

U.S. Patent Dec. 18, 2007 Sheet 38 of 59 US 7,310,793 B1

4710

5
([—410

FIGURE 47

U.S. Patent Dec. 18, 2007 Sheet 39 of 59 US 7,310,793 B1

U.S. Patent Dec. 18, 2007 Sheet 40 of 59 US 7,310,793 B1

U.S. Patent Dec. 18, 2007 Sheet 41 of 59 US 7,310,793 B1

FIGURE 48C

U.S. Patent Dec. 18, 2007 Sheet 42 of 59 US 7,310,793 B1

4330

FIGURE 48D

US 7,310,793 B1

Sheet 43 of 59

Dec. 18, 2007

U.S. Patent

G'LEE
6'TT
g6 24n31,]
G'T6T S'LbT

SLES ¢T0T

C'TT LS

AN
S'LY czi1 Ol6P

Ocov

Fa
)
N
™!

LY

D6 24n31,]

$LbC

¢ ¢0¢

WAy

S ClI

V6p 24n51,]

¢l

S'L9
S LS C'77
Cl6¢
O < G'LEC
C'LYC ¢'zor S06%

U.S. Patent Dec. 18, 2007 Sheet 44 of 59 US 7,310,793 B1

R

& ——

5000
e

FIGURE 50

U.S. Patent Dec. 18, 2007 Sheet 45 of 59 US 7,310,793 B1

>110

— ~

A Yo
\l E
I

0NN ; X

= s o)

. o ! S

5130

U.S. Patent Dec. 18, 2007 Sheet 46 of 59 US 7,310,793 B1

U.S. Patent Dec. 18, 2007 Sheet 47 of 59 US 7,310,793 B1

3305
Select a layer IFrom 5390
5310
Assign locations to
each triangulation-edge item
5315

Specify connection points for each path

el I

Identify wiring model for selected layer

Select a constraining direction
based on the 1dentified wiring model From 5365

L l 5330

Rotate layout to simplify scan-line algm'ithmJ'/
5335

~ Scan layout on selected layer
~to generate path-defining edges

3340

Scan layout on selected layer
to 1dentify the paths crossed by each path-defining edge

To 3345

Figure 53

: ~ Figure 53A4
Fzgure 55. W

U.S. Patent Dec. 18, 2007 Sheet 48 of 59 US 7,310,793 B1

| 5345
Select a path
5350
Constrain path-defining edges -
Intersected by the selected path
3355

Based on the constrained path-defining edges,
compute shortest route for the selected path

5360
@ No
Yes
5365
E‘;{;}; NO A ast direction? 4

Ves 5370

Select a path <—

Merge partial shortest-path results

5380

Generate a route
based on the wiring model of the current [ayer

|
3385

y oo ‘J

Yes
| 5390
From No /

5305

= Figure 53B

END

US 7,310,793 B1

0CPs

IS

Sheet 49 of 59

CC 2.N31]

VN

Dec. 18, 2007

U.S. Patent

SOPS

SIPS

O1¥S

S 24n31,]

SOPS

S1PS

US 7,310,793 B1

9S 24NSL]

LS 2NSL]
01+S ~
V4

| S [1S 5096
&)
S e —.
-~
-
Y 019§ —
2 -
i
7 P,

519S
STHS

= 0Z9S
—
gl
e G796
w. 09 ¢
=

U.S. Patent

09 2iN31.J
79 2481y [9 24131

Lo Q)

5009

US 7,310,793 B1

Sheet 51 of 59

8S 24n31,]

6S 24n31,]

Dec. 18, 2007

016¢€ CO6S

U.S. Patent

US 7,310,793 B1

Sheet 52 of 59

e
l_ '™

Dec. 18, 2007

AN G1S9
0

U.S. Patent

US 7,310,793 B1

\jl lllll
A 5069 W
/N /7 \
/ \ 7/ \
T Naen el
\ -l .. oy ll')ll
\ /
w \/ AR / /
= v/ 0169
s 0269 \ /
= N
@ G169
75,

Dec. 18, 2007

U.S. Patent

US 7,310,793 B1

Sheet 54 of 59

Dec. 18, 2007

U.S. Patent

IN-1AS ¢
f\\H y TLIS +am

EN B-14S + B-ENS + BAA

/X

M+ 4-TAS + qM

0L 24n31,]

9 CN

\

(4-9§ + I3-TNS +
IM + G-TAS + QAA

IN

US 7,310,793 B1

Sheet 55 of 59

Dec. 18, 2007

U.S. Patent

SN-PAS

pL 24N31,]
5 ON-¢AS
LN-¥AS 0 0
\\
3 J
00V L €
FN 0 GN
J-ENS + I + J-€4S
£L 2431,
E-CNS + BAA +
¢N

8=(S + q-TAS + 9M

00EL —”

q-7AS + A

HZ

IN-TAS-

U

‘ /mhm

+9"INS + oM

US 7,310,793 B1

Sheet 56 of 59

Dec. 18, 2007

U.S. Patent

9, 2431,

E-1dS + B-ENS + mkw/ EN

+ A\ + 9-9§
+ 498 +9M
+ qQ-TAS + 9\

US 7,310,793 B1

o _
08 21N31,] 6/ 3:@@
B-ENS + B-(S +
¢N
oA BAA + G- N,mm + 55/ tN- ﬁmw/ tN
k=
>
2
L ccmn
= B-gNS + B-qS + 006, — "/
~
M, BEA + q-7AS + nkw IN-TAS
a q-ZNS
B-ENS
o IN-TAS + q-T4S + 9M
+ €-qS + 55) d
+ q-72AS + dM

U.S. Patent

US 7,310,793 B1

Sheet 58 of 59

, 2007

Dec. 18

U.S. Patent

N
P

I-THS + 9-TNS + YA

+ q-74S + M

U.S. Patent Dec. 18, 2007 Sheet 59 of 59 US 7,310,793 B1

Network

M
)
N
CO

4_,0')
:;G.)
9.2
= 3
s

N
(N
oo

Input
Devices

System

8300
H
8515

Figure 83

~y
2

SSOT ‘
10

L
<) o0
O
'
aw
D ——————r———————
QL
&f)
©
Yo —
N ' 2
8, /)
o
> N
O 50

Us 7,310,793 Bl

1

INTERCONNECT LINES WITH
NON-RECTILINEAR TERMINATIONS

CLAIM OF BENEFIT TO PROVISIONAL
APPLICATION

This patent application claims the benefit of the earlier-

field U.S. Provisional Patent Application entitled “Intercon-
nect Method, Apparatus, and Architecture for Integrated
Circuits and Integrated-Circuit Layouts™, having Ser. No.
60/295,735, and filed Jun. 3, 2001; and U.S. Provisional
Patent Application entitled “Interconnect Method, Appara-

tus, and Architecture for Integrated Circuits and Integrated-
Circuit Layouts”, having Ser. No. 60/298,146, and filed Jun.

12, 2001; and U.S. Provisional Patent Application entitled
“Method and Apparatus for Routing a Set of Nets”, having

Ser. No. 60/351,459, and filed Jan. 22, 2002.

FIELD OF THE INVENTION

The 1nvention 1s directed towards interconnect lines with
non-rectilinear terminations.

BACKGROUND OF THE INVENTION

An mtegrated circuit (“IC”) 1s a semiconductor device
that includes many electronic components (e.g., transistors,
resistors, diodes, etc.). These components are often inter-
connected to form multiple circuit components (e.g., gates,
cells, memory units, arithmetic units, controllers, decoders,
etc.) on the IC. The electronic and circuit components of
IC’s are jointly referred to below as “components.”

An IC also includes multiple layers of wiring (“wiring
layers™) that interconnect its electronic and circuit compo-
nents. For instance, many IC’s are currently fabricated with
metal or polysilicon wiring layers (collectively referred to
below as “metal layers™) that interconnect 1ts electronic and
circuit components. One common fabrication model uses
five metal layers. In theory, the wiring on the metal layers
can be all-angle wiring (1.e., the wiring can be in any
arbitrary direction). Such all-angle wiring 1s commonly
referred to as Euclidean wiring. In practice, however, each
metal layer typically has a preferred wiring direction. IC
designs often penalize non-preferred direction wiring on a
layer.

Many IC’s use the Manhattan wiring model, which speci-
fies layers of preferred-direction horizontal and vertical
wiring. In this wiring model, the layers of preferred-direc-
tion wiring typically alternate. Also, 1n this wiring model,
the majority of the wires can only make 90° turns. However,
occasional diagonal jogs are sometimes allowed on the
preferred horizontal and vertical layers.

Design engineers design IC’s by transforming circuit
description of the IC’s mto geometric descriptions, called
layouts. To create layouts, design engineers typically use
clectronic design automation (“EDA”) applications. These
applications provide sets of computer-based tools for creat-
ing, editing, and analyzing IC design layouts.

EDA applications create layouts by using geometric
shapes that represent different materials and devices on IC’s.
For instance, EDA tools commonly use rectangular lines to
represent the wire segments that iterconnect the IC com-
ponents. These tools also represent electronic and circuit IC
components as geometric objects with varying shapes and
S1ZES.

Also, 1n this document, the phrase “circuit module” refers
to the geometric representation of an electronic or circuit IC

10

15

20

25

30

35

40

45

50

55

60

65

2

component by an EDA application. EDA applications typi-
cally illustrate circuit modules with pins on their sides.
These pins connect to the interconnect lines.

A net 1s typically defined as a collection of pins that need
to be electrically connected. A list of all or some of the nets
in a layout 1s referred to as a netlist. In other words, a netlist
specifies a group of nets, which, 1n turn, specity the required
interconnections between a set of pins.

The IC design process entails various operations. Some of
the physical-design operations that EDA applications com-
monly perform to obtain the IC layouts are: (1) circuit
partitioning, which partitions a circuit if the circuit 1s too
large for a single chip; (2) floor planning, which finds the
alignment and relative orientation of the circuit modules; (3)
placement, which determines more precisely the positions of
the circuit modules; (4) routing, which completes the inter-
connects between the circuit modules; and (5) verification,
which checks the layout to ensure that 1t meets design and
functional requirements.

Routing 1s a key operation in the physical design cycle. It
1s generally divided into two phases: global routing and
detail routing. For each net, global routing generates a
“loose™ route for the interconnect lines that are to connect
the pins of the net. After global routes have been created, the
detail routing creates specific individual routing paths for
cach net.

While some commercial routers today might allow an
occasional diagonal jog, these routers do not typically
explore diagonal routing paths consistently when they are
speciiying the routing geometries of the interconnect lines.
This, 1n turn, 1ncreases the total wirelength (1.¢., total length
of interconnect lines) needed to connect the nets in the
layout.

In addition, routers today are mostly gridded. The manu-
facturing processes for designing IC’s specily a manufac-
turing grid that specifies manufacturable resolution. The
boundary of all circuit elements 1s defined by the straight-
line connections between adjacent manufacturing points.

Gridded routers typically define arbitrary grids of inter-
secting lines to specily the available locations for routing
interconnects. These arbitrary grids are often much coarser
than the manufacturing grids (e.g., they are typically line-
to-via spacing). Consequently, they arbitrarily limit the
locations of interconnect lines and impose arbitrary spacing
between the items in the layout. These arbitrary limits
increase the size and efliciency of a design. The routing grids
also discourage using arbitrary widths or spacing for inter-
connect lines.

Furthermore, existing routers primarily utilize preferred-
direction wiring to route their designs. Many IC layouts are
designed by penalizing the use of interconnect lines 1n each
particular layer when the interconnect lines are not in the
preferred wiring direction of the particular layer. Such
preferred direction wiring leads to IC layouts and IC’s that
have most of their interconnect lines and wiring on each of
their metal layers traverse 1n the same direction. Such IC
layouts and IC’s do not efliciently use the available spacing
on the mterconnect layers, and this adversely aflects the size
and efliciency of the layouts and the IC’s.

SUMMARY OF THE INVENTION

Some embodiments of the mnvention provide vias that are
not in shape of quadrilaterals. In some embodiments, some
or all vias are 1n shape of non-quadrilateral polygons, such
as octagons and hexagons. In some embodiments, some or
all vias have a circular shape. Some embodiments provide a

Us 7,310,793 Bl

3

first set of vias that have a diamond shape and a second set
of vias that have a rectangular shape. In some embodiments,
a via can also be formed by a diamond contact and a
rectangular contact. The diamond contact has four sides. In
the embodiments described below, all four sides of a dia-
mond via contact have equal sides. However, in other
embodiments, a via contact can be 1n shape of a diamond
with a pair of sides that are longer than its other pair of sides.
Similarly, 1n the embodiments described below, the rectan-
gular via contacts are squares with four equal sides, even
though, 1in other embodiments, the length and width of a
rectangular via contact can differ. Some embodiments of the
invention provide interconnect lines that have non-rectan-
gular ends. In some embodiments, the interconnect-line ends
are partial octagons, hexagons, and/or circles. Also, some
embodiments provide Steiner points that are not rectangular.
In some embodiments, the Stemner points are octagonal,
hexagonal, or circles.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the
appended claims. However, for purpose of explanation,
several embodiments of the invention are set forth in the
tollowing figures.

FI1G. 1 illustrates a wiring model of some embodiments of
the 1nvention.

FIG. 2 presents a conceptual illustration of a detail-
routing process used by some embodiments of the invention.

FIG. 3 illustrates one manner of defining sub-regions for
detail routing.

FIGS. 4 and 3 illustrate two layers of 16 Gceells that have
been combined to produce a sub-region.

FIG. 6 1llustrates the data structure that the detail routing
process uses to represent a sub-region 1n some embodiments
of the mvention.

FI1G. 7 1llustrates the modified data structure that the detail
routing process uses to represent a sub-region in some

embodiments of the invention.
FIG. 8 i1llustrates a data structure that defines a face.
FIG. 9 illustrates a data structure that defines an edge.

FIGS. 10-12 1llustrate the data structure of nodes, edge
items, and face items.

FIG. 11 illustrates the data structure for an edge item.
FIG. 12 illustrates the data structure for a face item.

FIGS. 13 and 14 illustrate one example of topological
routes.

FIG. 15 illustrates a process that provides the overall flow
ol a topological engine in some embodiments of the inven-
tion.

FIG. 16 illustrates a triangulation process that 1s used in
some embodiment of the invention.

FI1G. 17 1llustrates the layout of FIG. 4 after nodes have

been defined at each sub-region corner, at each port or
obstacle geometry point, and within each port geometry.

FIG. 18 illustrates a triangulation technique.

FIGS. 19 and 20 illustrate why maximizing the minimal
angles of the decomposing triangles improves the likelihood
that the generated topological routes can be geometrized.

FIGS. 21 and 22 illustrate one manner for performing an
edge-tlipping operation.

FIG. 23 illustrate one manner of constraining geometry
and sub-region boundaries 1n the triangulated graph.

FI1G. 24 illustrates an example of how the layout of FIG.
4 might look after triangulation.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIGS. 25 and 26 illustrate a process that the triangulation
process can call each time 1t wants to i1dentity the capacity
of each edge 1n the triangulated sub-region.

FIG. 27 pictonially illustrates an example of a solving
engine’s IDA*-searching operation for a set of three nets.

FIG. 28 1llustrates a more detailed process used by the
solving engine in some embodiments of the invention.

FIG. 29 1llustrates a process that the solving engine uses
to generate topological routes for a net.

FIGS. 30A and 30B illustrate a process for inserting
Steiner-tree face items 1n face.

FIG. 31 illustrates a process for generating paths between
one or more sources and one or more targets for a selected
pin-pair.

FIGS. 32-36 illustrate the possible expansions from edge
items, nodes, and face items.

FIG. 37 illustrates three types of legality checking.

FIGS. 38A and 38B illustrate how to compute the tlow of
an edge after a potential expansion.

FIGS. 39A and 39B illustrate processes for making via
checks.

FIG. 40 1llustrates a process for computing the cheapest-
route cost for a net.

FIG. 41 conceptually 1llustrates a process performed by
this routing engine 1n some embodiments of the invention.

FIG. 42 1illustrates eight such sectors that are defined
around the eight routing directions of the octilinear wiring
model 1illustrated 1n FIG. 1.

FIG. 43 illustrates a process for measuring the sector
congestion about a via.

FI1G. 44 1llustrates four sets of adjacent Manhattan sectors,
while

FIG. 45 illustrates four sets of adjacent 45° sectors.

FIG. 46 1llustrates a unique-congestion graph edge that 1s
between two nodes.

FIG. 47 1llustrate a simple example of a layout portion
that has two obstacles about which two topological routes
for two nets are defined by the topological router.

FIGS. 48A-48D 1llustrate four sets of path defining edges
for this example.

FIGS. 49A and 49B illustrate two octagons that represent
the octilinear wiring model of FIG. 1.

FIG. 49C identifies the eight possible directions that can
be constrained by the four constraining angles, £22.5° and
+67.5°, for the octilinear wiring model.

FIG. 50 illustrates a merged path for the examples 1llus-
trated 1n FIGS. 48A-48D.

FIG. 51 1llustrates the geometric projection of a segment
onto a horizontal direction.

FIG. 52 illustrates a net-width view of the route illustrated
in FIG. 50.

FIG. 53 presents a geometric-routing process performed
by the geometric engine of some embodiments of the
invention.

FIGS. 54 and 35 provide two examples for identifying the
spacing and width requirements on constraining directions.

FIG. 56 1llustrates an example of identifying a shortest
partial path after constraining segments of the intersected
path-defining edges.

FIG. 57 provides an example of a portion of a merged
route.

FIG. 58 illustrates multiple via cuts and contact pairs that
define a via between a narrow path on one layer and a wider
path on another layer.

FIGS. 59-62 illustrate various shapes of vias that are used
in some embodiments of the invention, and FIGS. 63-65

Us 7,310,793 Bl

S

illustrate various shapes of interconnect-lines that are used
in some embodiments of the mvention.

FIG. 66 illustrates a half-octagon interconnect lines that
matches well with different via shapes that can be used with
the octagonal wiring model.

FIG. 67 1llustrates a half-hexagon interconnect lines that
matches well with different via shapes that can be used with
the hexagonal wiring model.

FIG. 68 illustrates an example of an octagonal Steiner
node formed by half-octagon lines, while

FIG. 69 1illustrates an example of a hexagonal Steiner
node formed by half-hexagonal lines.

FIGS. 70-82 present several examples that illustrate the
via-checking process of FIG. 39A.

FIG. 83 illustrates a computer system used in some
embodiments.

DETAILED DESCRIPTION OF TH.
INVENTION

(L]

In the following description, numerous details are set
torth for purpose of explanation. However, one of ordinary
skill 1n the art will realize that the invention may be
practiced without the use of these specific details. In other
istances, well-known structures and devices are shown 1n
block diagram form in order not to obscure the description
of the mvention with unnecessary detail.

I. Non-Pretferred Direction Architecture

Some embodiments of the invention utilize non-pre-
terred-direction (“NPD”) wiring models for designing IC
layouts. A NPD wiring model does not specily a single
preferred routing direction for at least one of 1ts interconnect
layers. (In the discussion below, the terms interconnect layer
1s 1nterchangeably used with the terms metal or wiring
layer.)

A NPD wiring model has at least one NPD interconnect
layer that has more than one preferred routing direction. In
other words, each NPD mterconnect layer has at least two
routing directions that are equally preferable with respect to
one another, and that are as preferable or more preferable
than the other routing directions on that layer.

A router that uses a NPD wiring model does not penalize
wiring in the two or more preferred directions of a NPD
interconnect layer of 1ts layout. In other words, such a router
does not impose arbitrarily different costs for routing in the
two or more preferred directions of a NPD interconnect
layer of 1ts layout. For instance, when a NPD 1nterconnect
layer allows horizontal and +435° direction wiring, some
embodiments cost the interconnect lines 1n the horizontal
and +45° directions based solely on their lengths and not on
any other arbitrary cost designed to dissuade using one
direction (e.g., the horizontal direction) over the other. By
using NPD wiring models, some embodiments generated IC
layouts with one or more metal layers that do not have a
single preferred wiring direction.

FIG. 1 illustrates a wiring model 100 of some embodi-
ments ol the invention. This wiring model has five inter-
connect layers 105-125. In this five-layer model, none of the
layers have a single preferred wiring direction. Instead, each
layer allows 4 diflerent directions of wiring. Specifically, as
illustrated by the top view 130 of the fifth interconnect layer
125, each layer of the wiring model 100 can have horizontal,
vertical, and +45° diagonal 1nterconnect lines. Each layer 1s
an octilinear layer, as 1t allows interconnect lines to traverse
in eight separate vector directions from any given point.

10

15

20

25

30

35

40

45

50

55

60

65

6

As used 1n this document, an interconnect line 1s “diago-
nal” 1f 1t forms an angle other than zero or ninety degrees
with respect to the layout boundary. On the other hand, an
interconnect line 1s “horizontal” or “vertical” 11 1t forms an
angle of 0° or 90° with respect to one of the sides of the
layout. In the wiring model of FIG. 1, (1) the horizontal
interconnect lines are parallel (1.e., are at 0°) to the x-axis,
which 1s defined to be parallel to the width of the layout, (2)
the vertical interconnect lines are parallel to the y-axis,
which 1s defined to be parallel to the height and perpendicu-
lar (1.e., are at 90°) to the width of the layout, (3) the +45°
diagonal interconnect lines are at +45° with respect to the
width of the IC layout, and (4) the —45° diagonal intercon-
nect lines are at —45° with respect to the width of the IC
layout.

Other embodiments of the mvention use different NPD
wiring models. For instance, some embodiments of the
invention’s NPD wiring model only include diagonal inter-
connect lines, other embodiments only use horizontal and
vertical interconnect lines, and yet other embodiments use
diagonal interconnect lines with either horizontal or vertical
interconnect lines but not both. Also, some embodiments use
non-45' diagonal wiring. For example, some embodiments
use horizontal, vertical and +120° diagonal interconnect
lines.

In addition, some embodiments have more than five
layers, while other embodiments have less. Some embodi-
ments also assign a preferred direction for some of the
layers, while allowing other layers not to have a preferred
wiring direction. For instance, some embodiments have
preferred direction Manhattan wiring for the first three
layers (e.g., horizontal preferred direction wiring for the first
layer, vertical preferred direction wiring for the second layer,
and horizontal preterred direction wiring for the third layer),
and NPD wiring for the fourth and fifth layers.

By generating IC layouts with one or more NPD inter-
connect layers, some embodiments fabricate IC’s that have
NPD wiring for one or more of the metal layers. For
instance, the wiring model 100 of FIG. 1 can be used to
generate an IC layout with five NPD-interconnect layers.
Such a layout can then be used to generate a five metal layer
IC, where each of the metal layers has four equally prefer-
able wiring directions.

In some embodiments, the IC has at least one wiring layer
that does not have a wiring direction with more that 50% of
the wiring on that layer. In other embodiments, the IC has at
least one wiring layer that does not have a wiring direction
with more than 70% of the wiring on that layer; one such
embodiment might only include horizontal and vertical
direction wiring on such a wiring layer.

II. Gridless Architecture

A gridless routing process 1s described below for gener-
ating gridless layouts. This routing process 1s gridless as 1t
does not require the mterconnect lines to be positioned with
respect to any grid that 1s coarser than the manufacturing
orid. In other words, the only grid that the interconnect lines
have to be aligned with 1s the manufacturing grid. The
gridless routing process generates gridless layouts that can
be used to fabricate IC’s that have their metal lines aligned
with the manufacturing grid instead of coarser non-manu-
facturing grids.

The gridless routing process described below generates
oridless NPD octilinear layouts. However, one of ordinary
skill will realize that this routing process can be used to
generate other gridless layouts. For instance, some embodi-
ments generate gridded NPD layouts.

Us 7,310,793 Bl

7

III. NPD and Gridless Routing,

A. Conceptual Flow.

Some embodiments generate gridless NPD layouts by

using a detail routing technique that does not specily a
preferred wiring direction for any of 1ts interconnect layers.
The detail-routing embodiments described below use the
NPD wiring model 100 of FIG. 1. However, one of ordinary
skill will realize that other embodiments of the invention use
different NPD wiring models.
In the embodiments described below, the detail routing 1s
performed aifter a global-routing stage, which (1) partitions
the routing region into global-routing cells (“Gceells™), and
(2) defines, for each net, global-routing paths that connect
the Gceells containing the net’s pins. One hierarchical global
routing approach recursively divides the routing region into
smaller sub-regions, and defines routing paths at each hier-
archical level, until reaching the lowest-recursive level’s
sub-regions, which are the Gceells. Another global-routing
approach flatly divides the routing region into numerous
Geells, and then defines the routing paths between the
Gceells. Under erther approach, the global router can use
either a NPD wiring model or a preferred-direction wiring
model.

FIG. 2 presents a conceptual illustration of a detail-
routing process 200 used by some embodiments of the
invention. This routing process defines detail routes for nets
within a region of the IC layout. This region can be the entire
IC layout, or a portion of this layout. As shown 1n this figure,
this process iitially selects (at 205) a sub-region of the IC
layout region to detail route. Several manners for selecting
such a region will be described below 1n Section I11.B. Next,
for each particular net 1n the selected sub-region, the process
identifies (at 210) a topological route that connects the
particular net’s routable elements 1n the sub-region.

In the embodiments described below, a net has two or
more pins, a pin can have one or more ports, and each port
can have one or more geometries. In these embodiments, a
net’s routable elements are the port geometries, and a net 1s
typically routed along one port of each of its pins. One of
ordinary skill will realize, however, that other embodiments
may define the routable elements of the nets differently.

A topological route 1s a route that 1s defined 1n terms of 1ts
relation to other layout items, such as pins, obstacles,
boundaries, and/or other topological routes of other nets. As
such, a topological route provides a general plan for how to
route a net, without providing a specific geometric path to do
s0. One topological route represents a set of diffeomorphic
geometric routes (1.€., a set of geometric routes that can be
morphed into one another through a continuous sequence of
perturbations without changing the route’s path relative to
any other pin, path or obstacle). A geometric route 1s one
explicit realization of a topological route. A geometric route
1s defined 1n terms of exact coordinates that define the route
as 1t travels through the interconnect layers. Several manners
for 1dentilying topological routes for each net within the
selected sub-region will be described below.

After 210, the process determines (at 215) whether the
identified topological routes 1dentified at 210 are geometri-
cally routable (1.¢., whether there exists a design-rule-correct
geometric route for each identified topological route). 1T so,
the process transitions to 220, which will be described
below. Otherwise, 11 the process determines (at 2135) that the
identified topological routes for some of the nets are not
routable, 1t imtially directs the topological router to generate
additional topological routes that are more-likely to have
design-rule-correct geometric routes. If the topological
router repeatedly fails to generate geometrically routable

10

15

20

25

30

35

40

45

50

55

60

65

8

topological routes, the detail-routing process flags one or
more nets as unroutable, re-defines topological routes for
some or all the nets, and then transitions to 220. Several
manners for performing the routability checking will be
described below.

At 220, the process generates these geometric routes and
stores these routes 1n a detail-routing storage structure (such
as a database). Several manners for generating geometric
routes will be described below 1in Section III.E. At 220, the
process also converts the generated geometric detail routes
into global routing paths, which 1t stores in a global-routing
storage structure (such as a database). This 1s done just 1n
case the router has to detail route some Gceells again, as
described below.

At 225, the process then determines whether it has gen-
erated detail routes for all the sub-regions of the IC region.
If not, the process returns to 203 to select another sub-region
and to repeat 210-220 to compute geometric routes 1n the
newly selected sub-region. Otherwise, the process ends.
After 225, some embodiments might repeat process 200 for
certain congested sub-regions in order to alleviate the con-
gestion 1n these regions, improve wiring quality, or fix
violations left by previous attempts.

B. Region Selection.

As mentioned above, the detail-routing process 200
selects (at 205) a sub-region of the IC layout region to detail
route. In some embodiments of the invention, this selection
involves selecting several Geells, and generating a sub-
region by combining the selected Geells.

Different embodiments select the Gceells differently. Some
embodiments select contiguous non-overlapping groups of
Geceells for each 1teration of process 200. The size of these
contiguous non-overlapping groups 1s {ixed 1n some of these
embodiments. FIG. 3 illustrates one such embodiment. This
figure 1llustrates an IC region 305 that was recursively
divided thrice into sets of 16 smaller regions (called slots or
cells) during global routing. The Geells are the cells at the
third recursion level. In the example illustrated in FIG. 3,
contiguous non-overlapping sets of sixteen Gceells 310 can
be selected starting from one corner (e.g., upper left corner)
of the IC region 305 to its opposite corner (e.g., lower right
corner). The advantage of selecting non-overlapping groups
of Gecells 1s that multiple non-overlapping groups can be
detail routed 1n parallel 1n order to reduce the overall run
time of the detail router.

Other embodiments select the sub-region to detail route at
205 by using a congestion-based approach. Such an
approach often 1mitially detail routes Gceells surrounding the
most congested edges that are defined during global routing.
After reaching a certain congestion threshold, congestion-
based approaches detail routes contiguous groups of Gceells
that are not yet detail routed or are adjacent to Geells that are
not yet detail routed. One of ordinary skill will realize that
other approaches can be used to select the Gceells for detail
routing at 205.

After selecting several Geells for detail routing, the detail
routing process 200 generates a sub-region by combining the
selected Geells. In generating such a sub-region, the process
adds any virtual pins (“vpins™) of the Gceells 1n the periphery
of the sub-region as geometries of the sub-region. Virtual
pins are arfificial pins that are set to account for the global
route propagation mto Gceells from other Gceells or higher-
level slots. In the embodiments described below, the virtual
pins are represented as single point geometries.

For example, FIGS. 4 and 5 illustrate two layers of 16
Gceells that have been combined to produce a sub-region
400. For sake of simplicity, this example assumes that the

Us 7,310,793 Bl

9

generated sub-region only has pins, virtual pins, and
obstacles on the two layers shown 1n FIGS. 4 and 5. As
shown 1n FIG. 4, the sub-region 400 includes two obstacle
410 and 415. This sub-region also includes port geometries
of three nets A, B, and C. Again, for sake of simplifying the
example, the port geometries 420-445 and 505 of nets A, B,
and C are all from the same ports of their respective nets 1n
the example illustrated 1n FIG. 4. As shown 1n FIGS. 4 and
5, the obstacle and port geometries can have a variety of
convex and non-convex shapes. Also, these geometries have
horizontal, vertical, and +45° diagonal sides. As shown in
FIG. 4, three of the twelve periphery Geells include virtual
pins 450, 455, and 460 for nets A and C. During the
sub-region generation, these three virtual pins 450, 455, and
460 are added to the sub-region data structure as port
geometries of nets A and C.

The detail routing process 200 defines a sub-region based
on various attributes. FIG. 6 1llustrates the data structure that
the detail routing process 200 uses to represent a sub-region
in some embodiments of the invention. This data structure
includes a list of all obstacle and port geometries in the
region. Each geometry 1s defined by a sequence of points
and a layer assignment.

This data structure also 1includes the bounding box of the
sub-region. In addition, it includes an array of layer prop-
erties. This array specifies various design rules for each
layer. For 1nstance, it specifies for each layer the minimum
wire size, the minimum spacing, and the minimum via size.
This array also specifies the mimimum cost per umt length
for an interconnect on each layer. For instance, the cost per
unit length might be expressed i1n terms of resistance per
distance, which might be less for the higher layers as the
wire width typically increases for the higher layers.

Some embodiments store additional layer information 1n
other data structures. For instance, some embodiments (1)
allow the net widths to be different on different layers, and/or
(2) allow the spacing between nets or between nets and
unrelated geometries to be different on different layers. Such
information 1s stored in a look-up table 1n some embodi-
ments.

The data structure also includes a netlist that specifies the
nets 1n the sub-region. Each net specifies one or more pins,
cach pin refers to one or more ports, and each port refers to
one or more geometries. A geometry that 1s not referred to
by a port (i.e., that 1s not part of a pin) 1s an obstacle.

C. Topological Route Generation.

One manner for generating topological routes will now be
described. In some embodiments, these routes are generated
by a topological routing engine that (1) receives the sub-
region data structure defined at 205 (1.¢., receives the prob-
lem 1instance), and (2) for each net in the sub-region,
generates a topological representation of a route that connect
the net’s routable elements.

This engine 1s a multi-layer topological router that for
cach net 1n the sub-region, generates a topological route (i.e.,
a topological representation of a route) that connect the net’s
routable elements on one or more layers. In other words, this
router selects a net and for the selected net, defines a
topological route that connects the selected net’s routable
clements on one or more interconnect layers, before select-
ing another net for routing. To facilitate 1ts multi-layer
approach, this topological router uses vias that are defined
topologically, as further described below. These vias are
referred to below as topological vias.

The topological engine also routes sets of nets together.
Specifically, this engine selects a set of nets in the sub-
region, and identifies the best possible combination of

10

15

20

25

30

35

40

45

50

55

60

65

10

topological routes for the set’s nets. As further described
below, the topological engine used 1n some embodiments 1s
an IDA* solving engine that deterministically traverses
through the solution space to identily the best possible
combination of topological routes for a set of nets. In
addition, while routing a set of nets, the topological engine
considers the routing cost of nets that have not yet been
selected.

This topological engine also employs NPD routing as it
costs routing 1n all planar directions on a layer the same. In
other words, it does not penalize routing 1n any planar
direction on a layer. In addition, this engine costs wires and
vias proportionately to their metric cost that they introduce
in the design. The metric cost can be based on a number of
properties of wires and vias. These properties include resis-
tance, delay, manufacturing yield, etc.

The topological engine also allows nets to have different
widths on different layers. It also can impose different
spacing constraints between each pair of net. The spacing
constraint for a pair of nets can also be different on different
layers. This topological engine can also base its topological
routes on different wiring models, such as a wiring model
that employs only Manhattan lines, one that uses Manhattan
and +45° lines, one that uses Manhattan and +120° lines, etc.

1. Overview

In the embodiments described below, the topological
engine (1) imitially decomposes each layer of the received
sub-region to obtain a decomposed graph that has several
nodes, edges, and faces, and then (2) uses the nodes, edges,
and faces of the generated graphs to define topological
routes 1n the received sub-region.

a. Overview of the Decomposition Operation.

As turther described below, the decomposition operation
1s a triangulation operation in some embodiments. In other
words, the faces resulting from the decomposition operation
are triangles and therefore have three edges. Each edge 1s
defined to be between two nodes. In the embodiments
described below, the nodes of each layer’s triangulated
graph are defined at the obstacle-geometry vertices, pin-
geometry vertices, and the four corners of the sub-region on
cach layer.

At the end of the triangulation operation, the topological
engine adds, to the sub-region definition, a graph data
structure for each layer of the sub-region. This addition 1s
pictorially illustrated in FIG. 7. As shown 1n this figure, each
graph data structure includes several node, edge, and face
data structures.

FIG. 8 1llustrates a data structure 800 that defines a face.
As shown 1n this figure, a face 1s defined to refer (e.g., to
point) to its 3 edges and its 3 nodes. The face also includes
up to two references (e.g., two pointers) to up to two
topological items (called face items), which as described
below are used to define topological vias and Steiner points.
Some embodiments limit the number of face 1tems 1n a face
to two 1n order to improve run-time speed. Other embodi-
ments, on the other hand, might allow a face to have more
than two face items, or might limit a face to have only one
face 1tem.

FIG. 9 illustrates a data structure 900 that defines an edge.
An edge can be shared between two faces, or it can simply
be part of one face. Accordingly, as shown in FIG. 9, the
edge data structure 900 has two references, each of which
can be assigned to refer to a face of the edge.

The edge data structure also specifies the capacity of the
edge. It further specifies the wire tlow across each edge. This
flow equals the width of the nets crossing the edge plus the
spacing between the crossing nets and between the nets and

.

.

Us 7,310,793 Bl

11

the edge nodes. This data structure also has a Boolean flag
to indicate whether the edge 1s a constrained edge. This flag
1s used during the triangulation, as described below.

In addition, the edge data structure 900 includes a linked
list of topological items on the edge. During triangulation,
this linked list 1s mitialized to start with one of the edge’s
nodes and end with the other. When topological routes are
inserted in the triangulated graphs, a topological item (called
an edge 1tem) 1s 1nserted between the end nodes of the edge’s
linked list for each topological route that crosses the edge.
The edge 1tems of several topological routes that intersect an
edge are inserted between the edge nodes 1n the order that
their corresponding topological routes cross the edge. This
ordering will be further explained below by reference to
FIGS. 13 and 14. The data structure for a node will also be
described below.

b. Embedded Topological Routes

After triangulation, the topological engine embeds multi-
layer topological routes in the triangulated graphs. It uses the
nodes, edges, and faces of these graphs to define the topo-
logical direction of these routes. Specifically, the topological
engine defines a topological route as a linked list of topo-
logical 1tems that represent various points along the route.
These topological items include nodes, edge 1tems, and face
items. Nodes and face items can serve as via locations,
Steiner points, or both. Nodes can also serve as end points
ol a topological route.

FIGS. 10-12 illustrate the data structure of nodes, edge
items, and face items. As shown in FIG. 10, a node data
structure 1000 includes a net identifier, which, when the
node 1s on a net’s topological route, specifies this net. This
structure also has one or more planar-path references. When
the node 1s part of a topological route, a planar-path refer-
ence refers to a planar topological item (i.e., an 1tem on the
same layer as the node) that 1s adjacent to the node in 1ts
topological route. The node data structure can have more
than one planar-path reference (e.g., has more than one such
reference when the node serves as a Steiner point).

In the embodiments described below, a node can serve as
the location for a via. Accordingly, the node data structure
1000 includes a pair of via-path references. When a topo-
logical via 1s placed at the location of a node, one or both via
references refer to face items or nodes in the layer above
and/or below.

The node data structure further includes a list of edges
connected to the node. For each edge, 1t includes an edge
reference to the next or previous topological item (i.e., node
or edge 1tem) on the edge. It also has a reference to the
geometry of the node, and a vertex number that 1dentifies the
point in the geometry corresponding to the node. The node
structure further specifies the location of the node.

FI1G. 11 illustrates the data structure for an edge item. This
data structure has a reference to 1ts edge. In addition, like a
node data structure, an edge item’s data structure includes a
net 1dentifier that specifies the net of the edge-item’s topo-
logical route. This structure also includes a pair of edge
references that refer to the next and previous topological
item (1.¢., node or edge item) on 1ts edge. The edge-1tem data
structure also has a pair of planar-path references that refer
to the planar topological items (i.e., 1items on the same layer
as the edge 1item) that are adjacent to the edge 1tem 1n 1ts

topological route.
FIG. 12 1llustrates the data structure for a face item. The

face-1item data structure 1200 has a reference to 1ts face. In
addition, like the data structure of a node or an edge 1tem, a
face 1tem’s data structure includes a net identifier that
specifies the net of the face item’s topological route. This

10

15

20

25

30

35

40

45

50

55

60

65

12

structure can also includes up to three planar-path refer-
ences. Each planar-path reference refers to a planar topo-
logical item (1.e., an 1tem on the same layer as the face item)
that 1s adjacent to the face item 1n 1ts topological route. The
face-item data structure can have up to three planar-path
references since the face-item can serves as a Steiner point
for up to three topological paths.

In the embodiments described below, a face item can
serve as the topological position of a via. Accordingly, the
face 1tem data structure 1200 includes a pair of via-path
references. When a topological via 1s placed at a face item,
one via-path reference can refer to a node or face 1tem 1n the
layer above the face item’s layer, while the other via-path
reference can refer to a node or face item 1n the layer below
the face item’s layer. The face-item data structure also
specifies a bounding convex polygon that approximates the
region where the center of the face item can be legally
placed 1n the face containing the face 1tem. In some embodi-
ments, this data structure also specifies a set of constraining
points and distances for the face 1tem 1n its layer. The use of
the bounding polygon and the constraiming points and dis-
tances will be further described below.

The layer of the topological items can be identified as
follows. A node’s layer can be identified by referring to 1ts
geometry. A face’s or edge’s layer corresponds to the layer
of 1ts nodes. In addition, a face 1item’s layer corresponds to
the layer of its face, and an edge 1tem’s layer corresponds to
the layer of 1ts edge.

FIGS. 13 and 14 illustrate one example of topological
routes. FIG. 13 presents two topological routes 1370 and
1372. The route 1370 1s a multi-layer topological route that
(1) starts at node 1302 of layer 2, (2) intersects edges 1320,
1328, and 1336 on layer 2, (3) vias up to layer 3 through face
items 1338 on layer 2 and 1350 on layer 3, (4) intersect edge

1354 on layer 3, and (35) terminates on node 1358 on layer
3. This route’s intersections with edges 1320, 1328, 1336,

and 1354 are specified by edge 1tems 1316, 1326, 1332, and
1356.

The route 1372 1s a topological route that only traverses
layer 2. This route (1) starts at node 1304, (2) intersects
edges 1312, 1320, 1328, and 1336, and (3) terminates on
node 1340. This route’s intersections with edges 1312, 1320,
1328, and 1336 arec specified by edge items 1310, 1318,
1324, and 1334.

FIG. 14 illustrates the data structure representation of
these topological routes 1370 and 1372. Each of these routes
1s specified by two sets of linked lists. One set includes a
linked list of path references, and the other set includes
linked lists of edge references. The path linked list of route
1370 starts at node 1302, goes through edge i1tems 1316,
1326, 1332, face items 1338 and 1350, edge item 1356, and
terminates on node 1358. The path linked list of route 1372
starts at node 1304, goes through edge items 1310, 1318,
1324, and 1334, and terminates on node 1340.

As shown m FIG. 14, the nodes and edge items are
inserted on their edge’s linked list in the order that they are
placed on their respective edge. For instance, the edge list
1364 of edge 1328 starts with node 1314, traverses through
edge 1items 1326 and 1324, and then terminates on node
1322. This order of these nodes and edge item on edge list
1364 matches the order (illustrated in FIG. 13) of these

nodes and edge 1tems on edge 1328.

2. Overall Flow of Topological Router

FIG. 15 illustrates a process 1500 that provides the overall
flow of the topological engine 1n some embodiments of the
invention. As shown in this figure, the process mitially

Us 7,310,793 Bl

13

triangulates (at 1505) the sub-region defined at 205. This
triangulation will be further described below.

After the triangulation, the process groups (at 1510) the
nets in the sub-region. Different embodiments group the nets
in the sub-region differently. Some embodiments group the
nets based on a clustering approach. Some of these embodi-
ments cluster the nets by (1) defining, for each net, a
three-dimensional bounding box that contains the net’s pins,
(2) pair-wise 1tersecting the bounding box of each net with
cach of the other nets, (3) computing the volume of inter-
section between the intersections, and (4) clustering each net
with the other nets that have the greatest overlapping volume
(1.e., that are likely to have the most amount of overlap).
Some of these embodiments order the nets 1n each group.
For instance, some embodiments sort each group based on
entropy (e.g., based on descending order of entropies, where
a high entropy net has lots of equivalently good options,
while a low entropy net has only a few good routes).

Next, the process selects (at 1515) one of the groups
identified at 1510 for routing. Different embodiments pro-
cess the selected group of nets differently. The embodiments
described below solve all the nets 1n the selected group
betfore selecting another group of nets.

Other embodiments, however, might process the nets
differently. For instance, some embodiments might order the
nets based on an entropy value (e.g., might order the nets in
a descending order of entropies), and select the group of nets
based on this order. Some of these embodiments then use a
two-tiered approach in selecting the group of nets at 1515.
First, from the top of the set of unsolved nets 1n the ordered
netlist, these embodiments select a fixed number (e.g., 20)
nets. When this list does not have the fixed number of nets
remaining, the process selects all the remaining nets. Sec-
ond, after selecting the group of nets, these embodiments
return the nets 1n the selected group that they cannot solve
within an acceptable cost 1n a pre-defined number of tries.
Accordingly, these embodiments statically try to select a
fix-number of nets each time at 1515, but then dynamically
return some of the selected nets as unsolved nets when the
selected group proves too hard to route entirely at the same
time. The returned unsolved nets are then treated like the
remaining unsolved nets. In other words, these embodiments
perform the two operations listed above on all the remaining,
unsolved nets (1.e., from the list of unsolved nets that
includes the returned unsolved nets, these embodiments (1)
select and try to process a number of nets, and (2) return any
nets that they cannot solve within an acceptable cost).

In the embodiments described below, the topological
engine uses an IDA* solving engine that deterministically
searches for the best routing solution for the selected group
of nets. An IDA* searching technique involves searching the
solution space 1n an iteratively-deepening manner, up to a
particular depth limat.

Accordingly, at 1520, the process specifies a particular
depth limit for the IDA* solving engine. Some embodiments
compute the depth limit as the sum of the cheapest topo-
logical routes for all the unsolved nets 1n the sub-region. One
manner ol computing the cheapest topological routes will be
explained below by reference to FIG. 40.

Some embodiments generate the cheapest route for each
unsolved net by 1gnoring the routes of the other unsolved
nets. Accordingly, these embodiments generate the cheapest
routes for each net 1n the first group of nets being solved in
an empty sub-region (1.e., a sub-region that does not contain
the topological routes of any other nets in the group).
However, the cheapest routes for the subsequent groups of

10

15

20

25

30

35

40

45

50

55

60

65

14

nets are computed for a sub-region that contains the topo-
logical routes of the previously routed nets.

At 1520, the process also computes a maximum depth-
limit threshold. In some embodiments, the maximum thresh-
old value 1s 50% greater than the initial depth limit specified
at 1520. The process also specifies (at 1520) a maximum
number of iterative attempts, referred to below as pushes, for
the solving engine.

At 1525, the process then calls the solving engine to find
a topological route for all or some of the nets in the selected
group within the specified depth limit and max pushes. The
operation of the solving engine will be further described
below. Next, the process determines (at 1530) whether the
solving engine returned a solution for all the nets in the
selected group. If so, the process transitions to 1563, which
will be described below. It not, the process increments (at
1535) the depth limit. Some embodiments increment the
depth limit by 10%. Accordingly, the solution found by
incrementing the depth limit 1in this manner 1s always with
10% of the optimal solution.

The process then determines (at 1540) whether the depth
limit exceeds a maximum value. If not, the process transi-
tions back to 1525 to direct the solving engine to find a
solution within the incremented depth limit. On the other
hand, 1f the process determines (at 1540) that the current
depth limit 1s greater than the maximum threshold value, the
process determines (at 1545) whether the solving engine
returned an empty solution set 1n response to the call at 1525.

As further described below, the solving engine returns an
incomplete non-empty solution when it can only find topo-
logical routes for some of the nets 1n the selected group. If
the process determines (at 1545) that the solving engine has
returned an incomplete non-empty solution, 1t accepts (at
1555) the topological routes for some of the nets that the
solving engine returned. The process then returns to 1520 to
try to find topological routes for the remaining unsolved nets
of the group selected at 1515. In other words, the process (1)
specifies (at 1520) a depth limit, a maximum depth-limait
threshold, and a max number of pushes for the remaining
unsolved nets, (2) calls (at 1525) the solving engine for these
nets, and then (2) based on the solutions returned by the
solving engine, performs some or all the operations 1530-
1545 as described above.

On the other hand, 1f the process determines (at 1545) the
solving engine did not find a solution for any net, the process
selects (at 1550) one of the nets 1n the selected group and
creates a solution for this net based just on this net’s
cheapest topological route. The process then determines (at
1552) whether it has found a topological route for all the nets
in the group identified at 1515. If not, the process returns to
1520 to try to find topological routes for the remaining
unsolved nets of the group selected at 1515. Like the
transition back to 1520 from 1555, this transition results 1n
the process (1) specitying (at 1520) a depth limit, a maxi-
mum depth-limit threshold, and a max number of pushes for
the remaining unsolved nets, (2) calling (at 1525) the solving
engine for these nets, and then (2) based on the solutions
returned by the solving engine, performing some or all the
operations 1530-1545 as described above.

On the other hand, 11 the process determines (at 1552) that
it has found a solution for all the nets 1n the group 1dentified
at 1515, the process (at 1563) specifies a shape for each face
item that the solving engine defined while routing the nets.
The face items can form topological vias or Steiner points.
Diflerent embodiments use diflerent shapes for face items.
For instance, the face items can be hexagonal, octagonal,
circles, squares, diamonds, etc. Several of these shapes are

Us 7,310,793 Bl

15

described below 1n Section IV. Some embodiments select the
shape of the face items based on the wiring model that the
geometric engine will use, as further described below.

After assigning face-item shapes, the topological-routing
process 1500 then triangulates (at 1570) the sub-region
layers based on the face items. This triangulation is per-
formed by inserting a node 1n the triangulated graph 1n the
location of each face i1tem (e.g., in the center of each face
item shape defined at 1565), and then triangulating each face
that contains a face item based on the location of the mserted
node. In some embodiments, the process 1500 specifies the
location of each face item at 1565. For instance, at 1565, the
process 1500 can identity the location of a non-via face item
at the center of its bounding polygon, and identily the
location of a via-forming face item at the center of the
bounding polygon for its via (1.e., at the center of the
intersection of the bounding polygons of the 1tems that form
the via). In other embodiments, the location of each face
item 1s specified while routing the group of nets selected at
1515. For instance, as further described by reference to FIG.
39A, aface item’s location can be 1dentified and modified by
an optimization process. Some embodiments might also
insert nodes about the periphery of a face item shape 1n order
to triangulate the face-item shape into smaller triangles.

At 1570, the process also modifies the topological
description of the routes that cross the new triangulated
edges. Aflter this triangulation, the process (at 1575) per-
forms a follow-up edge-tlipping operation, which will be
described below by reference to FIG. 16. I the process ends
up thpping any edges at 1575, it also modified at 1575 the
topological description of the routes that crossed the old or
now cross the new edge. At 1580, the process determines
whether there are any unsolved nets in the sub-region. If so,
the process returns to 1515 to select the next group of nets
for solving. If not, the process ends.

3. Triangulation

Different embodiments use different topological struc-
tures to define topological routes. The embodiments
described below use triangulated graphs of the sub-region.
Specifically, these embodiments use a constrained Delaunay
triangulation (“CDT”) technique. Several such techniques
are disclosed in C. L. Lawson, “ITransforming triangula-
tions”, Discrete Math, 3:365-372, 1972; C. L. Lawson,
“Software for C Surface Interpolation,” In J. R. Rice, editor,
Math Software III, pp 161-194, Academic Press, New York,
1977, L. J. Guibas, D. E. Knuth, and M. Sharir, “Random-
1zed Incremental Construction of Delaunay and Voroni Dia-
grams”’, Algorithmica, 7:381-413, 1992.

FIG. 16 1llustrates a triangulation process 1600 that 1s
used 1n some embodiment of the invention. This process
decomposes each layer of the sub-region into several trian-
gular faces. Accordingly, this process initially selects (at
1605) one of the layers of the sub-region. Next, the process
(1) defines (at 1610) a graph node at the location of each
corner of the sub-region on that layer, and (2) defines (at
1615) a graph node at the location of each geometry point of
a port or obstacle in the selected sub-region layer. Some
embodiment only define one node for each virtual pin in the
selected sub-region layer, since in these embodiments the
virtual pins are only single-point pin geometries.

The process next defines (at 1620) one or more connec-
tion nodes within each non-virtual port geometry. When the
port geometry 1s convex, the process (1) defines a node 1n the
middle of the geometry if the geometry 1s relatively small,
or (2) divides a larger geometry into smaller convex geom-
etries and then defines a node 1n the middle of each smaller
geometry. On the other hand, if the port geometry 1s not-

10

15

20

25

30

35

40

45

50

55

60

65

16

conveX, the process divides the geometry 1nto several con-
vex geometries, and then defines a node 1n the middle of
cach smaller geometry. A good convex decomposition
would have fewer pieces that are more representative of the
shape of the overall geometry. Also, FIG. 17 illustrates the
layout of FIG. 4 after nodes have been defined at each
sub-region corner, at each port or obstacle geometry point,
and within each port geometry.

One of ordinary skill will realize that other embodiments
might define graph nodes slightly differently. For instance,
some embodiments might define a graph node for only some
of the virtual pins. These embodiments select as triangula-
tion nodes vpins that are near interior geometry nodes that
are close to the boundary. Of the remaining vpins, these
embodiments select every nth (e.g., 57) vpin around the
boundary. Also, some embodiments might also define nodes
on the sides of certain geometries to ensure that there are
suflicient edges to detect congestion in the IC region.
Next, the process creates (at 1625) two triangles by
dividing the region along a diagonal line connecting two of
the comer node vertices. The process then successively
inserts (at 1630) individual port or obstacle nodes in the
created triangles to further triangulates the triangles. Spe-
cifically, when a new node 1s inserted, the triangle containing
that node 1s 1dentified, and that triangle 1s further triangu-
lated by connecting the newly-inserted node to the vertices
of the identified triangle.

FIG. 18 illustrates this triangulation technique. In this
example, two triangles 1820 and 1840 are created by con-
necting two diagonal nodes 1805 and 1810 of the sub-region
layer. Next, a node 1815 1s mnserted in the sub-region. The
triangle 1820 that contains this newly-inserted node 1s then
turther triangulated into three smaller triangles 1825, 1830,
and 1835 by connecting the newly-inserted node to the
vertices of triangle 1820.

After defining a set of triangles at 1630, the process
performs an edge-flipping operation to make the triangula-
tion Delaunay (i.e., to maximize the minimal angle of each
triangle). This operation 1s done in order to improve the
likelihood that the topological routes produced by the topo-
logical engine can be converted into specific geometric
routes. To have an absolute guarantee that the generated
topological routes can be geometrized, a visibility graph
needs to be constructed to analyze the edge between any two
graph nodes that have unobstructed view of each other 1n
order to ensure that each such edge i1s not over congested.
However, such an approach would be computationally
expensive. Hence, mstead of examining the edge between
cach such pair of graph nodes, some embodiments perform
an edge-tlipping operation to maximize the minimal angle of
cach triangle. Such an edge-tlipping Delaunay operation
results 1n a good approximation of the visibility graph.

FIGS. 19 and 20 illustrate why maximizing the minimal
angle of each tniangle improves the likelihood that the
generated topological routes can be geometrized. In these
figures, nodes 1905 and 1910 do not have an edge between
them. Hence, the topological engine cannot measure the
congestion of the straight-line path between these two
nodes. It can, however, measure the congestion on edges
1915, 1920, 1925, 1930, and 1935. In FIG. 19, the triangles
are equilateral triangles, and therefore have the largest
minimal angles. As illustrated 1n FIG. 19, 1t 1s relatively
unlikely that a set of topological routes exist that could
overlill the capacity of the straight-line path between nodes
1905 and 1910 without over congesting the capacity of edge
1935. However, as 1llustrated 1n FIG. 20, when the adjoining
triangles have small minimal angles, 1t 1s quite possible that

Us 7,310,793 Bl

17

a set of paths over congest the straight-line path between
nodes 1905 and 1910 without over congesting the capacity
of the adjoining edge 1935.

Some embodiments perform an edge-flipping operation
by 1dentifying, for each triangle, a circle that encompasses
all of the triangle’s vertices. It that circle encompasses the
vertex ol another triangle as well, and if the two triangles do
not jointly form a non-convex polygon, then the common
edge between the two triangles 1s flipped. Flipping an edge
between two triangles means deleting the existing common
edge between the two triangles and defining a new common
edge between the two vertices of the triangles that were not
previously connected. The edge flipping operation typically
results 1n a new pair of triangles that has larger minimal
angles than the original pair of triangles. When a pair of
abutting triangles form a non-convex structure, the common
edge between them 1s not flipped.

FIGS. 21 and 22 1llustrate one manner for performing the
edge-flipping operation. FIG. 21 illustrates two triangles
2105 and 2110. Circle 2115 1s the identified that encom-
passes all of the vertices of triangle 2105. This circle also
includes the vertex 2120 of triangle 2110. As the two circles
do not form a non-convex polygon, the common edge 2125
between these two triangles 1s tlipped. FIG. 22 illustrates the
newly-defined pair of triangles 2130 and 2135 and the edge
2140 between them.

After performing the edge-flipping operation at 1635, the
process performs (at 1640) a constraining operation to
ensure that a triangle edge exists (1) between each pair of
successive points of an obstacle or port, and (2) at the
sub-region boundary edges. FIG. 23 provides a pictorial
example of this operation. This figure illustrates two suc-
cessive pairs ol obstacle or port points 23035 and 2310 that
do not share an edge after the edge-flipping operation of
1635. FIG. 23 illustrates the constraining operation tlipping
three different edges 2315, 2320, and 2325 until an edge
2330 exist between the two node points 2305 and 2310.
Once this edge exists, the constrained tlag i1s set 1n this
edge’s data structure to indicate that this edge should not be
removed. Accordingly, this operation 1s referred to as a
constraining operation, as i1t defines edges at sub-region
boundaries and between successive pairs ol geometry
points, and then marks the edges as constrained.

Next, the process performs (at 1645) a follow-up edge-
tlipping operation without thpping the edges constraints at
1640. This follow-up operation is to try to maximize the
mimmal angle of the triangles as much as possible while
respecting the constrained edges. The process then deter-
mines (at 1650) whether 1t has examined all the sub-region’s
layers. If not, the process transitions back to 1603 to select
another layer and repeat 1610 through 1645 to triangulate
the newly-selected layer. Otherwise, the process ends. The
end result of the triangulation operations 1600 1s a set of
triangulated sub-region layers, which can be used to embed
and remove topological routes 1n the sub-region. FIG. 24
illustrates an example of how the layout of FIG. 4 might look
alter triangulation.

In some embodiments, the triangulation operation defines
the capacity of each edge in the triangulated regions. The
above-described triangulation operation defines each edge’s
capacity whenever 1t creates the edge at 1625 through 1645.
FIG. 25 illustrates a process 2500 that the triangulation
process 1600 can call each time 1t wants to identify the
capacity of each edge 1n the triangulated sub-region. This
process 1s designed to support multiple-wiring models.
Hence, either the triangulation process 1600 informs this
process of the available routing directions on the edge’s

5

10

15

20

25

30

35

40

45

50

55

60

65

18

layer, or the process 2500 1dentifies these routing directions
through any number of ways.

As shown i FIG. 25, the process 2500 determines (at
2505) whether either node of the edge belongs to a vpin. If
s0, the process 1dentifies (at 2510) the edge as the capacity
vector. IT not, the process 1dentifies (at 25135) the capacity
vector as the vector that traverses the shortest distance
between the sides of the geometry abutting one of the edge
nodes and the sides of the geometry abutting the other edge
node. FIG. 26 illustrates an edge 26035 between two nodes
2610 and 2615. As shown 1n this figure, vector 2640 is the
capacity vector that traverses the shortest distance between
sides 2620 and 2625 abutting node 2610 and sides 2630 and
2635 abutting node 2615.

After 2510 or 2515, the process 2500 defines the edge
capacity as the length of the largest projection of the
capacity vector onto one of the legal routing directions. The
projection P of the capacity vector C onto a legal routing
direction D 1s given by

P=C*cos «,

where o 1s the angle between the capacity vector C and the
legal routing direction D. Accordingly, the edge capacity 1s
the magnitude of the projection vector. In the example
illustrated 1n FIG. 26, edge 2605 1s on an octilinear layer like
the one shown 1n FIG. 1, and the largest projection 2650 of
the capacity vector 2640 1s onto the +435° routing direction.

The largest projection of the capacity vector can be
identified (at 2520) 1n a variety of ways. Some embodiments
compute the magnitude of the capacity vector’s projection
onto all the legal routing directions and then select the
largest. Others 1dentify the routing direction that makes the
smallest angle with the capacity vector, define this routing
direction as the direction of projection, and then compute the
projection of thus capacity vector onto the identified routing
direction.

Other embodiments might compute the edge capacities
differently. For instance, some embodiments might define
cach edge (including an edge that does not connect to vpins)
to be 1ts own capacity vector. Some of these embodiments
then specily each edge’s capacity as the edge’s largest
projection onto one of the legal routing directions.

4. Solving Engine

a. Jointly Routing Groups of Nets with an IDA™ Search
Engine

As mentioned above, the topological routing engine calls
(at 1525) its solving engine to 1dentily topological routes for
a group ol nets. In the embodiments described below, the
solving engine uses an IDA* searching technique to try to
identify the optimal set of routes for the group of nets. In
other words, the IDA* solving engine traverses through the

solution space to deterministically 1dentily the best possible
combination of topological routes for the group of nets.

The IDA* solving engine traverses the solution space 1n
an 1terative-deepening manner up to a particular depth limat.
FIG. 27 pictorially illustrates an example of this engine’s
IDA*-searching operation for a set of three nets. As shown
in this figure, the IDA* solving engine mnitially identifies
several topological routes 2705a-05¢ for a first net. One
advantage of using topological routes 1s that the IDA¥
solving engine can define fewer possible routing solutions
for each net at this stage. This 1s because there are fewer
topological routes than geometric routes for a net, as one
topological route can represent a plethora of diffeomorphic
geometric routes.

Us 7,310,793 Bl

19

After identifying the solutions for the first net, the IDA¥
solving engine selects a topological-routing solution for the
first net. At each level of iteration, the search selects the
solutions according to a quality metric. In the embodiments
described below, this quality metric 1s the length of the
topological routes. Other embodiments might use diflerent
quality metrics. In the example illustrated 1in FIG. 27, the
topological routes for each net get longer from leit to right
(1.e., the solutions get worse going from left to right).

Accordingly, i the example 1illustrated 1 FIG. 27, the
first selected solution for the first net 1s the best solution
2705a. Next, the solving engine determines whether embed-
ding the selected solution 27034 1n the received sub-region
(1.e., the sub-region supplied by the topological engine at
1540) would cause the routing to exceed the depth limit
specified by the topological engine. In the example 1llus-
trated 1n FI1G. 27, thus embedding does not make the routing
exceed 1ts depth limit. Hence, the engine embeds the
selected solution 2705a 1n the sub-region, and then gener-
ates several solutions 2710a-c for the second net in the

sub-region that contains the embedded solution 27034 of the
first net.

After 1dentifying the solutions for the second net, the
IDA* solving engine selects the best solution 2710q for the
second net, and determines whether embedding this selected
solution in the current sub-region (i.e., the sub-region con-
taining the embedded topological route 2705a) would make
it exceed the depth limit specified by the topological engine.
In the example illustrated 1 FIG. 27, this embedding does
not make the routing exceed its depth limit. Hence, the
engine embeds the selected solution 2710aq in the sub-
region, and then generates several solutions 2715a-c¢ for the
third net 1n the sub-region that contains the embedded routes

2705a and 2710q of the first and second nets.

After examiming all the solutions 271354-2715b for the
third net 1n the sub-region that contains the embedded routes
2705a and 2710a of the first and second nets, the solving
engine discover that all these solutions 2715a-2715b would
make the route exceed the depth limit specified by the
topological engine. Consequently, the combination of the
best solutions 2705a and 2710q for first and second nets did

not lead to an acceptable routing solution.

The solving engine then determines whether 1t has exam-
ined all the previously-defined solutions for the net at the
previous level of the search. At this stage, this previous
example 1s net 2, and the solving engine has not yet
examined other routing solutions 27106-2710c¢ of net 2.
Accordingly, the solving engine selects the next best solu-
tion 27105 for net 2 1n the sub-region that contains solution
2705a for net 1. It then embeds this route 27105 as this
embedding does not violate the depth limit, and then gen-
erates several routes 2720a-27205 for the third net 1n the
sub-region that the embedded routes 2705a and 271056 of the
first and second nets.

However, the solving engine cannot embed any of these
routes 2720a-2720b. In this example, the solving engine
then determines that 1t can embed all other routing solutions
of net 2, but each time 1t determines that 1t cannot embed any
of the resulting routing solutions for net 3. This means that
the best solutions 2705a for first net does not lead to an
acceptable routing solution. Hence, once the solving engine
determines that 1t has examined all the previously-defined
solutions for the net 2 at the current level of the search, 1t
determines whether 1t has examined all the previously-
defined solutions for the net at the previous level of the

10

15

20

25

30

35

40

45

50

55

60

65

20

search. At this stage, this previous example 1s net 1, and the
solving engine has not yet examined other routing solutions
27055-2705¢ of net 1.

Accordingly, the solving engine examines the solution
space that results from the selection of the next best solution
27055 for net 1. Eventually, in thus example, the solving
engine finds a solution for all three nets, when 1t determines
that embedding the topological route 2740q for the third net
does not cause the routing to exceed the depth limit. This
solution includes route 27054 for net 1, route 27305 for net
2 1n the sub-region that contains route 27055, and route
2740q for net 3 1n the sub-region that contains routes 27055
and 27305.

This solution will be the optimal solution or very close to
it so long as the depth limit 1s increased by small increments
from 1ts lowest possible value. For instance, when the depth
limit 1s increment by 10%, the solution will be within 10%
of the optimal solution.

Some embodiments described below 1ntroduce two addi-
tional constraints in the operation of the solving engine.
First, these embodiments limit the solving-engine’s IDA¥
search to a maximum number of iterative attempts, referred
to below as pushes. This 1s to decrease the run-time of the
solving engine. Limiting the number of pushes might cause
the solving engine to return a solution that 1s not the optimal,
but this might be acceptable 1n some situations as a reason-
able tradeoll for run-time speed.

Second, the solving engine 1n these embodiments consid-
ers the impact of the routes selected for the nets in the
selected group on the nets not yet selected. In other words,
while solving the selected group of nets, the solving engine
considers the routing cost of nets that have not yet been
selected. In the embodiments described below, the solving
engine generates a lower bound estimate on the cost of the
unselected nets, and ensures that the depth limit is not
exceeded by the sum of this estimate and the actual or
predicted costs of the nets in the selected group.

b. Solving

FIG. 28 1llustrates a more detailed process 2800 used by
the solving engine 1n some embodiments of the invention.
As mentioned above, the process 2800 1s performed each
time that the process 1500 calls 1t at 1525 and specifies a
selected group of nets to route within a given sub-region,
depth limit, and maximum number of pushes. As shown 1n
FIG. 28, the process 2800 identifies (at 2802) the Current-
_Net as the first net 1n the specified group of nets. At 2802,
the process also sets a Push_Count to 0. For the Current-
_Net, the process then generates (at 2808) all the legal routes
within the sub-region that have an acceptable cost. The
acceptable cost 1s the depth limit minus the total cost of the
routed nets minus the estimated cost of all the nets below the
Current_Net, plus the estimated cost of the Current_Net.

When the specified group of nets 1s not the first group of
nets that the solving engine has solved (1.e., 1f the topologi-
cal route has called the solving engine previously to solve a
different group of nets), the sub-region includes the topo-
logical routes of the previously-solved nets.

In addition, when the process 2800 generates the topo-
logical routes for the first net of the specified group, the
sub-region does not iclude the topological route of any net
within this group. However, each time the process 2800
embeds a topological route of one of the earlier specified
nets, it generates the routes of the subsequent specified nets
for a sub-region that contains the routes of the earlier
embedded nets. In other words, when the process 2800
generates the topological routes for specified nets other than
the first specified net, the sub-region includes previously-

Us 7,310,793 Bl

21

embedded topological routes of previous specified nets. At
2804, the process 2800 also stores the cost associated with
cach topological route that it generates. The route-generat-
ing process will be described below by reference to FIG. 29.

After 2804, the process determines (at 2806) whether 1t
was able to generate (at 2804) any topological route for the
Current_Net. I not, the process 2800 transitions to 2842,
which will be described below. On the other hand, if the
process generated (at 2804) one or more topological routes
for the Current_Net, the process 2800 stores (at 2808) the
generated routes.

Some embodiments store the routes in an array of N data
objects, where N corresponds to the number of nets that the
solving engine 1s trying to solve. In other words, there 1s one
data object for each of the N nets. Each data object can store
the route solution pool of its net, and includes a pointer into
this pool that specifies the solution currently being explored.
This pointer traverses through the solution pool as the IDA*
solving engine examines the solutions of its net.

At 2810, the process selects one of the topological routes.
In the embodiments described below, the process selects the
shortest routes first. The process then increments (at 2812)
the Push_Count by 1. Next, at 2814, the process embeds the
selected route 1n the current sub-region, and subtracts the
cost of this embedded route from the depth limit to obtain a
new depth limit. At 2816, the process computes a revised
total cost to account for the increase in cost due to addition
of the selected route. This revised cost equals the old total
cost minus the estimated cost of the Current_Net plus the
actual cost of the inserted route.

Next, the process determines (at 2818) whether the total
cost will exceed the depth limit after the cost increase 1n the
downstream nets 1s added to the total cost. In some embodi-
ments, the process adds the increase in the cost of each
downstream net in a loop that checks after the addition of
cach downstream net’s delta whether the addition has caused
the total cost to exceed the depth limit. Such an approach
allows the process 2800 to quickly identity that the route
inserted at 2812 has caused the depth limit to be exceed. In
some embodiments, the process 2800 uses the cheapest-
route calculation process of FIG. 40 to compute the new cost
ol a downstream net. It also stores the downstream costs of
cach net (e.g., stores these costs 1n a stack), and computes
the net’s delta downstream by subtracting the appropriate
stored cost from the computed cost.

When the process determines (at 2818) that the total cost
exceeds the depth limat, 1t transitions to 2832 to decide
whether 1t has also exceeded its maximum number of
pushes. This determination will be further described below.
On the other hand, 11 the process determines (at 2818) that
the inserted route did not cause the depth limit to be
exceeded, the process determines (at 2820) whether the
isertion of the selected route at 2816 resulted 1n the best
solution thus far. When the process reaches 2820, it has
identified routes for a current set of one or more nets 1n the
specified group. Hence, at 2820, the solution for the current
set of nets 1s the best solution (1) 1f the process has not
previously 1dentified a solution for more than the current set
of nets, or (2) 1f the process has previously 1dentified a best
solution for as many nets of the specified group of nets, but
the sum of the cost of the routes in the previous solution 1s
more the sum of the costs of the routes m the current
solution.

If the process determines (at 2820) that the current set of
embedded routes for the current set of nets do not provide
the best solution obtained thus far, i1t transitions to 2824,
which 1s described below. Otherwise, the process stores (at

10

15

20

25

30

35

40

45

50

55

60

65

22

2822) the current set of embedded routes as the best solu-
tion, and then transitions to 2824.

At 2824, the process determines whether 1t”s Push_Count
equals the maximum number of pushes that it received from
the topological-routing process 1500. If the Push_Count
equals the maximum number of pushes, the process returns
(at 2830) the best solution that it recorded during 1ts search,
and then ends.

On the other hand, 11 the Push_Count 1s not equal to the
maximum number of pushes, the process determines (at
2826) whether the Current_Net 1s the last net of the specified
group ol nets. If so, the process returns (at 2830) the best
solution that 1t recorded during its search, and then ends.

If not, the process (at 2832) sets the Current_Net to be the
next net of the specified group of nets. The process then
transitions back to 2804 to generate all legal routes for this
new Current_Net, and then perform the subsequent opera-
tions to try to embed one of these generated routes in the
sub-region.

As mentioned above, the process 2800 transitions to 2832
when 1t determines (at 2818) that the total cost for inserting
the selected route exceeds the depth limit. At 2832, the
process determines whether 1ts Push_Count equals the maxi-
mum number of pushes received from the topological rout-
ing process 1500. It so, the process returns (at 2830) the best
solution that it recorded during 1ts search, and then ends.

On the other hand, 11 the process determines (at 2832) that
the Push_Count does not equal the received maximum
number of pushes, the process removes (at 2834) the route
inserted at 2814. The process then determines (at 2836)
whether 1t has examined all the topological routes generated
for the Current_Net at 2804. I not, the process transitions
back to 2810 to select the next best route (e.g., next shortest
route) for the Current_Net from the array described above,
and then perform some of subsequent operations described
above for the newly-selected route.

If the process determines (at 2836) that has examined all
the topological routes generated for the Current Net, the
process determines (at 2838) whether the Current_Net 1s the
first net 1n the specified group of nets. It so, the process has
falled to embed any of the routes of the first net 1n the
specified group, and hence returns (at 2844) its failure to
route to the topological-routing process 1500.

If not, the process clears (at 2840) the Current Net’s
solution pool 1n the above-described array. The process then
defines (at 2842) the net before the Current_Net on the
specified group as the new Current_Net. It next determines
(at 2836) whether 1t has already explored all the routes for
the Current_Net defined at 2842. Depending on this deter-

mination, the process transitions either to 2810 or 2838, as
described above.

C. Route Generation

FIG. 29 1llustrates a process 2900 that the solving engine
uses at 2804 to generate topological routes for a net. Like the
solving engine, the route generating process uses an IDA*
search technique to identify the several routes for each net.

As shown 1 FIG. 29, the process 2900 1mitially identifies
(at 2902) one or more pairs of pins for the Current_Net 1n the
sub-region. It then selects (at 2904) a pair of pins for the net.
The process next identifies (at 2906) a list of source and

target port-geometries for the selected pair of pins of the
Current Net.

The process then identifies (at 2908) a Depth_Limit for
generating routing path between the source and target geom-
etries. In the embodiments described below, the Depth-
_Limit 1s set to the shortest distance between the closest

Us 7,310,793 Bl

23

source and target geometries. After 2908, the process defines
(at 2910) Solution_Count to be equal to O.

Next, the process generates (at 2912) all legal paths
between the source and target geometries 1dentified at 2906.
The path-generating process will be described below by
reference to FIG. 31. After 2912, the process determines (at
2914) whether 1t was able to generate (at 2912) any legal
path between the source and target geometries. If not, the

process transitions to 2916, which will be described below.

If so, at 2926, the process (1) records the generated path
or paths and the cost for each path, and (2) increments
Solution_Count by the number of paths generated at 2912.
The process next determines (at 2928) whether Solution-
_Count 1s less than the desired number of solutions. If so, the
process transitions to 2916, which will be described below.
Otherwise, when the number of solutions exceeds the

desired number of solutions, the process transitions to 2924,
which will be described below.

As mentioned above, the process can transition to 2916
from 2914 or 2928. At 2916, the process increments the
Depth_Limit. The process then determines (at 2918)
whether the Depth_Limit exceeds a maximum depth limat.
In some embodiments, the mnitial depth limait 1s the Fuclidean
distance between closest source and target, and the depth
limit 1s incremented at each 1teration by 1.1 times the cost of
cheapest branch pruned for cost during previous iteration.

If the Depth_Limit does not exceed the maximum depth
limait, the process transitions to 2912 to generate legal paths
between the source and target geometries for the Depth_
Limit incremented at 2916. Otherwise, the process deter-
mines (at 2920) whether 1t was able to record any solutions
tor the pair of pins selected at 2904.

If the process determines (at 2920) that 1t was not able to
record solutions for the selected pair of pins, 1t returns (at
2922) its failure to find routes for the net, and then ends.
Otherwise, the process determines (at 2924) whether it has
examined the last pin-pair i1dentified at 2902. If not, the
process transitions back to 2904 to select the next pin-pair.

On the other hand, 1f the process determines that 1t has
examined all the pin-pairs, the process (at 2932) identifies up
to K cheapest routes for the net, and records the costs of
these routes. When the net has more than two pins in the
sub-region, the process 2900 generates more than one set of
paths for more than one set of pin-pairs. In such a situation,
the process has to generate (at 2932) the K-cheapest com-
bination of paths for the different pin-pairs to generate the
K-cheapest routes. When the net has three pins in the
sub-region and the process has identified two sets of paths
for two pin-pairs, the process selects (at 2932) the cheapest
combination of paths from the two sets. On the other hand,
when the net has more than three pins 1n the sub-region and
the process has i1dentified more than two sets of paths for
more than two pin-pairs, the process (1) imtially computes
the minimum spanning tree (“MST”) for the net pins, and (2)
selects the cheapest combination of paths for the pin-pairs
that are the endpoints of the MST’s edges.

After 2932, the process inserts (at 2934) any applicable
Steiner nodes 1n the generated routes. In some embodiments,
the process does this by passing through the edges inter-
sected by each generated route to determine whether any
two consecutive edge 1tems are for the same route. Two such
edge 1tems are illustrated 1in FIG. 30A. When the process
identifies two such edge items, 1t removes one of the edge
items and 1n its place 1nserts a face 1tem as a Steiner node for
merging the two paths as shown in FIG. 30B.

10

15

20

25

30

35

40

45

50

55

60

65

24

After 2934, the process ends.

d. Path Generation

FIG. 31 1llustrates a process 3100 for generating (at 2912)
paths between one or more sources and one or more targets
for a selected pin-pair. As shown 1n this figure, this process
initially defines (at 3102) one of the source nodes as the
starting point of a path. At 3102, the process also defines the
starting point as the Current_Point, and sets the Path_Cost to
0.

The process then identifies (at 3104) all possible path
expansions from the Current_Point. FIGS. 32-36 1llustrate
the possible expansions from edge items, nodes, and face
items. FIG. 32 illustrates that an edge 1tem can expand (1)
towards the opposing edges of its face, (2) towards its face’s
node that 1s not on 1ts edge, and (3) towards its face’s face
item.

FIG. 33 illustrates that a node can expand (1) towards the
opposing edges of two faces that abut the node, (2) towards
the other nodes of these two faces, (3) towards face 1tems of
these two faces, and (4) towards one or more nodes and face
items above or below it. A node can via up or down to more
than one node or face item, when more than one triangulated
graph 1s above or below the node. Some embodiments
explore each potential via expansion possibility of a node.

FIG. 34 illustrates that a face 1item can expand towards the
three nodes and edges of 1ts face. Some embodiments do not
allow a planar expansion from a face item (1.e., an expansion
to an 1tem 1n the same face as the face 1tem) when the face
item was reached through a planar expansion. In other
words, these embodiments only allow a via expansion from
a face 1tem, when the face 1tem was reached through a planar
expansion. Like via-path expansion from a node, a path can
via up or down from a face item. Some embodiments do not
allow a via expansion in a particular direction (e.g., down)
from a face item, when the face item was reached in a
direction opposite to the particular direction (e.g., up).

Also, like a node, a face 1tem can via up or down to more
than one node or face item above or below it, since more
than one face of the above/below triangulated graph can be
above or below the face item. As with a node, some
embodiments explore each potential via expansion possibil-
ity of a face item. Also, as illustrated 1n FIGS. 35 and 36,
when the face item serves as the destination of a via from
another layer, the face 1item has more expansion possibilities
if topological routes intersect its face. For instance, 1n FIG.
35, one net runs through the destination face item’s face, and
the face item has eight expansion possibilities, with five of
them being on one side of the router and the other three
being on the other side of the route. In FIG. 36, two nets run
through the destination face item’s face, and the face item
has ten expansion possibilities.

When 1t 1s time to expand from a destination face item,
some of the expansion possibilities might be quickly elimi-
nated 1t there 1s no space for the via to be located 1n a region
that gives rise to the expansion possibilities. For instance, in
FIG. 36, the only viable via location might be in the region
between the two Crossmg routes. In such a circumstance, the
three and five expansion possibilities on the other sides of
these route will not be explored.

After 1identifying the expansions from the Current Point
at 3104, the process selects (at 3106) one of the expansions
identified at 3104. The process then determines (at 3108)
whether this expansion 1s legal. The legality check will be
turther described in sub-section I11.C.4.¢ below.

If the process determines (at 3108) that the expansion 1s
not legal, the process transitions to 3128, which will be
described below. On the other hand, 1f the expansion 1s legal,

Us 7,310,793 Bl

25

the process (at 3110) defines the Current_Point to be the
selected expansion point, and adds this new Current_Point
to the path. Next, the process calculates (at 3112) the cost
due to the expansion, and adds this calculates cost to the
Path_Cost. In some embodiments, the process computes the
cost of each legal expansion (which when amalgamated for
complete routes define the cost of the resulting routes) by
using a shortest-path approach. Such an approach 1s dis-
closed 1n “Geodesic Path Inside Polygons,” by Simon Mak
and Sung Soo Kang, which can be found at www.cs.m-
cgill.ca/~skangS/cs507/welcom.htm. Essentially, this
approach can be used to compute the shortest path within a
polygon defined by the sequence of edges intersected by the
route. As this approach simply computes the shortest dis-
tance, 1t does not disfavor or penalize any potential wiring
directions for one preferred direction. It should be noted that
some embodiments compute this shortest distance based on
the routing directions of their wiring model. For instance,
some embodiments that expand a route on an octilinear layer
calculate the cost of an expansion as the shortest distance
that can be traversed by only using horizontal, vertical, and
+45° 1interconnect lines.

After 3112, the process determines (at 3114) whether the
Path_Cost exceeds the depth limit. If so, the process tran-
sitions to 3122, which will be described below. If not, the
process determines (at 3116) whether the Current_Point 1s a
target node. If it 1s not, the process transitions back to 3104
to generate all expansions for the Current_Point. However,
if the Current_Point 1s a target node, the process (at 3120)
records the path with 1ts Path_Cost, and increments the
Solution_Count by one. The process then transitions to
3122.

At 3122, the process removes that Current_Point from the
path. It then defines (at 3124) the Current_Point to be the last
topological item 1n the path. Next, the process subtracts (at
3126) from the Path_Cost the cost of the expansion that was
removed at 3122. At 3128, the process determines whether
it has examined all the expansions of the Current_Point. If
not, the process returns to 3106 to select another expansion.
If so, the process determines (at 3130) whether the Current_
Point 1s a source node.

If the Current_Point 1s not a source node, the process
transitions to 3122 to remove 1t from the path. However, i
the Current_Point 1s a source node, the process determines
(at 3132) whether there are any other source nodes that it has
not yet examined. The process ends when 1t has examined all
the source nodes. On the other hand, if there are one or more
such nodes, the process (at 3134) defines one of such nodes
as the starting point of a path, defines the starting point as the
Current_Point, and sets the Path_Cost to 0. The process then
transitions to 3104 to generate all expansions from this
Current Point.

¢. Legality Check

For some embodiments, FIG. 37 provides a table that
illustrates the types of legality checks performed for difler-
ent combination of expansions. The vertical axis lists the
starting points of the expansion, and the horizontal axis lists
the destination points of the expansion. As shown 1n FIG. 37,
the are three types of legality checking. These are: planarity,
via checking, and edge capacity.

(1) Edge Capacity Check

The edge capacity check 1s performed each time a path
tries to intersect an edge. This legality check requires that the
flow across the destination edge aiter the potential move not
exceed this edge’s capacity. FIGS. 38A and 38B illustrate
how to compute the flow of an edge after a potential
expansion. Specifically, FIG. 38 A 1llustrates the center-lines

10

15

20

25

30

35

40

45

50

55

60

65

26

of routes for two nets that were previously mserted across an
edge 3800. The two routes have widths W1 and W2, and
spacing S1 and S2 respectively towards their adjacent edge

nodes. Also, the spacing between the two routes 1s defined
as S2.

FIG. 38B 1illustrates how the edge 3800 would look like
alter a third route 1s mserted across 1t. The tlow of this edge
equals the sum of the following: (1) the minimum spacing
S1 between net 1 and 1ts adjacent node, (2) the width W1 of
net 1, (3) the mmimum spacing S4 between nets 1 and 3, (4)
the width W3 of net 3, (5) the minimum spacing S5 between
nets 3 and net 2, (6) the width W2 of net 2, (7) the minimum
spacing S3 between net 3 and 1ts adjacent node. This flow
must be less than the capacity of edge 3800, 1n order for the
expansion of net 3 to an edge item on edge 3800 to be legal.

(2) Via Legality Check

As 1ndicated i FIG. 37, the via check 1s performed for
cach possible expansion. Different embodiments of the
invention perform the via-checking operation differently.
FIGS. 39A and 39B illustrate two different processes for
performing this checking operation.

(1) Optimization Techmque

FIG. 39A 1llustrates a process 3900 that uses an optimi-
zation technique to perform the via-checking operation. The
process 3900 mitially determines (at 3905) whether the
expansion face has a face item within 1t. A path expansion
can be between source and destination items on the same
layer (1.e., can be a planar expansion) or 1t can be between
source and destination items on different layers (1.e., can be
a via expansion). In the embodiments described below, an
expansion face (1) 1s the face that contains both the source
and destination 1tems 1n a planar expansion, and (2) 1s the
face that contains a face-1tem destination 1n a via expansion.

In the embodiments described below, there 1s no expan-
sion face when a node 1s the destination of a via expansion.
The process 3900 does not specily an expansion face for a
via expansion to a node in order to improve run-time
elliciency. Otherwise, the process 3900 would have to exam-
ine every face that 1s connected to the via-destination node.
Similarly, an expansion face for a planar expansion 1s
defined as the face that contains both the source and desti-
nation items, 1n order to reduce the number of faces that are
examined and thereby improve run-time efliciency.

However, some embodiments could examine each face
that contains a path-expansion’s destination item, as this
approach has several advantages. For instance, such a check
would allow the router to detect an illegal via-path expan-
sion when the router imposes a larger minimum-spacing
requirement for a destination node that serves as a via than
for a destination node that does not.

If the expansion 1s a via expansion to a node, there 1s no
face to check at 3905, and the process 3900 thereby termi-
nates. Similarly, 11 the expansion 1s a planar expansion to an
item 1n an expansion face without a face 1item, then there 1s
no via check necessary and the process ends.

On the other hand, 11 the 1dentified expansion is to a face
item or, 1n a planar expansion, to a node or edge item 1n an
expansion face with a face item, the process 3900 identifies
(at 3910) constraints for each face item 1n each face involved
with the path expansion. For a via expansion, a face 1s
involved with a path expansion if 1t includes an 1tem that
forms the via. For a planar expansion, the expansion face 1s
the face mvolved with the path expansion.

For a face item 1n a face involved with a path expansion,
the constraints include constraining points and minimum
required distance to each constraining point. If the face item
1s moveable, the face 1tem’s set of constraints also specifies

Us 7,310,793 Bl

27

a legal x,y region that can contain the face item. Some
embodiments allow each face to have up to two face items.
When a face 1tem 1s within a face that contains another face
item, the process 3900 identifies a repulsion constraint that
specifies the minimum required distance between the two
face items.

FIGS. 70-82 present several examples that illustrate the
type of constraints 1dentified by the process 3900.

Constraints for a Single Face Item.

FI1G. 70 illustrates a potential face item F1 1n a face 7000
on a particular layer. This face 7000 has nodes N1-N3 and
edges E1-E3, and it 1s intersected by four nets a, b, ¢, and d.
The potential face 1tem F1 1s a potential expansion of net d
in the face 7000. For the face item F1, the process 3900
would 1dentily edge and node constraints for the layer on
which this face 1item exists.

In the embodiments described below, the edge and node
constraints of a face i1tem are the minimum required dis-
tances from the face 1item to the edges and nodes of the face
that contains the face item. Specifically, for the face item, the
constraint with respect to each node represents the required
width and spacing of the minimum set of topological 1tems
(if any) that separate the face item from the node. For the
face item, the constraint with respect to each edge 1s the
required width and spacing of the minimum set of topologi-
cal items (if any) that topologically separate the face item
from the edge. One manner of computing edge and node
constraints 1s further described below.

FIG. 71 illustrates the edge and node constraints for the
potential face item F1. In this example, as well as the other
examples 1llustrated 1n FIGS. 72-81, the acronyms can be
understood as follows: (1) Wx signifies width of a route of
a net X, (2) SNY-x signifies minimum required spacing
between node Y and an adjacent net route x, (3) Sx-z
signifies minimum required spacing between adjacent routes
for nets x and z, (4) SFQ-x signifies minimum required
spacing between face item FQ and adjacent net route x, and
(5) SFQ-NY signifies minimum required spacing between
node Y and adjacent face item FQ.

As shown 1n FIG. 71, the face item F1’s edge constraints
for edges F1 and E3 are null, while 1ts edge constraints for
edge E2 15 Wb+SF1-b6. Also, this face item’s (1) node
constraint for node N1 1s SF1-N1, (2) node constraint for
node N2 1s Wb+SF1-6+Wc+SN2-c+Sc-b, and (3) node
constraint for node N3 1s Wa+SN3-a+SF1-a.

The process 3900 would 1dentily the nodes N1-N3 of the
tace 7000 as the set of constraining points for the face item
F1. This process would also 1dentily each node’s constraint
as the minimum required distance to the constraining point
corresponding to the node. FIG. 72 illustrates nodes N1-IN3
as constraining points of the face item F1. This figure also
illustrates the mimmum required distance to each of the
points N1-N3 as a circular arc that has at 1ts center one of the
nodes N1-N3 and has as its radius the node’s corresponding,
node constraint.

The process 3900 would also 1dentily a legal region that
can contain the face item F1 from this face item’s edge
constraints. This legal region can be obtained by bringing
cach edge of the face 7000 towards 1ts center 1n the direction
of the edge’s normal by the amount of the edge’s constraint.
In the example illustrated 1n FIGS. 70 and 71, the constraints
for two edges E1 and E3 are 0, and the constraint for the
edge E2 1s Wb+SF1-b. Accordingly, as 1llustrated in FIG. 72,
the face item F1’s legal region 7200 can be obtained by
bringing edge E2 towards the center of the face 7000 1n the
direction of 1ts normal by the amount Wb+SF1-b, and
leaving the other two edges F1 and E3 unadjusted. This legal

10

15

20

25

30

35

40

45

50

55

60

65

28

region 1s a triangle defined by nodes N1', N2', and N3. As
turther described below, an optimizer can search through the
legal region 7200 to identify the optimal position for the face
item F1.

Each time the process 3900 first identifies the constraining
points, distances, and/or legal region for a face item, it stores
these values 1n the face items data structure. Also, each time
the process makes a routing operation that changes the
constraining distances and/or legal region of the face item,
it modifies the stored values 1n the face 1tem’s data structure.
Storing these parameters 1n the face item data structures
speeds up the operation of the router 1n the 1nstances where
it can simply retrieve these values from the data structures.

Constraints for Two Face Items 1n the Same Face and Two
Face Items Forming a Via.

FIG. 73 1llustrates an example 1dentical to the example
illustrated 1 FIG. 70, except that the face 7300 in FIG. 73
includes two face items. One face item 1s face item F1,
which still represents the potential expansion of net d into
tace 7300. The other face 1tem 1s a face 1tem F2 that connects
to (1) a face item F3 1n a face 7400 (illustrated 1n FIG. 74)
in a layer above the face 7300’s layer, and (2) a face item F4
in a face 7500 (1llustrated 1n FIG. 75) 1n a layer below the
tace 7300°s layer.

The process 3900 would compute node and edge con-
straints for face items F1 and F2. Also, based on these
constraints, the process would identify (1) sets of constrain-
ing points and distances, and (2) a legal region for each face
item. The process would also 1dentily a repulsion constraint
that specifies the mimmimum spacing between the two face
items.

For the example 1llustrated in FIG. 73, the node and edge
constraints for the face item F1 are identical to the con-
straints shown for this face 1item in the example 1llustrated 1n
FI1G. 70. In other words, the face item F2 does not affect the
node and edge constraints of the face item F1. If the face
item F2 connected to more than one edge of the face 7300,
then 1t would aflect the face item F1’s constraint for node
N2. FIG. 76 1llustrates one such example. As shown 1n this
figure, the connection of the face item F2 to edges E2 and
E3 changes face item F1’s constraint for node N2. After
identifving the node and edge constraints for the face item
F1, the process would identity the legal region that can
contain this face item. As before, this legal region 1s the
region 7200 1llustrated 1n FIG. 72.

FIG. 73 illustrates node and edge constraints for the face
item F2 with respect to the nodes and edges of the face 7300.
Like the constraints for the face item F1, the route connected
to the face item F1 does not affect the edge and node
constraints for the face item F2. These constraints would
have been aflected if the face item F1 connected to more
than one edge of the face 7300.

The face 1item F2 forms a via with the face items F3 and
F4 1n the layers above and below. The constraints on all three
face items F2, F3 and F4 constrain the location of this via.
Accordingly, the process 3900 would 1dentify node and edge
constraints for face items F3 and F4 with respect to the
nodes and edges of the faces that contain them. These
constraints are illustrated 1n FIGS. 74 and 75.

For the via formed by these three face items, the process
3900 then would 1dentity a legal region in each face 7300,
7400, and 7500. The legal region 1n each of these faces 1s
obtained by moving each edge of the face towards the face’s
center by the amount of the edge’s constraint. As the
constraints of all the edges 1n faces 7400 and 7500 are null,
the legal region for the face 1tem F3 1s the entire face 7400
and the legal region for the face item F4 1s the entire face

Us 7,310,793 Bl

29

7500. The legal region for the face item F2, however, 1s
different than the face containing this face item. FIG. 77
illustrates this legal region 7700, which 1s obtained by
moving edge E1 towards the center of face 7300 by the
amount of 1ts constraint Wb+SF2-5.

Based on the identified legal region and node constraints
for each face traversed by the via that F2, F3, and F4 form,
the process would specily a combined legal region and set
ol constraining points and distances for this via. The process
would generate the combined region by intersecting the
legal regions identified for face items F2, F3, and F4. FIG.
78 1llustrates this combined legal region 7800. The com-
bined set of points and distances for this via are simply the
union of the set of points and set of distances 1dentified for
the face items F2, F3, and F4. FIG. 78 1illustrates the

combined sets of points, which are nodes N1-N9, and the
combined sets of distances for these nodes.

As mentioned above, the process 3900 would also 1den-
tify a repulsion constraint that specifies the minimum
required spacing between the face items F1 and F2. The
required distance between two such face 1tems 1s the sum of
the width of each route between these face items plus the
required minimum spacing between the route(s) and face
items. In this example, the required distance between face
items F1 and F2 1s equal to SF1-6+Wb+SF2-b (1.e., 1s equal
to the sum of the required spacing between F1 and net b, the
width of net b, and the required spacing between F2 and net
b).

As mentioned above, some embodiments allow a face to
have at most two face items. These embodiments limit the
number of face items to improve run-time efliciency. Other
embodiments, however, might allow a face to have more
than two face items. These embodiments would identify
node, edge, and region constraints similarly to the examples
described above. They would also analogously identily
repulsion constraints between face items 1 a face except
that, 1n a face with three or more face items, the required
constraint between two face items would be the sum of the
width of each route and/or face item between these two face
items plus the required mimimum spacing between the
route(s) and face items.

A face could also include a face item that 1s a Steiner
point. FIG. 79 illustrates a face 7900 that 1s intersected by
the routes of nets a, b, and c¢. This face includes two face
items F1 and F2. Face item F1 1s a Steiner point for a route
of a net a, while face 1tem F2 1s a potential expansion of the
route ¢ 1nto the face 7900. FI1G. 79 illustrates the node and
edge constraints for the face item F1, while FIG. 80 1llus-
trates the node and edge constraints for the face item F2.

Constraints for Face Item that Connects to a Node 1n a
Different Layer.

The process 3900 treats all vias that start or end with a
node as fixed vias. This 1s the case even for the via nodes that
are moveable by the routability engine, which i1s further
described below. In other words, as far as the process 3900
1s concerned, vias that start or end with nodes are fixed
entities.

Accordingly, when a via starts or ends with a node, the
process 3900 does not specily node and edge constraints for
the node 1n the face that contains the node. However, 1 the
node forms a via by connecting to a face item above or
below it, the process 3900 1dentifies constraining points and
distances for the comnected face item. The constraining
points for such a face item are the nodes of the face
containing the face 1tem. The constraining distance to each
node of the face 1s its node constraint.

10

15

20

25

30

35

40

45

50

55

60

65

30

FIG. 81 illustrates an example of a via formed between a
node N4 and a face item F2 that are on two different layers.
The constraining points for the face item F2 are the nodes
N1, N2, and N3. The constraining distance to each node N1,
N2, or N3 1s a node constraint for the face item F2 and the
node. As illustrated in FIG. 81, the face item F2’s (1)
distance constraint for node N1 1s SF2-N1, (2) distance
constraint for node N2 1s Wc+SF2-c+SN2-¢, and (3) dis-
tance constraint for node N3 1s Wb+SF2-6+SN3-g+Sb-a+
Wa.

Constraints for Face Items 1n Faces Connected by Vias to
Faces Involved with an Expansion.

A Tace 1tem might exist on a face that connects through a
via to a face mvolved with an expansion. FIG. 82 illustrates
an example of such a face item. This figure 1illustrates a
potential expansion between face items F1 and F2. The faces
involved with this expansion are faces 8205 and 8210.
Accordingly, the process 8200 would identily constraining
points and distances for the face-item pair F1 and F2 and the
face-item pair F3 and F4 on the faces 8205 and 8210. The
process would also 1dentify repulsion constraint specifying
the minimum required distance between face 1tems F2 and

F3

The face 8215 1s a face that 1s not involved with the
expansion but connects to face 8210 (which 1s involved with
the expansion) through the via formed by face items F3 and
F4. The process 3900 would treat face item F5 1n face 8215
as a fixed face item. For the face item F4, 1t would compute
a repulsion constraint that specifies the minimum required
distance between the face items F4 and FS5.

Identifying Node and Edge Constraints.

In some embodiments, the process 3900 modifies (at
3910) the node and edge constraints for a face item in the
following manner. The process traverses in a particular
direction (e.g., counterclockwise) the edges of the face-
item’s face starting at the edge item on the edge connected
to the face item. During 1ts traversal of the edges, the process
identifies the minimum required distance to the starting edge
item for different points along 1ts traversal.

In some embodiments, the process uses a stack to keep
track of the mimimum required distances as it traverses the
edges. In traversing the edges, the process might encounter
routes for three types of other nets. The first type does not
connect to a face item within the face. The second type
connects to a face item with a degree greater than one (i.e.,
connects to a face item that connects to more than one
topological item on the face boundary). The third type
connects to a face item with a degree one (i.e., connects to
a Tace 1tem that only connects to one topological item on the
face boundary)

The process adds to the stack the required width plus
spacing distances of the encountered routes for the first- and
second-type nets when 1t encounters these routes for the first
time while traversing the identified face’s edges. The pro-
cess removes from the stack the distances of each such route
when 1t encounters the route for the last time while travers-
ing the identified face’s edges. When the process encounters
a route for a third-type net while traversing the identified
face’s edges, the process does not add any space and width
distance to the stack.

Additionally, when the process encounters either a sec-
ond- or third-type route while traversing the edges, the
process 1dentifies and stores the required repulsion distance
between the face item that it 1s currently examining and the
face 1tem that 1s connected to the encountered second- or
third-type route.

Us 7,310,793 Bl

31

The process 3900 sets the constraint for a node when 1t
reaches the node while traversing the boundary of the
identified face. The constraint for a node that does not
connect to any route 1s the current value at the top of the
stack plus the minimum required distance between the last
edge 1tem encountered and the node.

Identifying the constraint for a node that connects to a
route 1s slightly more mvolved. When the process encoun-
ters such a node, 1t determines whether 1t 1s the last time that
it will encounter the route connected to the node before
completing 1ts loop traversal about the identified faces
edges.

If so, this node constraint 1s (1) the value on the stack after
the removal from the stack of the spacing and width dis-
tances of net route that connects to the node, plus (2) the
mimmum required distance between the last edge item
encountered and the node. If not, this node constraint 1s (1)
the value on the stack before the addition to the stack of the
spacing and width distances of net route that connects to the
node plus (2) the miimum required distance between the
last edge 1tem encountered and the node.

Each time the process 3900 reaches a node, 1t also sets the
constraint for the edge that 1t was just traversing to reach that
node. This edge constraint i1s the smallest value that
appeared at the top of the stack since the last node.

After 1dentifying constraints at 3910, the process 3900
determines (at 39135) whether 1t needs to run an optimization
process to 1dentify the location of any face item within a face
that 1s involved with the path expansion. The process needs
to run an optimization process when at least one non-via face
item, or at least one set of via face items, for which it
generated a constraint 1s moveable within a legal region that
1s larger than a threshold amount.

If the process determines (at 3915) that 1t does not need
to use the optimization process, it determines (at 3920)
whether it 1dentified at 3910 a legal region that was smaller
than the threshold amount. If so, the process transitions to
3940, which 1s further described below. If not, the process
transitions to 3935. For each face item that the process
identified a set of constraints at 3910, the process determines
(at 39335) whether the face 1tem satisfies its set of constraints.
I1 the process determines (at 3935) that all constraints are not
met, 1t specifies (at 3940) the expansion as illegal, and then
ends. On the other hand, 1f the process determines (at 3935)
that all constraints are met, 1t specifies (at 3945) the expan-
sion as legal, and then ends.

It the process determines (at 39135) that for at least one
face 1tem 1t has defined a region 1n which the face item can
move, the process formulates (at 3925) a function to opti-
mize. This function can include one or more sub-functions
in some embodiments. Several different types of sub-tfunc-
tions are described below.

Sub-Function for Non-Via Face Item in a Face Aftected
by an Expansion.

For each non-via face item 1n a face involved with the
expansion, the process 3900 specifies one sub-function
based on the point and distance constraints that it identified
(at 3910) for the face 1tem. The sub-function takes the form
of:

(1)

,
r=y,2.
p=1

p

10

15

20

25

30

35

40

45

50

55

60

65

32

where p 1s a vanable that represents a point in the set of
constraining points for the face item, P 1s the final point 1n
the set, d, represents the distance from a variable x.y
location of the face item to the current point p, and r,
represents the identified minimum constraining distance to
the point p. This sub-function varies with the x,y location of
the face item in the region i1dentified for i1t at 3910. Region
7200 of FIG. 72 1s an example of such a region for a non-via
face item 1n a face aflected by the expansion. As further
described below, the optimizer searches through this region
and specifies an X,y location of the face item.

Sub-Function for Via-Forming Face Item in a Face
Aflected by an Expansion.

For a face item that forms a via with a node (1.e., a face
item that has a fixed position for the process 3900), the
process 3900 identifies a sub-function that has the same
form:

(2)

P
r=y 2
p=1

P

where p 1s a variable that represents a point 1n the set of
constraining points for the face item, P 1s the final point 1n
the set, d, represents the distance from the fixed x,y location
of the face item to the current point p, and r, represents the
identified minmimum constraining distance to the point p.
This sub-function 1s a constant because its X,y location 1s
fixed, and so 1s 1ts distance d, from each of its constraining
points. Face item F2 of FIG. 81 1s an example of such a fixed
face 1tem. When a via 1s formed by first and second face
items 1n first and second layers and a node 1n a third layer,
the sub-function 1s similar to the one described above,
except that the set of constraiming points and distances
include points and distances that constrain both face items.

For a set of face items that form a moveable via, the
sub-function again has the form:

(3)

P

i
r=y =
=1

In this equation, p 1s a variable that represents a point in the
set of constraining points for all the face items, P 1s the final
point in the set, and r, represents the identified minimum
constraining distance to the point p. In this sub-function, d,
represents the distance from the X,y location of the current
point p to a variable X,y location of the via (1.e., of the set
of face items) within 1ts region, which 1s an intersection of
the legal region of each of the via’s face items. Region 7800

of FIG. 78 1s an example of such a region for a via that 1s
formed by the face items F2, F3, and F4 of faces 7300, 7400,

and 7500 of FIGS. 73, 74, and 75. As further described
below, the optimizer searches through this region 7800 and
specifies an X,y location for the via formed by the face items

F2, F3, and F4.
Sub-Function for Two Face Items in the Same Face.

When a face examined by the process 3900 includes two
face 1tems, the process specifies a sub-function for express-
ing the repulsion constraint between the two face 1tems. This
sub-function f, , 1s as follows,

Us 7,310,793 Bl

33

Fli2

fi2 =)

b
d 1102

where d, . , represents the distance from the X,y location of
face 1tem 1 to the x,y location of face item 2, and r,, ,
represents the 1dentified minimum required distance
between the two face items.

When both face items are moveable, the X,y location for
both face i1tems can vary within regions defined for them.
For the two face items F2 and F3 illustrated in FIG. 82,
Equation (4) above can be used to specily a sub-function
§>3. In this example, the face item F2 can be at any X,y
location within the region that 1s obtained by intersecting the
legal region for face items F1 and F2, while the face item F3
can be at any X,y location within the region that 1s obtained
by intersecting the legal region for face items F3 and F4.
Also, 1n this example, r,, ; represents the identified mini-
mum required distance between face items F2 and F3.

In Equation (4), a face item’s X,y location 1s fixed when
it forms a via with a node. For example, for the two face
items F1 and F2 illustrated in FIG. 81, Equation (4) above
can be used to specify a sub-function f, ,. In this example,
the face 1tem F1 can be at any X,y location within 1ts legal
region, while the face item F2 has a fixed x,y location
defined as the x,y location of node N4. In this example, r,, ,
represents the i1dentified minimum required distance
between face items F1 and F2.

In Equation (4), a face item’s X,y location 1s also fixed
when the face 1tem 1s on a face that (1) 1s not involved with
a path expansion but (2) connects through a via formed by
another face item to a face that 1s mvolved with an expan-
sion. For instance, face item F5 1in FIG. 82 illustrates one
such face item. This face item F5 1s on a face 8215 that 1s
not mvolved with the path expansion from F1 to F2 but
connects to face RX10, which 1s mnvolved with this path
expansion. The process 3900 would use Equation (4) to
specify a sub-function f, 5, which expresses the repulsion
constraint between face 1items F4 and F5. In this example,
the face 1item F4 can be at any X,y location within the region
that 1s the intersection of the legal region for face item F3
and F4, while the face 1tem F3 has a fixed x,y location that
1s 1ts previously-defined position. In this example, r,, -
represents the i1dentified minimum required distance
between face items F4 and FS.

At 3925, the process 3900 formulates the cost function as
a sum ol all sub-functions that 1t specifies to express the
location and repulsion constraints for the face items in the
faces involved with the path expansion. For instance, the

process specifies the following function for the example
illustrated in FIG. 82.

F=f1+53+ 54545

In this function, (1) f, i1s a sub-function according to
Equation (3) for specitying a cost based on the location of
the via formed by face items F1 and F2, (2) J, i1s a
sub-function according to Equation (3) for speciiying a cost
based on the location of the via formed by face 1items F3 and
F4, (3) J, 5 1s a sub-function according to Equation (4) for
specilying a cost based on the repulsion between face items
F2 and F3, and (4) f4,5 1s a sub-function according to
Equation (4) for specilying a cost based on the repulsion
between face items F4 and FS5.

The function formulated at 3925 can be just one sub-
function. For instance, the function 1s just the sub-function

10

15

20

25

30

35

40

45

50

55

60

65

34

express by Equation (4) when the path expands to a non-via
face 1tem 1n a face with only one face item. This 1s the case
for the example illustrated in FIG. 70. Also, the cost-
function formulation approach described above works for
the embodiments that allow more than two face items 1n a

face. The cost function 1n these embodiments would typi-
cally have more sub-functions as there are more location and
repulsion constraints to consider.

After formulating the cost function at 3925, the process
3900 (at 3930) has a mimmizer search through the legal
region of each moveable non-via face item or set of via-
forming face 1tems to 1dentity an X,y location for each face
item that minimizes the function. In some embodiments, the
process 3900 uses the method of steepest descent for the
minimization operation. This method 1s discussed in

Numerical Recipes in C: The Art of Scientific Computing,
by William Press, et al., Second Edition (1992).

After performing the minimization operation, the process
3900 determines (at 3935) whether the location 1dentified for
cach face item satisfies the point, distance, and/or repulsion
constraints 1dentified for it. Specifically, the process deter-
mines whether each face item 1s away from each of its
constraining points by at least the required minimum dis-
tance for that point. Also, if the face 1tem 1s 1n a face with
another face item, the process determines whether the face
items are away Ifrom each other by at least their minimum
required distance. IT a face item does not satisty 1ts distance
or repulsion constraint, then the process 3900 transitions to
3940 to specily as illegal the expansion that triggered the via
check. Otherwise, the process specifies (at 3945) the expan-
sion as legal.

(11) Non-Optimization Technique

FIG. 39B 1illustrates a process 3950 that performs a
simpler via-checking operation than the process 3900 of
FIG. 39A. Some embodiments that use this process limit
cach face to have at most one face item. This process
initially determines (at 3905) whether the face that contains
the destination node, face item, or edge 1item has a face item
within 1t. When the destination 1tem 1s part of several faces,
some embodiments execute the process 39350 for each face,
and specily an expansion as 1llegal when the expansion fails
the via-legality check for just one of these faces. On the
other hand, like the process 3900 of FIG. 39A, other
embodiments might not examine each face that contains the

destination item, but rather might only examine the expan-
sion face as defined above for 3905.

If the process 3950 determines (at 3955) that a face that
contains the destination item does not contain a face item,
the process ends as a via-check 1s unnecessary. Otherwise,
the process computes (at 3960) the bounding polygon of the
face item. Some embodiments compute this polygon by
computing the closest point to each node on each edge of the
face that the face 1item can be (1.¢., the node, offset along the
edge by the tlow on that edge between the node and the face
item).

Next, the process computes (at 3965) the itersection of
the face 1tem’s bounding polygon with via destination (if
any) 1n the layer above or below. The process then examines
(at 3970) the size of the intersection to determine whether
there 1s suflicient space for the face item. I the intersection
1s too small, then the process determines (at 3975) that the
expansion 1s not legal, resets (1f necessary) the face-1tem’s
bounding polygon to 1ts original shape before 3960, and then
ends. If the intersection 1s big enough for the face-item, the
process indicates (at 3980) via-check legality, and then ends.

Us 7,310,793 Bl

35

(3) Plananty Check

As mdicated 1n FI1G. 37, the planarity check 1s performed
for four of the expansions. For the node to node expansion,
the planarity check simply ensures that there 1s no route
crossing the shared edge between two nodes. All other
planarity checks are performed by traversing the linked list
of edges from the source towards the destination node/edge,
checking that no other net’s route blocks a direct connection
between the source and destination 1tems of the path expan-
S1011.

f. Cheapest Path Calculation

FI1G. 40 illustrates a process for computing the cheapest-
route cost for a net. As shown 1n FIG. 40, the process 4000
iitially identifies (at 4002) one or more pairs of pins for the
net. It then selects (at 4004) a pair of pins for the net. The
process next identifies (at 4006) a list of source and target
port-geometries for the selected pair of pins of the net.

The process then i1dentifies (at 4008) a Depth_Limit for
generating routing path between the source and target geom-
etries. In the embodiments described below, the Depth_
Limit 1s set to the shortest distance between the closest
source and target geometries. After 4008, the process gen-
crates (at 4010) all legal paths between the source and target
geometries 1dentified at 4006. At 4010, the process 4000 can
use a path-generating process similar to the one described
above by reference to FIG. 31.

After 4010, the process determines (at 4012) whether 1t
was able to generate (at 4010) any legal path between the
source and target geometries. If not, the process increments
(at 4014) the Depth_Limit. The process then determines
whether the Depth_Limit exceeds a maximum depth limat. I
s0, the process indicates (at 4018) failure to route the net.
Otherwise, the process transitions to 4010 to generate legal

paths between the source and target geometries for the
Depth_Limit incremented at 4014.

If the process determines (at 4012) that it was able to
generate (at 4010) a legal path between the source and target
geometries, the process records (at 4020) the generated path
or paths and the cost for each path. The process then
determines (at 4022) whether it has examined the last
pin-pair i1dentified at 4002. If not, the process transitions
back to 4004 to select the next pin-parr.

On the other hand, 1f the process determines that 1t has
examined all the pin-pairs, the process (at 4024) 1dentifies
the cheapest routes for the net, and records the costs of this
route. When the net has more than two pins 1 the sub-
region, the process 4000 generates more than one set of
paths for more than one set of pin-pairs. In such a situation,
the process has to 1dentity (at 4024) the cheapest combina-
tion of paths for the different pin-pairs to generate the
cheapest route. The process 4000 identifies the cheapest
combination of paths in the same manner as described above

for process 2900 at 2932. After 4032, the process ends.

D. Routability Checking,

At 215, the process 200 determines whether the topologi-
cal routes 1dentified at 210 are geometrically routable (i.e.,
whether there exists a design-rule-correct geometric route
for each 1dentified topological route). If so, the detail-routing
process embeds the generated topological routes at 220,
which 1s further described below. If not, this process initially
directs the topological router to generate additional topo-
logical routes that are more-likely to have design-rule-
correct geometric routes. As mentioned above, if the topo-
logical router repeatedly fails to generate geometrically
routable topological routes, the detail-routing process tlags
one or more nets as unroutable, re-defines topological routes

5

10

15

20

25

30

35

40

45

50

55

60

65

36

for some or all the nets, and then transitions to 220 to embed
the generated topological routes.

In some embodiments, the routability checking 1s per-
formed by a routability engine that iitially reduces wiring
congestion by moving vias, and then determines whether the
identified topological routes are geometrically routable.
FIG. 41 conceptually 1illustrates a process 4100 performed
by this routing engine in some embodiments of the mven-
tion.

As shown 1n this figure, the routability process 4100
initially i1dentifies (at 4105) a congestion graph for each
layer of the IC sub-region being routed. Each graph includes
a number of edges that are used to quantily the congestion
in the I1C sub-region. The routability process also determines
(at 4105) the capacity and flow across each edge. Several
manners of constructing congestion graphs and defiming
their edge capacity and flow are described below in Section

[I1.D.1.

After 1identifying congestion graphs and determining the
capacity and tlow of edges 1n these graphs, the process 4100
tries (at 4110) to reduce congestion in the layout by exam-
ining the congestion about the moveable vias and moving
some or all the moveable vias to improve congestion around

them. One process for performing this will be described in
Section 111.D.2.

Next, the process 4100 computes (at 4115) a congestion
value for each congestion edge in each congestion graph.
The process then determines (at 4120) whether any of the
congestion-graph edges are over congested. If not, the
process ends. I so, the process directs (at 4125) the topo-
logical engine to revise some of the topological routes to
alleviate the congestion of the identified over-congested
routes, and then ends. The operations of 4115-4125 will be
turther described below 1n Section I11.D.3.

1. Congestion Graphs.
a. Defining Congestion Graphs.

Different embodiments of the invention construct differ-
ent congestion graphs to measure the congestion in the IC
sub-region being routed. For instance, some embodiments
construct a visibility graph for each sub-region layer, while
other embodiments generate for each layer a graph that 1s an
approximation of the wvisibility graph (an “approximated
visibility graph™).

Some embodiments construct a visibility graph for a layer
by taking the triangulated graph for the layer and adding
additional visibility edges. For instance, in some embodi-
ments, the visibility graph includes a node for each corner of
its sub-region layer and each point of a port or obstacle
geometry, vpin, and vias. These embodiments then define an
edge between every two nodes that have an unobstructed
view of (1.e., an unobstructed path to) each other. For each
node, these embodiments also define an edge for each
unobstructed projection of the node onto each of 1ts layer’s
bounding sides.

Other embodiments construct an approximate visibility
graph for each sub-region layer. Some embodiments con-
struct such a graph for each layer by duplicating the trian-
gulated graph of the layer and adding additional edges about
the nodes of the duplicated triangulated graph.

Specifically, for each particular node in the triangulated
graph, these embodiments 1dentily the faces adjacent to the
particular node. For each identified face that 1s a boundary
face (1.e., a face that has a portion of the layer’s boundary as
one of its edges), a new edge 1s defined for the projection
onto the boundary of the face’s node that 1s not on the
boundary.

Us 7,310,793 Bl

37

On the other hand, for each identified face that i1s not a
boundary face, these embodiments i1dentify the other face
(“opposing face™) that shares the edge that 1s opposite to the
particular selected node. It the 1dentified and opposing faces
form a convex quadrangle, these embodiments then deter-
mine whether the i1dentified edge between these two faces
can be flipped. 11 so, a new flipped edge 1s defined (1.e., an
edge 1s defined between the particular selected node and the
opposing face’s node that 1s not on the shared edge). This
new-tlipped edge results in two new faces that connect to the
selected particular node. This process 1s repeated for all the
identified and resulting faces to define additional edges that
connect the particular node to other nodes “visible™ to 1it.

b. Compute Capacity and Flow for Each Congestion
Graph Edge.

A layer’s visibility or approximate visibility graph takes
the layer’s triangulated graph and adds additional edges. In
both cases, the capacity and tlow of each edge that 1s part of
a triangulated graph were previously computed during the
topological routing process as described above.

On the other hand, the routability engine has to compute
the capacity of each congestion-graph edge that 1s unique to
this graph (i.e., each edge that 1s not 1n the corresponding
triangulated graph). The capacity of an edge that 1s unique
to a visibility or approximate visibility graph can be com-
puted by performing the operations described above by
reference to FIG. 25.

The routability engine also has to compute the flow of
cach unique-congestion graph edge (1.e., each edge that 1s
not in the corresponding triangulated graph but 1s only in the
congestion graph). For both the visibility and approximate
visibility graph, the flow of each unique congestion-graph
edge can be computed based on the flow of the edges that
surround and/or intersect the unique congestion-graph edge.
When only two edges surround the unique congestion-graph
edge (such as when the unique congestion-graph edge
represents the projection of a boundary-face node onto a
boundary), the flow of the unique congestion-graph edge can
be dertved from the flow of the two surrounding edges.

On the other hand, the unique congestion-graph edge can
be shared by two faces that form a quadrangle. The unique-
congestion graph edge 1s one of the diagonal edges of such
a quadrangle. The quadrangle can have another diagonal
edge that intersects the unique congestion-graph edge.

When the umique congestion-graph edge 1s shared by two
faces, the process for performing this computation for a
visibility graph 1s recursive. This 1s because one or more of
the edges that surround or intersect a umique congestion-
graph edge might themselves be unique congestion-graph
edges. On the other hand, the flow of each unique non-
boundary, congestion-graph edge 1n the approximate visibil-
ity graph can be computed non-recursively, since the tlow of
cach unique congestion graph edge can be defined based on
the previously-computed tlows of its surrounding and inter-
secting edges.

2. Reduce Congestion.

As mentioned above, the process 4100 tries (at 4110) to
reduce congestion in the layout after identifying congestion
graphs and identifying the capacity and flow of edges 1n
these graphs. Specifically, at this stage, the routability engine
examines the congestion about the moveable vias to deter-
mine whether 1t can move some moveable vias to improve
congestion. In some embodiments, vias that are not formed
by port-geometry nodes are moveable, while those that are
partially or completely formed by port-geometry nodes are
not moveable. In other embodiments, even vias that are
tformed by port-geometry nodes are moveable. For instance,

10

15

20

25

30

35

40

45

50

55

60

65

38

some embodiments define a number of discrete via-node
locations 1n some or all port-geometry nodes. Accordingly,
in these embodiments, the routability engine can move a via
that connects to such a port geometry to different via-node
locations of the port geometry, so long as the move 1s viable.

To examine congestion about vias, the routability engine
defines a congestion sector for each the legal routing direc-
tion. FIG. 42 1llustrates eight such sectors that are defined
around the eight routing directions of the octilinear wiring
model 1illustrated 1in FIG. 1. As mentioned above, some
embodiments define an edge’s capacity based on the pro-
jection of the edge’s capacity vector onto the closest legal
routing direction. Accordingly, each sector 1in FIG. 42 1den-
tifies one type of projection of the edge-capacity vector.

In other words, (1) sector one 1dentifies the projection
onto the 0° routing direction of the capacity vectors with
directions between x22.5, (2) sector 2 1dentifies the projec-
tion onto the 45° routing direction of the capacity vectors
with directions between 22.5° and 67.5°, (3) sector 3 1den-
tifies the projection onto the 90° routing direction of the
capacity vectors with directions between 67.5° and 112.5,
(4) sector 4 1dentifies the projection onto the 135° routing
direction of the capacity vectors with directions between
112.5° and 157.5°, (5) sector 5 1dentifies the projection onto
the 180° routing direction of the capacity vectors with
directions between 157.5° and 202.5°, (6) sector 6 1dentifies
the projection onto the 225° routing direction of the capacity
vectors with directions between 202.5° and 247.3, (7) sector
7 1dentifies the projection onto the 270° routing direction of
the capacity vectors with directions between 247.5° and
292.5, and (8) sector 8 1dentifies the projection onto the 315°
routing direction ol the capacity vectors with directions
between 292.5° and 337.3,

FI1G. 43 illustrates a process 4300 for measuring the sector
congestion about a via. Some embodiments perform this
process for all layers of the sub-region at once. As shown in
FIG. 43, the process 4300 mitializes (at 4305) a Max_Over-
flow variable for each congestion sector about the moveable
via. For instance, when the process 4300 uses the congestion
sectors 1dentified 1n FIG. 42, its 1nitializes eight Max_Over-
flow variables at 4305. In some embodiments, the process
4300 mitializes each Max_Overflow to a large negative
number.

The process then selects (at 4310) one of the edges that
connects to the via’s node on the congestion graph of one of
the sub-region layers. It next computes (at 4315) an overtlow
value for the edge selected at 4310. Some embodiments
calculate the selected edge’s overtlow value as the edge’s
flow minus its capacity.

At 4320, the process then identifies the sector for the
edge’s capacity vector. The idenftification of an edge’s
capacity vector was described above by reference to FIG.
26. Also, the sector of the capacity vector can be i1dentified
based on the direction of the capacity vector, as mentioned
above by reference to FIG. 42.

Next, the process determines (at 43235) whether the
selected edge’s overflow 1s greater than the Max_Overflow
ol 1ts capacity vector’s sector. If not, the process transitions
to 4335, which will be described below. Otherwise, the
process defines the 1dentified sector’s Max_Overflow equal
to the selected edge’s overtlow.

The process then determines (at 4335) whether 1t has
examined all the edges (on all the layers) that connect to the
via. IT not, the process returns to 4310 to select another edge
to examine for the via. When the process 4300 determines
that has examined all the edges that connect to the via, 1t then
computes (at 4340) eight Max_Congestions, and then ends.

Us 7,310,793 Bl

39

Each Max_Congestion 1s the largest Max_Overflow
among three adjacent sectors. FIG. 44 illustrates four sets of
adjacent Manhattan sectors, while FIG. 45 illustrates four
sets of adjacent 45° sectors. Accordingly, each Max_Con-
gestion value 1s defined along one of the octilinear direc-
tions.

More specifically, FIG. 44 1llustrates (1) a Max_Conges-
tionl that quantifies the congestion 1n the positive x-direc-
tion 1 the Manhattan axis, (2) a Max_Congestion2 that
quantifies the congestion in the negative x-direction in the
Manhattan axis; (3) a Max_Congestion3 that quantifies the
congestion 1n the positive y-direction 1n the Manhattan axis;
and (4) a Max_Congestion4 that quantifies the congestion 1n
the negative y-direction in the Manhattan axis.

FIG. 45 1llustrates (1) a Max_CongestionS that quantifies
the congestion 1n the positive x-direction 1n the 45° axis; (2)
a Max_Congestion6 that quantifies the congestion 1n the
negative x-direction 1n the 435° axis; (3) a Max_Congestion7
that quantifies the congestion in the positive y-direction in
the 45° axis; (4) a Max_Congestion8 that quantifies the
congestion 1n the negative y-direction 1n the 45° axis.

To 1dentily the particular Max_Congestion value for a
particular set of sectors, two of the three Max_Overtlow
values have to be projected onto the particular octilinear
direction corresponding to the particular Max_Congestion
value. For instance, the Max_Congestionl value for sectors
1. 2, and 8, which are defined about the x-direction 1n the
Manhattan axis, 1s defined as the largest value among (1) the
Max_Overtlow value of sector 1, (2) the projection of the
Max Overflow of sector 2 onto the x-direction in the
Manhattan axis, and (3) the projection of the Max_Overtlow
of sector 8 onto the x-direction in the Manhattan axis.
Similarly, the Max_CongestionS value for sectors 1, 7, and
8. which are defined about the x-direction 1n the 45° axis, 1s
defined as the largest value among (1) the Max_Overtlow
value of sector 8, (2) the projection of the Max_Overtlow of
sector 1 onto the x-direction in the 45° axis, and (3) the
projection of the Max_Overtlow of sector 7 onto the x-di-
rection in the 45° axis.

Once the process 4300 computes the Max_Congestions,
the routability engine can determine whether 1t can move the
via. Some embodiments perform process 4300 for all or
some of the moveable vias, before attempting to move some
of them. However, the embodiments described below per-
form process 4300 for one moveable via, and then determine
whether to move the via, before performing process 4300 for
another moveable via.

Based on the computed Max_Congestions, the routability
engine determines whether 1t can move the via. Specifically,
the routability engine makes this determination by examin-
ing corresponding pairs of Max_Congestion values. Each
pair relates to two opposite directions on the Manhattan or
45° axis. For the Manhattan axis, one corresponding pair
includes the Max_Congestionl and Max_Congestion2 for
the positive and negative x-axis directions, while the other
pair includes the Max_Congestion3 and Max_Congestion4
for the positive and negative y-axis directions. For the 45°
ax1s, one corresponding pair includes the Max_CongestionS
and Max_Congestion6 for the positive and negative x-axis
directions, while the other pair includes the Max_Conges-
tion7 and Max_Congestion8 for the positive and negative
y-axis directions.

Some embodiments use the following criteria to deter-
mine whether a move 1s possible 1n a particular axis direc-
tion of the Manhattan or 45° axis. If the corresponding pair
of Max_Congestions for a particular axis direction (e.g., for
the positive and negative Manhattan x-directions) are both

10

15

20

25

30

35

40

45

50

55

60

65

40

positive, the via 1s not moved in either direction specified by
the pair (e.g., 1t 1s not moved 1n the positive or negative
Manhattan x-directions).

On the other hand, when one Max_Congestion of a
corresponding Max_Congestion pair (e.g., the total for the
positive Manhattan x-direction) 1s negative, while the other
(e.g., the total for the negative Manhattan x-direction) 1s
positive, the via can be moved in the direction with the
negative Max_Congestion (e.g., in the positive Manhattan
x-direction) until one of the Max_Congestions for the pair 1s
0. When the corresponding pair of Max_Congestions for a
particular axis direction (e.g., for the positive and negative
Manhattan x-directions) are both negative, the via can be
moved 1n the direction with the more negative Max_Con-
gestion until both Max_Congestions are equal.

As mentioned above, some embodiments define the edge
capacity and flow 1n terms of the edge length and net width,
which, 1 turn, makes distance the unit for quantifying
congestion. Accordingly, 1n these embodiments, the amount
of a via move 1s directly specified by the congestion values.
For instance, when the Max_Congestion of the +x-axis
Manhattan direction 1s 25 while that of the —x-axis Man-
hattan direction 1s =75, the via can be moved 1n the —x-axis
direction by 50 units. In some embodiments, each unit 1s to
equal to the IC-manufacturing-grid unait.

Based on the criteria recited above, the routability engine
examines the potential for moving the via on each axis of the
Manhattan and 45° coordinate systems. If the routability
engine determines that the via movement 1s only possible
within one of the coordinate systems, then the routability
engine moves the via according to the potential x- and/or
y-axis moves this coordinate system.

On the other hand, if the routability engine determines
that the via movement 1s possible within both coordinate
systems, 1t identifies the best coordinate system for the
movement. For each particular pair of corresponding direc-
tions 1n the Manhattan and 45° coordinate systems, some
embodiments compute a balance factor that measures the
difference 1n Max_Congestions of the particular pair after
the potential move in the axis direction of the pairs. For each
coordinate system, these embodiments then generate an
overall balance factor that combines the two balance factors
for the two axis directions of the coordinate system. Some
embodiments generate the overall balance factor of a coor-
dinate system by summing up the balance factors for the x-
and y-axes directions. The routability engine then picks the
via movement 1n the coordinate system with the better
overall balance factor.

After moving a via, the routability engine has to recom-
pute the capacity and flow of edges that connect to the via
on any layer of the sub-region. The operations for computing
the capacity and flow of an edge are identical to those
discussed above for the topological router.

The process for reducing congestion by moving vias can
be performed several times. Some embodiments perform
several such iterations, because each iteration might move
one or more vias, which, in turn, would aflect the congestion
of nearby edges, which, i turn, might allow or necessitate
additional via movements.

3. Computing Congestion and Interacting with Topologi-
cal Router

After moving vias to reduce congestion, the routability
process 4100 computes (at 4115) a congestion value of each
edge 1n the congestion graphs. In some embodiments, the
congestion value equals the edge’s capacity minus the
edge’s tlow. The routability process then examines (at 4120)
the computed congestion values to i1dentily any edge that 1s

Us 7,310,793 Bl

41

congested. In some embodiments that compute the conges-
tion value as the edge’s capacity minus the edge’s tlow, the
congested edges are the ones with the negative congestion
values.

If the process identifies no congested edges, 1t ends.
However, 11 i1t 1dentifies congested edges, the process directs
(at 4125) the topological engine to revise some of the
topological routes to alleviate the congestion of the i1denti-
fied over-congested routes, and then ends.

In different embodiments, the routability and topological
engine interact i different ways to 1dentity other topological
routes. In some embodiments, the routability engine needs to
identify the edges that are congested to the topological
engine. In some of these embodiments, the congested edges
are olten the edges that are unique congestion-graph edges
(1.e., are edges that are not in the topological router’s
triangulated graphs). Hence, 1 some embodiments, the
routability engine needs to relay to the topological router the
congestion problem without referring to unique congestion-
graph edges that are not used by the topological router.

In some embodiments, the routability engine conveys the
congestion problem of a unique congestion-graph edge by
identifying the triangulated-graph edges that connect the
same endpoints as the unique congestion-graph edge. For
instance, FIG. 46 illustrates a unique-congestion graph edge
4630 that 1s between two nodes 46035 and 4610. When the
edge 4630 15 over congested, the routability engine needs to
inform the topological router of this congestion but 1t cannot
refer to edge 4630, which 1s not part of the triangulated
graph used by the topological router. Hence, 1n place of
4630, the routability engine identifies triangulation-graph
edges 4615, 4620, and 46235 that connect the same endpoints
as the unique congestion-graph edge. The routability engine
can 1dentily triangulation-graph edges 4635, 4640, and 46435
as well. In some embodiments, the routability engine also
specifies the maximum flow across the 1dentified triangula-
tion-graph edges, where this maximum flow corresponds to
the capacity of the congestion graph edge 4630.

The topological router can then use the edge-identity
information in several ways. For instance, i1t can reduce the
flow of the i1dentified edges and then identify topological
routes for the nets that previously crossed the identified
edges. Alternatively, for each particular triangulation-graph
edge, the topological router keeps 1n some embodiments a
record of the number of other edges that need to be analyzed
with the particular edge during the edge-capacity-checking
operations ol the route generation process. Accordingly,
when the routability engine identifies a set of edges that need
to be collectively analyzed in order to capture the congestion
of a particular congestion-graph edge, the topological router
stores the 1dentified set (once for all edges 1n the set or once
for each edge 1n the set); each time a path tries to cross one
of the edges 1n the set, the path generation process not only
checks the edge’s individual capacity, but also compares the
remaining capacity of all the edges with the specified
capacity of the congestion-graph edge.

If the topological router repeatedly fails to generate
geometrically routable topological routes for a particular set
of edges, the routability engine flags one or more nets as
unroutable, directs the topological router to define routes the
remaining nets crossing the set of edges, and then transitions
to 220 to embed the generated topological routes.

E. Geometric Engine

After the routability checking, the process 200 generates
geometric routes and stores these routes in a detail-routing
storage structure (such as a database). A geometric routing
engine generates and embeds geometric routes. In order to

10

15

20

25

30

35

40

45

50

55

60

65

42

generate the geometric routes, the geometric engine in some
embodiments generates a new routing representation for
cach topological route 1n the sub-region. The new routing
representation 1s one that 1s design-rule correct (1.e., a
representation that complies with the design rule spacing
and positioning).

In some embodiments, the geometric engine generates the
design-rule-correct routes by referring to path-defining
edges. These edges are specified about vpins, vias, ports, and
obstacles in directions that constrain the embedding of
geometric routes about obstacles and unrelated vpins, vias,
and ports.

In some embodiments, the geometric engine performs
four operations to generate the design-rule-correct routes for
topological routes on a layer. These operations are explained
for the octilinear wiring model of FIG. 1. This wiring model
has four constraining angles, +22.5° and +67.5°, that con-
strain the embedding of geometric routes.

First, for each of the four constrained directions, the
geometric engine generates one set of path-defining edges
about the geometric points 1n the layer. In other words, four
sets of path-defining edges are defined along +22.5° and
+67.5° directions. FIG. 47 1llustrate a simple example of a
portion of a layout that has two obstacles about which two
topological routes for two nets 4705 and 4710 are defined by
the topological router. FIGS. 48 A-48D 1llustrate four sets of
path defining edges 4800 for this example.

Second, the geometric engine generates four “partial”
route representations for each topological route. Each partial
route 1s defined with respect to one set of path-defiming
edges. In addition, the geometric engine produces each
partial design-rule-correct route for a net’s topological route
on a layer by (1) identifying the path-defining edges inter-
sected by the topological route, (2) based on the design rules,
identifying the segments of the intersected path-defining
edges that are available for constructing the partial route,
and (3) generating the shortest path between the endpoints of
the topological route (on that layer) that traverses the
identified segments.

Some embodiments identily the constrained boundaries
of path-defining segments that a net’s route can intersect
based on the location of the center-line of the net. Some
embodiments also require that all the nodes 1n the path-
defining-edge graph lie on the manufacturing grid.

FIGS. 48A-48D specily with dots the segments of the

path defimng edges that have been constrained for net 4705.
These constraints are due to spacing requirements between
net 4705 and net 4710 and the net 4703 and the endpoints of
the path defining edges. In these figures, the constraiming
endpoints sometime appear to the side of the path-defining
edge because, 1 order to snap the interconnect lines to the
manufacturing grid, some embodiments identify the spacing
and width requirements on each constraining direction based
on these requirement on the closest Manhattan wiring direc-
tion, and then round up the i1dentified values to ensure proper
design each time.

FIGS. 54 and 55 provide two more-detailed examples for
identifying the spacing and width requirements on the
constraining directions. FIG. 34 illustrates two nets 5405
and 5410 that have routes that intersect a 22.5° path-defining
edge that originates from a vertex 5420 of an obstacle 5415.

In the example 1llustrated in FIG. 54, the x-coordinate of
the left-most constrained endpoint 5425 for the center-line

of the net 5410 1s (1) the mimmum spacing (S1) between the
first net and the vertex 5420, plus (2) the width (W1) of the
net 5405, plus (3) the minmimum spacing (S2) between the

Us 7,310,793 Bl

43

nets 5405 and 5410, plus (4) half of the width (W2) of the
net 5410. The y-coordinate (Y) for this endpoint 5425 1s

computed as follows:

Y=Y1+Y2+Y3+Y4,

where,
Y1=ceil (S1*tan 22.5°),
Y2=ceil (W1*tan 22.5°),
Y3=ceil (S2*tan 22.5°), and
Y4=[cei1l (W2*tan 22.5°)]/2,

and “ceil” signifies rounding up to the next manufacturing
orid. This manner of defining the y-coordinate of the left-
most constrained endpoint 54235 ensures that the vertices of
the net 5410°s partial route boundary (1.¢., the vertices of the
polygon representing this net’s partial route shape) are

positioned on the manufacturing grid. Vertices 5430 and
5435 1n FIG. 34 are examples of two such vertices.

FIG. 55 illustrates nets 5405 and 5410 that have routes
that intersect a 67.5° path-defining edge that originates from
a vertex 5420 of an obstacle 5415. In the example 1llustrated
in FIG. 55, the y-coordinate of the left-most constrained
endpoint 5440 for the center-line of the net 5410 1s (1) the

mimmum spacing (S1) between the first net and the vertex
5420, plus (2) the width (W1) of the net 5405, plus (3) the
mimmum spacing (S2) between the nets 5405 and 5410, plus
(4) half of the width (W2) of the net 5410. The x-coordinate

(X) for this endpoint 5440 1s computed as follows:

X=X1+X2+X3+X4,

where,
X1=ceil (S1*tan 22.5°),
X2=ce1l (W1*tan 22.5°),
X3=ce1l (S2*tan 22.5°), and
X4=[ce1l (W2*tan 22.5°)]/2.

This manner of defimng the x-coordinate of the left-most
constrained endpoint 5440 ensures that the vertices of the
net 5410°s partial route boundary (1.e., the vertices of the
polygon representing this net’s partial route shape) are
positioned on the manufacturing grid. Vertices 5445 and
5450 1n FIG. 55 are examples of two such vertices.

After identifying the path-defining edges intersected by
the topological route, and identifying the constrained seg-
ments of the intersected path-defining edges that are avail-
able for constructing the partial route, the geometric engine
generates the shortest path between the endpoints of the
topological route that traverses the identified segments.

FIGS. 48 A-48D illustrate the shortest path 4815, 4820,
4825, and 4830 for nets 4705 along each set of constrained
edges. As was the case with the topological router, the
geometric router can identily the shortest path that traverses
across several constrained edges by using common tech-
niques such as the one described 1n “Geodesic Path Inside
Polygons,” by Stmon Mak and Sung Soo Kang, which can
be found at www.cs.mcgill.ca/~skang5/cs507/welcom.htm.
As this approach simply computes the shortest distance, it
does not favor any one preferred direction over the other
wiring directions.

However, unlike the case for the topological router which
defined the shortest distance within a polygon, the geometric
engine 1dentifies the shortest distance among a set of parallel
path-defining edges. Whenever this engine 1s defining con-
straints on the path defining edges, 1t detects when a route
bends 180° around an obstacle or unrelated geometry (1.¢.,
bends around the obstacle or geometry and intersects a
path-defining edge that 1s co-linear with a previous path-

10

15

20

25

30

35

40

45

50

55

60

65

44

defining edge), and breaks the path into two structures
around the bend 1n order to avoid inflection points. It then
computes the shortest path for each structure, and later joins
the resulting paths for these structures to define a partial
path.

FIG. 56 1llustrates another example of identifying a short-
est partial path after constraining segments of the intersected
path-defining edges. This figure illustrates five 22.5° path-
defining edges 5605-5625 (that have been rotated for sim-
plify the presentation), and a net 5630 that has a starting
point 5635 and an ending point 5640. In this figure, leit and
right constrained endpoints are defined for each path-defin-
ing edge for the center-line 5645 of the net 5630. The left
and right constrained endpoints 1n FIG. 56 can be used to
define a routing area for the net. These constrained endpoints
are slightly off the path-defining edges 1n order to ensures
that the vertices of the polygon representing the shape of the
net 5630°s route are positioned on the manufacturing grid.
Two such vertices that are aligned with the manufacturing
orid are vertices 3650 and 5655. These two vertices are
vertices of the net’s representative polygon that bends at the
center-line endpoint 3660 to achieve the shortest path
between endpoints 56335 and 5640.

Third, the geometric engine examines the points of the
four partial paths defined during the previous operation and
removes points that should not be considered for the merged
path. Fourth, the geometric engine merges the four partial
routing solutions into a single design-rule-correct route.

In some embodiments, the geometric engine performs the
third and fourth operations by using polygons that represent
the wiring model being used. For instance, FIGS. 49A and
498 1llustrate two octagons that represent the octilinear
wiring model of FIG. 1. The octagon 4905 of FIG. 49A 1s

referred to below as the negative polygon, while the octagon
4910 of FIG. 49B 1is referred to below as the positive

polygon.
Each of these octagons has a specific vertex for connect-

ing to a partial-path point that 1s defined along a specific
constraining direction. FI1G. 49C 1dentifies the eight possible
directions that can be constrained by the four constraining
angles, £22.5° and +67.5°, for the octilinear wiring model.
FIGS. 49A and 49B identily constrained directions that
correspond to their octagon vertices. For instance, the nega-
tive octagon’s vertex 4915, which 1s labeled 22.5°, corre-
sponds to the 22.5° constraining direction. Similarly, the
positive octagon’s vertex 4920, which 1s labeled 67.5°,
corresponds to the 67.5° constraining direction.

To 1identify an unnecessary partial-path point, the geomet-
ric engine places the negative octagon’s vertex that corre-
sponds to the point’s constraining direction on the point. The
geometric engine determines to take out the point, 11 either
segment that connects to this point on the partial path falls
within the negative octagon. In the examples of FIG. 48, all
the partial-path points of the —22.5° and 67.5° angles can be
climinated by using this approach.

Similar approaches are used to merge the partial paths.
Specifically, to identify the first point of the merged paths,
the positive octagon 1s placed on the first points of each
partial path that remains after the point-removal operation.
The positive octagon 1s placed on each point at 1ts vertex that
corresponds to the constraining direction used to 1dentify the
point. The point that i1s selected 1s the first point of the
solution whose first path (i.e., the path from the starting
point to the first point) does not intersect the positive
octagon or lies on the octagons border.

To select each successive poimnt except the last, one
positive octagon 1s placed on the last selected point and

Us 7,310,793 Bl

45

another 1s placed on the next pomt in the selected point’s
partial path. If the segment connecting these two points does
not fall within either positive octagon, then the next point in
the partial path 1s selected as the next point 1n the merged
path. On the other hand, 11 the segment connecting these two
points falls within either octagon, then next point in the
selected point’s partial path 1s not selected. Rather, the next
point 1n the merged path 1s 1dentified to be the next remain-
ing point of the solution set whose constraining direction 1s
clockwise or counterclockwise adjacent to the constraining
direction of the last selected point. The solution of the
adjacent clockwise direction 1s selected when the constrain-
ing node of the last selected point was on the right of the
oriented path segment to the last selected point. On the other
hand, the solution of the adjacent counter-clockwise direc-
tion 1s selected when the last point’s constraining node was
on the left of the oriented path segment to the last selected
point.

When all the partial solutions are empty except one, the
last point or points are selected from the remaining non-
empty partial solution. FIG. 50 illustrates the merged path
5000 for the examples illustrated 1n FIGS. 48A-48D. FIG.
57 provides another example of merged routes. Specifically,
this figure illustrates a portion of the merged route for net
5410. This merged-route portion 3460 of this net’s center-
line 1s created by connecting the constraining endpoints
5425 and 5440 that are defined for the 22.5° and 67.5°
path-defining edges. As illustrated in FIG. 57, the width of
the net 5410 1s larger than W2 (it 1s W2+¢) due to the
definition of the center-line constraints on the 22.5° and
67.5° directions.

After generating a merged design-rule-correct route, the
geometric engine can then generate and embed a geometric
route based on the merged route. The geometric engine
directly embeds all segments of the merged path that are 1n
one ol the octilinear directions illustrated in FIG. 1. The
geometric engine embeds a non-octilinear segment (1.¢., line
segment connecting two points in the merged path) by
projecting 1t onto one of the octilinear directions (e.g.,
projecting 1t onto the 0° direction). In some embodiments,
the geometric engine 1s free to project the non-octilinear
segments onto any octilinear direction, but once it picks a
direction 1t uses this direction for all non-octilinear seg-
ments.

FIG. 51 illustrates the projection of a segment 51035 onto
the horizontal direction. When a segment 1s projected
towards one of the octilinear directions, the geometric
engine needs to ensure that the projection respect the design-
rule constraints on the path’s traversal. The endpoints of a
non-octilinear segment are from the same partial solution.

In the example illustrated 1n FIG. 51, the partial solution
for segment 5103°s endpoints are generated in the -22.5°
direction. The geometric engine retrieves the path con-
straints that were previously computed for the —22.5° direc-
tion between the endpoints of the segment, in order to
determine how these retrieved constraints bound the geo-
metric embedding of segment 5105.

The geometric engine then sorts the constraints 1 a
direction perpendicular to either octilinear direction result-
ing from the projection. At this stage, the geometric engine
has defined a sorted structure of points that 1t needs to
analyze. One manner for generating geometric routes will
now be described by reference to the example of FIG. 51.

In this example 1llustrated in FIG. 51, the constraints are
sorted 1n the Y-axis direction (1n the direction perpendicular
to the x-axis direction). Also, this sorting leads the geometric

5

10

15

20

25

30

35

40

45

50

55

60

65

46

engine to store a list of sorted points, starting with node
5110, constraining endpoints 3115-5125, and then node
5130.

The geometric engine stores the node 5110 as the first
point of the geometric route. It then selects point 5115, and
determines that the node 5110 1s behind a 45° diagonal line
running through 5115. Hence, 1t 1dentifies point 5135 as an
optimal bending point from 5110 to 5115, and thereby stores
node 5135 and then node 5115 as the second and third points
of the geometric route.

The next point on the sorted order 1s point 53120. The
engine then determines whether a 45° diagonal line passing
through this point 1s ahead or behind the 45° diagonal line
passing through the last item on the embedded geometric
route. In this case, the line through point 5120 1s behind the
line through previous point 5115, and hence constraint point
5120 does not aflect the geometric route.

The engine then selects the next sorted point, which 1s
point 5125. The 45° diagonal line passing through this point
5125 1s ahead of the 45° diagonal line passing through the
last item on the embedded geometric route (i.e., point 5115).
Accordingly, the engine 1dentifies point 3140 as an optimal
bending point from 5115 to 5125, and thereby stores point
5140 and then points 5125 as the fourth and fifth points of
the geometric route. As the node 5130 1s the last item 1n the
sorted order and it 1s the end node for the segment, the
geometric engine adds 1t as the last point of the geometric
route segment for segment 5105.

FIG. 50 1llustrates the center-point line for the geometric
route of the merged route of net 4705. FIG. 52 illustrates a
net-width view of this route for this net. As evident from
FIG. 52, this route 1s a gridless, NPD route. This route was
generated without forcing the router to select an arbitrary
preferred direction for an interconnect layer, or to use an
arbitrary, non-manufacturing grid. As mentioned above,
some embodiments simply require the router to snap the
vertices of 1nterconnect lines to the manufacturing grid.

FIG. 53 presents a geometric-routing process performed
by the geometric engine of some embodiments of the
invention. As shown 1n this figure, the process 5300 initially
selects (at 5305) a layer of the sub-region being routed.
Next, the process assigns (at 5310) locations to each edge
item of the triangulated graph on the selected layer. Some
embodiments assign locations to each item on the selected
layer by distributing uniformly the edge items on their
edges.

After assigming locations to each edge item on the
selected layer, the process 5300 specifies (at 5315) connec-
tion points for each topological route. Some embodiments
define the connection points for some routes (e.g., routes that
endpoints were originally mside of non-convex geometries)
on the selected layer on the boundaries of the port geom-
etries.

At 5320, the geometric-routing process 1dentifies a wiring
model for the selected layer. This information 1s provided by
the designer 1n some embodiments, or 1t might be automati-
cally determined based on some criteria, such as an attribute
(c.g., shape) of the routed region. The embodiments
described below utilize the octilinear wiring model
described above by reference to FIG. 1 for all the layers.
Other embodiments use different wiring models. Also, some
embodiments use different wiring models for different lay-
ers.

After selecting a wiring model, the process 5300 selects
one of four constraining angles (x22.5° and +67.5°) for the
selected octilinear wiring model. The process 5300 then
rotates (at 5330) the selected layout 1n the opposite direction

Us 7,310,793 Bl

47

to the selected constraining angle to simplily performing a
horizontal scan-line algorithm at 5335. The process 5300

performs this algorithm at 3335 to generate path-defiming
edges.

Like a trnangulated-graph edge, a path-defimng edge has
a data structure that includes a linked list of 1tems on the
edge, where each item on the list points to the next and
previous items 1n the list. This list starts and ends with the
endpoints of the edge. As mentioned below, edge 1tems are
added between the edge’s endpoints to represent routes as
routes are nserted in the edge.

After specitying the path-defining edges in the constrain-
ing angle selected at 5325, the process 5300 performs (at
5340) another scan line algorithm on the rotated layout layer,
in order to identily the routes that cross each path-defining
edge. Fach time the process 1dentifies a route that crosses an
edge, 1t serts an edge i1tem 1n the edge’s linked list to
represent the intersecting route. In some embodiments, the
geometric engine (at 5340) starts analyzing the routing
problem 1n terms of two pin paths instead of routes, which

can connect multiple pins. In these embodiments, each
path’s data structure defines a linked list of items on the path.

A path’s linked list starts and ends with the endpoints of
the path, and 1n between can include edge 1tems on one or
more path-defining edges. Hence, after 5340, the process has
defined two sets of linked lists that define paths and the
relative position of paths with respect to the constraiming,
angle 1 the selected layer. In some embodiments, the
process also (at 53340) cleans up each paths definition with
respect to the path-defining edges. Specifically, 11 two con-
tiguous edge 1tems on a path-defining edge are for the same
path and are adjacent points on the same path, then these
edge 1tems are removed.

After creating the new route descriptions at 5340, the
process then selects (at 5345) a path. The process then uses
(at 5350) the design rule to identity the segments of the
path-defining edge intersected by the selected path that are
available for constructing the partial route of the selected
path. Whenever the process defines constraints on the path
defining edges, and 1t detects when a route bends 180°
around an obstacle or unrelated geometry, 1t breaks the path
into two structures around the bend in order to avoid
inflection points.

After identifying the path-defining-edge segments that are
available for constructing the partial path of the selected
path, the process 5300 computes (at 5355) the shortest path
between the endpoints of the selected path that traverses the
identified segments. This shortest path serves as one of the
partial solutions. If the process broke the path into smaller
structure, 1t computes (at GW53) the shortest path for each
structure, and then joins the resulting solutions for these
structures to define a partial path.

The process then determines (at 5360) whether 1t has
examined all the paths. If not, 1t returns to 5345 to select
another path. IT so, 1t determines (at 3365) whether it has
generated partial solutions for all constraining angles. It 1t
has not examined all the constraining angles, it returns to
5325 to select another constraiming angle and generate
partial solutions for this direction.

When the process 5300 has examined all the constraining,
angles, 1t then has to merge the partial solutions. Hence, the
process selects a path (at 53370) and merges (at 5375) the
partial routing solutions for this path. One manner of merg-
ing paths was described above. Next, the process generates
(at 5380) a geometric route and embeds this route. This

10

15

20

25

30

35

40

45

50

55

60

65

48

geometric route 1s based on the wiring model of the current
layer. One manner of embedding merged paths was
described above.

The process then determines (at 3385) whether 1t has
embedded all the paths 1n the current layer. I not, it returns
to 5370 to select another path for embedding. Otherwise, the
process determines (at 5390) whether 1t has examined all the
layers of the sub-region. If not, the process transitions back
to 5305 to select another layer for geometric routing. I1 so,
the process ends.

IV. Vias

Multi-layer routes use vias to traverse from one intercon-
nect layer to another. Fach via between two layers has three
components, which are (1) the via contact on one layer, (2)
the via contact on the other layer, and (3) at the overlap of
the via contacts, a cut that represent the cavity for placing
interconnect materials to connect the via contacts. At times,
multiple via cuts and contact pairs forms one conceptual via.
For instance, as shown in FIG. 358, multiple via cuts and
contact pairs 5805 can be used to define the via between a
route’s narrow path 5810 on one layer and the route’s wider
path 5815 on another layer.

FIGS. 59-63 illustrate various shapes of vias that are used
in some embodiments of the mvention. These shapes can
also be used as the shapes of non-via face items. FIG. 59
illustrates the shapes of two corresponding via contacts (i.e.,
two via contacts on different layers that are interconnect to
form a via). As shown 1n this figure, some embodiments use
a square shape for one of the contacts 5905 1n the via-contact
pair, while using a diamond shape (e.g., a rotated square) for
the other contact 5910 1n the pair. In FIG. 39, the diamond
shape 1s a square rotated by 45°.

FIG. 60 1llustrates an alternative shape for a via contact.
As shown 1 this figure, a via contact 6005 can be in the
shape of an octagon. Such an octagonal via contact can be
used 1n conjunction with another octagonal via contact, or
with a differently-shaped via contact (e.g., square contact,
diamond contact, etc.).

All of the described via shapes can be used with any
wiring model, but work particularly well when they are used
with a wiring model that allows Manhattan and +45° inter-
connect lines. When a hexagonal wiring model 1s used (e.g.,
a wiring model that allows horizontal and +60° lines, or a
wiring model that allows vertical and +30° lines), some
embodiments use hexagonally-shaped via contacts. FIG. 61
illustrates one such hexagonal contact 6105.

FIG. 62 illustrates another via shape that 1s used 1n some
embodiments. This figure presents a circular via 6210. Such
a circular via contact can be used in conjunction with
another circular via contact, or with a differently-shaped via
contact (e.g., square contact, diamond contact, octagonal
contact, hexagonal contact, etc.).

In some embodiments, the interconnect-line endpoints
have non-rectilinear shapes. Fach route 1s defined by one or
more interconnect lines, and each interconnect line can be
straight or i1t can have one or more bends. Accordingly, a
route can have multiple interconnect-line endpoints, such as
Steiner points, interconnect-line terminations on vias, and
interconnect-line terminations on the net’s routable elements
(e.g., on the net port geometries).

In some embodiments, interconnect lines can terminate in
half-octagons or half hexagons. FIG. 63 1llustrates an inter-
connect-line 6303 that terminates 1 a half-octagon 6310,
while FIG. 64 1llustrates an interconnect-line 6405 that
terminates 1 a half-hexagon 6410. FIG. 65 illustrates an
interconnect-line 6505 that terminates 1n a half-circle 6510.

Us 7,310,793 Bl

49

In some embodiments, the above-described router repre-
sents each route as a collection of points that define the
traversal path of the route (e.g., represents each route as a
collection of points that define the traversal of the center-line
path), and leave the defining of the interconnect-line shapes
to another stage of the EDA process (e.g., the wire shapes
can be generated when writing the routing data mto a GDS
file, when displaying the routes, or before extraction). One
of ordinary skill will realize, however, that 1n other embodi-
ments the router uses the interconnect-line shapes.

Interconnect lines that terminate in half-octagons, hali-
hexagons, or half-circles can be used with any wiring model.
However, mterconnect lines that terminate 1n half octagons
(such as interconnect line 6305) work particularly well when
they are used with an octagonal wiring model (e.g., a wiring,
model that allows Manhattan and +45° interconnect lines),
while interconnect lines that terminate in hall hexagons
(such as interconnect line 6405) work particularly well when
they are used with a hexagonal wiring model (e.g., a wiring
model that allows horizontal and £60° lines, or a wiring
model that allows vertical and £30° lines).

For mstance, half-octagon interconnect lines (1.e., inter-
connect lines that terminate 1n half-octagons) provide a good
general structure that matches well the different via shapes
that might be used with the octagonal wiring model. FIG. 66
illustrates this matching. Specifically, this figure illustrates
the overlap between a half-octagon interconnect line and (1)
a square via, (2) a diamond via, and (3) an octagonal via.

Similarly, halt-hexagon interconnect lines (1.e., intercon-
nect lines that terminate 1n half-hexagons) provide a good
general structure that matches well the different via shapes
that might be used with the hexagonal wiring model. FIG. 67
illustrates this matching. Specifically, this figure illustrates
the overlap between a half-hexagon interconnect line d (1)
a square via, and (2) a hexagonal via.

In addition, half-octagon interconnect lines form octago-
nal Stemner nodes when they are used with an octagonal
wiring model, while halt-hexagon interconnect lines form
hexagonal Steiner nodes when they are used with a hexago-
nal wiring model. FIG. 68 illustrates an example of an
octagonal Steiner node 6805 formed by a horizontal hali-
octagon line 6810, a vertical halt-octagon line 68135, and a
45° half-octagon line 6820. FIG. 69 1llustrates an example of
a hexagonal Steiner node 6905 formed by a horizontal
half-hexagon line 6910, a —60° halt-hexagon line 6915, and
a —60° half-hexagon line 6920. Similarly, halt-circle inter-
connect lines (1.e., lines ending 1n half-circles) form circular
Steiner nodes.

Hali-circle interconnect lines accurately model endpoints
of conductive lines on IC’s, which typically are not recti-
linear but rather are somewhat semi-circular. Also, hall-
octagon and half-hexagon interconnect lines more closely
model actual conductive lines on the IC’s that traditional
rectilinear 1nterconnect-line ends. Similarly, circular,
octagonal and hexagonal via contacts model the circular vias

in the IC’s more closely than square via contacts used by
most EDA tools today.

V. The Computer System

FIG. 83 presents a computer system with which one
embodiment of the present invention 1s implemented. Com-
puter system 8300 includes a bus 8305, a processor 8310, a
system memory 83135, a read-only memory 8320, a perma-

nent storage device 8325, mput devices 8330, and output
devices 8335.

The bus 8305 collectively represents all system, periph-
eral, and chipset buses that commumicatively connect the

10

15

20

25

30

35

40

45

50

55

60

65

50

numerous internal devices of the computer system 8300. For
instance, the bus 8305 communicatively connects the pro-
cessor 8310 with the read-only memory 8320, the system
memory 8315, and the permanent storage device 8325.

From these various memory umts, the processor 8310
retrieves instructions to execute and data to process 1n order
to execute the processes of the invention. The read-only-
memory (ROM) 8320 stores static data and instructions that
are needed by the processor 8310 and other modules of the
computer system. The permanent storage device 8325, on
the other hand, i1s read-and-write memory device. This
device 1s a non-volatile memory umit that stores instruction
and data even when the computer system 8300 1s ofl. Some
embodiments of the invention use a mass-storage device
(such as a magnetic or optical disk and 1ts corresponding
disk drive) as the permanent storage device 8325. Other
embodiments use a removable storage device (such as a
floppy disk or zip® disk, and 1ts corresponding disk drive)
as the permanent storage device.

Like the permanent storage device 8325, the system
memory 8313 1s a read-and-write memory device. However,
unlike storage device 8325, the system memory 1s a volatile
read-and-write memory, such as a random access memory.
The system memory stores some of the instructions and data
that the processor needs at runtime. In some embodiments,
the invention’s processes are stored in the system memory
8315, the permanent storage device 8325, and/or the read-
only memory 8320.

The bus 8305 also connects to the mput and output
devices 8330 and 8335. The input devices enable the user to
communicate information and select commands to the com-
puter system. The mput devices 8330 include alphanumeric
keyboards and cursor-controllers.

The output devices 8335 display images generated by the
computer system. For instance, these devices display IC
design layouts. The output devices include printers and
display devices, such as cathode ray tubes (CRT) or liquid
crystal displays (LCD).

Finally, as shown in FIG. 83, bus 8305 also couples
computer 8300 to a network 8365 through a network adapter
(not shown). In this manner, the computer can be a part of
a network of computers (such as a local area network
(“LAN"), a wide area network (“WAN), or an Intranet) or
a network of networks (such as the Internet).

Any or all of the components of computer system 8300
may be used in conjunction with the mvention. However,
one of ordinary skill in the art would appreciate that any
other system configuration may also be used 1n conjunction
with the present mvention.

While the invention has been described with reference to
numerous specific details, one of ordinary skill 1n the art wall
recognize that the invention can be embodied in other
specific forms without departing from the spirit of the
invention. Thus, one of ordinary skill in the art would
understand that the invention 1s not to be limited by the
foregoing 1llustrative details, but rather 1s to be defined by
the appended claims.

We claim:

1. An mtegrated-circuit (“IC”) layout comprising:

a) a net with routable elements;

b) a first set of interconnect lines for connecting the
routable elements of the net, wherein the interconnect
lines have ends that are in the shape of partial non-
quadrilateral polygons.

2. The IC layout of claim 1, wherein the partial polygons

are partial octagons.

Us 7,310,793 Bl

51

3. The IC layout of claim 2, wherein the partial octagons
have several sides that are equal.

4. The IC layout of claim 3, wherein the partial octagons
are half-octagons.

5. The IC layout of claim 1, wherein the partial polygons
are partial hexagons.

6. The IC layout of claim 5, wherein the partial hexagons
have several equal sides.

7. The IC layout of claim 5, wherein the partial hexagons
are hall hexagons.

8. The IC layout of claim 1 further comprising a first set
ol vias that are in the shape of the non-quadrilateral poly-
gons.

9. The IC layout of claim 8, wherein the polygons are
octagons.

10. The IC layout of claim 9, wherein the octagons have
several sides that are equal.

11. The IC layout of claim 10, wherein the partial octagon
ends of the interconnect lines are half octagons.

10

52

12. The IC layout of claim 8, wherein the polygons are
hexagons.

13. The IC layout of claim 12, wherein the hexagons have
several equal sides.

14. The IC layout of claim 13, wherein the partial hexagon
ends of the interconnect lines are half hexagons.

15. The IC layout of claim 1 further comprising a first set
of vias that are in the shape of another non-quadrilateral

polygon.

16. The IC layout of claim 1 further comprising a second
set of interconnect lines that have ends that are 1n the shape
of partial quadrilateral polygons.

17. The IC layout of claim 16, wherein the second set of

;5 Interconnect lines have partial rectangular ends.

18. The IC layout of claim 16 further comprising a second
set of vias that are in the shape of a quadrilateral polygons.

% o *H % x

	Front Page
	Drawings
	Specification
	Claims

