US007299450B2
a2 United States Patent (10) Patent No.: US 7,299,450 B2
Livshits et al. 45) Date of Patent: Nov. 20, 2007
(54) UNDOING CHANGES IN A SOFTWARE 6,519,764 B1* 2/2003 Atkinson et al. 717/120
CONFIGURATION MANAGEMENT SYSTEM 6,519,767 B1* 2/2003 Carter et al. 717/140
(75) 1 t Art YV Livshits. Bell WA (US) 6,618,851 B1* 9/2003 Zundel et al. 717/103
nventors: Artem Y. Livshits, Bellevue : .
_ ’ ” ’ 6,629,316 B1* 9/2003 Curtiscccevvvevinnnn... 717/174
Christopher J. Antos, Redmond, WA | S
(US) 6,658,656 Bl * 12/2003 Thompson 717/151
6,718,535 Bl1* 4/2004 Underwood 717/101
(73) Assignee: Microsoft Corporation, Redmond, WA 6,785,882 B1* 8/2004 Goiffon et al. 717/120
(US) 6,804,682 B1* 10/2004 Kemper et al. 707/103 R
: : : : . 6,807,548 B1* 10/2004 Kemper 707/103 R
(*) Notice: Subject to any disclaimer, the term of this 6277051 B2 % 49005 T empil; y 10/100
patent 1s extended or adjusted under 35 e) WATOJRO Chal e
U.S.C. 154(b) by 663 days. 6,938,242 B2 8/2005 Limousin et al. 717/121
7,117,214 B2 * 10/2006 Wiser et al. 707/10
(21) Appl. No.: 10/463,152 7,228,326 B2* 6/2007 Srinivasan et al. 709/200
_ 7,237,226 B2* 6/2007 Smmonyice.eeee.. 717/110
(22) Filed: Jun. 17, 2003
(65) Prior Publication Data
US 2004/0260974 Al Dec. 23, 2004 OTHER PUBLICATTONS
(51) Int. Cl. “Web Management with Microsoft Visual SourceSafe 5.0”, Steven
G06F 9/44 (200601) Banick et Ell, Que PllbliShiIlg, 1997, Whole book.*
(52) US.ClL .., 717/121;7717/122 (Continued)
(58) Field of Classification Search 717/120, | |
717/121,122,150; 710/100, 104 Primary Lxaminer—Todd Ingberg
See application file for complete search history. (74) Attorney, Agent, or Firm—Lee & Hayes, PLLC
(56) References Cited (57) ABSTRACT
U.S. PATENT DOCUMENTS
4,507,751 A 3/1985 Gawlick et al. Carrying out maintaining a software configuration manage-
5,278,982 A 171994 Daniels et al. ment system are disclosed. In particular, a way to reverse
5,513350- A % 4/1996 Griflin et al. 717/106 prior revisions without removing their history in the server
5,557,730 A * 9/1996 Fl'l.d.-NlelseIl 715/839 are described‘ When 9 Client Submits an undo Command to
5,596,710 A) L/1997 Voigt reverse the eflects of one or more revisions within a stated
5,740,439 A 4/1998 Atkmsm_l etal. 719/320 revision range of a file, the revision history is updated by
0,006,259 A) 12/1999 Bhansali et al. submitting a new revision that effectively removes the
0,112,024 A_ 8/ ZOOQ Almond et al. ©.......o.... 717/122 changes embodied within the range of undone revisions.
0,192,578 Bl 2/2001 Abrams et al. Implementing undoing prior revisions preserves the revision
0,226,792 B1* = 5/2001 Goiffon et al. 7177120 history for a file, 1in case there 1s a need to access the undone
6,275,976 B1* 8/2001 Scandura 717/120 : ry £ al j‘[¥
6,282,698 B1* 82001 Baker et al. 717/118 TEVISIONS db d AED HIIE,
6,298,319 B1* 10/2001 Heile et al. 703/26
6,446,255 B1* 9/2002 Curtis et al. 717/121 85 Claims, 7 Drawing Sheets
302 Undo Command Including:
File andbl:aﬁﬁ;:; :ange o / -
I @ SD Client
310 SD Undo Machine
B f "1 (See FIGs. 4/5)
SD Server } I 304
Machine i
. D I
esolve Clignt
303< E;::;II:: O'___________._.-r ?&LHFIG.WE} 4—~< Wnﬁamo
I T 312
SDS*ubmit ®
— Revision
Including Undo [
{SET;?;. 7

US 7,299,450 B2
Page 2

OTHER PUBLICATIONS

An Editor for Revision control, Christopher W. Fraser et al, ACM,
1987, pp. 277-295.%

UNDO Any Operation at Any time 1n group Editors, Chengxhen
Sun, ACM, 2001, pp. 191-200.*

Undoing Any Operation in Collaborative graphics Editing Systems,
David Chen et al, ACM, 2001, pp. 197-206.*

A Selective Undo Mechanism for Graphical User Interfaces Based
on Command Objects, thomas, Berlage, ACM, 1994, pp. 269-294.*
A Framework for Undoing Actions 1in Collaborative Systems, Atul
Prakash et al, ACM, 1994, pp. 295-330.%

Command as Media: Design and Implementation of a Command

Stream, ACM, 1995, 17 pages.™

Reusable Hierarchical Command Objects, Brad A Myers et al,
ACM, 1996, pp. 260-267.*

A Flexible Object Merging Framework, Jonathan P. Munson et al,
ACM, 1994, pp. 231-242.*

Concepts and Implications of UNDO for Interactive Recovery,
Robert F, Gordon et al, ACM, 1985, pp. 150-157.*

Recovery Protocols for Shared Memory Database Systems, Lory D.
Molesky et al, ACM 1995, p. 11-22.*

Concurrency and Recovery for Index Trees, David Lomet et al,
ACM , 1997, 17 pages.*

* cited by examiner

a

o .

: l O

m il vLYQ ﬂ.@m '

3 . NILSA
™ NYH90Yd _ NYH90Y ONITYYA40
- , =

Nm_‘/ it ..:_..:.\..,

- | Oy e = p— — J
- | gl | 1| 3ov4waIN 30¥-HAIN JVRAIN || AIB0NS
g | A IWVSEINE | TR | ASONIA TOANON | | AOWIW TOANON || ————— —
= YEOMLIN vagy Tvo01 V3| MeOMLN 433N T1aYAONTY T1GVAONTUNON ||

m e
= SNE WILSAS __
S /7 Slvads ——
S L6} _
g | . |

> . m J0YA43INI

E YILNIYd _ Jaam
961 m_ LINN 0E)
g / \ o | ONISSID0Nd
AN "
// L _ | ﬂl

[r
L
_.

-
F
 a

i

U.S. Patent
N

— o e g g e I IS I A SIS IS S SIS S A I I JEE SN SIS BN G S S o S e unee ol I JEEE DN IEE NS N BEEE BEEF B R Uy S JEEE e .

L

U.S. Patent

200

Nov. 20, 2007

202
\

Sheet 2 of 7

204
\

US 7,299,450 B2

206
N

pemesiaeslli 20 Al 0 ekl 0 O SpeEEESr EEESEES—
S

Revision ID -AaC;LOn Content Integration
(Filename/Rev#) | o dit (Of the Revision) History
- delete
- branch
- Integrate
- add-undo
- edit-undo
- delete-undo
FIG. 2
30_2 Undo Command Including:
~ File and Revision Range to
be Undone / 300
- o S |
| ’ SD Client
| O Machine |
310 .| SDUndo | |
/ ™ (See FIGs. 4/5) I
- T T T T T T |
: SD Server | | i 304 |
| Machine | | E |
| I | Y (3) :
| / A | |
Client
308 Revision I /,Lr- SSD R;:IS(;)IVBe <«—» Work Space :
| 4 Histories ; || eeFG.0) \ 3 |
| \ \/ | | |
I S
'] Vo | : 312 |
| | | E :
| | | v
| | | SD Submit ® I
_____ R | Revision |
- Including Undo [|
| Action
| (See Fig. 7)

- A k—iy. W L P

U.S. Patent

Nov. 20, 2007

Sheet 3 of 7

US 7,299,450 B2

Decision Table (for selecting undo action)

The action | The action of | The action Resulting Closest Resolve
of the top the revision | of the last Action Reasonable needed?
revision of | just before revision of Action
the 1input the bottom of | the file (available
range the input when the —{
range flag1s
specified)
‘delete’ | ‘delete’ ‘delete’ | Can’t open Can’t open (N/A)
‘delete’ ‘delete’ ‘edit’ or | ‘edit-undo’ (N/A) No
‘add’
‘delete’ | ‘edit’ or ‘delete’ | “add-undo’ (N/A) I No
| ‘add’ o |
‘delete’ ‘edit’ or ‘edit’ or Can’t open “edit-undo’ Yes
‘add’ ‘add’ |
‘edit’ or ‘delete’ ‘delete’ Can’t open Can’t open (N/A)
‘add’
‘edit’ or | ‘delete’ The last “delete-undo’ | (N/A) No I
“add’ l revision 1s
| the same
revision as
the top of I
the input l
rcvision
range | | I
‘edit’ or I ‘delete’ ! ‘edit’ or Can’t open ‘delete-undo’ | No
| ‘add’ | ‘add’ | |
‘edit’ or ‘edit’ or ‘delete” | Can’t open ' ‘add-undo’ No
‘add’ ‘add’ | _] _ |
‘edit’ or ‘edit’ or ‘edit’ or ‘edit-undo’ (N/A) Yes l
‘add’ ‘add’ ‘add’ |

FIG. 4

U.S. Patent Nov. 20, 2007 Sheet 4 of 7 US 7,299,450 B2

400

\ Receive Undo Command
—— Specifying a Range of
Revisions of a File

|

2
40 Retrieve Relevant Revision
\ﬁ,_‘u‘_ Actions and Apply to
Decision Table to Determine
- Undo Action
!

E)(It
Can't Ope

410

‘Use Action /"’ﬁ-f Flag ™

(from Table in FIG. 4) [NOW‘Y&S

424
Use Closest Reasonable .
/y\ | Action (from Table in FIG. 4)
Action Is No " Action IS\ No
w”/m&/}*’\ elete-undo?2-"~ | '
Yes 412 416
v Delete Content From Y
- - Work Space and Open File and Create 420
C%iigi:earlzjegizrtle Create Pending Undo Pending Undo J
Pending Undo Integration Record Integration Rgcord

Integration Record K 418

K-414

D-;-I
C‘ B > FIG. 5

U.S. Patent Nov. 20, 2007 Sheet 5 of 7 US 7,299,450 B2

600

\ Retrieve Pending Integration
Record to be Resolved

-7 602
Yes //Pendlng UNDO —~_ No
504 ' . _Integration Record? - 610

. L L (

Use the Top Revision as the Use the Top Revision as the
"base” and the just-before- "source" and the just-before-
bottom revision as the "source” bottom revision as the "base" for

for merger operation merger operation

606 S y
\ Retrieve Content of

—— Revisions from Revision
History for File

608 S
N Merge Changes using
~~___ | Textual Merge Algorithm and
Place Merged Content In
Chent Work Space

U.S. Patent Nov. 20, 2007 Sheet 6 of 7 US 7,299.450 B2

700 Retrieve Pending Integration

\._ | Record, Content and Action
for a Revision to be

Submitted from Work Space

Y\(“ 702

_

o

Yes " Pending UNDO ~_No

704 ‘\Qte\gration Record? — - 710

\ Y — _ Y (

Fetch/Read Revision Entries | B
from Revision History that are Build New Revision Based Upon
within the Revision Range Pendlng Integration Record:
Specified by the Integration Opened File Content, and Action
Record
706—
N Y

Request Marking Integration History
"Inactive” for Each "Undone"
Integration Action in the Undo
Command's Revision Range

707

y

" Build New Revision From
Undo Action and Opened
File Content

708

Y

Add New Reuvision to
Revision Histories

l

< B > FIG. 7

U.S. Patent

Revision Histories (example)

Nov. 20, 2007

Sheet 7 of 7

US 7,299,450 B2

for files "foo" and "bar"

Revision

| Action

Resulting
Content

| Integration history

1 | footxt#1

| “add’

linel
line3

N/A |

I 2 foo.txt#2

| <edit’

'3 | bar.txt#1

‘branch’

linel
line2
_ line3

N/A

linel
line3

foo.txt#1, 1 |

“bar.txt#?2

‘edit’

line3

I linel
| line4

N/A

5 | bar.txt#3

‘Integrate’

linel
line2
line3
line4

foo.txt#2,2(inactive) |

bar.txt#4

|f6

u

I 7 | bartxt#5

‘edit’

line(
linel
line2
line3
line4

N/A

‘edit-undo’

line0
linel
line3

N/A

FIG.

UsS 7,299,450 B2

1

UNDOING CHANGES IN A SOFTWARE
CONFIGURATION MANAGEMENT SYSTEM

FIELD OF THE INVENTION

This invention generally relates to the area of computer
systems. More particularly, the present invention concerns
soltware development/productivity enhancement tools, and
in particular, methods and systems for managing changes to
soltware programs under development. Such management
includes tracking and reversing changes incorporated into
prior revisions (1.¢., files containing changes) of program
files.

BACKGROUND OF THE INVENTION

Software source code development/generation 1s an 1tera-
tive process. From the time of conception to release of a
program for distribution to the public, source code files
making up the program undergo many rounds of changes. At
cach round, new sets of revisions (or “revised files™) are
submitted and stored within a software configuration man-
agement system. After storing an initial version of source
code for a program, subsequent sets of revisions are sub-
mitted on top of prior revision {file sets and constitute a
current revision of the program’s source code. Such revision
file sets are tracked by software source code development
tools generally referred to as software configuration man-
agement (SCM) systems. Other names given to such sys-
tems 1nclude “source control system™, “version control sys-
tem™, and “revision control system”. In SCM systems, a set
of revisions for a set of files are submitted as a group to the
SCM system. The SCM system then incorporates those
changed files 1nto a previous current revision of the source
code to render a new current revision of the source code.

After incorporating the set of revisions to render a current
revision of computer program source code, the source code
1s compiled to render an executable corresponding to the
current revision of the program source code. Assuming
compiler errors do not arise during the compiling process,
(requiring yet another revision including further changes to
the source code files) an executable 1s rendered that corre-
sponds to the current revision of the source code files for a
program. The executable 1s exercised 1n a test environment
and a list of action 1tems are rendered from testing/reviewing
the operation of the executable.

Ideally, each set of changes contained 1n a latest revision
ol source code improves the operation of, or corrects a tlaw
within, the prior revision of the source code. However, in
reality changes to earlier versions/revisions are not always
desirable, and it becomes necessary to 1dentify and undo at
least some of the changes embodied within earlier revisions.
Furthermore, program source code can go through multiple
revisions, maintained by an SCM system, before a determi-
nation 1s made that earlier changes resulted in undesirable
program operation.

Tracking a single set of changes between two consecutive
revisions ol program source code 1s relatively easy. How-
ever, tracking changes through multiple revisions 1s more
complicated. In prior systems, one type of change, “undo-
ing” one or more prior revisions by deleting the revisions
(and any associated changes contained therein) from the
revision history maintained by the SCM system, can be
especially unnerving since such undoing of a revision
removes all indications of the revision (and its particular
changes) from the SCM system. If the “undoing” act 1is
unsuccessiul in remedying the flaw and the programmer

10

15

20

25

30

35

40

45

50

55

60

65

2

seeks to return the software source code to its state before
the “undoing” procedure was performed, then the program-
mer must re-create the revision from a source other than the
SCM system.

The task of tracking and undoing changes to source code
embodied 1n revisions 1s further complicated when support-
ing integration history (which describes changes submitted
to render a revision ol a source code file by specifying
changes incorporated 1into a range of revisions to another file
or files). A known SCM system, SOURCE DEPOT, as well

as other SCM systems, support integration history.
SUMMARY OF THE INVENTION

The present invention comprises an SCM system and a
method that, when given a range of revisions to source code
to be undone (spanning potentially multiple revisions inte-
grated from multiple files), generate and submit a new
revision record mcluding an undo action that 1s added to the
revision history. All prior revision records are maintained in
the SCM revision history for the file. Thus, undoing a set of
one or more prior revisions, rather than reducing the set of
revisions maintained for one or more files 1n the SCM
system, actually adds to the revision history. The extent of
the additions depends upon the revisions to be undone.

The present mvention comprises a method for undoing
prior revisions in a soltware configuration management
(SCM) system that maintains a sequenced history of revi-
s1ons to a set of source code files. The method includes an
initial step of recerving a command to undo a set of revisions
within a revision history for a file. In an embodiment of the
invention, the set of revisions 1s specified 1n the form of a
range ol revisions for the file maintained i the SCM
system’s revision history.

In response, for a set/range of revisions to be undone, the
SCM system determines an appropriate revision to specily
when submitting a new revision incorporating the changes,
to the most recent revision of the file, that effectively undo
the changes embodied 1n the specified set/range of revisions
to be undone. The new revision 1s thereafter submitted for
incorporation into the revision history for the file.

The present mnvention also comprises a software configu-
ration management (SCM) system including sub-compo-
nents for facilitating undoing prior revisions 1n a revision
history 1n response to receiving a command to undo a set of
revisions within the revision history for a file. In particular,
the SCM system includes revision determination compo-
nents that, given a range of revisions to be undone 1n the
revision history for the file, determines an appropriate new
revision to the file that effectively undoes changes to the file
arising ifrom the range of revisions. A submit module sub-
mits the new revision for incorporation mnto the revision
history for the file.

BRIEF DESCRIPTION OF THE DRAWINGS

While the appended claims set forth the features of the
present invention with particularnty, the imnvention, together
with 1ts objects and advantages, may be best understood
from the following detailed description taken 1n conjunction
with the accompanying drawings of which:

FIG. 1 1s a simplified schematic illustrating an exemplary
architecture of a computing device for carrying out SCM
client and/or server functions in accordance with an embodi-
ment of the present invention;

FIG. 2 1s an exemplary arrangement for a revision record
and supported revision actions in accordance with an
embodiment of the invention;

UsS 7,299,450 B2

3

FIG. 3 1s a schematic drawing depicting an SCM system
arrangement including a server and client machine, and
wherein the client machine carries out “undo” commands (as
a series ol stages) with regard to a range of revisions for a
file 1n a revision history maintained by the server;

FIG. 4 1s a decision table depicting an exemplary set of
rules for selecting an undo action 1n response to an undo
command speciiying a particular range of revisions for a
file:

FIG. 5§ 1s a flowchart summarizing a set of steps for
carrying out an undo operation 1 accordance with an
embodiment of the present invention;

FIG. 6 1s a flowchart summarizing a set of steps for
carrying out a resolve operation in accordance with an
embodiment of the present invention;

FIG. 7 1s a flowchart summarizing a set of steps for
carrying out a submit operation in accordance with an
embodiment of the present invention; and

FIG. 8 1s a table depicting an exemplary set of revision

records for two files ({oo.txt and bar.txt) that contain soft-
ware source code.

DETAILED DESCRIPTION OF THE DRAWINGS

In the i1llustrative embodiment of the present invention, an
SCM system receives and archives submitted revisions. The
exemplary SCM system maintains a set of multiple revisions
tor 1dentified files. Each of the set of revisions includes an
action, the content of the revision, and an integration history
(describing integrated revisions) if the revision comprises an
integration.

The set of previously known actions on a file performed
in an embodiment of the invention, by way of example,
include: add (a new file), edit (an existing file), integrate
(incorporates a set of changes embodied 1n a sequence of
revisions of another file into an existing file), branch (1ncor-
porates a set of changes embodied 1n a sequence of revisions
of another file mto a new file), and delete (a file).

In accordance with an embodiment of the present inven-
tion, an SCM system supporting the above-described known
set of actions 1s augmented to include a high-level undo
command specifying a range of revisions of a file to be
undone, and a set of undo actions (e.g., add-undo, edit-undo,
and delete-undo) that reverse the eflect of the range of
revisions identified 1 the undo command. In the SCM
system supporting the atorementioned undo actions, revi-
sions are not removed from a file’s revision history when
undoing previously submitted revisions. Instead, appropriate
ones of the undo actions selected 1n accordance with an undo
action table (see, FIG. 4), eflectively reversing identified
ones of the previously submitted revisions, are submitted
within revisions to the SCM server and become part of the
revision history for the file. Thus, rather than removing
revision history entries when executing undo commands, the
SCM system embodying the present invention adds a revi-
sion entry implementing the undo operation. Furthermore, a
prior integration action 1s marked “inactive” when the
integration action 1s undone to indicate that the changes
associated with the integration revision have been undone.
The undo actions (and setting integration histories mactive)
thus enable an SCM system to eflectively reverse changes
associated with identified file revisions without removing
revision entries from the revision history maintained by an
SCM system.

Undoing a specified range of previously submitted revi-
s10ns occurs, by way of example, in three stages. Initially,
the client applies an “undo” algorithm or criterion, such as

10

15

20

25

30

35

40

45

50

55

60

65

4

the one specified, by way of example 1n FIG. 4, on a range
of revisions to be undone with regard to a specified file, to
select a proper undo action (including potentially no action)
to be specified in a revision submitted to the SCM server.
The client creates a pending “undo” integration record
specilying a range of revisions on specified files to be
undone. During a second (i.e., resolve) stage the pending
“undo” 1ntegration record 1s processed 1 an upside-down
order to establish a set of reversed changes. The reversed
changes are applied to a current (target) revision to render a
new revision. After resolving the undo integration record
during the resolve stage, at a third stage of undoing previ-
ously submitted revisions, the client submits the new revi-
s1on (1including content 1f not a delete action) and potentially
additional requests to modity the integration history to the
server that maintains the revision history for the source code
files.

The effect of submitting the revision resulting from the
undo command 1s to reverse/undo the changes that occurred
to a file over the range of file revisions specified 1n the undo
command. Thus, when the undo command, including a
range of revisions to be undone, has been resolved and
submitted to the SCM system, the completed undo com-
mand produces resulting software source code content as 1t
the given revision range was never submitted 1into the SCM
system. However, the complete revision history (including
the undone revisions and revisions submitted after the
undone revisions) 1s preserved.

Belore turning to the figures, it 1s noted that in an
embodiment of the present invention computers implement
steps described herein, for applying an undo algorithm,
resolving content, and submitting a source code revision in
an SCM environment, by executing software instructions,
such as program modules. Generally, program modules
include routines, objects, components, data structures and
the like that facilitate performing particular tasks or imple-
menting particular abstract data types. The term “program”
includes one or more program modules.

FIG. 1 illustratively depicts an example of a suitable
operating environment 100 for clients and an SCM server to
carry out the functionality of an SCM system. The division
of functionality, between the clients (from which the revi-
s10n requests originate) and an SCM server that maintains an
archive of revisions of one or more files, differs in various
embodiments of the present invention. Furthermore, the
operating environment 100 1s only one example of a suitable
operating environment, for the clients and/or server in an
SCM system, and 1s not mtended to suggest any limitation
as to the scope of use or functionality of the invention. Other
well known computing systems, environments, and/or con-
figurations that may be suitable for use with the mvention
include, but are not limited to, personal computers, server
computers, laptop/portable computing devices, multiproces-
sor systems, microprocessor-based systems, network PCs,
minicomputers, mainframe computers, distributed comput-
ing environments that include any of the above systems or
devices, and the like.

The mnvention may be described 1n the general context of
computer-executable instructions, such as program modules,
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data struc-
tures, etc. that perform particular tasks or implement par-
ticular abstract data types. The invention i1s potentially
incorporated within network nodes operating 1n distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. In a distributed computing environ-

UsS 7,299,450 B2

S

ment, program modules are generally located in both local
and remote computer storage media including memory
storage devices.

With continued reference to FIG. 1, an exemplary system
for implementing the invention includes a general purpose
computing device 1n the form of a computer 110. Compo-
nents of computer 110 may include, but are not limited to,
a processing unit 120, a system memory 130, and a system
bus 121 that couples various system components including,
the system memory to the processing unit 120. The system
bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a peripheral
bus, and a local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such archi-
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Flectronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.

Computer 110 typically includes a variety of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by computer 110 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita-
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented 1n any method or tech-
nology for storage of information such as computer readable
istructions, data structures, program modules or other data.
Computer storage media includes, but 1s not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by computer 110.
Communication media typically embodies computer read-
able structions, data structures, program modules or other
data 1n a modulated data signal such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed 1n such a manner as to encode information in the
signal. By way of example, and not limitation, communi-
cation media includes wired media such as a wired network
or direct-wired connection, and wireless media such as
acoustic, RF, infrared and other wireless media. Combina-
tions of the any of the above should also be included within
the scope of computer readable media.

The system memory 130 includes computer storage media
in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 131 and random access memory
(RAM) 132. A basic mput/output system 133 (BIOS), con-
taining the basic routines that help to transfer information
between clements within computer 110, such as during
start-up, 1s typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process-
ing unit 120. By way of example, and not limitation, FI1G. 1
illustrates operating system 134, application programs 135,
other program modules 136, and program data 137.

The computer 110 may also include other removable/non-
removable, volatile/nonvolatile computer storage media. By
way of example only, FIG. 1 1llustrates a hard disk drive 140
that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 151 that reads from

10

15

20

25

30

35

40

45

50

55

60

65

6

or writes to a removable, nonvolatile magnetic disk 152, and
an optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CD ROM
or other optical media. Other removable/non-removable,
volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 1s
typically connected to the system bus 121 through an
non-removable memory interface such as interface 140, and
magnetic disk drive 151 and optical disk drive 155 are
typically connected to the system bus 121 by a removable
memory interface, such as interface 150.

The drives and their associated computer storage media
discussed above and illustrated 1n FIG. 1, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 110. In FIG. 1, for
example, hard disk drive 141 1s illustrated as storing oper-
ating system 144, application programs 145, other program
modules 146, and program data 147. Note that these com-
ponents can either be the same as or diflerent from operating
system 134, application programs 135, other program mod-
ules 136, and program data 137. Operating system 144,
application programs 145, other program modules 146, and
program data 147 are given different numbers here to
illustrate that, at a minimum, they are diflerent copies. A user
may enter commands and information into the computer 20
through mput devices such as a keyboard 162 and pointing
device 161, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, scanner, or
the like. These and other mput devices are often connected
to the processing unit 120 through a user input interface 160
that 1s coupled to the system bus, but may be connected by
other interface and bus structures, such as a parallel port,
game port or a universal serial bus (USB). A monitor 191 or
other type of display device 1s also connected to the system
bus 121 via an interface, such as a video interface 190. In
addition to the monitor, computers may also include other
peripheral output devices such as speakers 197 and printer
196, which may be connected through a output peripheral
interface 190.

The computer 110 may operate 1n a networked environ-
ment using logical connections to one or more remote
computers, such as a remote computer 180. The remote
computer 180 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 110, although only a memory
storage device 181 has been 1llustrated in FIG. 1. The logical
connections depicted 1n FIG. 1 include a local area network
(LAN) 171 and a wide area network (WAN) 173, but may
also include other networks. Such networking environments
are commonplace in oflices, enterprise-wide computer net-
works, 1ntranets and the Internet.

When used 1n a LAN networking environment, the com-
puter 110 1s connected to the LAN 171 through a network
interface or adapter 170. When used 1n a WAN networking
environment, the computer 110 typically includes a modem
172 or other means for establishing communications over
the WAN 173, such as the Internet. The modem 172, which
may be 1nternal or external, may be connected to the system
bus 121 via the user input intertace 160, or other approprate
mechanism. In a networked environment, program modules
depicted relative to the computer 110, or portions thereof,
may be stored 1n the remote memory storage device. By way

UsS 7,299,450 B2

7

of example, and not limitation, FIG. 1 illustrates remote
application programs 185 as residing on memory device
181. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

Before describing an exemplary arrangement of func-
tional components on a client and server within an SCM
system, a set ol commands/actions associated with an exem-
plary SCM system, an enhanced version of the well known
Source Depot (SD) SCM System, will be described. An SD
server maintains a history of file revisions. Furthermore,
once added to the revision history, revisions are never
removed. With reference to FIG. 2, each revision entry in the
revision history includes, by way of example: a revision 1D
200, an action type 202, content of the revision 204 (e.g., an
entire current version of the file), and an integration history
206 (1f the revision entry includes an integration action
bringing an 1dentified range of revisions into the 1dentified
file revision—described further herein below). Each of these
parts of a revision history are described below.

The revision ID 200, 1n the revision history maintained by
the SD server, 1dentifies a particular one of many potential
revisions of a file or other unit of storage maintained by the
SCM system. In a particular embodiment of the invention,
cach revision entry in the revision history identifies, 1n the
revision ID 200, a file and a sequence number for the
particular revision of the file. Thus, a first revision of a text
file (the original file) foo 1s named foo.txt#1. There are many
ways in which to identify a file revision entry in a revision
history 1n alternative embodiments of SCM systems
embodying the present invention.

Each revision entry in the revision history includes an
action applied to a preceding revision, stored in the action
type 202, that resulted in the i1dentified file revision. In the
exemplary SD embodiment of the invention, previously
known actions include: add, edit, delete, integrate and
branch. In accordance with an embodiment of the present
invention that supports an “undo” command, additional
actions comprise: add-undo, edit-undo, and delete-undo.
The undo prefix 1s added to indicate that the revision resulted
from applying an undo command.

The “add” action adds a new file to the revision history.
The content 204 of the revision entry for an add action
specifies the content of the new file. The add action opens a
new file and adds the specified content into the new file.
Once an 1dentified file 1s added to the revision history, a
client cannot specily adding the same named file to the
history until the previously added file no longer exists on the
SCM system.

A file 1s removed by specifying the “delete” action on the
file. The delete action removes the entire file from the SCM
system—but not the revision history of the deleted/removed
file. No content 1s specified for a delete action since the
identified file ceases to exist in the current version of the file
within the SCM system as a result of submitting the delete
action.

The “edit” action 1ndicates changes to parts (e.g., speci-
fied lines) of a previously added file. It 1s noted that in the
exemplary embodiment of the mvention, the content 204
field of the edit action entry in the revision history includes
(or references the full pathname for) the entire revision of
the file. However, in an alternative embodiment of the
invention, the content i1dentifies only changes made to a
preceding revision to render the current revision. In any
event, sufficient content 1s maintained for each revision to
tacilitate recovery of any revision of a file at any stage of the
revision history for a file.

10

15

20

25

30

35

40

45

50

55

60

65

8

The exemplary SD SCM system supports incorporating,
changes present within a range of identified revisions from
an 1dentified source file 1nto a single target file revision—this
type of action 1s referred to herein as “integration.” The
source file and the range of revisions that are processed to
render a set of changes applied to the target file to render the
identified revision are indicated within the integration his-
tory 206. As will be explained further herein below, when a
revision having an integrate or branch action specified in the
action field 202 1s undone, the entry in the integration history
206 field (specitying a range of revisions of a file) 1s marked
“inactive.” Marking the integration history entry nactive for
a particular file revision preserves the integration history of
the revision, but indicates that 1t 1s not contributing to the
content of the current file revision.

One way to mcorporate changes arising from a range of
revisions of a source file into a newly opened target file
revision 1s the “branch™ integration action. The branch
action specifies a range of revisions from a source file
revision history. The changes introduced into the source file
within the range of revisions are incorporated into a new
(“‘added™) target file. Therefore, the branch action can be
viewed as a particular kind of “add” action that specifies its
content from revision ranges taken from a source {file rather
than speciiying source code text—as 1s the case with an add
action. When a branch action 1s submitted to the SD server,
the range of revisions specified in the branch action are
included in the integration history 206 portion of a stored
revision history entry corresponding to the specified branch
action.

In contrast to the branch operation, rather than opening a
new target file, the “integrate” action specifies a range of
revisions from a source file revision history. The changes
introduced into the source file within the range of revisions
are merged 1nto an existing target file (e.g., incorporating the
changes specified 1n five revisions f00.t1xt3 through foo.txt7
into file revision bar.txt2). As will be explained further
herein below, the integrated changes present in the range of
revisions may contlict with earlier revisions to the target file.
Such conflicts are eliminated during a resolve stage before
submitting the revision and thereby making the changes
permanent in the revision history maintamned by the SD
server of the SCM system.

The mtegration (branch and integrate) actions are carried
out 1n a series of stages. As with add/edit/delete actions, an
integration action mitially opens a specified target revision
on a user’s local machine. The changes associated with the
integration action are prepared and merged into the target
revision on the SD client machine to render a new revision.
The new revision of the target file remains on the SD client
machine until a submission stage wherein the new revision
1s submitted to the revision history of the target file on the
SD server machine (or reverted, 11 needed). When a tempo-
rary file 1s opened on the local machine, as a result of
integration, a pending integration record i1s created that
identifies a range of revisions from an integration source file
(or even sets of ranges from potentially many files). The
pending integration record 1s maintained i1n a temporary
work space/buller enabling the SD client to build a set of
changes associated with the range of revisions from the
integration source lile. The pending integration record 1is
deleted when the SD client submits or reverts the target file
revision.

If an integrate action 1s specified, then a resolve operation
1s performed, by way of example, upon the SD client
machine before finally submitting a set of revisions to the
SD server for storage in the revision history for the file. The

UsS 7,299,450 B2

9

resolve operation handles revision conflicts/duplications
while merging the specified content changes associated with
a specified range of revisions. The resolve operation 1s not
required for branch and delete actions before submission to
the SD server because, 1in the case of an add action the
content 1s copied over from the source file into an empty new
file, and 1n the case of a delete action there 1s no content.

There are many ways 1in which to resolve an integrate
action. In an exemplary embodiment, the resolve operation
accesses 1nformation from the aforementioned “pending
integration record”—namely the revision just before the
bottom of the revision range and the revision at the top of the
revision range and merges the set of changes that happened
over the specified integration range nto the opened target
file. As used herein, the revision 1n a source file just before
the bottom of the revision range 1s known as a “base”
revision and the revision at the top of the revision range 1s
known as a “source” revision. In an embodiment of the
invention, during the resolve operation for an integration
action, the SD client of the SCM system ftries to apply
changes from the range of revisions of the source file to the
target file and prompts a user to deal with conflicts manually.
Furthermore, duplication of revisions 1s not considered a
conilict. However, because integration history 1s used to
determine what revisions to integrate, 1f the specified revi-
sion range contains revisions that were previously inte-
grated, they are excluded from the integration operation (and
integration history for this particular integrate action) to
decrease contlict probabaility.

A resolved revision 1s then submitted to the SD server
which then adds the resolved revision to the revision history
of the identified file. The itegration history 206 portion of
the new entry 1n the revision history identifies the range of
revisions (file and revision numbers) that remained after
completing the resolve operation. In an embodiment of the
invention the integration history information 1s obtained
from the pending integration record for the integration
action (aiter completing the resolve operation).

Furthermore, 1n an embodiment of the invention, several
integrate actions can be incorporated as a group 1nto a same
opened file from different files and/or different revision
ranges. In such case each one of the group of integrated
files/revision ranges generates a single pending integration
record. The pending integration records are processed and
added as a set of integration history definitions within a
single revision history entry when the resulting revision 1s
submitted to the SD server. For example, the following
integration actions are resolved and submitted to an open
bar.txt file:

sd 1ntegrate foo.txt#35,10 bar.txt,

sd integrate foo.txt#135,16 bar.txt, and

sd 1ntegrate baz.txt#3,3 bar.txt.

These three integrate actions create three pending integra-
tion records, and when the resolved integrate actions are
submitted to the SD server, the integration history 206

portion ol the single new revision entry of bar.txt i1s
{“foo.txt#5,10°, ‘foo.txt#15,16°, ‘baz.txt#3,3’}.

Having described a set of actions, executable by an
exemplary SCM system to apply changes to a revision
history for source code files, attention 1s now directed to an
enhancement to the above-described SCM system, a com-
mand (e.g., SD undo), that supports undoing a specified
range of previous revisions in a revision history for a file
stored within the SD server. In an embodiment of the
invention such “undo” command 1s supported by a set of
undo actions including: add-undo, edit-undo, and delete-

10

15

20

25

30

35

40

45

50

55

60

65

10

undo. Each of these actions performs an operation on the
identified file to reverse the cumulative eflect of a series of
prior revisions specified 1 the undo command. The add-
undo action 1s an add action that resulted from an undo
command, the edit-undo action 1s an edit action that resulted
from an undo command, and the delete-undo action 1s a
delete action that resulted from an undo command. The
addition of the “undo” prefix to each of these actions informs
users that the action occurred 1n response to an undo
command. The selection of a particular one of the three
“undo” actions 1s determined in accordance with a decision
process summarized by a table depicted in FIG. 4 described
herein below.

In a known SCM system, an integration operation applies
changes that happen within a specified beginning and ending
revision 1n a revision history between 2 revisions (the
revision just before the bottom of the revision range and the
top of the revision range). In accordance with an embodi-
ment of the present mvention, an undo revision action 1s
performed (1f possible/reasonable) based on a specified
range ol previously submitted revisions (from the most
recent to the oldest revision i1n the specified range of
revisions to be undone). Applying the undo action renders a
new revision of the file as 1f the range of revisions had never
occurred. However, none of the prior revision history entries
are removed. Instead, whenever changes present within a
range of revisions of a file need to be undone, an appropriate
“undo” action (of the above-identified three undo actions) 1s
applied to the most recent revision of the file (thereby adding
to the revision history for the file). Such submitted “undo™
actions are stored within new entries 1n the revision history
maintained by the SD server for the file.

Turning now to FIG. 3, a flowchart summarizes a set of

stages for carrying out an exemplary undo command 1n an
SD SCM client-server environment. In accordance with an
embodiment of the invention, a client machine 300 receives
an undo command 302. Such undo command is specified, 1n
an embodiment of the invention, in the form of “undo
(<filename>,<Roldest>,<Rnewest>)" which specifies a file
name, an oldest revision and a newest revision 1n a range of
revisions to be undone. In response to receiving the undo
command 302, at stage 1 of the undo procedure summarized
in FIG. 3 an undo operation 304 described in detail with
reference to FIG. 5 opens the 1dentified file in the client work
space 306. During stage 1 the undo operation 304 retrieves,
from the revision histories 308 on the server machine 310,
the relevant information for the undo revision range speci-
fied 1n the undo command 302. Based upon an undo action
selection algorithm, summarized in a table depicted 1n FIG.
4 described herein below, the undo operation 304 determines
the appropriate undo action to perform (i at all). After
determining the appropriate undo action, a pending undo
integration record is created specitying the range of revi-
sions to be undone on the file specified 1n the 1nput undo
command 302. If the action 1s “add-undo” then content for
the file 1s obtained from the revision histories and stored in
the work space 306. In contrast to the previously described
integration records, a pending undo integration record must
be for the same file as the target of the undo operation 1n the
revision histories 308.

After creating a pending undo 1ntegration record, control
passes to stage 2 of the undo command execution procedure,
wherein a resolve operation 312 described in detail with
reference to FIG. 6 1s invoked (if needed to merge changes
into a new revision) on the client machine 300. The resolve
operation 312 retrieves any pending undo integration record
previously placed in the client work space 306 by the undo

UsS 7,299,450 B2

11

operation 304. When the resolve operation 312 encounters a
pending ‘undo’ integration record it applies the identified
revisions in reverse (or upside-down). Theretfore the revision
at the top of the revision range (the most recent revision 1n
the range) becomes the ‘base’ revision; and the revision just
betfore the bottom of the revision range (the oldest revision
in the range) 1s used as the ‘source’ revision during the
resolve operation 312. As indicated by the arrow from the
revision histories 308, the resolve operation 312 extracts the
content of revisions within the range identified 1n a pending
undo 1ntegration record. Thereafter, the resolve operation
312 generates content for a revision based upon the range of
revisions identified in the pending undo integration record
retrieved from the client work space 306 and retrieved
content from the revision histories 308. The resolve opera-
tion 312 stores the resulting content of a revision for an
associated undo action, determined by the undo operation
304, in the client work space 306.

Stage 3, 1dentified by a submit operation 314 described 1n
detail with reterence to FIG. 7, retrieves an action, content
(if not a delete action) and pending undo integration records
(resolved, 1f necessary by the resolve operation 312) from
the work space 306. The submit operation 314 provides a
new revision (1dentifying one of the aforementioned undo
actions) to the revision histories 308. Furthermore, 1n an
embodiment of the invention, when the submit operation
314 encounters a pending ‘undo’ integration record for a file
it marks the integration history 206 portion as ‘inactive’ for
all revisions 1n the revision range for the file in the revision
histories 308. Thus indicating that a previously applied
integration action has been undone. After submitting the
new revision containing the appropriate undo action (and
marking appropriate integration histories mactive) the sub-
mit operation deletes the pending ‘undo’ mtegration record
(as 1t does with all pending integration records) from the
client work space 306. Furthermore, 1n an embodiment of
the invention the range of revisions undone within the
revision associated with the undo command 1s identified in
an appropriate new or existing information field (e.g., action,
integration history, “undo range”, etc.) of the submitted
revision. As mentioned above, ‘inactive’ integration history
entries are not counted as already integrated when integra-
tion history 1s used to decide what revisions to integrate.

In an embodiment of the invention, an algorithm 1s
applied to the revision history and identified range of
revisions for a file to determine which, 1f any, action to take
to undo a specified range of revisions. By way of example,
the undo action selection algorithm embodied 1n the table
depicted i FIG. 4. The chosen undo action depends on the
actions of revisions to the file: just-before-the-bottom of the
input revision range, the top revision of the mput revision
range, and on the action of the last revision of the file. These
three 1input actions are specified in the first three columns of
the table depicted 1n FIG. 4. When the bottom of the range
1s the revision #1, the action of just-before-the-bottom
revision 1s considered to be ‘delete’. Furthermore, 1n the
input action columns (the first three) depicted 1n FIG. 4, an
“add” action also includes branch and add-undo actions; an
“edit” action includes integrate and edit-undo actions; and
“delete” 1ncludes delete-undo.

The decision table depicted in FIG. 4, at the column
identified as “Resulting Action” designates a proper type of
undo action 1n view of particular other actions identified in
the three mput action columns. In rendering an output
action, the table takes into consideration that, in some cases,
merging changes doesn’t make sense, e.g. when content
changes are merged into deleted file. In such cases the undo

10

15

20

25

30

35

40

45

50

55

60

65

12

operation 304, i the exemplary embodiment of the SCM
system, can’t open the file to generate and submit revisions
to the revision histories 308. However, at indicated in the
adjacent column 1dentified as “Closest Reasonable Action,”
a user can coerce the SCM client’s undo operation 304 to
open the file anyway by specifying a “-1” flag on the undo
command 302. In the case where the “-1” flag 1s designated
and a “can’t open” action 1s designated in the “Resulting
Action” column for the input revision combination, the undo
operation 304 selects an action specified 1n the “Closest
Reasonable” column of the decision table. Finally, the last
column designates whether the resolve operation 312 will
need to be mvoked to process the action before the submit
operation stores the revision 1n the revision histories 308.

Having described the general functionality of an SCM
system embodying the present invention, attention 1s now
directed to an exemplary set of procedures carried out within
the undo operation 304, the resolve operation 312, and the
submit operation 314. Turning to FIG. §, a set of steps are
summarized for the undo operation 304. Initially, during step
400 an undo command 1s recerved that specifies an input file
revision range to be undone and an optional -1 flag that
allows a closest reasonable undo action to be submitted 1n
the event that a undo action 1s really not appropriate over the
provided range of revisions. Next, during step 402 the
actions for the relevant revisions are retrieved from the
revision histories 308, and the retrieved actions are applied
to the decision table depicted 1n FIG. 4 to determine an undo
action, 1f any, to be performed to render a new revision. In
certain cases, the resulting action 1s “Can’t Open”.

At step 404, a determination 1s made whether the action
determined during step 402 1s “can’t open” under any
circumstance. If the action 1s “Can’t Open”, then control
passes to step 406 and the undo operation 304 1s exited
without generating a revision action. However, 11 at step 404
the file can be opened (at least if the -f tlag 1s specified), then
control passes to decision step 408 that determines whether
the -1 flag 1s needed to render an undo action. If the -1 flag
1s not needed (1.e., a valid resulting action 1s specified), then
control passes to step 410 wherein the appropriate action 1s
determined based upon the table depicted in FIG. 4. The
steps that follow are intended to place a file revision 1n a
state as close as possible (without applying the resolve
operation) to the revision that will exist when the specified
undue action is carried out.

Thereatter, at step 412 11 the action 1s “add-undo”, then
control passes to step 414 to create a new file and {11l 1t with
content from a revision that existed just before the specified
range of revisions identified 1n the undo command. During
step 414 the new file revision 1s opened within the client
work space 306, the content of the relevant revision (in view
of the specified undo revision range) 1s retrieved from the
revision histories 308 and placed within the new file, and a
pending undo integration record 1s created. Control then
passes to the End.

If, at step 412 the action 1s not an “add-undo™ command,
then control passes to step 416. At step 416 1f the action 1s
a “delete-undo” command, then control passes to step 418
and the client work space 1s cleared of previously retrieved
content from the revisions, the new file revision 1s opened 1n
the cleared workspace, and a pending undo integration
record 1s created to facilitate deactivating integration histo-
ries of revisions within the input revision range. Control then
passes to the End.

IT at step 416 the action 1s not a “delete-undo”™ command,
then the only remaining option 1s “edit-undo.” Control
passes to step 420 and the file 1s opened 1n the client work

UsS 7,299,450 B2

13

space, and a pending undo integration record 1s created. The
content of the new f{ile revision 1s established during a
resolve stage that follows. Control then passes to the End.

Returning to step 408, 11 the -1 flag 1s needed to designate
an action (there 1s no actual appropriate action for the mput
set of actions), then control passes to step 422. It at step 422
the -1 flag 1s mndeed designated (indicating that it 1s desired
to try to select a closest, reasonable action for an otherwise
improper case for designating an action), then control passes
to step 424 wherein the closest reasonable action 1s selected
(see, FIG. 4) and control passes to step 412 wherein pro-
cessing continues 1n view ol the designated closest reason-
able undo action. However, 11 at step 422 the -1 flag 1s not set,
then control passes to the Exit 406 (i.e., the undo command
tails).

Turning to FIG. 6, a set of steps are depicted for the
resolve operation 312. It 1s noted that this operation handles
both pending undo integration records and regular pending,
integration records. During step 600 a pending integration
record, previously added by the undo operation 304, 1s
retrieved from the client work space. If, at step 602 the
integration record 1s for a pending undo integration record,
then control passes to step 604. At step 604, the top revision
1s designated as the base and the just-before-bottom revision
1s the source for resolving/merging revisions. Control then
passes to step 606 wherein the content of the relevant
revisions (e.g., base, source and target revisions) 1s retrieved
from the revision histories 308. Thereafter, at step 608, the
resolve operation 312 applies a well-known three-way tex-
tual merge algorithm to merge the content (determine the
changes carried out in the revision range and apply to the
target revision) and put the resulting content (of the next
revision) within the client work space. On the other hand, 1T
a regular integration record is specified at step 602, then
control passes to step 610 and the top revision 1s the source
and the revision just before the bottom revision 1s the base
revision for purposes of applying the merge operation to the

target file (the most recent revision of the file) during step
608.

Turning to FIG. 7, a set of steps are depicted for the
submit operation 314. During the submit operation 314 the
revision history 308 1s updated to include a new revision to
one or more files. In the example below, the set of steps are
presented for submitting a single revision having a single
associated pending integration record. However, 1t will be
understood that the steps can be performed on a set of
revisions and/or integration records 1n a similar way. Revi-
sions are created individually and then submitted as a group
to the revision histories 308.

During step 700 the submit operation 314 retrieves a
pending integration record, action and content associated
with a revision from the client work space 306 to submit in
the form of a new revision to the revision histories 308. At
step 702, the submit operation determines whether the
pending integration record 1s an undo 1ntegration record or
a regular integration record. It the pending integration record
1s an undo integration record, then control passes to step 704
wherein all the revision records that fall within the undo
revision range are retrieved from the revision histories 308
(for purposes of determining whether any integration-based
revisions exist). Therealter, at step 706 for each revision
record that includes an integration action (e.g., integrate,
branch), the associated integration history 1s marked inac-
tive. At step 707 a new revision record, specilying an undo
action and content of the revision obtained from the work
space, 1s built. Finally, at step 708 the new revision record—

10

15

20

25

30

35

40

45

50

55

60

65

14

in this case one specilying an undo action—is added to the

revision histories 308. Control then passes to the End.

Since the submit operation 314 also handles regular
pending integration records, if at step 702 the submit opera-
tion 314 determines that a regular pending integration record
has been retrieved, then control passes to step 710 wherein
the submit operation 314 builds a new revision to add to the
revision histories 308. The new revision includes an action
(e.g., mtegrate), content, and integration history (from the
pending integration record) obtained from the work space
306. Finally, at step 708 the new revision record i1s added to
the revision histories 308 maintained by the server machine
310.

Turmning to FIG. 8, a set of revisions are presented 1n a
revision history (grouped by their file name rather than in
chronological order). It 1s noted that the revisions 1n the table
represent the submitted revisions. However, before a revi-
s1on can be submitted, a user first opens the file on the local
machine for the desired action. Furthermore, opening the file
does not update the revision history and files can be reverted
if needed. As described above, after a new revision set
(including potentially revisions on multiple files) has been
prepared on the local machine, the revisions are submitted
into the revision histories 308 to actually form new revisions
of the appropriate files. Submaits of multiple revisions at the
same time happen atomically, 1.e. 1f the new revision of one
file fails to get submitted then the whole set 1s rejected and
has to be re-submitted after the problem 1s corrected.

The following 1s an exemplary set of steps corresponding,
to the table of actions depicted 1n FIG. 8. The example uses
commands associated with the Source Depot SCM system.
However, such steps, or variations thereof, can be performed
in alternative SCM systems after enhancing their function-
ality to include support for the undo command and associ-
ated actions described herein.

0. Assuming that there no revision history initially

1. Create file foo.txt and put lines {“linel”, “line3”} there.

2. ‘sd add foo.txt’: opens foo.txt for ‘add’ action

3. *sd submit’: submits a new revision foo.txt#1 with content
{“linel”, “line3”} and action ‘add’. Row 1 is created in
the table depicted 1n FIG. 8.

4. ‘sd integrate foo.txt#1,1 bar.txt’: Integrates changes intro-
duced 1n revisions of foo.txt starting from #1 and ending
with #1 (1.e. eflectively only revisions 1n foo.txt#1) nto
bar.txt. Because there was no bar.txt entry in the revision
table, the bar.txt i1s created on the local machine as a copy
of foo.txt#1 and opened for ‘branch’. A pending integra-
tion record 1s created that has information specitying that
foo.txt#1,1 revisions are being integrated into bar.txt. No
resolve 1s required, because this 1s a ‘branch’ action.

5. ‘sd submit’: submits a new revision, bar.txt#1, with
content {“linel”, “line3”} and action ‘branch’ and inte-
gration history {‘foo.txt#1,1’}). Row 3 is created in FIG.
8.

. “sd edit foo.txt’: opens foo.txt for ‘edit’.

. ‘sd edit bar.txt’: opens bar.txt for ‘edit’.

. Change content of foo.txt to contain lines {“linel”,
“line2”, “line3”}; and change content of bar.txt to contain
lines {“linel”, “line3”, “line4™}.

9. ‘sd submit’: submits the new revisions so that {0o.txt#2 1s
created with content {“linel”, “line2”, “line3”} and
action ‘edit’; and bartxt#2 1s created with content
{“linel”, “line3”, “line4”’} and action ‘edit’. Rows 2 and
4 are created in FIG. 8.

10. ‘sd integrate foo.txt#1,2 bar.txt’: integrates changes
introduced 1n revisions of foo.txt starting from #1 and
ending with #2 (1.e. eflectively 1n foo.txt#1 and foo.txt #2)

o0 ~1 ON

UsS 7,299,450 B2

15

into bar.txt. As there 1s integration history that stores the
fact that foo.txt# 1,1 was already integrated into bar.txt,
the eflective revision range that actually 1s used 1s
foo.txt#2,2. Bar.txt 1s opened for ‘mtegrate’ and a pending,
integration record 1s created that has information that
foo.txt#2,2 1s being integrated into bar.txt. The content of
local bar.txt 1s not changed.

11. *sd resolve bar.txt’: merges the content changes. The
pending 1ntegration record contains foo.txt#2,2 so the
‘base’ revision 1s foo.txt#1 and the ‘source’ revision 1s
foo.txt#2 and the change that was made between them
was <<add “line2” between “line 17 and “line3”>>and 1t’s
merged into bar.txt, so the new content of bar.txt 1s
{“linel”, “line2”, “line3”, “line4”}.

12. ‘sd submit’: submits the new revision bar.txt#3 with
content {“line 17, “line2”, “line3”, “line4”} and action
‘integrate’ and integration history {‘foo.txt#2,2’}. Row 5
1s created in FIG. 8.

13. *sd edit bar.txt’: opens bar.txt for ‘edit’.

14. Change content of bar.txt to contain lines {“line(”,
“linel”, “line2”, “line3*line4™}.
15. “sd submit’: submits the new revisions so that bar.txt#4

is created with content {“line0”, “linel”, “line2”, “line3”,
“line4”} and action ‘edit’. Row 6 is created in FIG. 8.

Then an undo action 1s mitiated, and the following events

OCCULr:

16. ‘sd undo bar.txt#2,3’: opens bar.txt for undoing changes
introduced 1n revisions starting from #2 and ending with
#3 (1.e. eflectively 1n bar.txt#2 and bar.txt#3). As the
actions of just-before-the-bottom and the top revisions of
the input range and the action of the last revision of the file
are ‘edit’ the resulting action 1s ‘edit-undo’, and resolve 1s
required to merge content changes. The pending ‘undo’
integration record 1s bar.txt#2,3(undo).

1'7. ‘sd resolve bar.txt’: merges content changes. The file has
a pending ‘undo’ integration record bar.txt#2,3(undo) so
the “base’ revision 1s bar.txt#3 and the ‘source’ revision 1s
bar.txt#1—as explained in association with the exemplary
resolve operation described 1n FIG. 6, the range of revi-
stons 1s turned upside-down. The change that was made
between the two revisions was eflectively <<delete
“line2” between “linel” and “line3” and delete “line4”
after “line3”’>>. This change 1s merged into bar.txt, so the
new content of bar.txt is {“line0”, “linel”, “line3”}. This
1s exactly the content bar.txt would have contained if the
revisions bar.txt#2 and bar.txt#3 hadn’t been submitted.

18. ‘sd submit bar.txt’: submits the new revision bar.txt#5
with content {“line0”, “linel”, “line3”’} and action ‘edit-
undo’. As the pending ‘undo’ integration record has
bar.txt#2 and bar.txt#3 1n the range, the integration history
for bar.txt#3 (at Row 5 of FIG. 8) 1s made ‘mactive’. Row
7 1s created 1n FIG. 8.

It will be appreciated by those skilled 1n the art that a new
and usetul method and system for maintaining revisions and
undoing previously entered revisions 1n an SCM system has
been described herein. In view of the many possible com-
puting environments to which the principles of this inven-
tion may be applied and the flexibility of designing and
carrying out software development tools, mcluding SCM
systems that archive revisions to source code during its
development, it should be recognized that the embodiments
described herein are meant to be illustrative and should not
be taken as limiting the scope of mvention. Those skilled in
the art to which the present invention applies will appreciate
that the illustrated embodiments can be modified 1n arrange-
ment and detail without departing from the spirit of the

5

10

15

20

25

30

35

40

45

50

55

60

65

16

invention. Therefore, the invention as described herein con-
templates all such embodiments as may come within the
scope of the following claims and equivalents thereof.

What 15 claimed 1s:

1. A method for undoing changes embodied in prior
revisions 1n a software configuration management (SCM)
system comprising:

recerving a command to undo a set of revisions within a

revision history for a file;

determining, 1n response to receiving the command, a

revision action for undoing changes to the file arising
from the set of revisions;

submitting a new revision, incorporating the revision

action for undoing changes to the file arising from the

set of revisions, to the revision history for the file; and
retaining prior revisions wherein the undo actions are

stored within new entries 1n the revision history.

2. The method of claim 1 wherein a type of the revision
action 1s based upon types of revision actions specified by
revisions previously submitted to the revision history for the
file.

3. The method of claim 2 wherein the type of the revision
action 1s based upon actions of revisions having particular
positions within the revision history for the file.

4. The method of claim 3 wherein the type of the revision
action 1s based upon actions of revisions having particular
positions within the revision history in relation to a specified
range of revisions to be undone.

5. The method of claim 4 wherein the type of the revision
action 1s based upon actions specified for: a top revision of
the specified range of revisions, a revision just before the
bottom revision of the specified range of revisions, and a
most recently added revision in the revision history for the
file.

6. The method of claim 1 wherein determining the revi-
s10n action comprises selecting a closest reasonable revision
action when the set of revisions cannot be undone due to
actions currently specified 1in the revision history for the
specified file.

7. The method of claim 6 wherein the selecting a closest
reasonable revision action 1s enabled by a flag specified in
the command.

8. The method of claim 1 wherein the revision action for
the new revision 1s 1dentified as an action type for undoing
previously submitted revisions for the file.

9. The method of claim 1 further comprising:

resolving a range of revisions to be undone, including

identifying differences between the file after carrying
out the last revision in the range of revisions, and the
file just before the first revision in the range of revi-
S101S.

10. The method of claim 9 further comprising:

merging changes, 1dentified during resolving the range of

revisions, into a most recent revision of the file.

11. The method of claam 1, wherein the SCM system
supports integration of a set of revisions from a source file
into a revision target file, further comprising:

modifying a revision entry specilying an integration

action, for a revision falling within the specified set of
revisions, to indicate that the integration action no
longer contributes changes aflecting the content of a
current version of the file.

12. A software configuration management (SCM) system
including sub-components for facilitating undoing changes
embodied 1n prior revisions in response to recerving a
command to undo a set of revisions within a revision history
for a file, the SCM system comprising:

UsS 7,299,450 B2

17

a first module for determining, in response to receiving
the command, a revision action for reversing changes
to the file arising from the set of revisions;

a second module for submitting a new revision, 1corpo-
rating the revision action for reversing changes to the

file arising from the set of revisions, to the revision

history for the file; and

a third module fore retaining prior revisions wherein the
undo actions are stored within new entries n the
revision history.

13. The system of claim 12 further comprising a criterion,
consulted by the first module, for selecting an action type for
undoing the set of revisions.

14. The system of claim 13 wherein the criterion further
specifles a closest reasonable revision action when the set of
revisions cannot be undone due to actions currently specified
in the revision history for the specified file.

15. The system of claim 14 wherein a flag specified 1n the
command selectively allows selecting a closest reasonable
revision action using the criterion.

16. The system of claim 13 wherein the criterion com-
prises a decision table.

17. The system of claim 13 wherein the criterion specifies
an action type based upon types of revision actions specified
by revisions previously submitted to the revision history for
the file.

18. The system of claim 17 wherein the criterion specifies
an action type based upon actions of revisions having
particular positions within the revision history for the file.

19. The system of claim 18 wherein the criterion specifies
an action type based upon actions of revisions having
particular positions within the revision history 1n relation to
a specified range of revisions to be undone.

20. The system of claim 19 wherein the criterion specifies
an action type based upon actions specified for: a top
revision of the specified range of revisions, a revision just
before the bottom revision of the specified range of revi-
sions, and a most recently added revision in the revision
history for the file.

21. The system of claim 12 wherein the revision action for
the new revision 1s 1dentified as an action type for undoing
previously submitted revisions for the file.

22. The system of claim 12 further comprising:

a third module for resolving a range of revisions to be
undone, wherein the third module 1dentifies differences
between the file after carrying out the last revision in
the range of revisions, and the file just before the first
revision in the range of revisions.

23. The system of claim 22 wherein the third module
merges changes, identified during resolving the range of
revisions, into a most recent revision of the file.

24. The system of claim 22 wherein integration of a set of
revisions from a source file into a revision target file 1s
supported and wherein the second module modifies a revi-
sion entry specilying an integration action, for a revision
talling within the specified set of revisions, to indicate that
the integration action no longer contributes changes aflect-
ing the content of a current version of the file.

25. The system of claim 12 wherein the first and second
modules are incorporated mto an SCM client.

26. The system of claim 25 wherein the revision history
1s maintained within an SCM server.

27. At least one computer-readable medium including
computer-executable instructions for facilitating undoing
changed embodied 1n prior revisions 1n a software configu-
ration management (SCM) system, the computer-executable
instructions facilitating performing a method comprising:

10

15

20

25

30

35

40

45

50

55

60

65

18

receirving a command to undo a set of revisions within a

revision history for a file;

determining, 1n response to receiving the command, a

revision action for undoing changes to the file arising
from the set of revisions; and

submitting a new revision, incorporating the revision

action for undoing changes to the file arising from the

set of revisions, to the revision history for the file; and
retaining prior revisions wherein the undo actions are

stored within new entries 1n the revision history.

28. The computer-readable medium of claim 27 wherein
a type of the revision action 1s based upon types of revision
actions specified by revisions previously submitted to the
revision history for the file.

29. The computer-readable medium of claim 28 wherein
the type of the revision action 1s based upon actions of
revisions having particular positions within the revision
history for the file.

30. The computer-readable medium of claim 29 wherein
the type of the revision action 1s based upon actions of
revisions having particular positions within the revision
history 1n relation to a specified range of revisions to be
undone.

31. The computer-readable medium of claim 30 wherein
the type of the revision action 1s based upon actions specified
for: a top revision of the specified range of revisions, a
revision just before the bottom revision of the specified
range of revisions, and a most recently added revision in the
revision history for the file.

32. The computer-readable medium of claim 27 wherein
determining the revision action comprises selecting a closest
reasonable revision action when the set of revisions cannot
be undone due to actions currently specified in the revision

history for the specified file.

33. The computer-readable medium of claim 32 wherein
the selecting a closest reasonable revision action 1s enabled
by a flag specified in the command.

34. The computer-readable medium of claim 27 wherein
the revision action for the new revision 1s i1dentified as an
action type for undoing previously submitted revisions for
the file.

35. The computer-readable medium of claim 27 turther
comprising computer-executable instructions {facilitating
performing:

resolving a range of revisions to be undone, including

identifying differences between the file after carrying
out the last revision in the range of revisions, and the
file just before the first revision in the range of revi-
S101S.

36. The computer-readable medium of claim 35 further
comprising computer-executable instructions facilitating
performing: merging changes, identified during resolving
the range of revisions, into a most recent revision of the file.

37. The computer-readable medium of claim 36, wherein
the SCM system supports integration of a set of revisions
from a source file into a revision target file, and further
comprising computer-executable instructions {facilitating
performing:

modifying a revision entry specilying an integration

action, for a revision falling within the specified set of
revisions, to indicate that the integration action no
longer contributes changes aflecting the content of a
current version of the file.

38. A software configuration management (SCM) system
capable of undoing changes embodied 1n a range of prior
revisions while preserving the range of prior revisions in the
revision history, the SCM system comprising:

UsS 7,299,450 B2

19

means for receiving a command to undo a set of revisions
within a revision history for a file;

means for determiming a revision action for undoing
changes to the file arising from the set of revisions;

means for submitting a new revision, incorporating the
revision action for undoing changes to the file arising
from the set of revisions, to the revision history for the
file; and

means for retaining prior revisions wherein the undo
actions are stored within new entries 1n the revision
history.

39. The SCM system of claim 38 wherein the determining,
means comprises means for selecting a closest reasonable
revision action when the set of revisions cannot be undone
due to actions currently specified 1n the revision history for
the specified file.

40. The SCM system of claim 38 further comprising:

means for resolving a range of revisions to be undone, the
resolving means including means for identifying dif-
ferences between the file after carrying out the last
revision 1n the range of revisions, and the file just
betore the first revision 1n the range of revisions.

41. The SCM system of claim 40 further comprising:

means for merging changes, identified by the resolving
means, 1nto a most recent revision of the file.

42. The SCM system of claim 38, wherein the SCM
system supports integration of a set of revisions from a
source file 1nto a revision target file, further comprising:

means for modifying a revision entry speciiying an inte-
gration action, for a revision falling within the specified
set of revisions, to indicate that the integration action
no longer contributes changes affecting the content of
a current version of the file.

43. A software configuration management (SCM) system
including sub-components for facilitating undoing changes
embodied 1 prior revisions in response to recerving a
command to undo a set of revisions within a revision history
for a file, the SCM system comprising:

a first means for determinming, in response to receiving the
command, a revision action for reversing changes to
the file arising from the set of revisions;

a second means for submitting a new revision, 1NCoOrpo-
rating the revision action for reversing changes to the
file arising from the set of revisions, to the revision
history for the file; and

a third means for retaining prior revisions wherein the
undo actions are stored within new entries in the
revision history.

44. The SCM system of claim 43 further comprising:

a third means for resolving a range of revisions to be
undone, wherein the third means 1dentifies differences
between the file after carrying out the last revision in
the range of revisions, and the file just before the first
revision 1n the range of revisions.

45. A method for undoing changes embodied 1n prior
revisions 1n a soiftware configuration management (SCM)
system comprising;:

receiving a command to undo a set of revisions within a
revision history for a file;

determining by a resolve module, 1n response to receiving
the command, revision content for undoing changes to
the file arising from the set of revisions;

submitting a new revision, incorporating the revision
content for undoing changes to the file arising from the
set of revisions, to the revision history for the file; and

retaining prior revisions wherein the undo actions are
stored within new entries 1n the revision history.

5

10

15

20

25

30

35

40

45

50

55

60

65

20
46. The method of claim 45 further comprising:

determining a revision action for undoing changes to the
file arising from the set of revisions.

4'7. The method of claim 46 wherein a type of the revision
action 1s based upon types of revision actions specified by

revisions previously submitted to the revision history for the
file

48. The method of claim 47 wherein the type of the

revision action 1s based upon actions of revisions having
particular positions within the revision history for the file.

49. The method of claim 48 wherein the type of the
revision action 1s based upon actions of revisions having
particular positions within the revision history 1n relation to
a specified range of revisions to be undone.

50. The method of claim 49 wherein the type of the
revision action 1s based upon actions specified for: a top
revision of the specified range of

revisions, a revision just before the bottom revision of the
specified range of revisions, and a most recently added
revision 1n the revision history for the file.

51. The method of claim 46 wherein determiming an
action comprises selecting a closest reasonable revision
action when the set of revisions cannot be undone due to
actions currently specified 1in the revision history for the
specified file.

52. The method of claim 45 wherein determining by a
resolve module comprises identifying differences between
the file after carrying out the last revision in the range of
revisions, and the file just before the first revision 1n the
range of revisions.

53. The method of claim 52 further comprising:

merging changes, 1dentified during the determining by the

resolve module, into a most recent revision of the file.

54. The method of claim 435, wherein the SCM system
supports itegration of a set of revisions from a source file
into a revision target file, further comprising:

modilying a revision entry specilying an integration

action, for a revision falling within the specified set of
revisions, to indicate that the integration action no

longer contributes changes aflecting the content of a
current version of the file.

55. A software configuration management (SCM) system
including sub-components for facilitating undoing changes
embodied 1n prior revisions 1n response to receiving a
command to undo a set of revisions within a revision history
for a file, the SCM system comprising;:

a resolve module for determining, in response to receiving,
the command, revision content for reversing changes to
the file arising from the set of revisions;

a submit module for submitting a new revision, 1COIPoO-
rating the revision content for reversing changes to the
file arising from the set of revisions, to the revision
history for the file; and

a retaining module for retaining prior revisions wherein
the undo actions are stored within new entries in the
revision history.

56. The system of claim 535 further comprising an undo

module for determining, 1n response to receiving the com-

mand, a revision action for reversing changes to the file
arising from the set of revisions.

57. The system of claim 56 further comprising a criterion,
consulted by the undo module, for selecting an action type
for undoing the set of revisions.

58. The system of claim 57 wherein the criterion com-
prises a decision table.

UsS 7,299,450 B2

21

59. The system of claim 57 wherein the criterion specifies
an action type based upon types of revision actions specified

by revisions previously submitted to the revision history for
the file.

60. The system of claim 59 wherein the criterion specifies
an action type based upon actions of revisions having
particular positions within the revision history for the file.

61. The system of claim 60 wherein the criterion specifies

an action type based upon actions of revisions having
particular positions within the revision history 1n relation to
a specified range of revisions to be undone.

62. The system of claim 61 wherein the criterion specifies
an action type based upon actions specified for: a top
revision of the specified range of revisions, a revision lust
before the bottom revision of the specified range of revi-
sions, and a most recently added revision in the revision
history for the file.

63. The system of claim 57 wherein the criterion further
specifies a closest reasonable revision action when the set of
revisions cannot be undone due to actions currently specified
in the revision history for the specified {ile.

64. The system of claim 63 wherein a flag specified 1n the

command selectively allows selecting a closest reasonable
revision action using the criterion.

65. The system of claim 56 wherein the revision action for
the new revision 1s 1dentified as an action type for undoing,
previously submitted revisions for the file.

66. The system of claim 35 wherein the resolve module
identifies diflerences between the file after carrying out the
last revision 1n the range of revisions, and the file just before
the first revision in the range of revisions.

67. The system of claim 66 wherein the resolve module
merges changes, 1dentified during resolving the range of
revisions, 1nto a most recent revision of the file.

68. The system of claim 66 wherein integration of a set of
revisions from a source file ito a revision target file 1s
supported and wherein the submit module modifies a revi-
sion entry specilying an integration action, for a revision
talling within the specified set of revisions, to indicate that
the integration action no longer contributes changes aflect-
ing the content of a current version of the file.

69. The system of claim 55 wheremn the resolve and
submit modules are incorporated into an SCM client.

70. The system of claim 69 wherein the revision history
1s maintained within an SCM server.

71. At least one computer-readable medium including
computer-executable instructions for {facilitating undoing
changes embodied in prior revisions in a software configu-
ration management (SCM) system, the computer-executable
instructions facilitating performing a method comprising:

receiving a command to undo a set of revisions within a
revision history for a file;

determining by a resolve module, 1n response to receiving,
the command, revision content for undoing changes to
the file arising from the set of revisions;

submitting a new revision, incorporating the revision
content for undoing changes to the file arising from the
set of revisions, to the revision history for the file; and

retaining prior revisions wherein the undo actions are
stored within new entries 1n the revision history.

72. The computer-readable medium of claim 71 wherein
the method further comprises:

determining a revision action for undoing changes to the
file arising from the set of revisions.

10

15

20

25

30

35

40

45

50

55

60

65

22

73. The computer-readable medium of claim 72 wherein
a type of the revision action 1s based upon types of revision
actions specified by revisions previously submitted to the
revision history for the file.

74. The computer-readable medium of claim 73 wherein
the type of the revision action 1s based upon actions of
revisions having particular positions within the revision
history for the file.

75. The computer-readable medium of claim 74 wherein
the type of the revision action Is based upon actions of
revisions having particular positions within the revision
history In relation to a specified range of revisions to be
undone.

76. The computer-readable medium of claim 75 wherein
the type of the revision action 1s based upon actions specified
for: a top revision of the specified range of revisions, a
revision just before the bottom revision of the specified
range of revisions, and a most recently added revision 1n the
revision history for the file.

77. The computer-readable medium of claim 72 wherein
determining a revision action comprises selecting a closest
reasonable revision action when the set of revisions cannot
be undone due to actions currently specified In the revision
history for the specified file.

78. The computer-readable medium of claim 71 wherein
determining by a resolve module comprises identifying
differences between the file after carrying out the last
revision In the range of revisions, and the file just before the
first revision in the range of revisions.

79. The computer-readable medium of claim 78 wherein
the method further comprises:

merging changes, 1dentified during the determining by the
resolve module, into a most recent revision of the file.

80. The computer-readable medium of claim 71, wherein
the SCM system supports itegration of a set of revisions
from a source file mto a revision target file, further com-
prising;:

modilying a revision entry specilying an integration
action, for a revision falling within the specified set of
revisions, to indicate that the integration action no
longer contributes changes aflecting the content of a
current version of the file.

81. A soltware configuration management (SCM) system
capable of undoing changes embodied 1n a range of prior
revisions while preserving the range of prior revisions in the
revision history, the SCM system comprising;:

means for recerving a command to undo a set of revisions
within a revision history for a file;

a resolve module for determiming revision content for
undoing changes to the file arising from the set of
revisions; and

means for submitting a new revision, icorporating the
revision content for undoing changes to the file arising
from the set of revisions, to the revision history for the

file; and

means for retaining prior revisions wherein the undo
actions are stored within new enftries in the revision
history.

82. The SCM system of claim 81 further comprising:

means for determiming a revision action for undoing
changes to the file arising from the set of revisions.

83. The SCM system of claim 82 wherein the means for
determining a revision action comprises means for selecting
a closest reasonable revision action when the set of revisions
cannot be undone due to actions currently specified in the
revision history for the specified file.

UsS 7,299,450 B2

23 24
84. The SCM system of claim 81, wherein the SCM means for determining, in response to receiving the coms-
system supports integration of a set of revisions from a mand, revision content for reversing changes to the file
source file 1nto a revision target file, further comprising; arising from the set of revisions;

means for modifying a revision entry speciiying an inte-
gration action, for a revision falling within the specified 5
set of revisions, to indicate that the integration action
no longer contributes changes affecting the content of

means for submitting a new revision, incorporating the
revision content for reversing changes to the file arising
from the set of revisions, to the revision history for the

. file; and
a current version of the file. ’ o | . |
85. A software configuration management (SCM) system means for retaining prior revisions wherein the undo
including sub-components for facilitating undoing changes 10 actions are stored within new entries in the revision
embodied 1 prior revisions in response to recerving a history.

command to undo a set of revisions within a revision history
for a file, the SCM system comprising: k% k%

	Front Page
	Drawings
	Specification
	Claims

