US007299356B2

a2 United States Patent (10) Patent No.: US 7,299,356 B2

Mizrah 45) Date of Patent: Nov. 20, 2007
(54) KEY CONVERSION METHOD FOR 6,189,098 Bl 2/2001 Kaliski, Ir.
COMMUNICATION SESSION ENCRYPTION 6,199,113 Bl 3/2001 Alegre et al.
AND AUTHENTICATION SYSTEM 6,226,383 Bl 5/2001 Jablon
6,230,269 Bl 5/2001 Spies et al.
75 _ . 6,367,010 Bl 4/2002 Venkatram et al.
(75) Inventor: Len L. Mizrah, San Carlos, CA (US) 6377691 Bl 49000 Swift of al

0,393,127 B2 5/2002 Vogler

(73) Assignee: Authernative, Inc., Walnut Creek, CA 6.487.667 Bl 11/2002 Brown

(US) 6,920,550 BL* 7/2005 Nessett et al. 713/168
. | | o | 7,069,438 B2* 6/2006 Balabine et al. 713/168
(*) Notice: Subject‘ to any dlsclalmer{ the term of this 2002/0005507 Al 7/2002 Jerdonek
patent 1s extended or adjusted under 35 OTHER PURTICATIONS
U.S.C. 1534(b) by 877 days.
Kaufman et al., “Network Security—Private Communication in a
(21) Appl. No.: 10/653,500 Public World”, 1995, Prentice Hall, pp. 243-249 *
(22) Filed: Sep. 2, 2003 (Continued)
: Y Primary Examiner—Gilberto Barron, Ir.
(63) Prior Publication Data Assistant Examiner—Minh Dinh
US 2005/0050322 Al Mar. 3, 2005 (74) Attorney, Agent, or Firm—Haynes Bellel & Wolfeld
LLP
(51) Int. CL
HO4L 9/00 (2006.01) (37) ABSTRACT
(52) US.CL ..., 713/169; 713/168; 713/170; _ _ o _
380/28: 380/29 An ulli[eractlllve Iélutual authentlcagfn p;otocol, Wcllllch does
(58) Field of Classification Search None not allow shared secrets 1o pass through untrusted commu-

nication media, integrates an encryption key management
system 1nto the authentication protocol. The server encrypts
(56) References Cited a particular data random key by first veiling the particular
. data random key using a first conversion array seeded by a

U.s. PATENT DOCUMENTS shared secret, and then encrypting the veiled particular data

See application file for complete search history.

12/2000 Guthrie et al.
1 1/2001 Kausik 22 Claims, 10 Drawing Sheets

0,161,185
0,170,058

4,200,770 A 4/1980 Hellman et al. random key. The client decrypts and unveils the particular
5,241,599 A 8/1993 Bellovin et al. data random key using the shared secret, and returns a
5434918 A 7/1995 Kung et al. similarly veiled version of the particular data random key
5,841,871 A 11/1998 Pinkas using a second conversion array seeded by a shared secret.
2,872,917 A 2/1999 Hellman Access to the shared secret indicates authenticity of the
0,058,430 A 5/2000 Brown stations. The procedure may be repeated for a second shared
g:g;gzégg i ggggg Eziiislilnjf al. secret for strong authentication, .without allowing shared
6.105.133 A 29000 Fielder ef al secrets to pass via untrusted media.

A

B

3003
SERVER || CLIENT
COMMUNICATION NETWORK
l {SUCH AS INTERNET)
U "
3001 3002 .
RECEIVED (R} _ SENT{(S)
~-(Siep 1: C requaesis a connechion 1o S (protected login, URL, link, efc.) 4
3 3005 A R

tap 2: s sant 1o &, communication intertace 15 established

06~ RIEENTERED;
'-HEtEE E.‘ E gntars user ihnst_i nama, user {host iD} and server password on C side

R e -
—(Step 4. User (of host) name hashed and anerypted with SHKI is sent 10 § pTy
S.R

i 308 A S
tep 5 ITuser (or host) 15 vaidated, S senads 0 & DRK1 enciygied with SRKI,)
decrypts DRK1 with SRKI Ed sends 10 3 encryptad with DRI1 hagshed DRK1

5 R 0 3
: ep 6. IT recaived DRK1 18 correct, 8 sends to & DRKZ encrypled with BDRKT,)
decrypts DRK2 with DRK1, and sends to 5 encryptad with DRK2 hashed DRK2
5 R _ 3010 7 R S

iii

$ R R S
fep 1 ¥ recoved URKL-1 15 cormedt, § sends o C DRK] encrypted wiih DRKY1T.

decrypts DRKj with DRK{j-1) and sands 10 S encrypted with DRK| hashed DRK]
S R et R, 8
. M Lt esetitarestanestestasusiisiesses.escessaseatiras e

encrypted with the user password, stored at C in step 3, ank) corvarfed to its hash
vivalani.
S.R 3094 A R, S
n+1: It hashad DRKn received i step 3014, and decrypled with hashed user }

ep n: If recelved from © DREN-T is correct, 5 sends to G DRk encrypted with the
hashed user password as a key; C decrypts DRKR with tha vssar password, stored at
G in stap 3, and convartexd to its hash equivalent; then € sends to § hashed DRKn

password is comect, 8 sends io € DRKn encryptad with hashad server passwond as
a key; C decrypts DRYR with the server passwond, stored at € In step 3, and
convearted 10 its hash equivalent; if hashed DRKn is the sama as DRER from step
014, then C sends to § hashed DRKn encrypted with ihe hashed server password.
3 3015 -2 R

’ftep n+2: if recaived from C ORKn is correctiwrang, then authenticalion signal ga/no

ancrypted with DRKn-1, 1s sent 0 C: € decrypts the go/no signal with DRKn-1, stored
gt C In step 3013. This completes €/5 mutual authentication and the Final Sacrat Kay
(FSK) exchange according to the KEDIA afgorithm.

3016~
)

US 7,299,356 B2
Page 2

OTHER PUBLICATIONS

L1 et al., “An Improved Key Distribution Protocol with Perfect
Reparability”, IEEE, 2000, Retrieved from the Internet on Feb. 7,
2007: <URL: http://1eeexplore.ieee.org/1el5/7015/18913/00875801.
pdf>.*

Stallings, “Cryptography and Network Security—Principles And
Practice™, Aug. 2002, Prentice Hall, 3rd Edition, pp. 143-167.*
Bellovin, Steven M., et al., “Limitations of the Kerberos Authen-
tication System,” USENIX, Winter 1991, Dallas, Texas, 1-16 (A
version of this paper with published in Oct. 1990 1n Computer
Communications Review).

Dithe, Whitfield, et al., “New Directions in Cryptography,” IEEE
Transactions on Information Theory, vol. I'T-22, No. 6, Nov. 1976,
644-654.

Federal Information Processing Standards Publication (FIPS) 46-3,
“Data Encryption Standard (DES),” Oct. 25, 1999, 18 pages.
Federal Information Processing Standards Publication (FIPS) 180-
1, “Secure Hash Standard,” Apr. 17, 1995, 18 pages.

Noakes-Fry, Kristen, “Public-Key Infrastructure: Technology Over-
view,” DPRO-90693, Gartner Technology Overview, May 20, 2003,
18 pages.

Park, Stephen K., et al., “Random Number Generators: Good Ones
are Hard to Find,” Communications of the ACM 31(10), Oct. 1988,
1192-1201.

Wheatman, V., “Public-Key Infrastructure Q& A,” Gartner Research
Note, Nov. 13, 2002, 5 pages.

Pescatore, John, “Another Microsoft Security Flaw Threatens
Users’ Trust,” FT-17-8896, Gartner FirstTake, Aug. 15, 2002, 2

pages.
Pescatore, J., et al., “Secure Sockets Layer Sometimes Isn’t,”
Gartner Research Note, Apr. 3, 2002, 4 pages.

Rivest, R., RFC 1320, “The MD4 Message-Digest Algorithm,” MIT
Laboratory for Computer Science and RSA Data Security, Inc., Apr.
1992, 20 pages.

Rivest, R., RFC 1321, “The MD5 Message-Digest Algorithm,” MI'T
Laboratory for Computer Science and RS A Data Security, Inc., Apr.
1992, 22 pages.

Lloyd, B, et al., RFC 1334, “PPP Authentication Protocols,” L&A
and Daydreamer, Oct. 1992, 14 pages.

Kohl, J., et al., REC 1510, “The Kerberos Network Authentication
Service (V5),” Digital Equipment Corporation and ISI, Sep. 1993,
97 pages.

Schneier, Bruce, “Applied Cryptography,” Second Ed. John Wiley
and Sons, Inc. (1996), 233-560.

Smith, K., RFC 1934, “Ascend’s Multilink Protocol Plus (MP+),”

Ascend Communications, Apr. 1996, 37 pages.

Fielding, R., et al., RFC 2068, “Hypertext Transfer
Protocol—HTTP/1.1,” UC Irvine, DEC, MIT/LCS, Jan. 1997, 134
pages.

Zorn, G., REC 2759, “Microsoft PPP CHAP Extensions, Version 2,”
Microsofit Corporation, Jan. 2000, 16 pages.

* cited by examiner

U.S. Patent

SERVER

CLIENT - SERVER

Nov. 20, 2007

Sheet 1 of 10

SESSION COMMUNICATION
RANDOM KEY NETWORK (SUCH
(SRK) AS INTERNET)
GENERATOR made

FIG. 1

duﬁﬂg

{

¢

made during

3e2

e

gt coinut®

US 7,299,356 B2

i

\ CLIENT 1, SRK5

NG

1007

i

CLIENT 2, SRKS

g
|

CLIENT N-1, SRK?2

U.S. Patent Nov. 20, 2007 Sheet 2 of 10 US 7,299.356 B2

1007

=
CLIENT 2, SRK9

1008

DATA RANDOM

NETWORK (SUCH
KEY (DRK)
GENERATOR FOR AS INTERNET)
ANY GIVEN SRKi

& CLIENT

]

CLIENT N, SRK5

FIG. 2

U.S. Patent Nov. 20, 2007 Sheet 3 of 10 US 7,299.356 B2

(-\ 3003

CLIENT

SERVER .
(S) COMMUNICATION NETWORK (C)
l (SUCH AS INTERNET)
3001 3002
RECEIVED (R SENT(S
Step 1: € requests a connection to S (protected login, URL, link, etc.

S 3005 ./ R

Step 2: SRKi is sent to C; communication interface is established

3006 R({ENTERED)
Step 3: € enters user (host) name, user (host ID) and server password on C side
R 3007 S
Step 4: User (or host) name hashed and encrypted with SRKiis sentto S
S,R 3008 R, S

tep 5: if user (ar host) is validated, S sends toc € DRK1 encrypted with SRKi;
C decrypts DRK1 with SRKi and sends to S encrypted with DRK1 hashed DRK1
SR 3000 e _ —R&
tep 6: If received DRK1 i1s correct, S sends to C DRK2 encrypted with DRK1;
C decrypts DRK2 with DRK1, and sends to S encrypted with DRK2 hashed DRK2
S, R 3010 A R, S

tep |: If received DRKJf-1 is correct, S sends to C DRK|j encrypted with DRK(j-1);
C decrypts DRK|j with DRK{j-1) and sends to S encrypted with DRK| hashed DRK]|

 hashed user password as a key; C decrypts DRKn with the user password, stored at
C in step 3, and converted to its hash equivalent; then € sends to § hashed DRKn
encrypted with the user password, stored at € in step 3, and converted fo its hash
aquivalent.
S,R 3014 R.S
tep n+1: If hashed DRKn received in step 3014, and decrypted with hashed user
password is correct, § sends to C DRKn encrypted with hashed server password as
1 3 key; C decrypts DRKn with the server password, stored at C in step 3, and
 canverted to its hash equivalent: if hashed DRKn is the same as DRKn from step
(014, then € sends to S8 hashed DRKn encrypted with the hashed server password,
S 3015 -7 R

[Step n+2: if received from € DRKn is correct/wrong, then authentication signal go/no

 encrypted with DRKn-1, is sent to C; C decrypts the go/no signal with DRKn-1, storea
at C in step 3013. This completes C/S mutual authentication and the Final Secret Key
L(FSK) exchange according to the KEDIA algonthm.

FIG. 3

U.S. Patent Sheet 4 of 10

Nov. 20, 2007

US 7,299,356 B2

COMMUNICATION NETWORK
(SUCH AS INTERNET)

/e 3003 \
SERVER | CLIENT }!

(S) l (C) |
N AN\ ——— '

3002

SENT(S) RECEIVED(R)
tep ©: If received DRKA1 is correct, S sends to C DRKZ encrypted with DRKA1,
decrypts DRK2 with DRK1, and sends to S encrypted with DRK 2 hashed DRK2

Y

3001

tep 6: if received DRK1 is correct, S
sends to C DRK2 encrypted with

PQRK1
4001 7 Jl

DRK 2 supplied by Server DRK
Generator 2005 (FIG. 2)

4003 -

Server supplies the assumed user
password te enable byles, bits, or
bytes & bits veiling in DRK2

4005

ByteVU, BitVU, or BBVU is applied to

veil either bytes, or bits, or bytes &
bits of DRKZ2

4007 -~

Conversion array, encrypted with

DRK1 (black-cipher encryption
algonthm), is sent to client

4009

C decrypts DRK2 with DRK1, and
sends to S encryted with DRK2
hashed DRK?2

Client supplies the user password
triggering bytes, or bits, or bytes & bils
reassembling in the conversion arra

4006

ByteVU, BitVU, or BBVU is

reassembling the coversion array,
decrypted before with DRK 1

4008

DRK 2 is reconstructed to its original
form, and C sends t0 S hashed DRKZ2,
treated with either ByteVU, BitVU, or
BBVU, the final conversion array is
encrypted with DRK 2

4010

SERVER DATABASE

3004

FIG. 4

U.S. Patent Nov. 20, 2007 Sheet 5 of 10 US 7,299.356 B2

5001 DRKi - 16 bytes

| xh1]xh2 | xh3 | xh4 | xhS | xh6 | xh7] ... | xh14|xh15|xh16 |

SERVER SEQUENTIAL RANDOM
NUMBLER GENERATOR (SRNG)
WITH USER PASSWORD AS A

SEED (SERVER SIDE)

CLIENT SEQUENTIAL RANDOM
NUMBLER GENERATOR (SRNG)
WITH USER PASSWORD A5 A

SEED (CLIENT SIDE)

SV ENE PEF PEF WEF Iy WS T RS T TRy e e sl B e e W U D W A

" DRKi - “Byte-Bit-Veil-Unveil"
Conversion (BBVU Algonthm)

| 5006

|

I

: 1 BBVU conversion array section; length - 10 bytes @

i

i el 12|l 3 xhl | r1,5)rh,6 7,7} r1 871,911,110

'

E 2™ BBVU conversion array section; length - 10 bytes

e e e Y e rd cmrrdcm cr e e - ———-—————— - B @
xh2 | 12,10 |

5007 §

5008 |

15" BBV U conversion array section; length - 10 bytes @

lr1S5,] P xh1srls,3 |r15,4)...|r15,711r15,8]r15,9)r15,10]

5009
16!

BBV U conversion array section; length - 10 bytes

1161 |r16,2|r16.3 |.. {rl6, 10}

5010

U.S. Patent Nov. 20, 2007 Sheet 6 of 10 US 7,299.356 B2

6001 DRK. - 128 bits

(yhi {yh2{yh3 |yh4 |yhS | yh6 |yh7|...|yhi26|yh127 | yh128]
A

SERVER SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG)
WITH USER PASSWORD AS A

SEED (SERVER SIDE)

CLIENT SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG)
WITH USER PASSWORD AS A

SEED (CLIENT SIDE)

I AR PER A A e el R Eek aelr a e " T N W B S i e N e e il

DRKi - “Byte-Bit-Veil-Unveil’
Conversion (BBVU Algorithm)

|

i

)

:

I

: [BBVU conversion armay section; length - 128 bits @
i

E v, Vi 2 e, 3 yhl el S0 126 r) 127 | 1) 128

|

E 2" BBVU conversion array section; length - 128 bits
o o e om e e e i i o o o e e R K = AR e e o

r2,1 jr2,2)1r23 |r2,4|r2,5]..

r2,126 | yh2 |r2,128 |

6008 }§ _
127" BBVU conversion array section; length - 128 bits
| 61271 r127,2 | r127,3 |yh127 |r127,5 1. 127,127 | 127,128 |
6009 |

128" BBVU conversion array section; length - 128 bits

' | r128,1 | yh128 | 1283 .| r128,126 ;.123,12“7”_] r128128] _

6010

---_ﬁ_-_E--u--—--_:--:-_---‘_-----_-i----‘--

U.S. Patent Nov. 20, 2007 Sheet 7 of 10 US 7,299.356 B2

7001

DRKi - 16 bytes
| xhl | xh2 | xh3 | xh4 | xh5 | xh6 | xh7|...| xh14 | xh15 | xh16 |

7002 7003

SERVER SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG)
WITH USER’S PASSWORD
AS A SEED

CLIENT SEQUENTIAL REVERSE
BIT POSITION SCRAMBLER
(SRBPS) FOR EACH
VEILED DRKi BYTE

SERVER SEQUENTIAL DIRECT
BIT POSITION SCRAMBLER
(SDBPS) FOR EACH
VEILED DRKi BYTE

CLIENT SEQUENTIAL RANDOM
NUMBER GENERATOR (SRNG)
WI'TH USER’S PASSWORD
AS A SEED

(BBVU Algorithm)

7005

DRKi - “Byte-Bit-Veil-Unveil” Conversion

| .
i i
! l
: k»- 7006 7007 E
1% BBVU conversion array section; length - 10 bytes @
ﬂﬂﬂﬂﬂﬂ ﬁﬁ-ﬁﬂ¢‘ rﬁﬂ-hﬂuﬂﬂuﬁi - g A o Y R e W i o v off

¥ 1! ,
Pr,H i r12 e 3 | xh) | el S e 0 e L7 1,81 r1 9| 7], 10

7008 |
DRK first xh1 byte in binary bit representation:
[xhl,8 | xhl,7 | xh1,6 | xhl,5 { xh1,4|xh1.3|xht,2 | xhl,]|
- __ (for instance, 01011101) —
100 | Server’s SRNG generates random sequence of 16 numbers from 1 to 10
1 (duc to ten positions 1n onc BBVU conversion array scction), and then the
L server's SBPS scrambles all bit positions in the veiled byte. =~
7010 . _ . . . "
- For instance, the 1* number generated by SRNG is 4 {(DRKi 1™ byte position
b inthe 1% BBVU conversion array section above), then SBPS generates for
| cach bt inside the DRK 1¥ bytc new positions 3, 1,8,5, 4,2, 7.6
011 e e . e e _
~ Ncw positions for cach bit from 1¥ to 8 of xh1 byte inside ¥ BBVU
converston array sectton are 11011100 for the example above.
7012 _

7013

FIG. 7

US 7,299,356 B2

Sheet 8 of 10

Nov. 20, 2007

U.S. Patent

v8 Ol

Aelly UOISIBAUOD NABIAG - Y9 ‘oseqele(- gp '19AIag - s usi) - 9
pajoajoid - d ‘paysey - Y 43sn - n ‘NOILLYIINNWINOD - 9 ‘NOLLdAND3A - G ‘NOILJAYONT - 3
‘wiyuobiy 1eaun-isp-eiig, - NABIAG ‘Aey) uondAiou] oujewwAg wopuey (ejeq) uoissas - (MHA) WHS
'J0]eIaUsL) JI3qUINN wWwopuey |eiuanbag - ONYS spusba /108

HINMIS O | piowssedsu | Gz oLk | oma | | mad | [seniesian] 6
"IN3MD 0) | promssedsy |6z "9l 5ok oA | | omo [senesip] 8
"UINNIS 0 | plomssedny | Gz oL sk | zmd | | owmad | [senesias] 1
“IN3D 01 | piomssednry | 6z o1 Sok Dma | | oma [sweiesaEp] 6
INJOO | | o0 | T Sws [| ou [spiesimp| ve
piomssednu | SzoL Sk | yMda | | mau | [senesigp] &
MINISOI] 1 o [Sws | [ewewny | [spwesiEp] ¢
I S A T R
I S N1V I R N R S
| "SNolioSS I R R S B
SNTTO | O35S ONUS | V0 (AW | A5 | a3 | Ganoad | Ings | wanuss | ¥
T T T T T T T T
8008 /008 9008 G008 008 €008 c008 1008 0008

(3AIS YINYIS - V Hed ‘uojedjusyiny [enjnjy paseq pIOMSSed ‘aINjoayyoly JOAISS - JudiD)
7100010¥d (VIG3IW) NOILVIIINTHLNY IAILVYHIL 1dANDIA/LIANONT JOVSSIN

US 7,299,356 B2

Sheet 9 of 10

Nov. 20, 2007

U.S. Patent

d8 Ol

Aelly UOISIBAUDD) NASIAG - W) 'laneg - s usit) - 9

pejosjoid - d ‘paysey - | ‘Jasn - n 'NOILYOINNNINOD - O 'NOILdAYED3A - A ‘NOILJAYDINT - 3
‘wyobly JIsAun-ioa-aiig,, - NARIE ‘Aey uondAiou] ompwwAg wopuey (BJEQ) UOISSES - (HHA) MYS
‘l0jelauan) JagquinN wopuey jenuanbag - ONYS spusba] «—/ 108

01 [INDjegidde | | oupb __[Mya| Gzl 'soA [piomssed-n-y| INIJ1D 0}
6 | 1 zd™aM A¥A| | G629l 'sek |piomssed-s-y {YIAYIS O} |
8 [obojyeydde | T ZMMay ~ |omal K |piomssed-s-y| INI D 01
2 1 | gy [A Le[6 pJomssed-n-y | YIAYIS o}
9 [obojjeidde | T 7Mya _iMya| sz 'gl 'seA |piomssed-n-y| INIID O}
VS - |obessaw iou3 o I¥y¥s | ou 1 TINJIO 0}
S 1 wbay [IXHA] | S2 9L 'seA [piomssed-n-y [YIAHIS O} |
v [Jbojjeidde | T MNaQ I MYS | SZ'9l 'seA |piomssed-n-y| INFTD 0}
- | spiomsseg-n | (| |]
¢ | In9isidde | sweu-n-y “ g-s'sweu-n i MYS | | ou | [Y3IAYIS O}
1 1 {pondwod) | N s
| ¢ Jobojjedde | T MNSIND | | ou T TINIITOO} |
L[NVUNVM | Tdn /yui-d 1 ou T TY3AN3S 0
R bbb sFuAg
I AINIAOA8 | | f'SNowo3s |
| AIN3IINO | IN3IS [a3AI30TH [aIMIINT [AIM-I|AIN-G] VI NASKE [03IASONES | INITD |
T
0008 9108 GLOB 7108 €108 cl08 1108 0108 6008 8008

(3QIS LN3ID - g Hed ‘uoiedijusyiny [eniniy paseg pJoMssed ‘ainjosjiydly 1aAIag - Jusi))
TO020104d (VIQ3N) NOILVIINTHLNY FAILVYHILI LdANMDIA/LdANIONT IODVSSIN

U.S. Patent Nov. 20, 2007 Sheet 10 of 10 US 7,299.356 B2

9004 9007

9005

9002 8006

Q014
server passworg i1s not
system messaqe:
y g

5009 9010
OPERATION -
wlo _— '

login session

. user password reset

9014 9008

ECHO DOTS VS.
a-CHARACTERS

\ SWITCH BUTTON |

9012 9011 9015

% 9019 9013 9016

IProtected
| Network
'Resource
| (URL,
link, file,
dB, ect.)

“COMMUNICATION NETWORK
(SUCH AS INTERNET)

[o -
~ PDO Workstation

Pl i P W

[\ 9017 9021 9022

CLEE .
L e : o . i k
e i T .
| - gt e
- ol TR
L B PR
R T W aR T
- . - xet .
. Yo ool B
. F LT et
S s It
il A I T
. St Ly T, T L
. S
. R . . K
et e ‘: 1. .
: : E o Ll "1._-\. I .:.j'i
potiiay =] - e .
e - e S s
ek i G B . '
ERH e :

US 7,299,356 B2

1

KEY CONVERSION METHOD FOR
COMMUNICATION SESSION ENCRYPTION
AND AUTHENTICATION SYSTEM

REFERENCE TO RELATED APPLICATIONS

The present application 1s related to U.S. patent applica-
tion Ser. No. 10/653,506, entitled COMMUNICATION
SESSION ENCRYPTION AND AUTHENTICATION

SYSTEM, mvented by Mizrah, and filed on 2 Sep. 2003.

The present application 1s related to U.S. patent applica-
tion Ser. No. 10/653,503, entitled KEY GENERATION
METHOD FOR COMMUNICATION SESSION ENCRYP-
TION AND AUTHENTICATION SYSTEM, invented by
Mizrah, and filed on 2 Sep. 2003.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to security of authentica-
tion and data transmission over unftrusted communication
media 1n client-server computer, network, and other archi-
tectures, and more particularly to encryption key manage-
ment systems and authentication protocols.

2. Description of the Related Art

Electronic networks of interconnected devices and users
continue to grow with unprecedented rate. They have
become foundations for vitally important infrastructures
enabling e-commerce, communications, corporate and gov-
ernment operations, healthcare, education, and other 1impor-
tant areas. This phenomenon was actively studied and com-
mercialized during the last quarter of the 20” century, and
there 1s every indication this activity will intensily well into
the 21°* century.

There are various parties involved 1n remote relationships
over distributed electronic networks. Most known represen-
tations are business-to-business (b2b), business-to-consum-
ers (b2c¢), and peer-to-peer (p2p), describing scaled-down to
hardware devices communication, for mstance, peer router
to peer router, or device-to-device (d2d). One of the funda-
mental problems for continued growth of electronic net-
works and their eflicient utilization i1s establishing trust
between remote counterparts 1n b2b, b2c, d2d, and other
interrelating over network parties. It 1s common knowledge
that computer network intruders (or intruding organizations)
cause ever-growing direct economic losses to enterprises
and individual consumers. They significantly undermine the
progress 1n applying network technologies to certain areas,
especially related to parties having legal and financial
responsibilities, and national security.

Trust to remote humans or devices, interacting over
clectronic networks, has two components. The first compo-
nent 1s 1dentification and verification of the parties at the
beginning of the communication session (mutual authenti-
cation). The second component 1s associated with trust to
information transferred during the communication session
over untrusted commumication media (communication
lines). It includes the following specific requirements—
confidentiality (none can read the message except the
intended recipient), integrity (none altered, tampered witn,
or modified the message against the original), and non-
repudiation (the sender can not deny the fact of having sent
the message).

Authentication and cryptography are key enabling tech-
nologies employed to satisiy the security requirements listed
above. Authentication factors are typically characterized as
“what user knows” (for instance, passwords, PINs), “what

5

10

15

20

25

30

35

40

45

50

55

60

65

2

user has™ (for instance, hardware token, smart card), and
“what user 1s” (particular biometric traits; for instance,
fingerprints, voice patterns, etc.). Passwords are the most
ubiquitous over electronic networks as an authentication
factor due to ease of use, low cost and easy electronic
deployment. Most of the strong (two-, or three-factor)
authentication systems are still using passwords or PINs as
one of the system authentication factors.

However, passwords provide low security due to insudli-
cient protection against numerous known intruding attacks
on databases where the passwords are residing, social engi-
neering attacks, videotaping or “shoulder surfing” attacks
during password entry stages, memory snifling attacks,
Trojan horse attacks, and network snifling attacks. Perhaps,
the latter are the most dangerous attacks as a distributed
clectronic network (like Internet) has numerous access
points. There are authentication systems transmitting pass-
words 1n clear text (for mstance, Password Authentication
Protocol (PAP) RFC 1334-2, Telnet, and FTP). Certainly,
there 1s no protection at all 1n such cases. More protected
authentication systems transmit encrypted passwords over
clectronic networks.

There are several approaches 1n transferring an encrypted
password. The first one 1s based on the one-way encryp-
tion—calculating the password’s hash value with one of the
standard hashing algorithms (for example, SHA-1 Secure

Hash Algorithm, FIPS PUB 180-1, Secure Hash Standard,
1993, Apr. 17, or MD3 Message Digest Algorithms, RFC
1320 and RFC 1321, April 1992, by Ronald L. Rivest) at
both client and server locations. The client transmits the
hashed password (of the user at the client platform) to the
server, where 1t 1s compared with the password of the same
client (the same user at the client platform) from the data-
base connected to the server (typically, user passwords are
already stored in password files 1n hashed form for database
protection; that 1s why there 1s no need to perform text-to-
hash encryption operation). Unfortunately, the progress in
integrated circuit (ASIC, FPGA, etc.) design and manufac-
turing drastically reduced protection of hashed passwords,
as dictionary or brute force computer processing attacks
became extremely eflicient. It 1s worthy to note that some-
times 1ntercepting a hashed password 1s suflicient enough to
break the system without learning the actual password.

There are more sophisticated authentication systems
based on Challenge-Handshake Authentication Protocol
(CHAP, for instance, RFC 1334-3, RFC 1934, RFC 2759)
used by Microsolt for Windows NT remote log-in. The
server (the authenticator) sends the “challenge” to the client
(the peer), where the message gets encrypted using the
client’s (the peer’s) password. Actually, the “challenge™ sent
to the client platform 1s then encrypted at the client location
three times using the first seven bytes of the password’s hash
value as the first DES key (Data Encryption Standard and
other known encryption algorithms used for data encryption
and decryption described in Bruce Schneier, Applied Cryp-
tography, Second Edition, John Wiley and Sons, Inc., at pp.
233-560, (1996)); the next seven bytes of the password’s
hash value used as the second DES key, and the remaiming
two bytes of the password’s hash value concatenated with
five zero-filled bytes used as a third DES key. Eventually,
three 64-bit “responses” (the “challenge™ encrypted with
DES keys as described above) are sent back to the server
(the authenticator), where they are compared with the simi-
lar outputs calculated at the server. If the values match, the
authentication 1s acknowledged; otherwise the connection
should be terminated.

US 7,299,356 B2

3

Passwords (client/server shared secrets) in CHAP never
enter communication lines in either form. This 1s a serious
security advantage of this protocol. Also, CHAP prevents
playback attacks by using “challenges™ of a variable value.
The server (the authenticator) 1s 1n control of the frequency
and timing of the “challenge”. CHAP assumes that pass-
words are already known to the client and the server, and are
casily accessible during a CHAP session. However, frequent
usage ol the same static encryption keys derived from a
password on the client host, and applied to encrypt even
random “‘challenge” numbers sent in clear text to the client,
raises some security concerns. It provides ample opportu-
nities for intruders, smiiling the network with the following
oflline computer data processing attacks.

Various modifications of client/server authentication
employing a challenge/response protocol are disclosed 1n
Bellovin et al., U.S. Pat. No. 5,241,599, Kung et al., U.S.
Pat. No. 5,434,918, Pinkas, U.S. Pat. No. 5,841,871, Hell-
man, U.S. Pat. No. 5,872,917, Brown, U.S. Pat. No. 6,058,
480, Hoflstein at al., U.S. Pat. No. 6,076,163, Guthrie et al.,
U.S. Pat. No. 6,161,185, Jablon, U.S. Pat. No. 6,226,383,
Swift et al., U.S. Pat. No. 6,377,691, Brown, U.S. Pat. No.
6,487,667, Jerdonek, U.S. Pub. No. 2002/0095507. Some of
these patents go beyond security ofjust only an authentica-
tion process. They explore the opportunity of utilizing
challenge/response type protocols as a basis for an encryp-
tion key management system. This can extend security for
the entire communication session duration, allowing for
encrypted data transmission between parties once their
mutual authentication 1s completed.

U.S. Pat. No. 5,434,918 and U.S. Pat. No. 6,377,691
applied client/server authentication based on diflerent modi-
fications of a challenge/response protocol to exchange secret
keys (symmetric cryptography) between parties. There were
attempts combining challenge/response protocols with well-
known encryption key management systems. For instance,
U.S. Pat. No. 6,076,163 and U.S. Pub. No. 2002/0095507
disclose versions of a challenge/response protocol utilizing
an authentication and encryption key management system
based on PKI (Public Key Infrastructure (Hellman et al.,
U.S. Pat. No. 4,200,770, and Dithie at al., IEEE Transactions
on Information Theory, vol. I'T-22, No. 6 November 1976))
whereas U.S. Pat. No. 5,841,871 discloses a version of a
challenge/response protocol integrated with Kerberos (MIT,
1988; RFC 1510))—the authentication and encryption key
management system.

Another approach would be encrypting passwords (either
text or hash) with a secret key (symmetric cryptography) on
the client side, before transmission, and then, decrypt 1t on
the server side for comparison with the password stored in
the server-connected database. Though 1t can be a viable
solution, there are several security requirements making this
approach a very diflicult one to implement. The first 1ssue 1s
how to manage the session secret key distribution between
the client and the server. Otherwise, 11 the secret keys are
statically preset at the client and the server hosts, they
become a security concern by themselves. Moreover, having
static keys for numerous communication sessions makes
encrypted passwords vulnerable against offline computer
data processing attacks. There are protocols, not based on a
challenge/response type mechanism, where authentication

credentials are distributed over communication lines with
help of PKI. They were disclosed 1n Kaliski, U.S. Pat. No.

6,085,320, Kausik, U.S. Pat. No. 6,170,058, Kaliski, U.S.
Pat. No. 6,189,098, Spies, U.S. Pat. No. 6,230,269 and
Volger, U.S. Pat. No. 6,393,127. Despite recognized scien-
tific studies and long-time exposure, PKI and Kerberos

10

15

20

25

30

35

40

45

50

55

60

65

4

authentication and encryption key management systems
have not experienced a wide industry acceptance due to their
complexity, cost, and mandatory requirements to trust arti-
ficial third parties (see, for instance, Gartner QA-18-7301,
13 Nov. 2002, by V. Wheatman, Public-Key Infrastructure
Q&A, and DPRO-90693, 20 May 2003, by Kristen Noakes-

Fry, Public Key Infrastructure: Technology Overview;
USENIX, 91, Dallas, Tex., “Limitations of the Kerberos

Authentication System™, by Steven M. Bellovin and
Michael Merritt). SSL (Secure Socket Layer, based on PKI
protocol developed by Netscape Communications in 1994)
1s also known for 1its security deficiencies, high cost and
complexity 1n assuring “client browser”/“Web server”

encrypted communication (see, for mstance, Gartner T-16-
0632, 3 Apr. 2002, by J. Pescatore and V. Wheatman, and

FT-178896, 15 Aug. 2002, by J. Pescatore). Hence, there 1s
a significant interest 1 exploring other encryption key
management systems, similar to the challenge/response

authentication protocols mentioned above, for instance,
Fielder, U.S. Pat. No. 6,105,133, Alegre, U.S. Pat. No.

6,199,113, and Venkatram, U.S. Pat. No. 6,367,010.

Aspects of this invention are particularly concerned with
security of authentication systems and encrypted informa-
tion exchange over distributed computer networks. Prior art
encrypted authentication protocol implementations based on
PKI, SSL, and Kerberos exhibited numerous security flaws
and a prohibitive level of complexity and cost for various
applications, businesses and organizations. There 1s a sub-
stantial need for improved and more eflicient encrypted
authentication protocols, addressing less complex infra-
structures required, and less costly for practical implemen-
tation encryption key management systems. These improved
encrypted authentication protocols should also include
secure mutual authentication built into the protocols; ran-
domly generated session secret keys; new cryptographic
algorithms allowing for scalable security authentication and
data encryption, and further allowing for variation based on
the power of computer and network resources.

SUMMARY OF THE

INVENTION

In accordance with the present invention, there are two
secrets umquely shared by either client/server pair, or
authenticator/peer pair, and required for their mutual authen-
tication. In the preferred embodiments, both secrets will
suflice for a “what user knows” type authentication factor
and either could be 1n a form of passwords or PINs, though
other types of shared secrets can be used. Like other
challenge/response type authentication protocols, where
shared secrets are never 1n transit over communication lines,
the protocol of the present invention does not allow shared
secrets to pass through untrusted communication media. In
order to avoid transmission of the shared secrets, a new
encryption key management system has been integrated into
the authentication protocol, becoming an essential part of
the protocol 1tself.

The main function of this encryption key management
system 1s a secure distribution within either client/server
pair, or authenticator/peer pair ol a secret session random
key (the same secret key 1s used 1n symmetric cryptography
to encrypt and then decrypt digital information). Successiul
exchange of this encryption key enables secure resolution of
two fundamental tasks. First, 1t allows for secure transit of
the protocol data over communication lines in encrypted
form, permitting explicit mutual authentication of the con-
nected parties. Second, the post-authentication stage of the

US 7,299,356 B2

S

communication session can use secure encryption for the
data exchange, since each party has already obtained the
secret session random key.

A series of new algorithms has been developed in the
present invention and built into the new encryption key
management system mentioned above. There 1s an algorithm
(Time Interplay Limited Session Random Key (SRK) Algo-
rithm (TILSA)) for generating and eventually obliterating
arrays of session secret random keys. It starts long before the
session begins and keeps processing these arrays during
cach communication session and well beyond 1t. At the same
time, this algorithm allows concurrent communication
between a number of client/server or authenticator/peer pairs
with the same keys in the generated arrays (the multi-
threading technology).

Another algorithm (Key Encryption/Decryption Iterative
Algorithm (KEDIA)) 1s imtialized, provided there 1s a
request for connection. It initiates an iterative sequence of
messages from the server to the client and back to the server,
cach containing a consecutive session secret random key,
encrypted with the session secret random key preceding the
encrypted one 1n the array, and sent to the client 1in the
previous message. The client can decrypt any following
message and obtain an intermediate session secret random
key from the array, provided the client could decrypt the
previous message. The iterations continue until client/server
(or authenticator/peer) mutual authentication 1s completed,
and the Final Secret Key (FSK) 1s exchanged between the
parties. More particularly, client/server (or authenticator/
peer) authentication credentials and FSK eventual high
security are achieved by applying, during each cycle of key
encryption at the server (and its decryption at the client
platform), either of Byte-Veil-Unveil (ByteVU), Bit-Veil-
Unvell (BitVU), or Byte-Bit-Veil-Unvell (BBVU) algo-
rithms. Each of these algorithms disassembles message
bytes, or bits, or both bytes and bits 1n combination, together
at the server and reassembles them at the client according to
a certain procedure, which 1s started with the pair’s shared
secret. In other words, the client/server or authenticator/peer
pair employs their shared secret to first build the session
“security bridge” over the untrusted communication
medium until “the bridge” 1s believed secure enough. Then,
the authentication credentials can be safely tested with
ByteVU, BitVU, or BBVU algorithms at the respective
counterparts for the final mutual authentication, enabling the
communication session. Otherwise, 1f the mutual authenti-
cation 1s not completed, the communication session 1s ter-
minated.

In one aspect of the invention, the client/server authenti-
cation protocol (Message Encrypt/Decrypt Iterative Authen-
tication (MEDIA) protocol, which includes the encryption
key management system described above), 1s highly resilient
against session eavesdropping attacks, replay attacks, man-
in-the-middle attacks, online and ofiline computer-process-
ing attacks (like a dictionary attack or a brute force attack),
and session hijacking attacks. Inability to successiully com-
plete the MEDIA protocol can be regarded as intrusion
detection (1f there are more than just a few failed attempts
from the same client caused by mistyping the entry data by
a user on the client platform, or inaccurately set up hardware
authentication credentials).

In another aspect of the mvention, the MEDIA protocol
ends up with a FSK secret key, which can be used beyond
the client/server authentication protocol stage of the com-
munication session for encrypting data in transit and
decrypting it upon arrival either to the server, or to the client.
Security of FSK, and authentication credentials (client/

10

15

20

25

30

35

40

45

50

55

60

65

6

server shared secrets) are guarded by five security tiers of the
MEDIA authentication protocol and can be scaled with the
client and server platforms’ CPU power and the network
throughput. In order to enhance security, FSK, as well as the
entire series of preceding FSK session iterative random
secret keys of the MEDIA protocol, are never transmitted
over untrusted electronic communication media 1n their
original form, or as their hash equivalents.

In yet another aspect of the invention, the MEDIA pro-
tocol contains the encryption key management system,
integrated into the protocol, represented by TILSA, KEDIA
and ByteVU, BitVU, or BBVU algorithms. Their collective
utilization assures randomly generated arrays ol session
secret keys, having limited life time and enabling eflicient
key encrypt/decrypt 1iterative messaging procedures,
employing for each instance of iteration (each message
encrypted on the server and decrypted on the client) a shared
secret (password, PIN, or pattern) known only to the client
and to the server. Moreover, the shared secrets (for instance,
client and server passwords) are never transmitted over
untrusted communication media 1n any form.

In still another aspect of the invention, the five security
tiers of the MEDIA protocol provide for a message confi-
dentiality (no one can read messages; this 1s increasingly
true with the increased number of SRK 1n the TILSA and the
number of message iterations i the KEDIA). Message
integrity 1s preserved because, 1f an intruder altered or 1n
some way tampered with the message 1n the conversion
array, potentially available to an intruder while 1t 1s 1n transit
on communication lines, then 1t will be impossible for
ByteVU, BitVU, or BBVU algorithms to reassemble the
encrypted keys or authentication credentials, either at the
client or at the server. Message non-repudiation 1s guaran-
teed by the mutual authentication mechanism (the fifth
security tier)—without exception only the client and the
server know their shared secrets and respectively could send
a message.

In a further aspect of the mvention, the post-authentica-
tion part of the MEDIA session continued with FSK can also
employ such message integrity control technique as encrypt-
ing with FSK the message hash, before the message 1is
encrypted with FSK. Then the message hash can be
decrypted with FSK on the receiving end, and compared
with the same message, hashing 1t after having the message

decrypted with FSK.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects, features, capabilities and advantages
of the present invention will be apparent from the following
detailed description when read in conjunction with the
accompanying drawings in which:

FIG. 1 1s a graphic 1illustration of the Time Interplay

Limited SRK (Session Random Key) Algorithm (TILSA)
according to the present invention.

FIG. 2 1s a graphic illustration of the Array of Data
Encryption Keys (ADEK) branch of the TILSA algorithm

according to the present ivention.

FIG. 3 1s a graphic illustration of the Key Encryption/
Decryption Iterative Algorithm (KEDIA) according to the
present 1nvention.

FIG. 4 1s a graphic illustration of the KEDIA typical
message encryption at the server and 1ts decryption at the
client applying one of Byte-Veil-Unveil (ByteVU), Bit-Veil-
Unveill (BitVU), or Byte-Bit-Veil-Unveill (BBVU) algo-
rithms according to the present invention.

US 7,299,356 B2

7

FIG. 5§ 1s a block diagram of the Byte-Veil-Unveil
(ByteVU) algonthm according to the present invention.

FIG. 6 1s a block diagram of the Bit-Veil-Unveil (BitVU)
algorithm according to the present invention.

FIG. 7 1s a block diagram of the Byte-Bit-Veil-Unveil 5
(BBVU) algorithm according to the present imnvention.

FIG. 8A 1s the Message Encrypt/Decrypt Iterative
Authentication (MEDIA) protocol (the server side) accord-
ing to the present invention.

FIG. 8B 1s the Message Encrypt/Decrypt Iterative 10
Authentication (MEDIA) protocol (the client side) accord-
ing to the present invention.

FIG. 9 illustrates the Graphical User Interface (GUI)
ecnabling client/server mutual authentication at the client
platform according to the MEDIA protocol, and a graphical 15
illustration of the distributed protected network resources,
including the authentication server, and the user base for
which the MEDIA protocol 1s used, according to the present
invention.

20
DETAILED DESCRIPTION

According to the present invention, there are shared
secrets (several secrets are needed 1n strong authentication
cases and also 1n a case of mutual authentication) between 25
two parties attempting to establish trust over untrusted
clectronic communication media. Shared secrets are usually
established during an account open procedure. Though the
server password could be shared by the plurality of users, 1t
1s assumed, without sacrificing any generality of the dis- 30
closed authentication protocol, that the preferred embodi-
ment of this invention 1s to provide a unique server password
for each user. Account set/reset online automated utilities
would greatly facilitate establishing uniquely personalized
server and user passwords. Client/server or d2d (authenti- 35
cator/peer) communication sessions would be typical cases,
though the client/server protocol would remain the pretferred
embodiment. There are no limitations on the nature of the
shared secrets used. They could be “what user knows”
secrets, for example, passwords, or “what user has™ secrets, 40
1.€., tokens and smart cards, or, alternatively, “what user 1s”
secrets, for example, biometrics. However, the preferred
embodiments would relate to secrets in the category of
“what user knows”. Also, there are no limitations on the
network layer over which the authentication protocol 1s 45
established—it could be TCP/IP stack, IPsec, or other com-
munication protocols. Nevertheless, the preferred embodi-
ments will assume HTTP (RFC 2068 Hypertext Transier
Protocol—HTTP/1.1 January 1997). Also, the invention
implies contemporary object-oriented software technologies 50
like Java, C++, and .NET, providing multi-threading, seri-
alization, servlet and applet techniques, library of crypto-
graphic algorithms, GUI (Graphical User Interface) capa-
bilities, and connectors/drivers like JDBC to standard
commercial databases. 55

FIG. 1 1s a graphic illustration of the Time Interplay
Limited SRK (Session Random Key) Algorithm (TILSA)
according to the present mnvention. Before any communica-
tion session starts, the server-placed logic continuously and
periodically generates (Session Random Key Generator 60
1005) an array (Array of Session Keys (ASK) 1013) of
Session Random Keys (SRK) 1011—secret keys (symmetric
cryptography). Each key has two different lifetimes. The
first lifetime (LLT1) 1s the lifetime for establishing a client/
server communication session, provided there 1s a request 653
from a client or plurality of clients (Client 1 1003, Client 2
1007, ..., Client N-1 1008, and Client N 1009) during L.'T1

8

to 1nitiate a communication session. Each client can estab-
lish a communication link 1015, 1006, . . ., 1016, 1017 to
Web Server 1002 and Compute/Applications Server 1001
through communication network 1004. The beginning of
['T1 1014 1s synchronized with each SRK 1011 generation,
placing 1t mto ASK 1013.

For mnstance, in FIG. 1, SRK1 appears in ASK 1013 at the
time mark “0 minute”, and at the moment that time mark 1
minute LT1 of SRK1 has expired, though SRK1 remains
inside ASK 1013. SRK Generator 1005 at this moment
generates SRK 2 and places 1t into ASK 1013. By the time
mark 2 minutes SRK 2 L'I'1 has expired, even though SRK
2 remains inside ASK 1013. Again, at this time SRK
Generator 1005 generates and places into ASK 1013 SRK 3,
which LT1 becomes expired at the 3 minutes mark. This
procedure 1s periodically repeated as long as SRK Generator
1005 1s on. Chent 1 1003 and Client N 1009 made a
connection request during the time interval between time
mark 4 minutes and time mark 5 minutes, since SRK
Generator 1005 began generating SRK 1011 and filling them
into ASK 1013. The only SRK 1011 not yet expired L11 1n
ASK 1013 durning this time interval 1s SRK 3. Therefore,
SRK 5 1s used to establish communication sessions with
these clients. Similarly, Client 2 requested a communication
session between time mark 8 minutes and time mark 9
minutes, whereas Client N-1 requested a communication
session between time mark 1 minute and 2 minutes. Hence,
the SRK 1011 used to establish these communication ses-
sions are, respectively, SRK 9 and SRK 2.

Once LT1 1s expired, the server generates and places nto
ASK 1013 another SRK 1012, which LT1 1s just started.
SRK 1011 second life time L'T2 defines the life time 1nside
the limited size ASK 1013. The maximum size of ASK 1013
can be characterized with the parameter Nmax which 1ndi-
cates maximum number of SRK 1011 1n ASK 1013 possible
(for instance, Nmax=>5 in FIG. 1). Typically, LT1<I'T2, and
in the most preferred embodiment LT1 can be derived as
LT1=LT2/Nmax. Without sacrificing any generality limita-
tions of TILSA, L'T2 was chosen, for example, to be equal
to 5 minutes 1n FIG. 1. Then, L'T1 according to the formulae
presented above, 1s equal to 1 minute. After L'T1 expired, for
any given SRK 1011, the key has LT2-LT1 time remaining
to support communication session threads having been 1ni-
tiated during LT1. Once LT2 expired, SRK 1011 1s removed
from ASK 1013, effectively canceling any further partici-
pation of this particular SRK 1011 1n the parties’ commu-
nication session engagements. Certainly, each SRK 1011 can
be used to originate multiple threads of commumnication
sessions with each Session Elapsed Time (SET) less or equal
to LT2-LT1. However, SET=L12-L11 1s the preferred
embodiment. Without sacrificing any generality limitations
of TILSA, SE'T=4 minutes in FIG. 1. Taking SRKS5 in FIG.
1 as an example of any SRK 1011 genesis, one can note that
SRK 5 i1s the last key to fulfill ASK 1013 to its maximum
s1ze Nmax=5, and SRK 5 appears inside ASK 1013 at the
4-minute mark, since SRK Generator 1005 began generating
SRK 1011 and filling them into ASK 1013. Then, during
SRK 5 LT1=1 minute, the key can be engaged into 1nitiating,
multiple communication session threads with the clients
requesting connections. From time mark 5 minutes, and until
time mark 9 minutes, SRKS, in accordance with SET=4
minutes, 1s kept inside ASK 1013 available to support
communication session threads started during SRK 5 LT1.
During this particular time interval, from time mark 35
minutes to time mark 9 minutes, SRK 1, SRK 2, SRK 3, and
SRK 4 1 ASK 1013 are being gradually replaced every
minute by SRK 6, SRK 7, SRK 8, and SRK 9, respectively.

US 7,299,356 B2

9

Eventually, at time mark 9 minutes SRKS i1s canceled,
ultimately being replaced by SRK 10.

This Time Interplay Limited SRK Algorithm (TILSA) 1s
the first security tier of the authentication protocol, assuring
supply of SRK 1011 to mitiate any client/server communi-
cation session. However, the time to 1nitiate a session
(approximately one minute, without sacrificing any gener-
ality limitations of TILSA) and the time to continue the
session authentication protocol (possibly several minutes,
without sacrificing any generality limitation of TILSA) are
quite limited for any given SRK 1011, thus hindering a
possible intruding activity.

FIG. 2 1s a graphic illustration of the Array of Data
Encryption Keys (ADEK) branch of the TILSA algorithm
according to the present invention. The essential part of
TILSA 1s generating (Data Random Key Generator 2005) an
array ol Data Random Keys (DRK) 2013—secret keys to
support the authentication session for any particular SRK
1011 starting a communication session thread. This array of
DRK (Array of Data Encryption Keys (ADEK) 2012) is
regenerated and specifically attributed to each SRK 1011,
together and concurrently with originating any new SRK
1011 with the logic located on the server side; explaining
why there 1s no latency i the DRK supply during a
client/server encrypted authentication session. The number
of DRK 2013 in ADEK 2012 1s fixed, acting as a security
parameter for the MEDIA authentication protocol being
presented. Each ADEK 2012 can be used for a plurality of
threads 1initiated with a particular SRK, to which this ADEK
2012 belongs. The ADEK 2012 lifetime 1s limited and equal
to the lifetime of the originated SRK 1011 in ASK 1013,
being LT2. Deleting SRK 1011 from ASK 1013 inevitably
deletes ADEK 2013, corresponding to this SRK 1011.

Once the client requested a connection to the server
supported by the user name of the user on the client platform
(or the client host name), a suitable SRK 1011, accompanied
by L'I'1, not yet expired, 1s sent to the client by the server. In
the most preferred embodiment of this invention, SRK 1011
1s sent to the client 1n a compiled form (for example, as a
class file). This 1s the second security tier of the authent-
cation protocol, 1n view of the fact that reengineering a
compiled key given a short SRK 1011 hifetime L'T2 1s a
formidable task. Therefore, the first two security tiers make
SRK 1011 quite resilient to the on line attacks during the
session time, because of incommensurate times to reengi-
neer SRK 1011 versus SRK 1011 expiration time LT2.
However, SRK 1011 1s still vulnerable against off line
attacks and needs to be enhanced further to avoid any loss
ol authentication credentials and the eventual session Final
Secret Key (FSK).

Since SRK 1011 1s sent to the client as the first message,
the logic located on the server and on the client sides
generates a series of messages having been sent from the
server to the client, and back to the server with the following
Key Encryption/Decryption Iterative Algorithm (KEDIA).
FIG. 3 1s a graphic illustration of the Key Encryption/
Decryption Iterative Algorithm (KEDIA) according to the
present invention. In step 1 3005, client 3002 sends a
connection request to server 3001 over communication
network 3003. In step 2 3006, SRKi1 (with the currently
active LT1—between time mark 1—1 minutes and time mark
1 minutes) 1s sent to client 3002, and stored there, 1mtiating
the communication interface. In step 3 3007, client 3002
enters the user name, the user password, and the server
password, 1f 1t 1s a user at the client platform 3002, or the
host name, the host ID, and the server password, 1t it 1s the
client platform (the peer). In step 4 3008, the user name (or

10

15

20

25

30

35

40

45

50

55

60

65

10

the host name) 1s hashed, encrypted with SRKi1 and sent to
server 3001, while the user password (or the host ID) and the
server password were not sent, remaining at client 3002.
In step 5 3009, server 3001 checks the validity of the user
name (or the host name), obtained in the step 4, through the
database to which 1t 1s connected. The session 1s terminated,
if the user name (or the host name) 1s not valid. Otherwise,

server 3001 1n step 3009 sends DRK 1 encrypted with SRK1
to client 3002, where DRK 1 1s decrypted with SRKi, and
stored at client 3002. During the same step 3009, client 3002
sends a DRK 1, which 1s converted to 1ts hash equivalent and
encrypted with DRK 1, to server 3001. This message con-
firms to server 3001 that client 3002 obtained and decrypted
DRK 1, and 1t 1s ready for recerving another secret key. In
step 6 3010, server 3010 first decrypts hashed DRK 1,
received 1n step S from client 3002, with DRK 1. If DRK 1
1s correct, server 3001 sends DRK 2 encrypted with DRK 1
to client 3002, where DRK 2 1s decrypted with DRK 1, and
stored at client 3002. Otherwise, the communication session
1s terminated. During the same step 6 3010, client 3002
sends a DRK 2, converted to its hash equivalent, and
encrypted with DRK 2, to server 3001. This message con-
firms to server 3001 that client 3002 obtained and decrypted
DRK 2, and it 1s ready for receiving another secret key.

This 1terative process continues up to step n 3014. Param-
eter n 1s actually the maximum number of DRK 2013 1n
ADEK 2012 (FIG. 2), and should be chosen for any practical
implementation of this encrypted authentication protocol.
Then, assuming DRKn-1 hash received from client 3002 1n
the previous step n—1 1s correct, server 3001, sends DRKn,
encrypted with client 3002 hashed password (taken from
server database 3004, as server 3001 knows from step 4
3008, the identification of the client (or the user on the client
platform)) to client 3002, where DRKn 1s decrypted with the
client 3002 password, stored at the client side in step 3.
During the same step n, client 3002 sends to server 3001
hashed DRKn encrypted with the client 3002 password,
stored at client 3002 at step 3 and converted to its hash
equivalent. Step n 1s an important first phase towards client/
server mutual authentication. Indeed, the client can decrypt
DRKn only 1n the case where client 3002 knows the user
3002 password. Then, client 3002 encrypts hashed DRKn
with the client 3002 hashed password, as a secret key and
sends 1t back to server 3001 in same step n 3014. Having
received DRKn encrypted with client 3001 password, server
3001 decrypts 1t with the client 3001 password, and, 11 1t 1s
correct, server 3001, in step n—1 3015, sends to client 3002
DRKn encrypted with hashed server 3001 password as a
key.

Certainly, client 3002, already aware of DRKn from the
previous step n 3014, compares the result of decrypting the
last message with the server 3001 password, stored at client
3001 1n step 3 3007, and converted to its hash equivalent,
with DRKn. If they are the same, the client 1s assured that
the communication session 1s with the correct server, as only
client 3002 and server 3001 know the server 3001 password.
Otherwise, the client 3002 terminates the communication
session, and intrusion detection 1s reported. Eventually,
during same step n+1 3015, client 3002 sends to server 3001
hashed DRKn encrypted with the server password, stored at
client 3002, at step 3 3007, and converted to its hash
equivalent. This message, transmitted back to server 3001,
means that client 3002 has established trust to server 3001.
In step n+2 3016, server 3001 decrypts hashed DRKn with
the server password from the 3004 database connected to the
server, and compares the result with DRKn at server 3001.
Depending on the comparison results, server 3001, during

US 7,299,356 B2

11

same step n+2 3016, sends to client 3002 the authentication
signal “go/no” encrypted with DRKn-1, stored at client
3002, at the step, prior to step 3014. This completes the
client/server mutual authentication and Final Secret Key
(FSK) exchange according to the KEDIA algorithm.

One encryption/decryption algorithm used 1n an embodi-
ment of the mnvention 1s the Triple Data Encryption Standard
block cipher algorithm. Triple-DES (3DES), based upon the
Triple Data Encryption Algorithm (TDEA), 1s described 1n
FIPS 46-3. Other block cipher algorithms are also suitable,
including RC6, Blowfish/Twofish, Rijndael, and AES. See,
Bruce Schneier, Applied Cryptography, Second Edition,
John Wiley and Sons, Inc., cited above.

In this form the KEDIA algorithm, described above as
part of the authentication communication protocol, 1s the
third security tier, eflicient against online and offline intrud-
ing attacks. Among other factors, the security against online
attacks 1s increased due to eflectively extending the time,
needed by an intruder to decrypt the entire series of DRK
2013 1n ADFEK 2012, whereas the ADEK 2012 life time 1s
quite limited and 1s actually equal to L'12, the same as for
SRK 1011, which originated this ADEK 2013. As mentioned
above, the number of DRK 2013 in ADEK 2012 i1s the
authentication protocol security parameter and can be cho-
sen according to the security requirements, considering the
actual system CPU and network resources. Security against
ofiline attacks 1s assured through the mutual client/server
authentication utilizing shared secrets known only to the
client, and to the server. Moreover, the client supposed to
perform a strong (two factors) authentication, as the KEDIA
algorithm requires the client to enter correctly the client (the
user on the client platform) password and the server pass-
word, unique to the client (the user on the client platform).
Important security feature of the KEDIA algorithm are (1)
that client/server passwords never enter communication
lines 1n either form, (2) client/server pair performs mutual
authentication 1n steps n 3014, n+1 3015, and n+2 3016, and
(3) client/server pair exchanges FSK enabling transmitted
data encryption during the post-authentication stage of the
communication session.

In the case where an intruder intercepts the last message
in step n+2, and somehow knows the format of the “go/no”
authentication signals, a brute force computer processing
attack could be applied to uncover DRKn-1. However, the
intruder would only gain limited access as DRKn-1 1is

detached from client/server authentication credentials, and
from DRKn (which 1s FSK 1n this particular embodiment of

the KEDIA algorithm).
Therefore, an oflline attack 1s senseless, as the intruder

going backward through steps 3013, 3010, 3009, and 3008
could find DRKn-2 DRKn-3, ..., DRK 1, and eventually
SRK1, which are all only one-time session random keys, and
they can not be reused. Certainly, the intruder could further
decrypt the user name; however, this 1s not regarded as a
secret. The time DRKn-1, operating during the client/server
communication session, 1s excruciatingly small for attempt-
ing an online computer processing attack. Even assuming
this attack successtul, all, the intruder could do 1s to send to
client 3002 an incorrect authentication signal, which will be
visualized 1n the user’s session GUI, but would never take
cllect 1n the actual system. This 1s because the authentication
signal “go/no” enables Tunctionality through the server 3001
side logic.

The KEDIA algorithm security has been further signifi-
cantly enhanced by integrating and synthesizing 1t with the
Byte-Veil-Unveil (ByteVU) algorithm, the Bit-Veil-Unveil
(BitVU) algorithm, and the Byte-Bit-Veil-Unveill (BBVU)

10

15

20

25

30

35

40

45

50

55

60

65

12

algorithm. All three algorithms are built around the 1dea that
every encrypted message 1n the client/server dialogue 1n the
KEDIA algonthm 1s a fixed byte size, relatively small
(typically 16 bytes) message. The algorithms employ the
fact that the server already has identified who the client
pretends to be, alter receiving the user name (or the host
name) during the mitial connection request. At this time, the
server finds the password, or another shared secret, corre-
sponding to the user name (or the host name), 1n the server
database 3004, connected to the server. Then, the server
employs this information to disassemble only message
bytes, or only bits, or the combination thereof, inside a
certain conversion array, making their reassembling a highly
improbable task, unless the client knows the shared secret.
In this case, the message, which 1s the encrypted key, is
casily recovered and eventually decrypted with the secret
key, learned from the previous message.

FIG. 4 1s a graphic illustration of the KEDIA algorithm.
This 1s a typical message encryption at the server and 1ts
decryption at the client, applying along with encryption and
decryption procedures one of Byte-Veil-Unveil (ByteVU),
Bit-Veil-Unveil (BitVU), or Byte-Bit-Veil-Unveill (BBVU)
algorithms, according to the present invention. Step 6 3010
has been chosen as a typical message example 1n the KEDIA
algorithm. According to FIG. 3, during this step, server 3001
sends DRK 2 encrypted with DRK 1 to client 3002, where
DRK 2 1s decrypted with DRK 1, received by client 3002 1n
the previous step 3009 from server 3001. In FIG. 4, step
3010 1s split for clarity into two parts 4001 and 4002, which
are related to preparing the message at server 3001, and
treating the recerved message at client 3002, respectively.
Blocks 4003, 4005, 4007, and 4009 depict the process the
message 1s going through, before it 1s sent to client 3002,
DRK 2 (for instance, 16 bytes long, secret key to be used
with a block-cipher encryption algorithm) 1s supplied by
Server DRK Generator 2005 (see FIG. 2) 4003. In the
following step 4005, server 3001, already having identified
who claims to be the user on the client platform, (or what 1s
the claimed client platform host name), extracts the respec-
tive user password (or the client host ID) from the database
3004 attached to server 3001. Eventually, according to block
4007, server 3001 uses this information to trigger operation
of one of ByteVU, BitVU, or BBVU algorithms, having
been chosen by a particular security system, considering
security requirements vs. cost trade-ofls (time of operations,
CPU power of client/server platforms, and the network
throughput). As a final result 4009, the conversion array,
containing disassembled DRKj bytes, or bits, or the com-

bination thereof, gets encrypted with DRK1, and sent to
client 3002.

Part 4002 of step 3010, related to the received message
treatment at client 3002, 1s expanded by the series of blocks
4004, 4006, 4008, and 4010 1n FIG. 4. According to block
4004, client 3002 decrypts the conversion array with DRKj-
1, stored by client 3002 from the previous message 3011
from server 3001. Then, client 3002 supplies the user
password (or the client host ID) which was entered into the
KEDIA algorithm at step 3 3007 (see FIG. 3), enabhng
reassembling of DRK 2 from the decrypted conversion array
4006. As 1t 1s shown 1n block 4008, the operation 1s triggered
for one of ByteVU, BitVU, or the BBVU algorithms, having
been chosen on the client side the same one, as on the server
side. Eventually, according to block 4008, either the mes-
sage bytes, or bits, or the combination thereof, get reas-
sembled, and finally, as 1t 1s shown 1n block 4010, DRK 2 1s

reconstructed to 1ts original form.

US 7,299,356 B2

13

In compliance with FIG. 4, each message of the KEDIA
algorithm employs additional treatment as compared to the
standard encryption/decryption operations. This treatment 1s
triggered by the client/server shared secret at the sending
and recerving communication channel ends. FIG. 5 1s a

block diagram of the Byte-Veil-Unveil (ByteVU) algorithm

according to the present invention. Block 5001 shows DRK],
where each byte 1s separated from a neighboring byte with
a vertical bar. Without sacrificing any generality of the
ByteVU algorithm, DRK]j 1s assumed to be a 16-bytes key
in FI1G. 5. The user password (or the client host ID), supplied

by server 3001 in a hashed form, plays a seed role for Server
Sequential Random Number Generator (SRNG) 5002.
SRNG 5002 generates a random sequence of integers, and it
1s the same sequence of integers, each from 1 to 10, for any
given seed. In other words, the password (or the client host
ID) and the SRNG sequence of integers are uniquely asso-
ciated. Block 5005 introduces a conversion array which,
without sacrificing any generality limitations of ByteVU
algorithm, has 16 equal sections 5006, 5007, 5008, 5009,
and 5010, with 10 bytes per each section. FIG. 5 presents an
exemplary case, when SRNG 5002 generated 16 sequential
integers 4, 9, . .., 2, and 7.

The first integer 4 1s used by the logic located by the
server 3001 to replace byte r1,4 in the first section 5006 of
conversion array 5003 by the first byte xhl of DRKj1n 5001.
Similarly, the second integer 9 1s used by that same logic to
replace byte r2,9 in the second section 53007 of conversion
array 30035 by the second byte xh2 5012 of DRKJ 1n 5001.
The same procedure 1s applied to all integers 1n the sequence
generated by SRNG 5002, until DRKJ 157 byte xh15 in
5001 is replacing the 27 byte r15.2 in the 15 th section
5009 of conversion array 5005, and eventually DRKj 16™
byte xh16 in 5001 is replacing the 77 byte r16,7 in the 16
section of conversion array 5005. Once all bytes of DRKj
are veiled 1n this manner inside conversion array 5005, the
entire conversion array 5005 1s encrypted with DRKj-1, and
the message 1s sent to client 3002. At client 3002, the
encrypted conversion array 1s decrypted with DRKj-1, saved
at client 3002, from the previous server message (step 3011

in KEDIA, FIG. 3).

The next procedure, reversed as compared to the proce-
dure described above on the server 3001 side, 1s applied. The
user password (or the client host ID) saved at the client
platform 1n step 3007 of the KEDIA algorithm (see FIG. 3)
1s supplied 1n a hashed form as a seed to Client Sequential
Random Number Generator (SRNG) 5003, identical to the
one on the server 3001 side. This password (or host ID)
triggers SRNG 35003 to generate the same sequence of
integers, as on server 3001 side betore 4,9, . . ., 2, 7. Then,
the logic placed on client 3002 used the first integer 4 to
extract DRKj first byte xh1 from the fourth position 1n first
10 bytes section 5006 of conversion array 5005, and place
it back in the 1% position of DRKj 5001. Consequently, the
second 1nteger 9 1s used to extract DRKJ second byte from
the 9 position in 10 bytes section 5007 of conversion array
5005, and place it back into the 2’? byte position of DRK]
5001. This procedure is going on, until, eventually, the 15
byte of DRKj xh15 is extracted from the 2”? byte position in
157 10 bytes section 5009 of conversion array 5005, and
placed back into 157 byte position of DRKj 5001 as well as
the 16” th byte of DRKj xh16 5011 extracted from the 7%
byte position in 157 10 bytes section 5010 of conversion
array 5005, and placed back into 15 byte position of DRKj
5001. This completes the reassembling procedure of the
ByteVU algorithm to restore DRKj at client 3002.

10

15

20

25

30

35

40

45

50

55

60

65

14

A suitable sequential random number generator SRNG for
use 1n embodiments of the invention 1s a Java version of the
well known “Lehmer generator.” See, Park & Miller, “Ran-
dom Number Generators, Good Ones are Hard to Find.,”
Communications of the ACM, Vol. 31, No. 10, (1988), pages
1192-1201.

FIG. 6 15 a block diagram of the Bit-Veil-Unveil (BitVU)
algorithm according to the present invention. The BitVU
algorithm 1s a natural extension of the ByteVU algorithm.
Instead of veiling bytes of DRK], the BitVU algorithm veils
bits of DRK]j. It 1s assumed, without sacrificing any gener-
ality limitations of the BitVU algorithm, that DRKj bit size
1s 128 bits 6001. Each bit of DRKj in 6001 1s separated from
a neighboring bit with a vertical bar. Server Sequential
Random Number Generator (SRNG) 6002 uses the user
password (or the client host ID) supplied by the server in a
hashed form as a seed, allowing for the generation of a
random series of 128 integers with values ranging from 1 to
128 (for instance, 4, 127, . . ., 4, 2), and each one pointing

to a DRKj consecutive bit veiled position in conversion
array 6005, respective sections 6006, 6007, . . ., 6008, . . .,

6009, and 6010 of 128 bit size each. In other words, the
password (or the client host ID) and the SRNG 6002
sequence of integers are uniquely associated.

Block 6005 introduces a conversion array which, without
sacrificing any generality limitations of BitVU algorithm,
has 128 equal sections 6006, 6007, . . ., 6008, . .., 6009,
and 6010, with 128 bits per each section. FIG. 6 presents an
exemplary case, when SRNG 6002 generated 128 sequential
integers 4, 127, , 4, and 7. For this exemplary case
disclosed 1n FIG. 6 the 1“‘?’If bit of DRKj 6001 yhl 1s put mnto
the 47 bit position of first section 6006 instead of rl,4 bit;
then the 27 bit of DRKJ 6001 yh2 6012 is put into 1275'*' bit
position of second section 6007 instead of r2,127 bit, and so
on, until 1277 bit of DRKj 6001 is put into the 4™ position
of 1277 section 6009 instead of r127.4 bit. Ultimately, the
128" bit of DRKj 6001 is put into the 2" bit position of the
1287 section 6010 of conversion array 6005 instead of
r128.2 bit. Once all bites of DRKj are veiled 1n this manner
inside conversion array 6005, the entire conversion array
6005 1s encrypted with DRKj-1, and the message 1s sent to
client 3002.

At client 3002, the encrypted conversion array 1s
decrypted with DRKj-1, saved at client 3002, from the
previous server message (step 3011 1n the KEDIA algorithm,
FIG. 3). Then the procedure, a reversed one as compared to
that which 1s described above for the BitVU algorithm on
server 3001 side, 1s applied. The user password (or the client
host ID) saved at the client platform 1n step 3007 of the
KEDIA algorithm (see FIG. 3) 1s supplied in a hashed form
as a seed to Client Sequential Random Number Generator
(SRNG) 6003, 1dentical to the one on the server 3001 side.
This password (or host ID) triggers SRNG 6003 to generate
the same sequence of integers as on server 3001 side before,
thatis 4, 127, ...,4, 2. Then, the logic placed on client 3002
used the first 111teger 4 to extract DRKj 1% byte yh1 from the
4™ position in 1°* 128 bits section 6006 of conversion array
6005, and placed it back in the 1% position of DRKj 6001.
Consequently, the second integer 127 1s used to extract
DRKj 2”7 bit from the 127" position in 2”? 128 bits section
6007 of conversion array 6005, and place it back into the 2”¢
bit position of DRKj 6001. This procedure continues until,
ultimately, the 1277 bit of DRKj yh127 is extracted from the
4™ bit position in 1277 128 bits section 6009 of conversion
array 6005, and placed back into 1277 bit position of DRKj
6001, as well as the 128" bit of DRKj yh128 6011 being

extracted from the 2 bit position in 128” 128 byte size

US 7,299,356 B2

15
section 6010 of conversion array 6005, and placed back into
128" bit position of DRKj 6001. This completes the reas-
sembling procedure of the BitVU algorithm to restore DRKI
at client 3002.

FIG. 7 1s a block diagram of the Byte-Bit-Veil-Unveil
(BBVU) algorithm according to the present invention. Block
7001 shows DRKj, where each byte 1s separated from a
neighboring byte with a vertical bar. Without sacrificing any
generality limitations of the BBVU algorithm, DRKIJ 1s
assumed to be a 16-bytes key 1n FIG. 7. The user password
(or the client host ID), supplied by server 3001 1n a hashed
form, plays a seed role for Server Sequential Random
Number Generator (SRNG) 7002. SRNG 7002 generates a
random sequence of 16 integers, and then the server’s
Sequential Direct Bit Position Scrambler (SDBPS) 7006
scrambles all bit positions in the veiled byte 7010. SDBPS
7006 generates a random series ol non-repeating eight digits
within the range from 1 to 8, for each of SRNG 7002
integers in the sequence. In other words, the password (or
the client host ID), the SRNG 7002 sequence of integers, and
the series of digits generated by SDBPS 7006 are uniquely
associated. Applying the same seed (the user password, or
the server host 1D, 1n a hashed form) will result in the same
sequence of integers generated by SRNG 7002, and the same
series of digits generated by SDBPS 7006 for each integer

in the sequence.

Block 7006 introduces a conversion array which, without

sacrificing any generality limitations of the BBVU algo-
rithm, has 16 sections similar to 7008, with 10 bytes per
section. Similarly to the ByteVU algorithm, each section
will veil one byte of DRKj 7001 1n a position, respective to
the particular iteger value generated by SRNG 7002. For
instance, the 1°* byte of DRKj 7001 xh1 occupies the 4™ byte
position 1n section 7008, replacing r1.4 byte. FIG. 7 presents
an exemplary case, where the 1° DRKj byte xh1 has an 8-bit
representation from the most significant bit xh1,8 to the least
significant bit xh1,1 7009, and chosen as 01011101 in FIG.
7 7009. SRNG 7002 generated 16 sequential integers
4, . . ., while SDBPS 7006 generated a series ol eight
non-repeating digits 3, 1, 8, 5, 4, 2, 7, and 6 for the first
integer 4 7011, and a similar series of digits for the rest of
the integers. Eventually, all bits of the 1°* DRKj 7001 byte
in 7008 occupy new bit positions, consecutively specified 1n
the SDBPS 7006 generated series of digits for the first
integer 4. For a particular example m FIG. 7 7012, 1t 1s
01011011. The same process 7013 of scrambling bits for
cach veiled byte of DRKj 7001 1n conversion array 7007 1s
continued, until all bytes of DRKj are veiled, and all bit
positions of each veiled byte are scrambled. Then, the entire
conversion array 7007 1s encrypted with DRKj-1, and the
message 1s sent to client 3002.

At client 3002, the encrypted conversion array 1s
decrypted with DRKj-1, saved at client 3002, from the
previous server message (step 3011 in KEDIA, FIG. 3).
Then the procedure, a reversed one as compared to that
which 1s described above for the BBVU algorithm on server
3001 side, 1s applied. The user password (or the client host
ID), saved at the client platform 1n step 3007 of the KEDIA
algorithm (see FI1G. 3), 1s supplied 1n a hashed form as a seed
to Client Sequential Random Number Generator (SRNG)
7005 1identical to the one on the server 3001 side. This
password (or host ID) triggers SRNG 7005 to generate the

10

15

20

25

30

35

40

45

50

55

60

65

16

same sequence ol integers as on server 3001 side before
4, . Client Sequential Reverse Bit Position Scrambler
(SRBPS) 7003 generates the reversed series of digits for
cach integer, as compared to its server counterpart SDBPS
7006. For instance, for the first integer 4, SRBPS 7003
generates the reversed series 2, 6, 1, 5, 4, 8, 7, and 3, which
allows the logic placed on client side 3002 to restore bits 1n
the original order for the 1°* byte of DRKj-2 means that the
27 bit of the scrambled byte will become the least signifi-
cant bit in the restored 1°* DRKIJ byte, and so on, until 3, the
last digit in the series, is reached, indicating that the 3" bit
in the scrambled byte will become the most significant bit 1n
the restored 1°* byte. Meanwhile, integer 4 points to the 4”
position 1n section 7008 of conversion array 7007, where the
1¥* DRK]j byte has been veiled. The same procedure contin-
ues, until all byes of DRK7 7001 and their respective bits are
returned to their original positions. This completes the
reassembling procedure of the BBVU algorithm to restore

DRKU at client 3002.

At this time 1t 1s important to note that the ByteVU,

BitVU, and BBVU algorithms, disclosed above, require

assessment ol security of these algorithms against possible
computer processing attacks now and 1n the future. Table 1
below presents a summary of this assessment. SRNG 5002,
5003 (FIG. 5), 600, 6003 (FIG. 6), and 7002, 7003 (FIG. 7)
generate integers pseudo-randomly, as well as SDBPS 7006
and SRBPS 7003 (FIG. 7). Hence, probabilities of veiling

cach byte and bit inside a Conversion Array (CA) for each
algorithm can be viewed as independent ones. Best micro-
processors achieved ~1 GHz clock rate barrier by the
beginning of the 21 century. Previously, forecasting

allowed for at least 25-35 years, until the clock rate would
reach ~(100-1000) GHz. Thus, currently available ~1E10
instructions per second could reach ~(1E12-1E13) instruc-
tions per second 1n a distant future, (assuming miCroproces-
sor RISC pipelined architecture with up to 10 stages per
cycle). A very conservative assumption 1s made that the
attacking computers have 100% efliciency of therr CPU
utilization during an attack. In other words, testing each
possible combination of all bytes, bits, or the combination
thereof, of a veiled message 1n CA will consume only one
microprocessor mstruction.

Column 1001 1n Table 1 presents particular geometries of
CA chosen 1n each algorithm for the assessment. Column
1002 gives the bit size of each algorithm CA for every
geometry selected in 1001. Column 1003 presents the total
number of pseudo-random integers generated by SRNG of
cach algorithm with respect to the geometries chosen 1n
1001. Column 1004 introduces probability models for each
algorithm with respect to the geometries of CA chosen 1n
1001. Every position 1n 1004 gives probability to estimate
the entire combination of veiled bytes, bits, or the combi-
nation thereof, for each algorithm, under given geometry of
CA 1 1001. Column 1005 presents for each CA 1its transit
time, given the slowest standard modem of 28.8 kbps
(kilobits per second) of contemporary networks (for
example, the Internet). Column 1006 presents assessed time,
required for a brute force attack now and 1n a distant future,
for each algorithm and their respective geometries of CA
chosen 1 1001. Column 1007 presents an approximate time
for one advanced microprocessor (1 GHZ/100 GHz) instruc-
tion now, and 1n a distant future.

17
TABLE 1
1001 1002 1004 1005
l d 1003 l d
CA Size CA | Prob- CA Transit
Hol Total SRNG ability Time
'OWS VS. Bit total Model modem
of BB Size # for CA 28.8 kbps
ByteVU 16r/16 bytes 2048 bits 16 (1/16)h16 71 milliSec.
BitVU 1281/2 bits 256 bits 128 (1/2) 128 9 milliSec.
BBVU 161/2 bytes 256 bits 144 ({. 5)(1/8) 8) 16 9 milliSec.

US 7,299,356 B2

Summarizing the assessment results 1n Table 1, 1t can be
noted that each of ByteVU, BitVU, and BBV U algorithms

give extremely high security now and in a distant future for
the respective geometries selected in 1001. At the same time,
one CA message transit times 1005, even for the slowest
standard modems, are reasonable enough for the disclosed
algorithms practical utilization i the MEDIA protocol.
Certainly, geometry parameters i 1001 can be regarded as
security parameters of the MEDIA protocol, and these
parameter changes could allow for security trade-ofls vs.

cost (CPU power of client/server or authenticator/peer plat-
forms, and the network throughput). Also, replacing slow
modems by contemporary high-speed network connections,

like DSL, would significantly reduce message transit times
in 1005.

The combination of the KEDIA algorithm and any one of
ByteVU, BitVU, and BBVU algorithms comprise the fourth
security tier, which makes the encrypted authentication
protocol highly secure against online and oftline attacks. The
algorithms described above allow for the encryption key
management security to be scaled with CPU and network
throughput resources. During the encryption key distribution
stage over communication lines, shared secrets never leave
the server, or the clhient. However, they are repeatedly
employed for each iterative message encryption/decryption
by KEDIA and any of ByteVU, BitVU, or BBVU algorithms
on the server and the client platform as well. Only when the
client and the server eventually have 1n their possession the
Final Secret Key (FSK) satisfying the required security
level, then the server and the client will perform mutual
authentication 1n a way that neither of authentication cre-
dentials enter communication lines in either form. The
authentication session 1s denied, provided the parties’
mutual authentication 1s not successiully completed. This
part of the encrypted authentication protocol completes the
client/server mutual authentication. At the same time, 1t 1s
the final fifth secunity tier of the encrypted authentication
protocol.

FIG. 8A and FIG. 8B illustrate the server and the client
side of the Message Encrypt/Decrypt Iterative Authentica-
tion (MEDIA) protocol according to the present invention.
Without sacrificing any generality limitations of the MEDIA
protocol, the exemplary case presented 1n FIG. 8A and FIG.
8B 1s assuming HTTP communication protocol (RFC 2068
Hypertext Transfer Protocol—HTTP/1.1 January 1997),
Java applet/servlet multi-threading object-oriented commu-
nication technology, and a standard Web server technology.
However, the MEDIA protocol can be integrated into any
other network communication protocol, and enabled with

various object-oriented technologies. The ByteVU algo-
rithm has been included into the MEDIA protocol in FIG. 8A
and FIG. 8B, though any of BitVU and BBVU algorithms

could serve there equally well.

15

20

25

30

35

40

45

50

55

60

65

1006 1007
! !

Brute Force CPU One
Attack [nstruction

Time Time, (S)
Now/Future Now/Future
58 yv/7 months 1E-10/1E-12
1E21 v/1E19y 1E-10/1E-12
8E102y/8E100y 1E-10/1E-12

18

Messages sent to the client and received at the server are
numbered 1n 8000. Key functional message destinations on
the server side are 1n 8001, and on the client side they are in
8016. For each message received at the server, 1ts content
description 1s 1n 8003, whereas for each message received at
the client, 1ts content description 1s 1n 8014. Similarly, for
cach message sent from the server, 1ts content description 1s
in 8002, whereas for each message sent from the client, 1ts

content description 1s 1n 8015. The choice of any one of
ByteVU, BitVU, or BBVU algorithms to be used in the

MEDIA protocol and the parameters of the respective con-
version array are in 8006 for the server side, and 1n 8010 for
the client side. Seeds, having been used to trigger SRNG
(Sequential Random Number Generator), are in 8007 for the
server side, and they are 1n 8009 for the client side. Which
direction a particular MEDIA message 1s sent towards, 1s 1n
8008. The ByteVU algorithm conversion array parameters,
chosen 1n FIG. 8A and FIG. 8B (10 sections with 25 bytes
s1ze of each), give extremely high security protection against
online and ofifline intruding attacks, even for one MEDIA
message as 1t was shown above. Therefore, 1t 1s practically
justifiable to reduce 1terations 1n the KEDIA algorithm by
limiting DRKn in FIG. 3 to DRK 2 only. It saves client/
server platforms CPU and network resources, while keeping
a very high security level.

It 1s assumed, without sacrificing any generality of the
MEDIA protocol, that for this particular embodiment of the
MEDIA protocol (FIG. 8A and FIG. 8B), the client 1s a user
at the client platform. The communication session begins
with the user’s request (message 1) to the server to reach a
protected network resource, for example, a URL (Universal
Resource Locator), a protected link, a protected file, a
protected directory, or another protected network resource.
This message initiates the MEDIA protocol on the server
side. The server replies to the user (message 2), sending
SRK 1011 (see FIG. 1) over the communication line (the
Internet) 1n a compiled class form, which prevents any easy
key reuse or reengineering, 1 1t 1s intercepted by an intruder.
The user enters into the GUI (Graphical User Interface,
designed into the applet and sent from the server to the client
in message 2 along with the SRK) the user name, the user
password, and the server password. The passwords stay
stored at the client, while the user name gets encrypted with
the SRK and sent to the server 1n message 3.

The server (logic on the server side 1n this exemplary case
could be implemented 1n the Java servlet technology) replies
in message 4 with DRK 1 2012 (FIG. 2) bytes veiled with
the ByteVU algorithm, triggered by the server, supplying the
hashed password of the assumed user as a seed. The result-
ing ByteVU conversion array 1s encrypted with the SRK and
sent to the client. The client, having known the SRK and the
user password, entered into the GUI 1n the previous message
3, decrypts the conversion array and reassembles DRK 1

US 7,299,356 B2

19

bytes. In message 5, from the client to the server, hashed
DRK 1 bytes are veiled with ByteVU algorithm, triggered
by the user password, stored at the client earlier 1n step 3
(FIG. 8B), and converted to its hash equivalent. Then, the
conversion array 1s encrypted with DRK 1 and sent to the
server, which decrypts the conversion array with DRK 1,
and triggers ByteVU with the hashed password of the
assumed user, taken from the database attached to the server.
If the hashed DRK 1 1s correct, reassembled in this way, 1t
1s actually the authentication signal from the client to the
server, as nobody except the client knows the user password
used to trigger the ByteVU algorithm when receiving mes-
sage 4, and sending message 5.

If DRK 1 1s incorrect, the MEDIA protocol 1s terminated
by the server sending a “no” authentication message (or an
error message: “‘user password 1s incorrect”) to the client,
encrypted with SRK. Otherwise, the server sends to the
client message 6 containing DRK 2, which bytes are disas-
sembled by the ByteVU algorithm, triggered by the user
hashed password, used as a seed for SRNG 5002 (FIG. 5).
Then, the conversion array 1s encrypted with DRK 1 and
sent to the client, where 1t 1s decrypted with DRK 1 stored
at the client from the previous message 5, and DRK 2 bytes
get reassembled by the ByteVU algorithm, triggered by the
user password, stored at the client earlier in step 3 (FIG. 8B).
The client replies to the server with message 7, sending to
the server hashed DRK 2, which bytes are veiled by the
ByteVU algorithm, triggered by the user password, stored at
the client 1n the previous message 3, and converted to its
hash equivalent. The server decrypts message 7 from the
client with DRK 2, and reassembles the hashed DRK 2 bytes
with the ByteVU algorithm, triggered by the user password,
taken from the attached to the server database, and converted
to 1ts hash equivalent. If DRK 2 is correct, the server sends
to the client message 8 with DRK 2, which bytes are
disassembled with the ByteVU algorithm triggered by the
server password. Otherwise, 11 DRK 2 1s not correct, the
MEDIA protocol 1s terminated. The conversion array of the
ByteVU algorithm 1n message 8 i1s encrypted with DRK 2
and sent to the client.

The client, receiving message 8 from the server, decrypts
it with DRK 2, and reassembles the hashed DRK 2 bytes
with the ByteVU algorithm, triggered by the server pass-
word, stored on the client side 1n message 3. Then, the client
compares the decrypted and reassembled DRK 2 with DRK
2 from the previous message 6. If they are the same, 1t 1s
viewed by the client as the authentication signal from the
server, because only the client and server share the server
password. Hence, 1t was the only server, which could send
the last message 8 to the client. Now, as the trust i1s
established by the client to the server, the client sends to the
server message 9 with hashed DRK 2, which bytes are
disassembled with the ByteVU algorithm, triggered by the
server password, stored on the client side 1n message 3, and
converted to 1ts hash equivalent. Eventually, the conversion
array of the ByteVU algorithm 1s encrypted with DRK 2 and
sent to the server. The server, having received message 9
from the client, decrypts 1t with DRK 2, and reassembles the
hashed DRK 2 bytes with the ByteVU algorithm, triggered
by the hashed server password. If DRK 2 1s correct, 1t 1s
viewed by the server as a second authentication factor from
the client (the client confirmed the server password), in
addition to the first factor, having been checked in the
message 6 from the client (the client confirmed the user
password).

This completes the mutual authentication of the client/
server pair according to the MEDIA protocol, and the server

10

15

20

25

30

35

40

45

50

55

60

65

20

1s now ready to make an authentication decision. In the end,
the server sends to the client message 10, which has either
a “go” authentication signal, assuming DRK 2 1n message 9
from the client was correct, or an error message: “the server
password 1s incorrect”, assuming DRK 2 1n message 9 from
the client was incorrect. Each signal byte 1s disassembled
with the ByteVU algorithm, triggered by the user password
from the database, attached to the server, and then the
conversion array of the ByteVU algorithm 1s encrypted with
DRK 1 and sent to the client in message 10. Having received
the message 10, the client decrypts 1t with DRK 1, stored at
the client platform during message 4, and reassembles the
signal bytes with the ByteVU algorlthm triggered by the
user password, stored at the client side 1n message 3.

This eflectively completes the entire MEDIA protocol of
the client/server communication session as presented in FIG.
8A and FIG. 8B. As one can see, authentication credentials
(the user password and the server password 1n this particular
embodiment) have never passed through communication
lines 1n any form. Also, the client/server mutual authentica-
tion has been completed within the MEDIA protocol, as well
as the exchange of FSK (Final Secret Key, which 1s DRK 2
in this particular embodiment) having been performed
within the client/server pair. The server password and the
user password enable secure mutual authentication, accord-
ing to the MEDIA protocol architecture. At the same time,
they are both playing a role of a strong two-factor authen-
tication of the client at the server platform.

FIG. 9 illustrates the Graphical User Interface (GUI)
cnabling client/server mutual authentication at the client
platform according to the MEDIA protocol, and a graphical
illustration of the distributed protected network resources,
including the authentication server, and the user base the
MEDIA protocol 1s used for, according to the present
invention. This GUI has already been mentioned or assumed
along with the preferred embodiments of this invention,
described herein, for instance, 1n FI1G. 3 step 3 3007, FIG. 8B
messages 3, SA, and 10 8016. The user on a client platform
9015, or 9021 1n FIG. 9 1s trying to reach a protected
network destination 9020. It invokes the MEDIA protocol
through an interactive communication session between web
server 9018, compute server 9024, program logic 9017, and
security and account databases 9022 and 9023, all located on
the server side, with GUI 9003 located on the client side.
There are diflerent means to implement this scheme, for
example, thick or thin software client, permanently placed
on a client platform, or a Java applet, loading GUI 9003, and
its respective client-side logic into a browser. The latter case
in the preferred embodiment in FIG. 9 1s assumed here. Also,
the network, over which the communication session 1s
established, could be either only LAN (Local Area Net-
work), or WAN (Wide Area Network), or a combination of
LAN and WAN together. In the particular embodiment 1n
FIG. 9, Internet 9019 1s assumed as a preferred embodiment,
ecnabling client/server dialogue through communication
links 9016.

GUI 9003 has several operation modes 9009: login ses-
sion mode 9010, account set-up mode 9011, user password
reset mode 9012, and server password reset mode 9013.
Login session 9010 1s the default operation mode. The user
enters the user name in window 9004, the user password 1n
window 9005, and the server password in window 9006. The
user has a choice to enter alphanumeric characters, or their
echo dots for security reasons by toggling button 9014. The
session elapsed time clock 9007 visualizes this value to the
user, and signals communication session termination once
the session time has expired. After the authentication cre-

US 7,299,356 B2

21

dentials are all entered into 9004, 9005, and 9006, the client
indicates login button 9008, which completes step 3 3007 1n
FIG. 3, or message 3 in FIG. 8B. Then the other steps of the
MEDIA protocol are imtiated. Stoplight 9001 turns yellow,
when button 9008 i1s indicated, signaling the MEDIA pro-
tocol 1s 1n progress for the first authentication factor (the user
password) examination. Message 8 1 FIG. 8B, having
arrived at the client, mitiates stoplight 9001 to change color
from red at the beginning of the session to green, once 1t 1s
checked by the client placed logic that DRK 2 delivered 1n

the message 8 1s 1dentical to DRK 2, delivered 1in message
6.

Similarly, stoplight 9002 turns from red to the yellow
color right after stoplight 9001 turned green, signaling that
the MEDIA protocol 1s 1n progress for the second authen-
tication factor (the server password) examination. Indeed,
once the client recerved message 10 1mn FIG. 8B, stoplight
9002 turns green, signaling successiul client/server mutual
authentication, FSK exchange, and completion of the
MEDIA protocol. I1 the client received message 5A from the
server (FI1G. 8A and FIG. 8B), stoplight 9001 turns red, back
from the yellow color, and the error message “the user
password 1s 1ncorrect” appears 1 system window 9014,
signaling the MEDIA protocol termination. Also, 1f the
client received authentication signal “no” in message 10
from the server (FIG. 8 A and FIG. 8B), stoplight 9002 turns
red, back from the yellow color, and the error message “the
server password 1s 1ncorrect” appears in system window
9014, signaling the MEDIA protocol termination.

Though, a server password unique to each user remains
the preferred embodiment of this invention, various business
environments, or enterprise/organization/agency I'T resource
configurations may require some modifications to the
MEDIA protocol. The exemplary case would be when users
of all computer platforms logged-in from the same server 1in
an 1solated LAN environment (or the same cluster of serv-
ers). Then the system administrator may preset the same
server password at all platforms, during each platiorm
configuration and setup on the network. This would require
any user to enter only the user name, and the user password
in GUI 9003 inside an enterprise, organization, or agency.
Alternatively, messages 8 and 9 in the MEDIA protocol
(FIG. 9) could be eliminated entirely for the above case,
which effectively excludes the need for server password to
perform a user (a client platform) authentication and a
session key exchange. However, any connection with serv-
ers and users outside the particular LAN perimeter would
probably require the reinstatement of server passwords for
security reasons.

While the present invention 1s disclosed by reference to
the preferred embodiments and examples detailed above, it
1s to be understood that these examples are intended 1n an
illustrative rather than in a limiting sense. It 1s contemplated
that modifications and combinations will readily occur to
those skilled 1n the art, which modifications and combina-
tions will be within the spirit of the mnvention and the scope
of the following claims.

What 1s claimed 1s:

1. A method for mutual authentication of a first station and
a second station, comprising;

providing a particular data random key at the first station,

disassembling and veiling the particular data random
key by forming a first conversion array seeded by a
shared secret and then encrypting the first conversion
array to produce a first encrypted data set, where access
to the shared secret indicates authenticity of the first
station;

10

15

20

25

30

35

40

45

50

55

60

65

22

sending a first message to the second station including the
first encrypted data set key, where the second station
decrypts first encrypted data set and unveils and reas-
sembles said particular data random key using the
shared secret, and where the second station disas-
sembles and veils a version of the particular data
random key by forming a second conversion array
seeded by the shared secret and then encrypts the
second conversion array to produce a second encrypted
data set, and sends a second message to the first station
carrying the second encrypted data set, where access to
the shared secret indicates authenticity of the second
station;

receiving the second message, and decrypting the second

encrypted data set, and reassembling and unveiling the
version of the particular data random key at the first
station using the shared secret;

determining at the first station i1f the version of the

particular data random key matches an expected ver-
ston the particular data random key, and if so providing
an additional particular data random key at the first
station, disassembling and veiling the additional par-
ticular data random key by forming a third conversion
array seeded by the shared secret and then encrypting
the third conversion array to produce a third encrypted
data set, where access to the shared secret indicates
authenticity of the first station;

sending a third message to the second station including

the third encrypted data set, where the second station
decrypts the third encrypted data set and reassembles
and unveils said additional particular data random key
using the shared secret, and where the second station
disassembles and veils a version of the additional
particular data random key by forming a fourth con-
version array seeded by the shared secret and then
encrypts the fourth conversion array to produce a fourth
encrypted data set, and sends a fourth message to the
first station carrying the fourth encrypted data set,
where access to the shared secret indicates authenticity
of the second station;

receiving the fourth message, and decrypting the fourth

encrypted data set and reassembling and unveiling the
version of the additional particular data random key at
the first station using the shared secret;

determining at the first station i1f the version of the

additional data random key matches an expected ver-
ston ol the additional data random key, and 1f so
disassembling and veiling the additional particular data
random key by forming a fifth conversion array seeded
by an additional shared secret and then encrypting the
fifth conversion array to produce a {iith encrypted data
set, where access to the additional shared secret indi-
cates authenticity of the first station; and

sending a {ifth message to the second station including the

fifth encrypted data set, where the second station
decrypts the fifth encrypted data set, reassembles and
unveills said additional particular data random key
using the additional shared secret, and determines at the
second station 1f a version of the additional data ran-
dom key matches an expected version of the additional
data random key.

2. The method of claim 1, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections including Y byte positions imn an order, and
including

generating one of the first and second conversion arrays

using a random number generator seeded by said

US 7,299,356 B2

23

shared secret to produce a pseudorandom number hav-
ing X values corresponding with respective sections of
said X sections, the X values each being between 1 and
Y and identifying one of said Y byte positions, and
placing a byte of said random key in each of said X 5
sections at the one of said Y byte positions 1dentified by
the corresponding one of said X values.
3. The method of claim 1, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections mcluding 7 bit positions 1n an order, and includ- 10
ng
generating one of the first and second conversion arrays
using a random number generator seeded by said
shared secret to produce a pseudorandom number hav-
ing X values corresponding with respective sections of 15
said X sections, the X values each being between 1 and
7. and 1dentifying one of said Z bit positions, and
placing a bit of said random key 1n each of said X sections
at the one of said Z bit positions identified by the
corresponding one of said X values. 20
4. The method of claim 1, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections including Y byte positions 1n an order, each of
said Y byte positions including B bit positions 1n an order,
and including 25
generating one of the first and second conversion arrays
using a random number generator seeded by said
shared secret to produce a first pseudorandom number
having X values corresponding with respective sections
of said X sections, the X values each being between 1 30
and Y and i1dentifying one of said Y byte positions,
using a random number generator seeded by said shared
secret to produce a second pseudorandom number
having B values corresponding with respective bits in
a byte of said random key, the B values each being 35
between 1 and B and identilying one of said B bit
positions,
placing a byte, including B bits, of said random key 1n
cach of said X sections at the one of said Y byte
positions 1dentified by the corresponding one of said X 40
values, and
mapping the B bits of said byte of said random key to said
B bit positions i1dentified by the corresponding one of
said B values.
5. The method of claim 1, where the one of the first and 45
second conversion arrays comprises X sections, each of said
X sections including Y byte positions 1n an order, each of
said Y byte positions including B bit positions 1n an order,
and including
generating one of the first and second conversion arrays 50
using a random number generator seeded by said
shared secret to produce a first pseudorandom number
having X values corresponding with respective sections
of said X sections, the X values each being between 1
and Y and identifying one of said Y byte positions, 55
using a random number generator to produce a second
pseudorandom number having B values corresponding
with respective bits 1n a byte of said random key, the B
values each being between 1 and B and identifying one
of said B bit positions, 60
placing a byte, including B bits, of said random key 1n
cach of said X sections at the one of said Y byte
positions 1dentified by the corresponding one of said X
values, and
mapping the B bits of said byte of said random key to said 65
B bit positions identified by the corresponding one of
said B values.

24

6. The method of claim 1, including presenting a use
interface to the second station from the first station carrying
parameters of said first and second conversion arrays.

7. The method of claim 1, including executing an inter-
active exchange of messages to deliver the particular data
random key from the first station to the second station.

8. A data processing apparatus, comprising:

a processor, a communication interface adapted for con-
nection to a communication medium, and memory
storing instructions for execution by the data processor,
the nstructions including

logic to provide a particular data random key at the first
station and to disassemble and veil the particular data
random key by forming a first conversion array seeded
by a shared secret and then to encrypt the first conver-
sion array to produce a first encrypted data set, where
access to the shared secret indicates authenticity of the
first station:

logic to send a first message to the second station includ-
ing the first encrypted data set, where the second station
decrypts and unveils the first encrypted data set using
the shared secret, and where the second station disas-
sembles and veils a version of the particular data
random key by forming a second conversion array
seeded by the shared secret and then encrypts the
second conversion array to produce a second encrypted
data set, and sends a second message to the first station
carrying the second encrypted data set, where access to
the shared secret indicates authenticity of the second
station;

logic to receive the second message, and to decrypt and
unveill the version of the particular data random key at
the first station using the shared secret;

logic to determine at the first station 11 the version of the
particular data random key matches an expected ver-
sion the particular data random key, and i1 so provide
an additional particular data random key at the first
station, disassemble and veil the additional particular
data random key by forming a third conversion array
seeded by the shared secret and then to encrypt the third
conversion array to produce a third encrypted data set,
where access to the shared secret indicates authenticity
of the first station;

logic to send a third message to the second station
including the third encrypted data set, where the second
station decrypts the third encrypted data set and reas-
sembles and unveils the additional particular data ran-
dom key using the shared secret, and where the second
station disassembles and veils a version of the addi-
tional particular data random key by forming a fourth
conversion array seeded by the shared secret and then
encrypts the fourth conversion array to produce a fourth
encrypted data set, and sends a fourth message to the
first station carrying the fourth encrypted data set,
where access to the shared secret indicates authenticity
of the second station;

logic to receirve the fourth message, and decrypt the fourth
encrypted data set and to reassemble and unveil the
version of the additional particular data random key at
the first station using the shared secret;

logic to determine at the first station 11 the version of the
additional data random key matches an expected ver-
ston of the additional data random key, and if so to
disassemble and veil the additional particular data
random key by forming a fifth conversion array seeded
by an additional shared secret and then encrypt the fifth
conversion array to produce a fifth encrypted data set,

US 7,299,356 B2

25

where access to the additional shared secret indicates
authenticity of the first station; and
logic to send a fifth message to the second station 1nclud-
ing the fifth encrypted data set, where the second
station can decrypt the fifth encrypted data set, and can
reassemble and unveil said additional particular data
random key using the additional shared secret, 1n order
to determine at the second station if a version of the
additional data random key matches an expected ver-
sion of the additional data random key.
9. The apparatus of claim 8, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections including Y byte positions in an order, and
including logic to
generate one of the first and second conversion arrays
using a random number generator seeded by said
shared secret to produce a pseudorandom number hav-
ing X values corresponding with respective sections of
said X sections, the X values each being between 1 and
Y and identifying one of said Y byte positions, and

to place a byte of said random key in each of said X
sections at the one of said Y byte positions 1dentified by
the corresponding one of said X values.
10. The apparatus of claim 8, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections including Z bit positions 1n an order, and includ-
ing logic to
generate one of the first and second conversion arrays
using a random number generator seeded by said
shared secret to produce a pseudorandom number hav-
ing X values corresponding with respective sections of
said X sections, the X values each being between 1 and
7. and 1dentifying one of said Z bit positions, and

to place a bit of said random key in each of said X sections
at the one of said Z bit positions identified by the
corresponding one of said X values.
11. The apparatus of claim 8, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections including Y byte positions 1n an order, each of
said Y byte positions including B bit positions 1n an order,
and including logic to
generate one of the first and second conversion arrays
using a random number generator seeded by said
shared secret to produce a first pseudorandom number
having X values corresponding with respective sections
of said X sections, the X values each being between 1
and Y and i1dentifying one of said Y byte positions,

use a random number generator seeded by said shared
secret to produce a second pseudorandom number
having B values corresponding with respective bits in
a byte of said random key, the B values each being
between 1 and B and identifying one of said B bit
positions,

place a byte, including B bits, of said random key in each

of said X sections at the one of said Y byte positions
identified by the corresponding one of said X values,
and

map the B bits of said byte of said random key to said B

bit positions identified by the corresponding one of said
B values.

12. The apparatus of claim 8, where the one of the first and
second conversion arrays comprises X sections, each of said
X sections including Y byte positions 1n an order, each of
said Y byte positions including B bit positions 1n an order,
and including logic to

generate one of the first and second conversion arrays

using a random number generator seeded by said

10

15

20

25

30

35

40

45

50

55

60

65

26

shared secret to produce a first pseudorandom number
having X values corresponding with respective sections
of said X sections, the X values each being between 1
and Y and 1dentifying one of said Y byte positions,

use a random number generator to produce a second
pseudorandom number having B values corresponding
with respective bits 1n a byte of said random key, the B
values each being between 1 and B and identifying one
of said B bit positions,

place a byte, including B baits, of said random key 1n each

of said X sections at the one of said Y byte positions
identified by the corresponding one of said X values,
and

map the B bits of said byte of said random key to said B

bit positions 1dentified by the corresponding one of said
B values.

13. The apparatus of claim 8, including logic to present a
user interface to the second station from the first station
carrying parameters ol said first and second conversion
arrays.

14. The apparatus of claim 8, including logic to execute
an 1nteractive exchange of messages to deliver the particular
data random key from the first station to the second station.

15. An article, comprising:

machine readable data storage medium having computer

program 1nstructions stored therein for establishing a
communication session on a communication medium
between a first data processing station and a second
data processing station having access to the communi-
cation medium, said instructions comprising

logic to provide a particular data random key at the first

station and to disassemble and veil the particular data
random key by forming a first conversion array seeded
by a shared secret and then to encrypt the first conver-
sion array to produce a first encrypted data set, where
access to the shared secret indicates authenticity of the
first station;

logic to send a first message to the second station includ-

ing the first encrypted data set, where the second station
decrypts and unveils the first encrypted data set using
the shared secret, and where the second station disas-
sembles and veils a version of the particular data
random key by forming a second conversion array
seeded by the shared secret and then to encrypt the
second conversion array to produce a second encrypted
data set, and sends a second message to the first station
carrying the second encrypted data set, where access to
the shared secret indicates authenticity of the second
station;

logic to receive the second message, and to decrypt and

unveill the version of the particular data random key at
the first station using the shared secret;

logic to determine at the first station 11 the version of the

particular data random key matches an expected ver-
sion the particular data random key, and 1f so provide
an additional particular data random key at the first
station, disassemble and veil the additional particular
data random key by forming a third conversion array
seeded by the shared secret and then to encrypt the third
conversion array to produce a third encrypted data set,
where access to the shared secret indicates authenticity
of the first station;

logic to send a third message to the second station

including the third encrypted data set, where the second
station decrypts the third encrypted data set and reas-
sembles and unveils the additional particular data ran-
dom key using the shared secret, and where the second

US 7,299,356 B2

27

station disassembles and veils a version of the addi-
tional particular data random key by forming a fourth
conversion array seeded by the shared secret and then
encrypts the fourth conversion array to produce a fourth

of said X sections, the X values each being between 1
and Y and i1dentitying one of said Y byte positions,

28

use a random number generator seeded by said shared
secret to produce a second pseudorandom number
having B values corresponding with respective bits 1n
a byte of said random key, the B values each being

encrypted data set, and sends a fourth message to the 5 between 1 and B and identifying one of said B bit
first station carrying the fourth encrypted data set, positions,
where access to the shared secret indicates authenticity place a byte, including B bits, of said random key 1n each
of the second station; of said X sections at the one of said Y byte positions
logic to receive the fourth message, and decrypt the fourth identified by the corresponding one of said X values,
encrypted data set and to reassemble and unveil the 10 and
version of the additional particular data random key at map the B bits of said byte of said random key to said B
the first station using the shared secret; bit positions 1dentified by the corresponding one of said
logic to determine at the first station if the version of the B values.
additional data random key matches an expee‘[ed ver- 19. The article of claim 15, where the one of the first and
sion of the additional data random key, and if so to 15 second conversion arrays comprises X sections, each of said
disassemble and veil the additional particular data X sections 1ncluding Y byte positions 1n an order, each of
random key by ferming q fifth conversion array seeded said Y byte pOSitiOIlS iIlChldiIlg B bit pOSitiOIlS 1n an order,
by an additional shared secret and then encrypt the fifth ~ and the mstructions mclude logic to
conversion array to produce a fifth encrypted data set, generate one ol the first and second conversion arrays
where access to the additional shared secret indicates 20 using a random number generator seeded by said
authenticity of the first station; and shared secret to produce a first pseudorandom number
logic to send a fifth message to the second station includ- having X values corresponding with respective sections
ing the fifth encrypted data set, where the second ija;{d deegtiopgithe X ValFes 'Za§}1£6ing between 1
station can decrypt the fifth encrypted data set, and can al and 1dentifying one ot sai yle positions,
reassemble and unveil said additional particular data 25 use a random number generator to produce a second
random key using the additional shared secret, 1n order pseudorandom number having B values corresponding
to determine at the second station if a version of the with respective bits in a byte of said random key, the B
additional data random key matches an expected ver- V?lue.sdegclg.being‘ l?etween 1 and B and 1dentitying one
sion of the additional data random key. Ol 5ai It positions,

16. The article of claim 15, where the one of the first and 30 place a byte, including B bits, of said random key in each
second conversion arrays comprises X sections, each of said of said X sections at the one of said Y byte positions
X sections including Y byte positions in an order, and the identified by the corresponding one of said X values,
instructions include logic to and _ _ _ _

generate one of the first and second conversion arrays hap the ,B_blts o ! sa}d byte of said random key to said B

using a random number generator seeded by said 35 bit positions identified by the corresponding one of said

shared secret to produce a pseudorandom number hav- B values. _ , _ , _
ing X values corresponding with respective sections of , 20. The , article of claim 15’ wherein the 1nstruct1c':)ns
said X sections, the X values each being between 1 and include logic to present a user interface to the seciond station
Y and identifying one of said Y byte positions, and from the {first station carrying parameters of said first and

. . . 40 second conversion arrays.
to place a byte of said random key in each of said X The article of olaim 15. wherein the instructi
sections at the one of said Y byte positions 1dentified by . 21. © dricie Ol ¢ldm 1o, whdkelnl tHe IHSIHCHONS
the corresponding one of said X values. 1nclud§ logic to execute an interactive exchange of messages
_ _ to deliver the particular data random key from the first
17. The artlc!e of claim 15, W}lere the one of the first al}d station to the second station.
second. COIVELSION ditdys COLIPHSES A sections, cach of said 45 22. A method for mutual authentication of a first station
?(sections 1pclud1ng Z. bit positions 1 an order, and the and a second station, comprising:
instructions include logic to _ providing a particular data random key at the first station,
generate one of the first and second conversion arrays disassembling and veiling the particular data random
using a random number generator seeded by said key by forming a first conversion array seeded by a
§hared secret to produce'a pse}ldorandon:l numbf:::r hav- 5 shared secret and then encrypting the first conversion
ng X Values corresponding with respective sections of array to produce a first encrypted data set, where access
said X sections, the X values each being between 1 and to the shared secret indicates authenticity of the first
/. and 1dentitying one of said Z bit positions, and station:

to place a bit of said random key 1n each of said X sections sending a first message to the second station including the
at the one of said Z bit positions 1dentified by the ss first encrypted data set, where the second station
corresponding one of said X values. decrypts first encrypted data set and unveils and reas-

18. The article of claim 15, where the one of the first and sembles said par‘[ieu]ar data random key using the
second conversion arrays comprises X sections, each of said shared secret;

X sections including Y byte pOSitiOIlS in an order, each of reeeiving the first message at the second station and
said Y byte pOSitiOIlS iIlChldiIlg B bit pOSitiOIlS 1n an order, o decrypting the first encrypted data set, and reassem-
and the istructions include logic to bling and unveiling the particular data random key at
generate one of the first and second conversion arrays the second station; and
using a random number generator seeded by said determining at the second station 1f the particular data
shared secret to produce a first pseudorandom number random key matches an expected version the particular
having X values corresponding with respective sections 65 data random key, and if so and disassembling and

veiling a version of the particular data random key by
forming a second conversion array seeded by the

US 7,299,356 B2

29

shared secret and then encrypting the second conver-
s1on array to produce a second encrypted data set, and
sending a second message to the first station carrying
the second encrypted data set, where access to the
shared secret indicates authenticity of the second sta-
tion;

receiving the second message at the first station, and
decrypting the second encrypted data set, and reassem-
bling and unveiling the version of the particular data
random key at the first station using the shared secret;

determining at the first station if the version of the
particular data random key matches an expected ver-
sion the particular data random key, and 11 so providing,
an additional particular data random key at the first
station, disassembling and veiling the additional par-
ticular data random key by forming a third conversion
array seeded by the shared secret and then encrypting
the third conversion array to produce a third encrypted
data set, where access to the shared secret indicates
authenticity of the first station;

sending a third message to the second station including
the third encrypted data set;

receiving the third message at the second station and
decrypting the third encrypted data set and unveiling
and reassembling the additional particular data random
key using the shared secret, and determining at the
second station 1f the additional particular data random
key matches an expected version the additional par-
ticular data random key, and i so disassembling and
veiling a version of the additional particular data ran-

10

15

20

25

30

dom key by forming a fourth conversion array seeded
by the shared secret and then encrypting the fourth
conversion array to produce a fourth encrypted data set;

sending a fourth message to the first station carrying the
fourth encrypted data set, where access to the shared
secret indicates authenticity of the second station;

recerving the fourth message, and decrypting the fourth
encrypted data set and unveiling and reassembling the
version of the additional particular data random key at
the first station using the shared secret;

determining at the first station if the version of the
additional data random key matches an expected ver-
sion the additional data random key, and 1f so disas-
sembling and veiling the additional particular data
random key by forming a fifth conversion array seeded
by an additional shared secret and then encrypting the
fifth conversion array to produce a {ifth encrypted data
set, where access to the additional shared secret 1ndi-
cates authenticity of the first station;

sending a fifth message to the second station including the
fifth encrypted data set;

recerving the fifth message at the second station, and
decrypting the fifth encrypted data set, and unveiling
and reassembling said additional particular data ran-
dom key using the additional shared secret; and

determiming at the second station 1f a version of the
additional data random key matches an expected ver-
sion of the additional data random key.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,299,356 B2 Page 1 of 5
APPLICATION NO. :10/653500

DATED : November 20, 2007

INVENTOR(S) : Len L. Mizrah

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 1, line 60, delete the word “witn” and 1nsert the word -- with --.
Column 1, line 62, delete the phrase “can not” and insert the word -- cannot --.
Column 3, line 24, delete the word “ofjust™ and insert the phrase -- of just --.
Column 8, line 11, delete the abbreviation “SRK 2’ and insert the abbreviation
-- SRK2 --.

Column 8, line 12, delete the abbreviation “SRK 2" and insert the abbreviation
-- SRK2 --.

Column 8, line 14, delete the abbreviation “SRK 3’ and insert the abbreviation
-- SRK3 --.

Column 8, line 29, delete the phrase “SRK 9 and SRK 2™ and insert the phrase -- SRK9
and SRK2 --

Column 8, line 54, delete the abbreviation “SRK 5’ and insert the abbreviation
-- SRKS --.

Column 8, line 55, delete the abbreviation “SRK 5 and insert the abbreviation
-- SRKS --.

Column 8, line 58, delete the abbreviation “SRK 5’ and insert the abbreviation
-- SRKS --.

Column &, line 63, delete the abbreviation “SRK 5 and insert the abbreviation
-- SRKS --.

Column 8, line 65, delete the abbreviations “SRK 1, SRK 2, SRK 3” and insert the
abbreviations -- SRK1, SRK2, SRK3 --

Column &, line 66, delete the abbreviation “SRK 4 and insert the abbreviation
-- SRK4 --.

Column 8, line 67, delete the abbreviations “SRK 6, SRK 7, SRK 8” and insert the
abbreviations -- SRK6, SRK7, SRKS --.

Column 9, line 2, delete the abbreviation “SRK 10" and insert the abbreviation
-- SRK10 --.

Column 9, line 62, delete the number “1” and 1nsert the character -- 1 --.

Column 10, line 47, delete “n-1"" and insert -- n+1 --.

Column 10, line &, delete the abbreviation “DRK 1" and insert the abbreviation
-- DRK1 --.

Column 10, line 9, delete the abbreviation “DRK 17 and insert the abbreviation
-- DRK1 --.

Column 10, line 11, delete the abbreviation “DRK 17" and insert the abbreviation
-- DRK1 --.

Column 10, line 14, delete the abbreviation “DRK 17 and insert the abbreviation
-- DRK1 --.

Column 10, line 15, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,299,356 B2 Page 2 of 5
APPLICATION NO. :10/653500

DATED : November 20, 2007

INVENTOR(S) : Len L. Mizrah

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 10, line 16, delete both instances of the abbreviation “DRK 17 and replace both
with the abbreviation -- DRK1 --.

Column 10, line 17, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 10, line 17, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 10, line 18, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 10, line 21, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 10, line 22, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 10, line 24, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 12, line 26, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 12, line 27, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 12, line 27, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 12, line 34, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 12, line 48, delete the abbreviation “DRK;” and insert the abbreviation
-- DRK2 --.

Column 12, line 54, delete the abbreviation “DRKj-1" and insert the abbreviation
-- DRK1 --.

Column 12, line 59, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 12, line 65, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 13, line 29, delete the abbreviation “DRKJ’ and insert the abbreviation
-- DRK] --.

Column 13, line 31, delete the abbreviation “DRKJ” and insert the abbreviation
-- DRK --.

Column 13, line 32, before the word “section™ delete the word “th”.

Column 13, line 55, delete the abbreviation “DRKJ’ and insert the abbreviation
-- DRK] --.

Column 13, line 63, before the word “byte” delete the word “th™.

Column 14, line 35, delete the abbreviation “DRKJ” and insert the abbreviation
-- DRK]j --.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,299,356 B2 Page 3 of 5
APPLICATION NO. :10/653500

DATED : November 20, 2007

INVENTOR(S) : Len L. Mizrah

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 15, line 3, delete the abbreviation “DRKJ’ and insert the abbreviation
-- DRK --.

Column 15, line 9, delete the abbreviation “DRKJ” and insert the abbreviation
-- DRK]j --.

Column 15, line 29, delete the number “7006” and 1nsert the number -- 7007 --.
Column 16, line 8, delete the abbreviation “DRKj-2" and insert the abbreviation
-- DRK] --.

Column 16, line 10, delete the abbreviation “DRKJ’ and insert the abbreviation
-- DRK]j --.

Column 16, line 20, delete the abbreviation “DRKJ” and insert the abbreviation
-- DRK --.

Column 16, line 27, delete the number “600”° and 1nsert the number -- 6002 --.
Column 16, line 66, delete the abbreviation “GHZ” and insert the abbreviation
-- GHz --.

Column 18, line 36, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 18, line 60, delete the abbreviation “DRK 17 and insert the abbreviation
-- DRK1 --.

Column 18, line 66, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 19, line 2, delete the abbreviation “DRK 1" and insert the abbreviation
-- DRK1 --.

Column 19, line 5, delete the abbreviation “DRK 17 and insert the abbreviation
-- DRK1 --.

Column 19, line 6, delete the abbreviation “DRK 1" and insert the abbreviation
-- DRK1 --.

Column 19, line 9, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 19, line 18, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 19, line 21, delete the abbreviation “DRK 17 and insert the abbreviation
-- DRK1 --.

Column 19, line 22, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 19, line 23, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 19, line 27, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,299,356 B2 Page 4 of 5
APPLICATION NO. :10/653500

DATED : November 20, 2007

INVENTOR(S) : Len L. Mizrah

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 19, line 31, delete both instances of the abbreviation “DRK 2" and replace both
with the abbreviation -- DRK2 --.

Column 19, line 34, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 19, line 37, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 19, line 39, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 19, line 42, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 19, line 45-46, delete both instances of the abbreviation “DRK 27 and replace
both with the abbreviation -- DRK2 --.

Column 19, line 52, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 19, line 56, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 19, line 58, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 19, line 59, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 19, line 60, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 20, line 3, delete the abbreviation “DRK 2 and insert the abbreviation
-- DRK2 --.

Column 20, line 5, delete the abbreviation “DRK 2" and insert the abbreviation
-- DRK2 --.

Column 20, line 9, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 20, line 10, delete the abbreviation “DRK 1°° and insert the abbreviation
-- DRK1 --.

Column 20, line 11, delete the abbreviation “DRK 17 and insert the abbreviation
-- DRK1 --.

Column 21, line 10, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

Column 21, line 11, delete the abbreviation “DRK 2’ and insert the abbreviation
-- DRK2 --.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,299,356 B2 Page 5 of 5
APPLICATION NO. :10/653500

DATED : November 20, 2007

INVENTOR(S) : Len L. Mizrah

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In claim 1, column 22, line 2, after the word “set” delete the word “key.”

In claim 1, column 22, line 20, before the word “the” insert the word -- of --.

In claim 6, column 24, line 1, delete the word “use’” and insert the word -- user --.
In claim &8, column 24, line 36, before the word “the’ insert the word -- of --.

Signed and Sealed this

Fifteenth Day of July, 2008

hguo-

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

