12 United States Patent

Pushpavanam et al.

US007296197B2

US 7,296,197 B2
Nov. 13, 2007

(10) Patent No.:
45) Date of Patent:

(54) METADATA-FACILITATED SOFTWARE
TESTING

(75) Inventors: Kaushik Pushpavanam, Sammamish,
WA (US); Ujjwal Sarin, Seattle, WA
(US)

(73) Assignee: Microsoft Corporation, Redmond, WA
(US)
*3) Notice: Subject to any disclaimer, the term of this
] \
patent 1s extended or adjusted under 35

U.S.C. 1534(b) by 260 days.

(21) Appl. No.: 11/051,042

(22) Filed: Feb. 4, 2005
(65) Prior Publication Data
US 2006/0179386 Al Aug. 10, 2006
(51) Int. CIL
G1IC 29/00 (2006.01)
GO6l’ 11/00 (2006.01)
GOIR 31/28 (2006.01)
GO6F 9/44 (2006.01)
(52) US.CL ... 714/722;714/38; 714/718;
714/738;717/124
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4497301 A * 2/1985 Inoue et al. 123/486
6,859,922 B1* 2/2005 Baker et al. 717/125
6,966,053 B2* 11/2005 Pans et al. 717/143
7,194,730 B2* 3/2007 Pramberger 717/120
2005/0229159 Al* 10/2005 Haba et al. 717/122
2006/0218453 Al* 9/2006 Crump et al. 714/718

* cited by examiner

Primary Examiner—Phung My Chung
(74) Attorney, Agent, or Firm—ILee & Hayes, PLLC

(57) ABSTRACT

Described herein are one or more implementations for
facilitation of computer software testing. One or more
implementations, described herein, determine logical type of
one or more test mput-parameters based upon metadata
placed on a function under test (FUT) of software. Using
that determined logical type, an implementation generates
data values. In some instances, those generated values are
values selected from a repository of data values with asso-
ciated logical types. The selection 1s based upon the deter-
mined logical type. After generating data values for testing
the FUT, an implementation supplies the generated data
values as input to the FUT.

20 Claims, 5 Drawing Sheets

Repository of
Test Values

Function
Under Test

LT

e S
et ERE:
- Tl

W

e A o™ 1

g ¥
g

c

Computer

- ._'_. . - ! ‘- P ey
3 il l‘?:"‘-.
I | =5 .

210

-
- - . L}
1 1 " []
:]
" L} .-
1 1 '
' 8 " . . . -
L} ' -
_ -]
-
. - , r
1 1 'l L o ' . .
nl ~
1
ot . .
1
- L} 1 *
. " ' L} ‘. '
- ' .t ' . ._.

US 7,296,197 B2

[

. . ' I ' " _““_...
; — " . ot ...u....f....,....,_...
et o ' .o
- 1 "
T .. - ' RLER | I | ot L .
N . \ - . A AR , - R
. ' - ' ' At

Function
Under Test

1]

£

Hwim.nu.

LT

Sheet 1 of 5

i
it pn

Ly
I

Nov. 13, 2007

A
Ry

U.S. Patent

US 7,296,197 B2

Test Harness

Function

Sheet 2 of §

Nov. 13, 2007

—_——— .

U.S. Patent
Repository of
Test Values

U.S. Patent Nov. 13, 2007 Sheet 3 of 5 US 7,296,197 B2

Self-
Describing . vy Pevera—
Test-Case Test Harness

310
/.

[" > | Equivalence-Class Processor l

l Repository of
\ 240 |

- Test Values
Input
Values
| l / 230

i [Function Under Test (FUT)

......

320

350
N
Output

- ~ 330

Results Verifier

Results Reporter

U.S. Patent Nov. 13, 2007 Sheet 4 of 5 US 7,296,197 B2

402
Acquire self-describing test-case
Performing equivalence-class processing to determine input- 404
parameter types and generate values of those specific types
406
Storing the generated values in 2 memory
408

Repeat for each of the generated values

410

Supplying generated values as input to the function

under test (FUT)

Receiving output from the FUT and/or observing He

side effects

Verifying whether output from the FUT and/or 14

observed side effects meet expectations

Report results of test of FUT

— h

' 418
L oop back to 408
409 F1g. 4

U.S. Patent Nov. 13, 2007 Sheet 5 of 5 US 7,296,197 B2

-Réote
Computing |
Device |

Remote
Application
Programs

=I=RmL T r il
L_oogoo, | Operating
Video Adapler Adapter ‘ —

N\

525
A\

Application

" Data Media __| [System Bus >1 Programs 528
Interfaces _)
Other Program I
-

| A 004 Modules 530

Operating 526 Program
System / >16
Application 528 > i Processing
Programs Unit
Program 530
Modules
| 540
Program 532 v /
Data y |

i
noog |

o PUETINATLEY,

1/Q Interfaces

H

jo] [ooosoo] jco

| S ' o
Printer ‘*\ Mouse\ Other Device(s) q:'l g 5
L 546 536 h34

Us 7,296,197 B2

1

METADATA-FACILITATED SOFTWARE
TESTING

TECHNICAL FIELD

This invention generally relates to a technology facilitat-
ing the automated testing of computer software.

BACKGROUND

Software testing 1s a process used to improve quality of
developed computer software by detecting defects. In 1ts
simplest form, solftware testing tests at least one specific
function of a software product under test. Herein, a “tunc-
tion” 1s an executable portion (e.g., program module, sub-
routine, procedure, etc.) ol a soltware product that uses input
parameters to produce an observable result. For the sake of
brevity, a specific “function under test” 1s called FUT herein.

Typically, software testing mnvolves devising a set of input
values for a FUT that will cause the FUT to exercise all or
some of its computer-executable instructions. A tester veri-
fies that the results produced by the test of the FUT are 1n
accord with predefined expectations. Many different con-
ventional testing approaches exist, and they range from
informal and manual ad hoc testing to formal, controlled,
and automated testing.

A major tool 1n the tester’s toolbox 1s a “test harness.”
FIG. 1 shows an example of a test harness 100 in a
conventional software-testing scenario. FIG. 1 also shows a
typical computer 110 having a primary memory 120 (e.g.,
volatile or non-volatile memory). This computer may be a
general- or special-purpose computer 1n this illustrated tra-
ditional scenario. Running in this memory 1s the software
product being tested. One function of the software prod-
uct—the function being the focus of this exemplary sce-
nario—is represented by Function Under Test (FUT) 130.
For the sake of clarity, FIG. 1 shows only one function under
test (e.g., FUT 130); however, FUT 130 may represent one
or more functions being tested (concurrently or senially).

The test harness 100 operates 1n the memory 120 with the
FUT 130 and, as illustrated 1n FIG. 1, “saddles” or operates
with some degree of control over the FUT. Rather than
receiving mput as 1t normally would (e.g., mput from a
user-interface or from another function), the FUT 130
receives 1mput from the test harhess 100. Also, rather than
providing output as 1t normally would (e.g., output to a
user-interface or to another function), the FUT 130 sends the
output to the test harness 100. Conventional test harness
technology (like test harness 100) 1s known to those of
ordinary skill in the art of software testing.

Conventionally, the test harness 100 includes the logic for
acquiring the mnput values for testing, logic for interacting
with the FUT 130, and logic for acquiring the results of the
test. Typically, the test harness 100 also includes logic for
analyzing the results to determine 1f the actual results match
the expected results. Conventionally, the logic of a test
harness 1s typically custom written and 1s 1mnextricably inter-

twined with the test values, which are expected to be used
to test the FUT.

As shown 1in FIG. 1, the 1llustrated combination of the test
harness 100 and the FUT 130 represents a specific and
exemplary scenario under which the FUT 1s tested. Each
different specific scenario 1s called a “test-case.” A test-case
1s defined by the FUT being tested, 1its testing logic, and
specific combinations and/or permutations of input param-
cters being tested.

10

15

20

25

30

35

40

45

50

55

60

65

2

An example of a conventional test-case 1s represented by
the following definition:

TABLE 1

[PriorityOne]

public void TestCaseNonParameterized()

i

string commandToExecute =

“base-string” + “test-string”’;

bool expectedResult = true;

bool 1gnoreCase = true;

Executelest

(commandToExecute,
ignoreCase);

h

expectedResult,

An exemplary conventional test-case named “TestCase-
NonParameterized” 1s shown in Table 1. The testing logic 1s
represented by the label “ExecuteTest.”

The actual input-parameter values for each test-case are
provided by one or more test vector(s). A typical test vector
1s a {ile or data structure. While a test-case defines the testing
conditions, the test vector supplies the actual mput-param-
cter values for testing the FUT under the defined testing
conditions of the test-case.

To 1llustrate, consider this example that tests functions of
a “numeric calculator” software program:

Test-case: Testing “addition” function with input being

two 1ntegers

Test Vector: Vector 1: Add 2+3; result should be 5 Vector

2: Add -1+4; result should be 3

Test-case: Testing “multiplication” function with 1nput

being at least one negative integer

Test Vector: Vector 1: Multiply 0*-4, result should be O

Vector 2: Multiply —2*—4, result should be 8 Vector 3:
Multiply —=1*-1, result should be 1

Effective testing of a FUT typically covers one or more
test-cases and each test-case uses one or more rich test
vectors. The set of values of a rich test vector typically
includes a broad spectrum of plausible combinations and
permutations of values for input parameters.

In the example shown i Table 1, the test-vector source
(e.g., a file) 1s 1dentified as being at a location specified 1n the
test-case definition. Specifically, that location 1s “test-string”
in this example. So, the mnput-parameter values for the FUT
of this test-case are provided at the specified location of
“test-string.”

FIG. 1 shows two exemplary test vectors: X 140 and Y
150, respectively. The values of test vectors may be supplied
via manual data-entry or automatic generation. Regardless,
these test vectors X and Y are a list of values stored 1n a
datasource (e.g., file, data structure, or database). For
example, the values 1n test vector X 140 may include a list
of positive integers for an exemplary “addition” function test
case, and the values 1n test vector Y 150 may include a list
ol some positive and some negative integers for an exem-
plary “multiplication” function test case.

A crosshatch area 145 represents values shared between
the exemplary text vectors X and Y. For example, the
crosshatch area may represent a set of shared positive
integers that applies to test-cases for both the exemplary
“addition” and “multiplication” functions. This sharing of
values between test vectors may be accomplished numerous
ways. For example, sharing may be accomplished via literal
copying of data between vectors or via a cross-reference of
common values.

For a particular test-case of the FUT 130 where the
test-case 1s associated with test vector X 140, the test harness

Us 7,296,197 B2

3

100 acquires the values to be tested from test vector X. To
test the FUT 130, the test harness 100 provides these
acquired values to the FUT and analyzes the FUT’s results
to determine 11 the actual results match the expected results.

In the setting of formal, controlled, and automated testing
(in which a test harness 1s typically used), a tester typically
custom writes a test-case for each difterent FUT, each
different combination and/or permutation of mput param-
eters, and each contemplated test vector. Conventionally, the
custom-written testing logic of each test-case 1s tightly
intertwined with the input parameters that characterize the
test-case. Moreover, the contents of test vector(s) are tradi-
tionally narrowly tailored to their associated test-case(s).
Consequently, test-cases are typically rnigidly defined and
unable to adapt to new or updated test vectors.

The scope of testing 1increases, not only because of 1ssues
related to rnigidity and inflexibility, but, also, because the
number of possible defects in the FUT and the number of
configurations of the FUT increases dramatically relative to
the increase 1n the size and complexity of the FUT. There-
fore, an eflective test vector for a FUT may be quite large.
Not only may the test vector be large, but 1t 1s also likely to
grow, change, and evolve during the testing lifecycle of the

FUT.

SUMMARY

Described herein are one or more implementations for
facilitation of computer software testing. One or more
implementations, described herein, determine logical type of
one or more test input-parameters based upon metadata
placed on a function under test (FUT) of software. Using
that determined logical type, an implementation generates
data values. In some 1instances, those generated values are
selected from a repository of data values with associated
logical types. The selection 1s based upon the determined
logical type. After generating data values for testing the
FUT, an implementation supplies the generated data values
as mput to the FUT.

DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the drawings to
reference like elements and features.

FIG. 1 shows an example of a traditional soitware-testing,
scenario.

FIG. 2 an example of a software-testing scenario in
accordance with at least one implementation described
herein.

FIG. 3 shows operational components of an exemplary
test harness 1 accordance with at least one implementation
described herein.

FIG. 4 1llustrates a flow diagram showing a methodologi-
cal implementation described herein.

FIG. 5§ 1s an example of a computing operating environ-
ment capable of (wholly or partially) implementing at least
one embodiment described herein.

DETAILED DESCRIPTION

The following description sets forth techniques facilitat-
ing the testing of computer soitware. These techniques offer
flexibility within the setting of formal, controlled, and
automated testing ol computer software. These techniques
employ a paradigm for self-describing test-cases (using
metadata) and an infrastructural design for establishing and
maintaining a repository ol common input-parameter test

10

15

20

25

30

35

40

45

50

55

60

65

4

values. This repository of test values 1s easily shared
amongst many parties who may update, add, change,
remove, and modily the data values 1n the repository.

Test vector sets for each test-case typically evolve and
grow over the testing lifecycle of a software product. In
addition, new test vectors are introduced during a product’s
testing lifecycle. The techniques described herein provide
for smooth adaptation to updated test vectors and adoption
ol new test vectors for existing test cases.

Exemplary Metadata-Facilitated Software Testing Environ-
ment

FIG. 2 illustrates an implementation of an exemplary test
harness 200, as described herein, for testing of software in
a manner that i1s facilitated by the use of metadata. The
harness 1tself 1s, for example, a program module executing
on a computer system (such as 1s depicted 1 FIG. 5) that
provides a new paradigm for formal, controlled, and auto-
mated testing of a software product that typically 1s execut-
ing on the same computer system. This new paradigm solves
the problem of rigid test-cases by separating the test-case
logic from the test-case values (1.e., test vector).

FIG. 2 1llustrates, at a high-level, the test harness 200 1n
an exemplary soltware-testing scenario. The figure 1llus-
trates a typical computer 210 having a primary memory 220
(e.g., volatile or non-volatile memory). This computer may
be a general- or special-purpose computer 1n this 1llustrated
scenario.

Running in this memory with the test harness 200 1s the
soltware product being tested. One function of the software
product 1n this exemplary scenario 1s represented by Func-
tion Under Test (FUT) 230. For the sake of clanty, FIG. 2
shows only one function under test (e.g., FUT 230); how-
ever, FUT 230 may represent one or more function being
tested (concurrently or serially).

As shown 1n FIG. 2, the i1llustrated combination of the test
harness 200 and the FUT 230 represents a specific and
exemplary test-case. This test-case defines the FU'T, specific
combinations and/or permutations of input parameters being
tested, and the testing logic tested.

Using a conventional paradigm, the contents and inter-
faces of each test-case are typically customized and nar-
rowly tailored to the specifics of that test-case. For example,
as shown in Table 1, the testing logic of a conventional
test-case 1s typically custom designed for the particulars of
that test-case.

In contrast, the contents and interfaces of each test-case in
the new paradigm described herein are generalized and are
at least one level of abstraction above the low-level details.
More particularly, test-case metadata (such as test-case
metadata test-case 240 in FIG. 2) specifies “logical types”™
for the iput parameters rather than defining the input
parameters specifically and/or linking to specific test vec-
tors. A logical type 1s a higher-level description or name of
a value stored in a native type (e.g., it, bool, float).
Examples of logical types may have names like “Machine-
Name,” “Processld,” “ValidPathString,” “ExcludeFilter,”
and “Regular Expression.”

FIG. 2 also shows a repository 250 of test values. The
repository may be a secondary storage device (e.g., hard
drive, flash memory, CD-ROM, DVD-ROM, etc.) or 1t may
be a primary memory system (e.g., RAM) of a computer
(e.g., computer 210). In this repository, each test value has
a logical type associated therewith. The type of a value may
also be specified 1n logic instructions or 1n grammar.

During a software product’s testing lifecycle, the set of
desirable test values changes in response to the natural

Us 7,296,197 B2

S

evolution and growth during that lifecycle. Using the con-
ventional approaches, the tester would probably need to
re-write the customized test-cases to account for such
changes. However, using the techniques described herein,
the tester needs only to update (e.g., additions, deletions, and
modifications) the test values in the repository 2350 to
account for such changes. A new test vector (using the
updated values) will be dynamically generated the next time
the test-case 1s tested.

Rather than extracting test values from a statically defined
test vector (as the conventional approach does), the test
harness 200 dynamically generates an instance of a test
vector from the repository 250 of test values. The test
harness 200 processes a test-case’s self-describing metadata
definition (e.g., test-case metadata 240). In doing so, the
harness determines which logical types the test-cases utilize.

For example, assume that a function called “AddTwoln-
tegers” 1s being tested. So, 1t 1s the FUT. The logical type of
the FUT 1s “Integer:Positivelnteger:PositiveEvenlnteger.”
The repository 250 of test values may include a listing for
Positivelnteger test values that includes, for example, “1, 2,
3,4, 5,10, 117 and a listing for PositiveEvenlnteger test
values that includes, for example, “2, 4, 10.”

In one implementation, the harness performs a “reflec-
tion” on the repository 250. A “reflection” involves the
harness querying the repository 250 to find test values of the
determined types. The repository responds to the harness
with values of that type.

In another implementation, the harness defines an
“equivalence class” of data values 1n the repository 250. The
equivalence class definition 1s based upon the determined
types. The repository responds with values, which are part of
the defined equivalence class.

An “equivalence class” 1s a class of elements that are
treated as equivalents. More particularly, the FUT may
operate on all data values, which are members of the same
equivalence class. Using the determined types specified 1n
the test-case defimition and the specified types associated
with values 1n the repository 250, the hamess defines an
equivalence class of data values in the repository. The
repository supplies the values of the defined equivalence
class to the harness.

An example of a test-case 1s represented by the following
definition, which include metadata tags (e.g., using NET™
attributes):

TABLE 2

[PriorityOne]
[ParameterGenerator(typeof(StringGenerator))]

public void TestCaseParametrized
(String ValidTestString)

{
string commandToExecute = “base-string” +
ValidStringValue;

bool expectedResult = true;

bool 1gnoreCase = true;

Executelest

(commandToExecute, expectedResult, ignoreCase);

h

ExecuteTest 1s the testing logic for the TestCaseParam-
etrized test-case of Table 2. ParameterGenerator 1s a meta-
data tag in the test-case definition that describes the
TestCaseParametrized test-case. Rather than identifying an
actual source of test values 1n the test-case defimition (as a
conventional test-case definition might do), this self-describ-
ing test-case specifies the “logical type.”

10

15

20

25

30

35

40

45

50

55

60

65

6

At runtime of the test-case, the ParameterGenerator
attribute 1s reflected (based upon a repository of nput
values) and the results of that reflection are used to generate
values for the parameters of the TestCaseParametrized test-
case. A “generator” 1s used to generate the actual values of
a logical type of an imnput parameter. In Table 2, the test-case
specifies that StringGenerator as generating the specific
values 1n the mput parameter’s equivalence class.

Operation of Test Harness

FIG. 3 illustrates operational details of the test harness
200. Because this 1s the same test harness 200 discussed 1n
reference to FIG. 2, the test-harness shown 1n FIG. 3 retains
the 200 reference designator. Similarly, the self-describing
test-case definition 240, the repository 250, and the FUT 230
retain their original reference designators from the previous
figure. Although the operational components of FIG. 3 are
shown as being part of the test harness 200, those of ordinary
skill 1n the art understand the each operational component
and sub-component may be incorporated into one or more
entities other than the test harness.

As shown in FIG. 3, the test harness 200 has an equiva-
lence-class processor 310, an input-values storage location
320, a results verifier 330, and a results reporter 340. The
FUT 230 generates an output 350, which may be persisted
by the harness. An output device 360 handles the outcome
reported by the results reporter 340.

The equivalence-class processor 310 reads and analyzes
the self-describing test-case definition 240. Based upon the
metadata 1n the seli-describing test-case definition 240, the
processor 310 determines the one or more logical types of
the specified input parameters. Since the harness treats all
values of a specified logical type as equivalent, the processor
has eflectively determined the one or more equivalence
classes of the mput parameters of the test-case.

Once the processor 310 determines the one or more
equivalence classes, the processor queries the repository 250
to find test values of that type. The repository supplies values
of that type to the processor 310. Effectively, the processor
1s dynamically generating or producing an instance of a test
vector from the repository 250. This dynamically generated
test vector includes test values that are selected because their
associated logical type matches the determined test mnput-
parameter logical type.

Betfore producing the mput values of a defined equiva-
lence class based upon a logical type, the processor defines
an equivalence class from which the input values are drawn.
Those of ordinary skill in the art are aware ol existing
techniques for defining an equivalence class of members of
a given, based upon equivalence relationship amongst the
members of the set. To define an equivalence class, the
processor 310 may use any of these existing techniques
known to those of ordinary skill 1n the art.

Furthermore, one or more implementations described
herein utilize a schema for defining an equivalence class
based upon a given logical type. More particularly, the
scheme defines a relationship amongst all known logical
types 1n accordance with a hierarchy (i.e., a “tree”) of logical
types. Once a logical type 1s located in the hierarchy, all

siblings below that type are considered part of that type’s
equivalence class.

For example, consider the logical type of String:Langua-
ge:English 1n the example hierarchy of Table 3 below:

Us 7,296,197 B2

TABLE 3
‘ String I
Fonts Language
|
SanSerif Serif French English
Us British SouthAfrican

As shown i1n Table 3, English 1s shown under Language
and String 1n the hierarchy. That corresponds to the specified
logical type of String:Language:English. Since US, British,
and SouthAfrican are siblings of String:Language:English,
they are considered to be part of the equivalence class
specified by String:Language:English. The data values asso-
ciated with these siblings will be included 1n a dynamically
generated set of mnput values based upon a determined
logical type of String:Language:English.

After determining equivalence classes and generating test
values for those equivalence classes, the processor 310
supplies dynamically generated test values as input to the
FUT 230. Especially when multiple values are supplied to
the FUT concurrently, the processor may supply the values
directly to the FUT. Alternatively, the processor may also
persist the dynamically generated test values mto memory,
such as iput value storage location 320. This way, the
values may be supplied to the FUT 1n a serial fashion (e.g.,
one-at-a-time or a set-at-a-time).

Upon completion of its operations, the FUT 230 produces
output 330. In the alternative and/or in addition, the FUT
may produce an external eflect. For example, a function
designed to delete a file may not generate an output per se. ,,
Instead, the function operates on a file to remove it. The
function produces an external effect.

The results verifier 330 observes the output (or eflect) of
the FUT and the verifier compares that to expected results.
The verifier may determine the expected results. Since the 45
determination of the expected results 1s probably dependent
upon the actual mput values, the verifier may also receive
the 1input values from the storage location 320. In addition,
the expected results will typically be supplied by the test-
case definition 240. 50

In a conventional testing approach, the determination of
the expected results each time the FU'T 1s tested are typically
narrowly proscribed by the specific and statically created
test vectors. However, using the techniques described
herein, the determination of the expected results each time 55
the FUT 1s tested 1s not aflected by actual values used. That
1s because the values of each logical type are considered part
of an equivalence class. Therefore, how the expected results
are determined 1s invariant.

The results reporter 340 reports the results of the report so0
verifier to the output device 360. The output device may be,
for example, a computer monitor, a printer, database, a
communications medium, or other data storage system.
Furthermore, the function of the test harness 200 may return
to the processor 310 for the processor to supply additional 65
test values as mput to the FUT 230. The harness may repeat
this functional loop until all the dynamically generated test

20

25

30

35

values have been tested or aborted. Since the test values
have already been generated, no more values need to be

generated each time the functionality returns to supplying
the FUT with test values.

Methodological Implementation

FIG. 4 shows a method 400 performed by the test harness
200. This methodological implementation may be per-
formed 1n software, hardware, or a combination thereof For
case of understanding, the method 1s delineated as separate
steps represented as independent blocks 1n FIG. 4; however,
these separately delineated steps should not be construed as
necessarily order dependent in their performance. Addition-
ally, for discussion purposes, the method 400 1s described
with reference to FIG. 2.

At 402 of FIG. 4, the test harness 200 acquires a seli-
describing test-case definition (e.g., definition 240). The
test-case defimition includes metadata describing logical
types for input parameters.

At 404, the harness performs equivalence-class process-
ing. The harness determines the input-parameter logical
types specified by the acquired self-describing test-case.
Based upon those specified types, the harness generates
input values from a repository of test values (e.g., repository
250). In generating the test values, the harness determines an
“equivalence class” representative of the specified logical
types and provides values associated with that equivalence
class from the repository.

At 406, the hamess stores the dynamically generated
input values into a storage location (e.g., 1n memory).

Blocks 408 through 418 of FIG. 4 form a loop that the test

harness repeats for each member (or set of members) 1n the
set of dynamically generated input values. This way, the
FUT will be tested with each value 1n the set of dynamically
generated test values.

At 410, the harness supplies, as input, one or more of the

values of the set of dynamically generated input values to the
FUT. The FUT executes based upon that input and the FUT
produces a result or has an external eflect.

At 412, the harness observes the resulting output from the
FUT and/or the external effect produced by the FUT.

At 414, the harness verifies whether the output (and/or the
cllect) meets expectations. As part of this, the harness may
calculate or determine the expected results based upon the

subject input that the FUT received.

At 416, the harness reports the results of the test of the
FUT. Typically, the results are reported via an output device
and using a user-interface. Alternatively, the results may be
reported only after all members of the set of dynamically
generated mput values have been tested.

Us 7,296,197 B2

9

If members (or set of members) 1n the set of dynamically
generated mmput values remain untested, then the process
loops at 418 back to 408 to repeat blocks 408 through 418
again for another member (or set ol members). I all
members are processed, then this process ends.

Exemplary Computing System and Environment

FIG. 5 illustrates an example of a suitable computing
environment 500 within which an exemplary test harness,
such as test harness 200 as described herein, may be
implemented (either fully or partially). The computing envi-
ronment 500 may be utilized in the computer and network
architectures described herein.

The exemplary computing environment 500 1s only one
example of a computing environment and 1s not intended to
suggest any limitation as to the scope of use or functionality
of the computer and network architectures. Neither should
the computing environment 500 be interpreted as having any
dependency or requirement relating to any one or combina-
tion of components 1llustrated 1n the exemplary computing,
environment 500.

The exemplary test harness may be implemented with
numerous other general purpose or special purpose comput-
ing system environments or configurations. Examples of
well known computing systems, environments, and/or con-
figurations that may be suitable for use include, but are not
limited to, personal computers, server computers, thin cli-
ents, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top
boxes, personal digital assistants (PDA), appliances, special-
purpose e¢lectronics (e.g., a DVD player), programmable
consumer e¢lectronics, network PCs, minicomputers, main-
frame computers, distributed computing environments that
include any of the above systems or devices, and the like.

The exemplary test harness may be described in the
general context of computer-executable istructions, such as
program modules, being executed by a computer. Generally,
program modules include routines, programs, objects, com-
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The exemplary test
harness may also be practiced in distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed computing environment, program
modules may be located 1n both local and remote computer
storage media including memory storage devices.

The computing environment 500 includes a general-
purpose computing device in the form of a computer 502.
The components of computer 502 may include, but are not
limited to, one or more processors or processing units 504,
a system memory 506, and a system bus 508 that couples
various system components, including the processor 504, to
the system memory 506.

The system bus 3508 represents one or more ol any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, such architectures can
include a CardBus, Personal Computer Memory Card Inter-
national Association (PCMCIA), Accelerated Graphics Port
(AGP), Small Computer System Intertace (SCSI), Universal
Serial Bus (USB), IEEE 1394, a Video Electronics Stan-
dards Association (VESA) local bus, and a Peripheral Com-
ponent Interconnects (PCI) bus, also known as a Mezzanine
bus.

Computer 502 typically includes a variety of computer-
readable media. Such media may be any available media that

10

15

20

25

30

35

40

45

50

55

60

65

10

1s accessible by computer 502 and includes both volatile and
non-volatile media, removable and non-removable media.

The system memory 3506 includes computer-readable
media 1n the form of volatile memory, such as random
access memory (RAM) 510, and/or non-volatile memory,
such as read only memory (ROM) 512. A basic input/output
system (BIOS) 514, containing the basic routines that help
to transier information between elements within computer
502, such as during start-up, 1s stored in ROM 512. RAM
510 typically contains data and/or program modules that are
immediately accessible to and/or presently operated on by
the processing unit 504.

Computer 5302 may also include other removable/non-
removable, volatile/non-volatile computer storage media.
By way of example, FIG. 5 illustrates a hard disk drive 516
for reading from and writing to a non-removable, non-
volatile magnetic media (not shown), a magnetic disk drive
518 for reading from and writing to a removable, non-
volatile magnetic disk 520 (e.g., a “tloppy disk™), and an
optical disk drive 522 for reading from and/or writing to a
removable, non-volatile optical disk 524 such as a CD-
ROM, DVD-ROM, or other optical media. The hard disk
drive 516, magnetic disk drive 518, and optical disk drive
522 are each connected to the system bus 308 by one or more
data media interfaces 525. Alternatively, the hard disk drive
516, magnetic disk drive 518, and optical disk drive 522 may
be connected to the system bus 508 by one or more inter-
faces (not shown).

The disk drives and their associated computer-readable
media provide non-volatile storage of computer readable
instructions, data structures, program modules, and other
data for computer 502. Although the example 1illustrates a
hard disk 516, a removable magnetic disk 520, and a
removable optical disk 524, 1t 1s to be appreciated that other
types of computer-readable media, which may store data that
1s accessible by a computer, such as magnetic cassettes or
other magnetic storage devices, flash memory cards, CD-
ROM, digital versatile disks (DVD) or other optical storage,
random access memories (RAM), read only memories
(ROM), electrically erasable programmable read-only
memory (EEPROM), and the like, may also be utilized to
implement the exemplary computing system and environ-
ment.

Any number of program modules may be stored on the
hard disk 516, magnetic disk 520, optical disk 524, ROM
512, and/or RAM 510, including, by way of example, an
operating system 526, one or more application programs
528, other program modules 530, and program data 532.

A user may enter commands and information into com-
puter 502 via mput devices such as a keyboard 334 and a
pointing device 536 (e.g., a “mouse”). Other input devices
538 (not shown specifically) may include a microphone,
joystick, game pad, satellite dish, serial port, scanner, and/or
the like. These and other mput devices are connected to the
processing unit 504 via mput/output interfaces 540 that are
coupled to the system bus 508, but may be connected by
other interface and bus structures, such as a parallel port,
game port, or a universal serial bus (USB).

A monitor 542 or other type of display device may also be
connected to the system bus 508 via an interface, such as a
video adapter 544. In addition to the momtor 542, other
output peripheral devices may include components, such as
speakers (not shown) and a printer 346, which may be
connected to computer 502 via the input/output interfaces
540.

Computer 302 may operate 1n a networked environment
using logical connections to one or more remote computers,

Us 7,296,197 B2

11

such as a remote computing device 548. By way of example,
the remote computing device 548 may be a personal com-
puter, a portable computer, a server, a router, a network
computer, a peer device or other common network node, and
the like. The remote computing device 548 1s 1llustrated as
a portable computer that may include many or all of the
clements and features described herein, relative to computer
502.

Logical connections between computer 502 and the
remote computer 548 are depicted as a local area network
(LAN) 3550 and a general wide area network (WAN) 352.
Such networking environments are commonplace 1n oflices,
enterprise-wide computer networks, intranets, and the Inter-
net. Such networking environments may be wired or wire-
less.

When implemented 1n a LAN networking environment,
the computer 502 1s connected to a local network 550 via a
network interface or adapter 554. When implemented in a
WAN networking environment, the computer 302 typically
includes a modem 556 or other means for establishing
communications over the wide network 552. The modem
556, which may be internal or external to computer 502, may
be connected to the system bus 508 via the mput/output
interfaces 540 or other appropriate mechanisms. It 1s to be
appreciated that the illustrated network connections are
exemplary and that other means of establishing communi-
cation link(s) between the computers 502 and 548 may be
employed.

In a networked environment, such as that illustrated with
computing environment 500, program modules depicted,
relative to the computer 502 or portions thereol, may be
stored 1n a remote memory storage device. By way of
example, remote application programs 358 reside on a
memory device of remote computer 548. For purposes of
illustration, application programs and other executable pro-
gram components, such as the operating system, are 1llus-
trated herein as discrete blocks, although 1t 1s recognized that
such programs and components reside at various times 1n
different storage components of the computing device 502
and are executed by the data processor(s) of the computer.

Computer-Executable Instructions

An mmplementation of an exemplary test harness may be
described 1 the general context of computer-executable
instructions, such as program modules, executed by one or
more computers or other devices. Generally, program mod-
ules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. Typically, the functionality of
the program modules may be combined or distributed as
desired 1n various embodiments.

Exemplary Operating Environment

FIG. 5 illustrates an example of a suitable operating
environment 300 in which an exemplary test harness may be
implemented. Specifically, the exemplary test harness(s)
described herein may be implemented (wholly or 1n part) by
any program modules 528-530 and/or operating system 526
in FIG. 5 or a portion thereof.

The operating environment 1s only an example of a
suitable operating environment and 1s not intended to sug-
gest any limitation as to the scope or use of functionality of
the exemplary test harness(s) described herein. Other well
known computing systems, environments, and/or configu-
rations that are suitable for use include, but are not limited
to, personal computers (PCs), server computers, hand-held
or laptop devices, multiprocessor systems, miCroprocessor-
based systems, programmable consumer electronics, wire-

10

15

20

25

30

35

40

45

50

55

60

65

12

less phones and equipment, general and special-purpose
appliances, application-specific integrated circuits (ASICs),
network PCs, minicomputers, mainirame computers, dis-
tributed computing environments that include any of the
above systems or devices, and the like.

Computer-Readable Media

An 1mplementation of an exemplary test harness may be
stored on or transmitted across some form of computer-
readable media. Computer-readable media may be any
available media that may be accessed by a computer. By way
of example, computer-readable media may comprise, but 1s
not limited to, “computer storage media” and “communica-
tions media.”

“Computer storage media” include volatile and non-
volatile, and removable and non-removable media, 1mple-

mented 1 any method or technology for storage of infor-
mation, such as computer readable instructions, data
structures, program modules, or other data. Computer stor-
age media includes, but 1s not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
may be used to store the desired information and which may
be accessed by a computer.

“Communication media” typically embodies computer-
readable 1nstructions, data structures, program modules, or
other data 1n a modulated data signal, such as carrier wave
or other transport mechanism. Communication media also
includes any information delivery media.

CONCLUSION

The techniques may be implemented 1n many ways,
including (but not limited to) program modules, general- and
special-purpose computing systems, network servers and
equipment, dedicated electronics and hardware, and as part
of one or more computer networks. The techniques may, for
example, be implemented on a computer system depicted 1n

FIG. 5.

Although the one or more above-described implementa-
tions have been described 1n language specific to structural
features and/or methodological steps, it 1s to be understood
that other implementations may be practiced without the
specific features or steps described. Rather, the specific
teatures and steps are disclosed as preferred forms of one or
more 1implementations.

The invention claimed 1s:

1. A method facilitating automated testing of software, the
method comprising the acts of:

determining logical type of one or more test input-
parameters based upon metadata placed on a function
under test (FUT) of software;

generating data values based upon the determined logical
type of one or more test input-parameters;
supplying the generated data values as 1mput to the FUT.

2. A method as recited 1n claim 1, wherein the generating,
act comprises dynamically generating a test vector of data
values for testing the FUT.

3. A method as recited 1n claim 1, wherein the generating
act comprises selecting data values from a repository of data
values.

4. A method as recited 1n claim 1, wherein the generating,
act comprises:

Us 7,296,197 B2

13

defining an equivalence class of logical types of test
input-parameters based upon the determined logical
type of one or more test input-parameters;

selecting data values from a repository of data values,
wherein the selected data values are members of the
defined equivalence class.

5. A method as recited in claim 1, wherein the supplying

act supplies the generated data values as mput to the FUT
one at a time.
6. A method as recited 1n claam 1 further comprising
acquiring a seli-describing test-case that includes the meta-
data placed on the FUT.
7. A method as recited 1n claim 1 further comprising
persisting the generated data values.
8. A method as recited 1in claim 1 further comprising
observing ellects of actions performed by the FUT after one
or more of the generated data values has been supplied as
input to the FUT.
9. A method as recited 1n claim 1 further comprising
receiving output from the FUT after one or more of the
generated data values has been supplied as input to the FUT.
10. A method as recited 1n claim 9 further comprising
veritying whether the output from the FUT meets expected
output when one or more of the generated data values has
been supplied as input to the FUT.
11. A method as recited 1n claim 10 further comprising
reporting results of the verifying act.
12. A method facilitating automated testing of software,
the method comprising the acts of:
determining logical type of one or more test input-
parameters based upon a seli-describing test-case asso-
ciating with a function under test (FUT) of software;

defimng an equivalence class of logical types of test
input-parameters based upon the determined logical
type of one or more test input-parameters;

5

10

15

20

25

30

14

selecting data values from a repository of data values,
wherein the selected data values are members of the
defined equivalence class;

supplying the selected data values as input to the FUT.

13. A method as recited 1n claim 12, wherein the supply-
ing act supplies the generated data values as imnputto the FUT
one at a time.

14. A method as recited in claim 12 further comprising
acquiring a seli-describing test-case that includes the meta-
data placed on the FUT.

15. A method as recited in claim 12 further comprising
persisting the selected data values.

16. A method as recited in claim 12 further comprising
observing eflects of actions performed by the FUT after the
FUT has been supplied one or more of the selected data
values as mput to the FUT.

17. A method as recited in claim 12 further comprising
receiving output from the FUT after the FUT has supplied
one or more of the generated data values as input to the FUT.

18. A method as recited in claim 17 further comprising
verilying whether the output from the FUT meets expected
output when the FUT has been supplied one or more of the
generated data values as input to the FUT.

19. A method as recited in claim 18 further comprising
reporting results of the verifying act.

20. One or more computer-readable media having com-
puter-executable instructions thereon that, when executed by
a computer, perform a method comprising the acts of:

determiming logical type of one or more test iput-

parameters based upon metadata placed on a function
under test (FUT) of software;
generating data values based upon the determined
logical type of one or more test mput-parameters;
supplying the generated data values as 1nput to the FUT.

¥ ¥ # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

