US007296144B2
12 United States Patent (10) Patent No.: US 7,296,144 B2
Bryant-Rich et al. 45) Date of Patent: Nov. 13, 2007
(54) METHOD OF TRACELESS PORTABLE (56) References Cited

APPLICATION EXECUTION 7S PATENT DOCUMENTS

(75) Inventors: Donald Ray Bryant-Rich, Haifa (IL); 5,404,485 A 4/1995 Ban
Ittai Golde, Rishon Lezion (IL) 5,845,090 A * 12/1998 Collins et al. 709/221
T "_ 5,848,206 A 12/1998 Suzuki
Yaakov Ben Tsvi, Bat Yam (IL); Erez 6,117,186 A 9/2000 Wydall et al.
Baum, Reh.ovot (IL); Daniel 6.122.734 A 9/2000 Jeon
Yerushalmi, Raanana (IL) 6,148,354 A 11/2000 Ban et al
6,182,286 B1* 1/2001 Sigal et al. 717/122
(73) Assignee: SanDisk IL Ltd., Kiar Saba (IL) 6,470,413 Bl 10/2002 Ogawa
6,567,334 B2 5/2003 Yamagamu et al.
(*) Notice: Subject to any disclaimer, the term of this 6,601,139 Bl 7/2003 Suzuki
patent is extended or adiusted under 35 7,162,628 B2* 1/2007 Gentil et al. 713/100
U.S.C. 154(b) by 360 days. * cited by examiner
(21) Appl. No.: 10/994,384 Primary Examiner—A. Elamin

(74) Attorney, Agent, or Firm—Mark M. Friedman
(22) Filed: Nov. 23, 2004

(37) ABSTRACT
(65) Prior Publication Data When a non-volatile memory device 1s reversibly operation-
US 2005/0114643 Al May 26, 2005 ally connected to a computer, the computer executes an
j application that 1s stored on the device. The execution causes
Related U.S. Application Data changes to a non-volatile memory of the computer. After the
o o execution terminates, all such changes are undone, either
(60) Provisional application No. 60/524,025, filed on Nov. immediately 1f the termination was normal or upon reboo-
24, 2003. ting the computer if the termination was abnormal. Before or
during the execution, information related to the changes is
+ ol recorded. ¢ undoing ol the changes 1s based on that
(51) Imt. C] ded. The undoing of the changes is based h
Gool 1724 (2006.01) information. Examples of such information recorded before
(52) US.CL ..., 713/100; 713/1; 713/2; the execution include a list of expected changes and a partial
709/220; 709/221:717/173 or full copy of the computer’s non-volatile memory.
(58) Field of Classification Search None
See application file for complete search history. 27 Claims, 7 Drawing Sheets
FLASH MEMORY |
12
! A
' ETAGH | LAUNCHER
CONTROL fe&rioii———oor—————————————— i3
18 .
RAM | APPLICATION |
\/ 20 16 |
MEMORY DEVICE T |
i USB 10 -
22 . _ — —
UsSB " - -
38
l
A 05T 20

| o
vV v

Y

cPU RAM HARD DISK
2 34 36
et —— e e —————— N e ——

B

US 7,296,144 B2

Sheet 1 of 7

Nov. 13, 2007

U.S. Patent

9€
NSIQ QyvH

o1

NOLLYOTI lddY

14!
HAHONAY

F43
NdOWIW HSVTd

Ob

0
WYY

142
WYY

1 bid

0€ 1SOH

[1}4
IDIAIA AJOWIW

ct
Ndo

81

TOULNOD

HSY 1d

8¢
asn

44
gsn

U.S. Patent

Nov. 13, 2007 Sheet 2 of 7

50

POWER UP
HOST

MEMORY
DEVICE
COUPLED ?

EXECUTE LAUNCHER
\/ 56
EXECUTE APPLICATION WHILE -J
RECORDING CHANGES TO HARD DISK

YES

APPLICATION
TERMINATED

60

MEMORY

DEVICE
REMOVED ?

NO

62

V)

| TERMINATE APPLICATION

$ 64

UNDO CHANGES TO HARD DISK /)

Fig 2

US 7,296,144 B2

US 7,296,144 B2

e b

~ [
= gsn
k> — WV
= 9T NOLLYITddY
P,

91 NOLLYOIddY - %w

, 1
- % o | T
~
0 b p—
« ZT =
3 i
— AUOWEIW HSY'l= IDIAIQ AHOWIW
>
&
rd

U.S. Patent

US 7,296,144 B2

Sheet 4 of 7

Nov. 13, 2007

U.S. Patent

SO

u9T NOLLYOTlddV

9T NOLLYOTddY

BT HIHONNYT

9T NOLLYOINddY

FT HIHONNY

T HIHONNVT

ZT AMOWIW HSY

WVY

y b1

BT
TOULNOD
HSY 14

u0T
IOIA3A AHOWIW

(&4
asn

g b4

US 7,296,144 B2

I~

b g

= 0z

Ig WY

)

P

e

h ———

2 81
- T0ULNOD
bZ IDIAUIS dNNVITD HSV4

I~

0 prim——

~ 9T NOLLYOIddY -

. = T

& PT HIHONNY IDIAIQ AYOWIW

o

-

N P

T AYOWIW HSV<

U.S. Patent

¢l
asn

U.S. Patent

Fig 6

Nov. 13, 2007 Sheet 6 of 7

66
POWER UP
HOST (FIG. 7)
MEMORY
DEVICE NQ
COUPLED ? ~
YES \J

EXECUTE LAUNCHER

v

l EXECUTE LAUNCHER

T

)
)

/4

EXECUTE APPLICATION WHILE
RECORDING CHANGES TO HARD DISK

»

]

APPLICATION

YES

TERMINATED

/8

MEMORY

DEVICE
REMOVED 7

NO

i,

TERMINATE APPLICATION

L . . i—

"

I UNDO CHANGES TO HARD DISK

V

REMOVE CLEANUP SERVICE

US 7,296,144 B2

U.S. Patent Nov. 13, 2007 Sheet 7 of 7 US 7,296,144 B2

BLOCK 66

86
POWER UP y)
HOST

CLEANUP
SERVICE NO

INSTW 38
N

L _

EXECUTE CLEANUP SERVICE

CHANGES TO NO
HARD DISK ?
YES
| 94
UNDO CHANGES TO HARD DISK ‘—J

$ 96
l REMOVE CLEANUP SERVICE p

|
| B \f 08
CONTINUE)

e ey sy

Fig 7/

Us 7,296,144 B2

1

METHOD OF TRACELESS PORTABLE
APPLICATION EXECUTION

This 1s a continuation-in-part of U.S. Provisional Patent
Application No. 60/524,025, filed Nov. 24, 2003 5

FIELD AND BACKGROUND OF TH.
INVENTION

L1

The present mvention relates to a method of executing 10
data processing applications and to a storage medium on
which such applications are stored. More specifically, the
present invention relates to a method of data processing in
which the data and the data processing applications are
stored on a medium separate from the apparatus that 15
executes the applications, such that the execution of the
applications does not leave behind any modifications to the
data storage means of the apparatus.

Personal Computers are most commonly used by single
individuals. The individual user of a Personal Computer may »g
install applications, modity the configuration of the appli-
cations and store application data on the Personal Computer.
Even when a Personal Computer 1s used by several users, the
use of the computer 1s restricted to a specified list of users,
the applications are installed on the Personal Computer and 35
the configuration and data used by each application are
stored separately for each user. A personal computer often
also has a generally usable but very restricted access method
such as a “guest” account.

A growing number of computers are available to multiple 3¢
users without the users being specified for the computer.
These computers may be provided with general applications,
but the users generally are not able to modity the configu-
ration of the applications or permanently store application
data on the computers. Examples of such general availability 35
computers include computers allocated to employees at
need, computers in Internet Cafes, computers in computer
kiosks and computers located 1n publicly accessible facilities
such as libraries, college campuses and airports.

General availability computers are mainly useful with 49
network based applications such as web browsers, search
engines and browser based applications such as mail clients.
The use of such applications often 1s limited by a lack of
available local storage, a need to transier portions of the
programs over a network instead of from local storage and 45
the mability of the users to control access to their application
data.

General availability computers are commonly configured
to provide only mimimal functionality to their users. For
example, the users of a general availability computer typi- sg
cally are not allowed to install applications, modify appli-
cation configurations or permanently store application data
on the computer.

It 1s known to store an application on a portable storage
medium and to operationally connect the medium to a 55
computer that executes the application, such that there 1s no
need to mnstall the application permanently 1n the computer.
One representative patent that teaches such a method of data
processing, and that is incorporated by reference for all
purposes as 1f fully set forth heremn, 1s U.S. Pat. No. 60
6,117,186, to Wydall et al. Wydall et al. teach an application,
stored on a CD-ROM disk, that 1s executed simply by
inserting the CD-ROM disk into the CD-ROM drive of any

computer.

Another representative patent that teaches such a method 65
of data processing, and that 1s incorporated by reference for
all purposes as 1f fully set forth herein, 1s U.S. Pat. No.

2

6,601,139, to Suzuki. Suzuki teaches a data processing
system that includes a computer whose 1nstalled software 1s
restricted to an operating system, and a set of storage media
on which are stored specific applications. When one of the
storage media 1s mserted mnto a drive of the computer, the
computer becomes a single-purpose machine dedicated to
the application stored on that storage medium. For example,
if the application 1s a word processing application, the
computer becomes a word processor.

Other relevant U.S. patents, all of which also are incor-

porated by reference for all purposes as 1f fully set forth
herein, include U.S. Pat. No. 5,848,296 to Suzuki, U.S. Pat.

No. 6,122,734 to Jeon and U.S. Pat. No. 6,470,413 to
Ogawa.

One deficiency 1n the prior art methods of data processing,
in the context of general availability computers, 1s that the
executed applications do not “clean up after themselves”.
After the execution of an application terminates, some of the
data that the application wrote to the non-volatile memories
(e.g., hard disk) of the host computer are still present 1n those
memories. It 1s at least impolite for a user of a general
availability computer not to clean up after him/herself.
Furthermore, the data left behind can be retrieved by a
sufliciently skilled subsequent user of the computer, and
some of this data may be of a sensitive nature.

There 1s thus a widely recognized need for, and 1t would
be highly advantageous to have, a method of executing a
temporarily installed application on a general availability
computer that leaves behind no residue of the execution.

SUMMARY OF THE INVENTION

According to the present invention there 1s provided a
method of operating a computer, including the steps of: (a)
storing at least one application 1n a non-volatile memory that
1s separate from the computer; (b) reversibly operationally
connecting the separate non-volatile memory to the com-
puter; (¢) executing one of the at least one application, by the
computer, the executing of the one application causing at
least one change to a non-volatile memory of the computer,
the change persisting aiter the executing of the one appli-
cation terminates; and (d) undoing the at least one change,
subsequent to the executing of the one application; wherein,
if the executing of the one application terminates normally,
the undoing 1s eflected consequent to the terminating of the
executing of the one application, and 11 the executing of the
one application terminates abnormally, the method further
comprises the steps of: (e) subsequent to the disconnecting,
booting the computer, the undoing being initiated by the
booting.

According to the present invention there 1s provided a
computer-readable storage medium having computer-read-
able code embodied on the computer-readable-storage
medium, the computer-readable code including: (a) an appli-
cation; (b) a launcher for executing the application on a
computer when the computer-readable storage medium 1s
reversibly operationally connected to the computer, the
executing of the one application causing at least one change
to a non-volatile memory of the computer; and (c) program
code for undoing the at least one change, subsequent to the
executing.

According to the present mvention there 1s provided a
method of operating a computer, including the steps of: (a)
storing at least one application 1n a non-volatile memory that
1s separate from the computer; (b) reversibly operationally
connecting the separate non-volatile memory to the com-
puter; (¢) executing one of the at least one application, by the

Us 7,296,144 B2

3

computer, the executing of the one application causing at
least one change to a non-volatile memory of the computer,
the change persisting after the executing terminates; (d)
recording information related to the at least one change; and
(¢) undoing the at least one change, subsequent to the
executing of the one application, the undoing being based at
least 1in part on the information.

The present invention 1s a method of operating a computer
and an associated computer-readable storage medium.

According to the two basic methods of the present inven-
tion, at least one application i1s stored in a non-volatile
memory that 1s separate from the computer. That separate
non-volatile memory then 1s reversibly operationally con-
nected to the computer and one of the application(s) 1s
executed by the computer, thereby causing one or more
changes, to a non-volatile memory of the computer, that
persist even alter the termination of the execution of the
application. This/these change(s) now are undone.

According to the first basic method of the present mnven-
tion, 1 the execution of the application terminated “nor-
mally”, 1.e., with the computer still 1n a condition that
enables the computer to continue to function without user
intervention, then the undoing of the change(s) to the
computer’s non-volatile memory 1s effected as a conse-
quence of the termination of the execution of the application
(for example, by branching, upon termination of the execu-
tion of the application, to the first instruction of a routine that
cllects the undoing). The scope of the present invention thus
excludes, for example, a user of the computer manually
erasing the computer’s non-volatile memory after the execu-
tion of the application has terminated. It the execution of the
application terminated “abnormally”, 1.e., with the computer
in a condition that requires user intervention to enable the
computer to continue to function, for example 1n case of a
power interruption or a system crash that necessitates a
reboot, then the computer 1s booted (either a hard boot or a
soit boot, depending on the nature of the abnormal termi-
nation) 1 a manner that mmitiates the undoing of the
change(s) that were made to the computer’s non-volatile
memory by the application prior to the abnormal termina-
tion.

According to the second basic method of the present
invention, while or before the application executes, infor-
mation related to the change(s) to the computer’s non-
volatile memory are recorded. The undoing of the change(s)
then 1s based at least 1n part on this information. At least a
portion of the information is recorded in the separate non-
volatile memory. Alternatively or additionally, at least a
portion of the information 1s recorded 1n a volatile memory
of the computer. Preferably, information that 1s recorded
betfore the application executes includes a list of the
change(s) that the application i1s expected to make in the
computer’s non-volatile memory and/or a copy of at least a
portion of the computer’s non-volatile memory.

The distinguishing feature (different kinds of “undoing”,
depending on whether the application terminates normally
or abnormally) of the first basic method 1s a preferred
additional feature of the second basic method. The distin-
guishing feature (recording information related to the
change(s)) of the second basic method 1s a preferred addi-
tional feature of the first basic method.

The separate non-volatile memory may be a read-only
memory, or a programmable memory (i.e., not a lead-only
memory) such as a tlash memory, or may include both a
read-only portion and a programmable portion. For example,
read-only memory 1s used as all or part of the separate
non-volatile memory to store portions of the application that

10

15

20

25

30

35

40

45

50

55

60

65

4

never need to be modified. In addition to flash memory, other
examples of suitable non-volatile memories include non-

volatile static RAM, bubble memory and compact hard
disks.

Preferably, the execution of the application 1s consequent
to the computer detecting that the separate non-volatile
memory has been reversibly operationally connected to the
computer, for example when a user of the computer efiects
that connection while the computer i1s running or when the
computer boots while the separate non-volatile memory 1s
connected to the computer. Alternatively, the execution of
the application 1s consequent to an interaction of a user of
the computer with the computer other than an interaction
(such as connecting the separate non-volatile memory to the
computer or turning on the computer while the separate
non-volatile memory 1s connected to the computer) that
makes the computer aware that the separate non-volatile
memory 1s connected to the computer.

Preferably, at least one launcher also 1s stored in the
separate non-volatile memory. A “launcher” 1s a program
that the computer uses to manage the execution of one or
more applications. “Managing” the execution of an appli-
cation means invoking the execution of the application while
recording information related to the change(s) that the
execution of the application makes to the computer’s non-
volatile memory. If a single launcher 1s stored 1n the separate
non-volatile memory, then either a single application or a
plurality of applications, all of which are managed by the
single launcher, are stored in the separate non-volatile
memory. In the latter case, optionally, the launcher presents
the applications interactively to a user of the computer, and
the user selects which application to execute. Alternatively,
a plurality of launchers and a corresponding plurality of
applications are stored in the separate non-volatile memory,
with each launcher managing one or more corresponding
applications.

Optionally, the separate non-volatile memory 1s parti-
tioned into a first portion where the application(s) 1s/are
stored and a second portion from which the application(s)
1s/are blocked. “Blocking” the application(s) from the sec-
ond portion of the separate non-volatile memory means that
the application(s) and any data generated autonomously by
the application(s) (as opposed to data generated by the
application(s) under user control) may not be stored 1n that
portion of the separate non-volatile memory. Instead, the
second portion of the memory 1s available for general use by
a user of the computer. Most preferably, the partitioning 1s
done dynamically: space 1s reallocated by the computer
between the two portions of the separate non-volatile
memory on a space-required basis.

Preferably, prior to executing the application, a cleanup
service 1s installed 1 the computer. The purpose of the
cleanup service 1s to perform the undoing, of the change(s)
made by the application to the computer’s non-volatile
memory, that 1s performed when the computer boots subse-
quent to an abnormal termination of the application. Option-
ally, the cleanup service also 1s used to undo the change(s)
made by the application to the computer’s non-volatile
memory even if the application terminated normally. Most
preferably, after the cleanup service has undone the
change(s), the cleanup service 1s removed from the com-
puter, either only 1f the cleanup service has undone the
change(s) following an abnormal termination of the execu-
tion and a reboot of the computer, or even 1 the cleanup
service has undone the change(s) following a normal termi-
nation of the execution of the application.

Us 7,296,144 B2

S

A computer-readable storage medium of the present
invention has embodied thereon computer-readable code
that imncludes an application, a launcher for executing the
application on a computer when the computer-readable
storage medium 1s reversibly operationally connected to the
computer, such that the execution of the application causes
one or more changes to a non-volatile memory of the
computer, and program code for undoing those changes
subsequent to the execution of the application.

The computer-readable storage medium may be a read-
only medium or a programmable medium.

The computer-readable code may include a single
launcher or a plurality of launchers. If the computer-readable
code mncludes a single launcher, then the computer-readable
code may include either a single application or a plurality of
applications. If the computer-readable code includes a plu-
rality of launchers, then preferably the computer-readable
code also 1ncludes a corresponding plurality of applications,
with each launcher for executing a respective application.

Preferably, the launcher also records information related
to the change(s) to the computer’s non-volatile memory
caused by the execution of the application. The undoing of
the change(s) 1s based at least 1n part on that information.

Preferably, the computer-readable code also includes a list
of one or more changes that the executing of the application
1s expected to make to the computer’s non-volatile memory.
The undoing of the change(s) actually made by the execut-
ing of the application 1s based at least in part on that list.

The program code for undoing the change(s) may be
included in the launcher or may be a cleanup service
separate from the launcher.

BRIEF DESCRIPTION OF THE DRAWINGS

The 1vention 1s herein described, by way of example
only, with reference to the accompanying drawings,
wherein:

FIG. 1 1s a partial high-level block diagram of a non-
volatile memory device of the present invention reversibly
operationally connected to a host computer;

FIG. 2 1s a flow chart of the execution of an application
in a basic embodiment of the present imnvention;

FIG. 3-5 are high-level block diagrams of other non-
volatile memory devices of the present invention;

FIGS. 6 and 7 are flowcharts of the execution of an
application in an embodiment of the present invention that
1s robust relative to abnormal termination of the execution.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present mvention 1s of a method of executing an
application on a host computer without permanently 1nstall-
ing the application on the computer and without subse-
quently leaving behind any consequences of the execution.
Specifically, the present invention can be used by anyone to
execute applications on a publicly shared computer.

The principles and operation of shared computer usage
according to the present invention may be better understood
with reference to the drawings and the accompanying
description.

Referring now to the drawings, FIG. 1 1s a partial high-
level block diagram of a non-volatile memory device 10 of
the present invention operationally coupled to a host com-
puter 30.

Memory device 10 1s structurally substantially identical to
the flash memory devices taught in U.S. Pat. No. 5,404,485,

10

15

20

25

30

35

40

45

50

55

60

65

6

to Ban, and 1n U.S. Pat. No. 6,148,354, to Ban et al., both of
which patents are incorporated by reference for all purposes
as 1 fully set forth herein. Indeed, the block diagram of
memory device 10 in FIG. 1 1s patterned after FIG. 1 of U.S.
Pat. No. 5,404,485. Memory device 10 includes a flash
memory 12 that 1s managed by a flash controller 18 as taught
in U.S. Pat. No. 5,404,485 with the help of a random access
memory (RAM) 20. Two programs are stored in flash
memory 12: a launcher 14 and an application 16. Memory
device 10 also includes a universal serial bus (USB) inter-
face 22 for communicating with other devices according to
the USB protocol as taught 1n U.S. Pat. No. 6,148,354. One
preferred embodiment of memory device 10 1s the DiskOn-
Key™ flash disk, available from M-Systems Flash Disk
Pioneers, Ltd. of Kfar Saba, Israel.

Host computer 30 includes a general purpose central
processing unit (CPU) 32, a RAM 34, a non-volatile pro-
grammable memory (specifically, a hard disk) 36 and a USB
interface 38, all communicating with each other via a bus 40.
Host computer includes other components, such as 1nput
devices (keyboard, mouse, etc.) and output devices (display
screen, printer, etc.) that, for i1llustrational simplicity, are not
shown 1n FIG. 1. Memory device 10 1s shown 1n FIG. 1 as
reversibly operationally coupled to host computer 30 by the
mutual physical contact of USB interfaces 22 and 38. For
example, i memory device 10 1s a DiskOnKey™., then
memory device 10 1s reversibly operationally coupled to
host computer 30 by plugging memory device 10 into a USB
port of host computer 30 and 1s disconnected from host
computer 30 by unplugging memory device 10 from the
USB port of host computer 30.

FIG. 2 1s a flow chart of the execution of application 16
by host computer 30 according to the present invention.

In block 50, host computer 30 1s powered up. At this time,
memory device 10 may or may not be operationally con-
nected to host computer 30 via USB interfaces 22 and 38.

In block 52, host computer 30 determines whether
memory device 10 1s operationally connected to host com-
puter 30. If memory device 10 1s not operationally connected
to host computer 30, then host computer 30 waits until
memory device 10 1s operationally connected to host com-
puter 30.

When host computer 30 determines that memory device
10 1s operationally connected to host computer 30, then host
computer 30 proceeds to block 54 1n which host computer 30
copies launcher 14 to RAM 34 and executes launcher 14
from RAM 34. The function of launcher 14 1s to implement
blocks 56 through 64.

In block 56, launcher 14 1nitiates the execution of appli-
cation 16 by host computer 30. As 1n the case of launcher 14,
host computer 30 typically copies application 16 to RAM 34
and executes application 16 from RAM 34. Alternatively,
host computer 30 executes application 16 directly from flash
memory 12. Meanwhile, launcher 14 monitors the changes
that are made to the data stored in hard disk 36 while
application 16 1s executed, for example by monitoring traflic
on bus 40, and records information related to these changes
in RAM 34 or in flash memory 12. These changes include
both data written to hard disk 36 by application 16 and data
written to hard disk 36 by concurrently running programs,
for example by the operating system of host computer 30,
while application 16 1s executed. The purpose of this infor-
mation 1s to enable launcher 14 to undo the changes 1n block
64. To this end, suflicient information i1s recorded to enable
launcher 14 to undo the changes. For example, 1f a registry
setting 1s changes while application 16 1s executed, launcher
14 records the initial value and its address in hard disk 36.

Us 7,296,144 B2

7

In the case of other changes that need not be restored, for
example, files written to hard disk 36 by application 16,
launcher 14 records only the address of the change 1n hard
disk 36.

During the execution of application 16, launcher 14
repeatedly tests two exit conditions. If the execution of
application 16 terminates (block 58), then control branches
to block 64. If memory device 10 1s disconnected from host
computer 30 (block 60), then the execution of application 16
1s terminated 1n block 62. Finally, after the execution of
application 16 has terminated, in block 64 launcher 14 uses
the information that has been recorded about the changes to
hard disk 36 1n block 56 to undo the changes to hard disk 36.
Changes that need to be reversed, for example restoration of
registry settings to their original values, are reversed. Other
changes are merely undone, for example by overwriting files
created by application 16 1n hard disk 36 with zeroes or with
random data. Note that no measures need to be taken to undo
changes made to RAM 34 durning the execution of applica-
tion 16 because RAM 34 is erased automatically when host
computer 30 finishes undoing the changes to hard disk 36,
powers down or reboots.

Optionally, 1f i1t 1s known 1n advance that certain changes
to hard disk 36 will be made during the execution of
application 16, a list of these changes 1s stored in flash
memory 12. In block 64, launcher 14 refers to this list, in
addition to the recorded changes, to undo the changes made
to hard disk 36 during the execution of application 16. The
provision of the list of known changes reduces the amount
of processing that launcher 14 must do to undo the changes
to hard disk 36, and also provides launcher 14 with infor-
mation, for example information about changes to hard disk
36 that are expected to occur before block 54 or after block
62, that otherwise would not be available to launcher 14.
Note that because changes to hard disk 36 that occur before
block 54 or after block 62 are not changes that are made
during the execution of application 16, undoing these
changes 1s only optional. In some embodiments of the
present invention, launcher 14 does not record changes to
hard disk 36 1n block 56, but merely undoes the changes that
are expected 1n advance and that are recorded 1n the list of
expected changes that 1s provided 1n flash memory 12.

Optionally, as part of block 54, launcher 14 copies part or
all of hard disk 36 to flash memory 12 or to a different
memory (not shown) that 1s temporarily connected to host
computer 30. In block 64, launcher 14 compares that full or
partial copy of hard disk 36 to hard disk 36 in order to
determine how to undo the changes to hard disk 36 that were
cllected during the execution of application 16. Alterna-
tively, 1 block 54, launcher 14 copies the part of hard disk
36, that will be modified by the execution of application 16,
to another part of hard disk 36. Later, in block 64, launcher
14 compares the copy of the modified part of hard disk 36
to the modified part of hard disk 36 to determine how to
undo the changes to hard disk 36 that were etiected during
the execution of application 16. Then launcher 14 undoes the
changes to the modified part of hard disk 36 and erases the
copy of the modified part of hard disk 36.

In the embodiment of the present invention that 1s llus-
trated i FIG. 2, launcher 14 and application 16 are invoked
automatically when host computer 30 determines that
memory device 10 1s operationally connected to host com-
puter 30. Alternatively, launcher 14 i1s invoked interactively
by a user of host computer 30. For example, 1f the operating,
system of host computer 30 1s an operating system such as
Microsoit Windows™ that provides a graphical user inter-
tace (GUI), when memory device 10 1s operationally con-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

nected the host computer 30 the operating system displays to
the user a window that includes an icon that represents
launcher 14. The user invokes launcher 14 by selecting the
icon using a standard GUI method, for example by pointing
to and clicking on the icon using a mouse. Optionally, this
interactive mechanism 1s used by the user even in the
embodiment illustrated 1n FIG. 2, to re-start application 16
alter block 64 without disconnecting and reconnecting
memory device 10.

FIG. 3 1s a high-level block diagram of another memory
device 10' of the present invention. Memory device 10' 1s
identical to memory device 10 of FIG. 1, except for the
presence of several (three are illustrated) applications 16, 16'
and 16" in flash memory 12. Launcher 14 manages the
successive execution of all three applications 16, 16' and
16". First, launcher 14 invokes application 16. After
launcher 14 has cleaned up after application 16, launcher 14
invokes application 16'. After launcher 14 has cleaned up
alter application 16', launcher 14 invokes application 16".
Finally, launcher 14 cleans up aiter application 16". Alter-
natively, launcher 14 1s operative to enable a user of host
computer 30 to select, for example via a GUI, which one of
applications 16, 16' and 16" i1s to be invoked.

As another alternative, launcher 14 manages the simulta-
neous execution of applications 16, 16' and 16". Launcher 14
invokes all three applications 16, 16' and 16" substantially
concurrently, and cleans up after them after they finish
executing.

FIG. 4 1s a high-level block diagram of a third memory
device 10" of the present mnvention. Memory device 10' 1s
identical to memory device 10 of FIG. 1 except for the
presence of several (three are illustrated) launchers 14, 14'
and 14" along with corresponding applications 16, 16' and
16". Launcher 14 manages the execution of application 16.
Launcher 14' manages the execution ol application 16'.
Launcher 16" manages the execution of application 16". In
one embodiment of the present invention, launcher 14 and
application 16 are invoked automatically when host com-
puter 30 determines that memory device 10 1s operationally
connected to host computer 30. After launcher 14 has
fimished cleaning up after application 16, launcher 14
invokes launcher 14' and application 16'. After launcher 14'
has finished cleaning up after application 16', launcher 14'
invokes launcher 14" and application 16". Alternatively,
launchers 14, 14' and 14" are invoked interactively by a user
of host computer 30, as described above for memory device
10'.

FIG. 5 1s a high-level block diagram of a fourth memory
device 11 of the present invention. Memory device 11 1is
identical to memory device 10 of FIG. 1 except for the
presence in flash memory 12, 1 addition to launcher 14 and
application 16, of a cleanup service 24. Cleanup service 24
duplicates the cleanup functionality of launcher 14 and 1is
configured so that when cleanup service 24 1s installed 1n
host computer 30, the operating system of host computer 30
executes cleanup service 24 as part of the boot process of
host computer 30. The purpose of cleanup service 24 1s to
clean up after application 16 1f the execution of application
16 or the subsequent cleanup by launcher 14 is interrupted
by a hardware fault such as a loss of power. FIGS. 6 and 7
are tlowcharts of how this 1s accomplished.

FIG. 6 1s broadly similar to FIG. 2. In block 66, host
computer 30 1s powered up. In addition, housekeeping
functions related to cleanup service 24 are performed, as
illustrated 1 FIG. 7. In block 68, host computer 30 deter-
mines whether memory device 11 1s operationally connected
to host computer 30. If memory device 11 i1s not operation-

Us 7,296,144 B2

9

ally connected to host computer 30, then host computer 30
waits until memory device 11 1s operationally connected to
host computer 30.

When host computer 30 determines that memory device
11 1s operationally connected to host computer 30, then host
computer 30 proceeds to block 70 in which host computer 30
executes launcher 14. In this embodiment of the present
invention, the function of launcher 14 is to implement blocks
72 through 84.

In block 72, launcher 14 1nstalls cleanup service 24 1n host
computer 30. In block 74, launcher 14 1initiates the execution
of application 16. Meanwhile, launcher 14 momnitors the
changes that are made to the data stored in hard disk 36
during the execution of application 16, for example by
monitoring tratlic on bus 40, and records information related
to these changes.

During the execution of application 16, launcher 14
repeatedly tests two exit conditions. IT the execution of
application 16 terminates (block 76) then control branches to
block 82. If memory device 11 1s disconnected from host
computer 30 (block 78), then the execution of application 16
1s terminated 1n block 80. After the execution of application
16 has terminated, in block 82 launcher 14 uses the infor-
mation that has been recorded about the changes to hard disk
36 in block 74 to undo the changes to hard disk 36. Finally,
launcher 14 removes cleanup service 24 from host computer
30.

Turning now to FIG. 7, block 86 of FIG. 7 1s substantially
identical to block 50 of FIG. 2: normal powerup of host
computer 30 as host computer 30 would be powered up 1n
the absence of cleanup service 24. If cleanup service 24 1s
installed 1 host computer 30 (block 88), then 1n block 90 the
operating system of host computer 30 initiates the execution
of cleanup service 24. In block 92, cleanup service 24 checks
to see 1I hard disk 36 includes any changes made by the
interrupted execution of application 16. Note that in order
for cleanup service 24 to do this, the information about the
changes to hard disk 36 must have been stored 1n hard disk
36 and not 1n flash memory 12 (in case host computer 30 1s
powered up without being operationally connected to
memory device 10) or RAM 34. If any such changes were
made, they are undone 1n block 94. Finally, cleanup service
24 1s removed from host computer 30 1n block 96, and host
computer proceeds (block 98) to test, in block 68 of FIG. 6,
for the presence of memory device 11.

As noted above, the purpose of cleanup service 24 1s to
remove from hard disk 36 the changes made by application
16 to hard disk 36 under circumstances that prevent host
computer 30 from completing block 64 of FIG. 2. This 1s
why, 1n FIG. 6, cleanup service 24 i1s removed from host
computer 30 in block 84 after the completion of block 82.
Alternatively, to save execution time, block 84 1s skipped:
cleanup service 24 will be removed from host computer 30
in block 96 of FIG. 7 anyway the next time host computer
30 1s powered up.

Alternatively, launcher 14 lacks code of its own for
undoing, in block 82 of FIG. 6, the changes made to hard
disk 36 during the execution of application 16. Instead,
launcher 14 executes cleanup service 24 for this purpose.

Preferably, cleanup service 24 1s installed 1n host com-
puter 30, 1n block 72 of FIG. 6, 1n a manner that ensures that
no indication 1s left behind in host computer 30 that cleanup
service 24 ever was installed 1 host computer 30. For
example, i the operating system ol host computer 30 1s a
Microsolt Windows™ operating system, then cleanup ser-
vice 24 1s installed using the Microsoit Windows™ “run-
once” service setting.

10

15

20

25

30

35

40

45

50

55

60

65

10

While the invention has been described with respect to a
limited number of embodiments, 1t will be appreciated that
many variations, modifications and other applications of the
invention may be made.

What 1s claimed 1s:

1. A method of operating a computer, comprising the steps
of:

(a) storing at least one application 1 a non-volatile
memory that i1s separate from the computer;

(b) reversibly operationally connecting said separate non-
volatile memory to the computer;

(c) executing one of said at least one application, by the
computer, said executing of said one application caus-

ing at least one change to a non-volatile memory of the
computer, said change persisting after said executing of

said one application terminates; and

(d) undoing said at least one change, subsequent to said
executing; wherein, 1f said executing of said one appli-
cation terminates normally, said undoing 1s eflected
consequent to said terminating of said executing of said
one application, and 1f said executing of said one
application terminates abnormally, the method further
comprises the steps of:

(¢) subsequent to said disconnecting, booting the com-

puter, said undoing being nitiated by said booting.

2. The method of claim 1, further comprising the step of:

(1) recording mformation related to said at least one

change, said undoing being based at least 1n part on said
information.

3. The method of claim 2, wherein at least a portion of
said information 1s recorded in said separate non-volatile
memory.

4. The method of claim 2, wherein at least a portion of
said information 1s recorded in a volatile memory of the
computer.

5. The method of claim 2, wherein at least a portion of
said recording 1s effected during said executing of said one
application.

6. The method of claim 2, wherein at least a portion of
said recording 1s eflected prior to said executing of said one
application.

7. The method of claim 6, wherein said i1nformation
includes a list of at least one said change that said executing
of said one application 1s expected to efl

ecCt.

8. The method of claim 6, wherein said i1nformation
includes a copy of at least a portion of said non-volatile
memory of the computer.

9. The method of claim 1, wherein said separate non-
volatile memory 1s a read-only memory.

10. The method of claim 1, wherein said separate non-
volatile memory 1s a programmable memory.

11. The method of claim 10, wherein said separate non-
volatile memory 1s a flash memory.

12. The method of claim 1, wherein said separate non-
volatile memory includes both a read-only portion and a
programmable portion.

13. The method of claim 1, wherein said executing of said
one application 1s consequent to the computer detecting said
reversibly operationally connecting of said separate non-
volatile memory to the computer.

14. The method of claim 1, wherein said executing of said
one application 1s initiated by an interaction, of a user of the
computer with the computer, other than causing the com-
puter to detect said reversibly operationally connecting of
said separate non-volatile memory to the computer.

Us 7,296,144 B2

11

15. The method of claim 1, further comprising the step of:

(1) storing, 1n said separate non-volatile memory, at least
one launcher of said at least one application, execution
of each said at least one application being managed by
a respective said launcher.

16. The method of claim 135, wherein a single said
launcher 1s stored in said separate non-volatile memory.

17. The method of claim 16, wherein a single said
application 1s stored 1n said separate non-volatile memory.

18. The method of claim 16, wherein a plurality of said
applications 1s stored in said separate non-volatile memory.

19. The method of claim 18, wherein said launcher 1s
operative to present said plurality of applications interac-
tively to a user of the computer, the method turther com-
prising the step of:

(1) selecting, by said user, which one of said applications

1s to be executed.

20. The method of claim 15, wherein a plurality of said
launchers and a like plurality of said applications are stored
in said separate non-volatile memory.

21. The method of claim 1, further comprising the step of:

(1) partitioning said separate non-volatile memory 1nto a

first portion wherein said at least one application 1s
stored and a second portion wherefrom said at least one
application 1s blocked.

10

15

12

22. The method of claim 21, wherein said partitioning 1s
done dynamically.

23. The method of claim 1, further comprising the step of:

(1) prior to said executing of said one application, install-
ing in the computer a cleanup service for effecting said

undoing when said booting 1s effected.

24. The method of claim 23, wherein said undoing also 1s
ellected by said cleanup service 11 said executing of said one
application terminates normally.

25. The method of claim 24, further comprising the step
of:

(g) removing said cleanup service, subsequent to said
undoing.
26. The method of claim 25, wherein said removing 1s
cllected only 1f said undoing is mitiated by said booting.

277. The method of claim 23, further comprising the step

50 of:

(g) removing said cleanup service from the computer,
subsequent to said booting.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,296,144 B2 Page 1 of 1
APPLICATION NO. : 10/994384

DATED : November 13, 2007

INVENTOR(S) : Bryant-Rich et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 2 line 48:

“disconnecting” should be changed to --abnormal termination--.
Column 6 ling 66:

“changes™ should be changed to --changed--.

Column 10 line 25:

“disconnecting” should be changed to --abnormal termination--.

Signed and Sealed this

Seventeenth Day of June, 2008

W D)k

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

