US007296084B2
12 United States Patent (10) Patent No.: US 7,296,084 B2
Thayer et al. 45) Date of Patent: Nov. 13, 2007
(54) DATA MANAGEMENT SYSTEM AND (56) References Cited
METHOD U.S. PATENT DOCUMENTS
(75) Inventors: Jennifer J. Thayer, Greeley, CO (US); 4,654,654 A * 3/1987 Butler et al. 340/825.5
Jeffrey D. SChwartZ, Lovelandj CO 5,222,061 A * 6/1993 Doshi et al. 370/394
(US): Neal A. Krawetz, Fort Collins 5,455,865 A * 10/1995 Perlmancc......... 713/153
CO &JS) " " 6,269,080 B1* 7/2001 Kumarcoeeeenn... 370/236
2003/0002494 Al* 1/2003 Kuukankorpi et al. 370/386
2003/0093485 Al* 5/2003 Dougall et al. 709/208

(73) Assignee: Hewlett-Packard Development
Company, L.P., Houston, TX (US) OTHER PUBLICATIONS

: . : . : Lee et al., Yield analysis and data management using Yield Man-
it . :
(*) Notice: Subject to any disclaimer, the term of this ager, Advanced Semiconductor Manufacturing Conference and

patent 1s extended or adjusted under 35 workshop, 1998, 1998 IEEE Sep. 23-25, 1998,pp. 19-30.*
U.S.C. 1534(b) by 1155 days.

* cited by examiner

(21) Appl. No.: 10/167,359 Primary Examiner—Andrew Caldwell

(22) Filed: Jun. 11, 2002 Assistant Examiner—Douglas Blair
(65) Prior Publication Data (57) ABSTRACT
US 2003/0229712 Al Dec. 11, 2003 A data management system comprises a processor adapted
to recerve a transier ol an update. The system also comprises
(51) Inmt. CL. an update manager accessible by the processor and adapted
GO6F 15/16 (2006.01) to obtain a listing identifying each of a plurality of data
GO6F 9/44 (2006.01) packets corresponding to the update. The update manager 1s
(52) US.ClL ..o, 709/236; 717/171 further adapted to access the listing to determine a transfer
(58) Field of Classification Search 709/208, status of each of the data packets in response to a partial

709/236; 340/825.5; 370/236-386,394; transfer of the update.
713/153; 717/168, 171

See application file for complete search history. 44 Claims, 3 Drawing Sheets
CLIENT 12
N processor | 22 SERVER 14
d 62 [processor |0
MEMORY N
30~ uPDATE | MEMORY
MANAGER poae |64 || 10
MANAGER
32~ SCHEDULING I
ROUTINE PARSING | - 66
70 | APPLICATION
34~ INTEGRATION <
APPLICATION | 40
4 DATABASE
2 DATABASE | | gy UPDATE
| > UPDATE N Y |
LIBRARY UPDATE
T [DENTIFIERS \
90
UPDATE N I
IDENTIFIERS 20
IPDATE
PACKETS —
7 /A
. ! 84
CLIENT DATA &
\
4E 46 | UPDATE TABLE
gg COMPLETED | |
. TASKS
UPDATE
IDENTIFIERS
UPDATE
PACKETS .
g’é 16
SCHEDULE
o0 DATA

U.S. Patent Nov. 13, 2007 Sheet 1 of 3 US 7,296,084 B2

CLIENT 12
20 \| PROCESSOR | 99 SERVER 14
/ 62 | PROCESSOR |/ ol
MEMORY N
30 UPDATE MEMORY
_ MANAGER UPDATE 64 10

MANAGER

32~| SCHEDULING :
ROUTINE PARSING 66

/0 | APPLICATION

34 INTEGRATION
APPLICATION | 40

DATABASE

42 DATABASE UPDATE
87

A—UP—DATE < LIBRARY

[DENTIFIERS

UPDATE
PACKETS

SCHEDULED
L TASKS

UPDATE
[DENTIFIERS

UPDATL
PACKETS

97

CLIENT DATA 04

| UPDATE TABLE I

43
46

96 COMPLETED
TASKS

UPDATL
[DENTIFIERS

UPDATE
PACKETS

98

| SCHEDULE
o0 DATA

16
FIG. 71

U.S. Patent Nov. 13, 2007 Sheet 2 of 3 US 7,296,084 B2

0 %6 ST) FIG. 24

100

ACCESS SCHEDULE DATA

DETERMINE WHETHER SCHEDULE 102

REQUIRES UPDATE INQUIRY

106
N

| RESET SCHEDULE |< NO

| INITIATE ACCESS TO SERVER I/ 108

DETERMINE STATUS OF PRIOR UPDATES 110
112

INQUIRY
REQUIRED?

YES

PRIOR

UPDATES COMPLLIE
?

YES

NO

DETERMINE INCOMPLETE UPDATE TASKS 114

DETERMINE REQUIRED PACKETS
FOR THE UPDATE TASK 116

REQUEST REQUIRED

PACKETS FROM SERVER 118
VERIFY RECEIPT OF ALL PACKETS
CORRESPONDING TO AN UPDATE TASK 120

SERVER

NO "ACCESS TERMINATED
?

NO

ANOTHER

PRIOR UPDATE
?

PACKETS RECEIVED

124 122

YES YES 130
RESCHEDULE INSTALL UPDATE
INCOMPLETE UPDATE
128 B
126 T0

FIG. 2B

U.S. Patent Nov. 13, 2007 Sheet 3 of 3 US 7,296,084 B2

FROM | 4
FIG. 2A

152 DETERMINE WHETHER NEW
UPDATE RESIDES ON SERVER

154

NO

UPDATE ON SERVER

136 YES 1/38

NO SCHEDULE FOR
FUTURE RETRIEVAL
YES

140 REQUEST UPDATE IDENTIFIER

o

DETERMINE UPDATE
PACKETS CORRESPONDING

TO THE UPDATE IDENTIFIER

142

REQUEST PACKETS CORRESFONDING

144 10 THE UPDATE I[DENTIFIER

VERIFY RECEIPT OF ALL PACKEITS
146 CORRESPONDING TO THE UPDATE

SERVER

ACCESS TERMINATED NO
?

NO

PACKETS RECEIVED

143
YES 190 YES

s INSTALL UPDATE ~ RESCHEDULF

INCOMPLETE UPDATE

YES ANOTHER

UPDATE?

10 FIG. 2A

160

NO
END

riG. &8

US 7,296,084 B2

1

DATA MANAGEMENT SYSTEM AND
METHOD

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to the field of data
communications and, more particularly, to a data manage-

ment system and method.

BACKGROUND OF THE INVENTION

Information transfer via the Internet, intranet, and other
wired or wireless communication mediums 1s widely known
and used. However, connection speed often limits the
amount of mnformation that may be successtully transferred
over such communication mediums. For example, at rela-
tively slow connection speeds, such as dial-up and other
types of slow connections, the connection may be lost before
information transier 1s complete. Thus, connections may
have to be repeatedly reestablished. In the case of large file
downloads, repeated download attempts may be necessary
before the entire file successiully transfers, at which time the
file may then be loaded or installed.

SUMMARY OF THE INVENTION

In accordance with one embodiment of the present inven-
tion, a data management system comprises a processor
adapted to receive a transier of an update. The system also
comprises an update manager accessible by the processor
and adapted to obtain a listing identifying each of a plurality
of data packets corresponding to the update. The update
manager 1s further adapted to access the listing to determine
a transfer status of each of the data packets 1in response to a
partial transier of the update.

In accordance with another embodiment of the present
invention, a data management method comprises 1dentifying
an update to be received and obtaining a listing 1dentifying
cach of a plurality of data packets corresponding to the
update. The method also comprises determining a transier
status of each of the data packets in response to a partial
transier of the update.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion and the advantages thereof, reference 1s now made to
the following descriptions taken in connection with the
accompanying drawings 1n which:

FIG. 1 1s a block diagram illustrating an embodiment of
a data management system in accordance with the present
imnvention; and

FIGS. 2A and 2B are a tlow chart illustrating a method for
data management 1n accordance with an embodiment of the
present mvention.

DETAILED DESCRIPTION OF THE DRAWINGS

The preferred embodiments of the present invention and
the advantages thereol are best understood by referring to
FIGS. 1 and 2 of the drawings, like numerals being used for
like and corresponding parts of the various drawings.

FIG. 1 1s a block diagram illustrating an embodiment of
a data management system 10 in accordance with the present
invention. In the illustrated embodiment, data 1s transmitted
between a client 12 and a server 14 via a communication
network 16. Client 12 may comprise a desktop computer,

10

15

20

25

30

35

40

45

50

55

60

65

2

personal digital assistant, or other computer or processing
device for communicating with server 14 via communica-
tion network 16. Client 12 may also comprise another server
communicating with server 14 via communication network
16. Communication network 16 may comprise the Internet,
a local area network, a wide area network, or other type of
wired or wireless communication medium for transmitting
information between client 12 and server 14.

In the illustrated embodiment, client 12 comprises a
processor 20 coupled to a memory 22. The present invention
also encompasses computer software that may be stored 1n
memory 22 and executed by processor 20. In this embodi-
ment, client 12 comprises an update manager 30, a sched-
uling routine 32, and an integration application 34, which
are computer software programs. However, 1t should be
understood that the present mvention may be configured
having software, hardware, or a combination of software and
hardware components. In FIG. 1, update manager 30, sched-
uling routine 32, and integration application 34 are illus-
trated as being stored in memory 22, where they can be
executed by processor 20. However, it should be understood
that update manager 30, scheduling routine 32, and integra-
tion application 34 may be otherwise stored such that update
manager 30, scheduling routine 32, and integration applica-
tion 34 are accessible by processor 20.

Briefly, update manager 30 manages information transfer
between client 12 and server 14. For example, update
manager 30 monitors the status of information contained at
client 12 to determine whether information transter should
be 1nitiated between server 14 and client 12, initiates com-
munications with server 14 to obtain desired information,
and/or determine the status or completeness of information
transier between client 12 and server 14. Scheduling routine
32 controls scheduling of information transier between
client 12 and server 14. Integration application 34 controls
the mtegration or assembling/reassembling of various por-
tions or pieces of information transmitted between client 12
and server 14 to form a complete communication.

In the illustrated embodiment, client 12 also comprises a
database 40. In this embodiment, database 40 has an update
library 42 comprising information associated with data
transier between client 12 and server 14. For example, 1n the
illustrated embodiment, update library 42 comprises sched-
uled tasks 46 and completed tasks 48. Briefly, scheduled
tasks 46 comprises information associated with scheduled
transfers of information between client 12 and server 14.
Completed tasks 48 comprises information associated with
successiully transterred immformation between client 12 and
server 14. In FIG. 1, database 40 also has scheduled data 50
comprising information associated with the scheduling of
information transfer between client 12 and server 14.

In the illustrated embodiment, server 14 comprises a
processor 60 coupled to a memory 62. The present invention
also encompasses computer software that may be stored 1n
memory 62 and executed by processor 60. In this embodi-
ment, server 14 comprises an update manager 64 and a
parsing application 66, which are computer soltware pro-
grams. In FIG. 1, update manager 64 and parsing application
66 arc illustrated as being stored 1n memory 62, where they
can be executed by processor 60. Briefly, update manager 64
controls and monitors information transier between client 12
and server 14. Parsing application 66 parses or divides an
update 1nto a plurality of discrete portions.

In the 1llustrated embodiment, server 14 also comprises a
database 70. In this embodiment, database 70 has an update
library 72 comprising information associated with data
required to be transierred from server 14 to client 12. In this

US 7,296,084 B2

3

embodiment, database 70 also has client data 74 comprising
information associated with a status of information transter
from server 14 to client 12. As illustrated in FIG. 1, this
embodiment of update library 72 comprises one or more
updates 76. As used herein, the term “update” may comprise
any form of data, such as, but not limited to, an executable
program, a data file, an upgrade to an existing file or
program, or an instruction to delete or replace a data file or
other data component.

In operation, parsing application 66 parses or divides each
update 76 to be transierred from server 14 to client 12 1nto
a designated or predetermined quantity of data packets 80
and stores data packets 80 in update library 72. For example,
parsing application 66 may parse each update 76 such that
cach data packet 80 comprises less than a predetermined
amount of data. Update manager 64 may assign an update
identifier 82 corresponding to each update 76 to be trans-
mitted to client 12. In the 1llustrated embodiment, update 76
1s stored to server 14 and then parsed by parsing application
66; however, 1t should be understood that update 76 may be
parsed belore storage to the server such that only data
packets 80 are uploaded to server 14, thereby enabling
parsing application 66 to reside elsewhere than on server 14.

In this embodiment, client data 74 comprises an update
table 84 having information associated with update 76
transter to each client 12. For example, update table 84 may
comprise a relational database associating each update 76
transmitted to a particular client 12 such that update man-
ager 64 may access update table 84 to determine which
updates 76 are required for each client 12. Alternatively,
update manager 64 may maintain a listing of updates 76
retained 1n update library 72 such that update manager 30 of
client 12 may determine which updates 76 require down-
loading from server 14.

In operation, scheduling routine 32 generates scheduled
data 50 corresponding to periodic connections to server 14
via communication network 16 to determine whether
updates 76 residing on server 14 require downloading to
client 12. Schedule data 50 may also comprise information
associated with resuming previously scheduled or partial
update 76 downloads. For example, at a particular time
corresponding to schedule data 50, update manager 30 may
initiate a connection to server 14 via communication net-
work 16. Update manager 30 may poll server 14 to deter-
mine whether updates 76 reside in update library 72 for
downloading to client 12. As described above, client data 74
may also comprise update table 84 which may identify
particular updates 76 required for downloading from server
14 to client 12. IT a particular update 76 requires download-
ing from server 14 to client 12, scheduling routine 32 may
automatically initiate the download of the designated update
76 or may schedule the download of the designated update
76 for another time. Server 14 may also periodically 1nitiate
a connection to client 12 to i1dentily updates 76 requiring
downloading to client 12. In this example, schedule data 50
may comprise information associated with retrieval of
updates 76 at later times.

As described above, scheduled tasks 46 may comprise
information associated with updates 76 to be downloaded
from server 14. Update manager 30 may retrieve or receive
a particular identifier 82 from server 14 corresponding to a
particular update 76 and store the 1dentifier 82 as an update
identifier 90 in scheduled tasks 46. Additionally, update
manager 30 obtains a listing of data packets 80 correspond-
ing to a particular update 1dentifier 82 and stores the listing
of data packets 80 as data packets 92 within scheduled tasks
46. Thus, update manager 30 determines a listing of the data

10

15

20

25

30

35

40

45

50

55

60

65

4

packets 92 forming the complete update 76. Accordingly,
alfter receipt of all data packets 92 corresponding to a
particular update 76, the update 76 may then be installed at
client 12.

As each update packet 92 corresponding to a particular
update 76 1s received or retrieved by client 12, update
manager 30 stores the update identifier 96 and correspond-
ing update packet 98 within completed tasks 48. Accord-
ingly, update manager 30 may compare completed tasks 48
with scheduled tasks 46 to determine whether a particular
update 76 was partially or completely transferred from
server 14 to client 12. For example, update manager 30 may
compare data packets 98 with data packets 92 to determine
whether client 12 has received all data packets correspond-
ing to a particular update 76 or whether update 76 has been
partially received. Partial receipt of update 76 may be due to
an 1nadvertent disconnection from server 14, one or more
data packets 80 being corrupted, infected, or otherwise
unusable or undesirable, or perhaps only a portion of update
76 was scheduled for download from server 14. For
example, 11 the connection to server 14 1s disconnected or
otherwise terminated, update manager 30 may compare data
packets 92 and 98 to determine which data packets 92 failed
to be downloaded from server 14. If a commumnication
network 16 disconnection occurs, scheduling routine 32 may
automatically reschedule another connection to server 14 to
download the remaining data packets 92.

Thus, by parsing update 76 into data packets 80, success-
tully-transferred data packets 80 may be stored at client 12
until all data packets 80 corresponding to a particular update
76 are received at client 12. If one or more data packets 80
are not received, client 12 requests or retrieves the remaining
data packets 80 from server 14 until all of data packets 80
corresponding to the particular update 76 are retrieved,
thereby eliminating the requirement of repeatedly attempt-
ing to download the entire update 76 11 even a small portion
of the download was previously unsuccessiul or incomplete,
especially when dial-up or other relatively slower types of
connections via communication network 16 are used.

FIGS. 2A and 2B are a tlowchart illustrating a method for
data management in accordance with embodiment of the
present invention. The method begins at step 100, where
update manager 30 accesses schedule data 50. At step 102,
update manager 30 determines whether schedule data 50
requires a connection to server 14 to inquire about possible
updates 76 to client 12. At decisional step 104, if an update
76 1nquiry 1s not required according to schedule data 30, the
method proceeds to step 106, where scheduling routine 32
may reset a clock associated with schedule data 50. If an
update 76 1inquiry 1s required according to schedule data 50,
the method proceeds from step 104 to step 108, where
update manager 30 mmitiates contact with server 14 via
communication network 16.

At step 110, update manager 30 determines a status of
prior update 76 downloads from server 14. For example, as
described above, update manager 30 may compare sched-
uled tasks 46 with completed tasks 48 to determine whether
additional data packets 92 corresponding to a particular
update 76 require downloading from server 14 before client
12 may 1nstall the particular update 76. At decisional step
112, 1f transier of prior updates 76 1s complete, the method
proceeds from step 112 to step 132. If transfer of prior
updates 76 1s incomplete, the method proceeds from step 112
to step 114, where update manager 30 accesses scheduled
tasks 46 to determine and identify the incomplete scheduled
tasks 46. At step 116, update manager 30 identifies the data
packets 92 corresponding to a partially transferred update

US 7,296,084 B2

S

76. At step 118, update manager 30 requests transmittal of
the 1dentified data packets 92.

At step 120, update manager 30 verifies receipt of all data
packets 92 corresponding to a particular update identifier 90.
At decisional step 122, 11 all data packets 92 corresponding
to a particular update 76 have not been received, the method
proceeds to decisional step 124, where update manager 30
determines whether a connection to server 14 has been
terminated. If a connection to server 14 has been terminated,
the method proceeds from step 124 to step 126, where
scheduling routine 32 may automatically reschedule
retrieval of the partially transterred update 76. If the con-
nection to server 14 has not been terminated, the method
returns to step 116. If all data packets 92 corresponding to
a particular update 76 have been received at decisional step
122, the method proceeds to step 128, where update man-
ager 30 may install and load the particular update 76 to client
12.

At decisional step 130, update manager 30 determines
whether another scheduled task 46 requires completion. IT
another scheduled task 46 requires completion, the method
returns to step 114. If another scheduled task 46 does not
require completion, the method proceeds from step 130 to
step 132, where update manager 30 determines whether a
new update 76 resides on server 14. As described above,
update manager 64 may access client data 74 to determine
whether the particular client 12 requires an additional update
76. Update manager 64 may also access update library 72
and provide client 12 with a listing of current updates 76
residing on server 14 such that update manager 30 may
compare the listing of updates 76 residing on server 14 with
completed tasks 48 to determine whether a particular update
76 requires downloading from server 14.

At decisional step 134, 1f no new updates 76 reside on
server 14, the method ends. If a new update 76 resides on
server 14, the method proceeds from step 134 to decisional
step 136, where update manager 30 determines whether
client 12 should retrieve the new update 76 at the present
time. If client 12 will not retrieve the new update 76 at the
present time, the method proceeds from step 136 to step 138,
where scheduling routine 32 updates schedule data 50
corresponding to a future retrieval time for the new update
76. I client 12 will retrieve the new update 76 at the present
time, the method proceeds from step 136 to step 140, where
update manager 30 requests from server 14 an update
identifier 82 corresponding to the new update 76. As
described above, update manager 64 provides client 12 with
the update i1dentifier 82 and update manager 30 stores the
update 1dentifier 82 as an update 1dentifier 90 within sched-
uled tasks 46.

At step 142, update manager 30 request a listing of the
data packets 80 corresponding to the particular update 76
and stores the listing of data packets 80 as data packets 92
within scheduled tasks 46. At step 144, update manager 30
requests transmittal of the data packets 92 corresponding to
the new update 76 from server 14. In this example, update
manager 30 initiates communications with server 14 and
requests the desired information. However, 1t should be
understood that server 14 may also 1nitiate communications
with client 12 and automatically forward various types of the
described information.

At step 146, update manager 30 verifies receipt of all data
packets 92 corresponding to the particular update 76. At
decisional step 148, 11 all data packets 92 have not been
received corresponding to a particular update 76, the method
proceeds to decisional step 150, where update manager 30
determines whether the connection to server 14 has been

5

10

15

20

25

30

35

40

45

50

55

60

65

6

terminated. If the connection to server 14 has not been
terminated, the method returns to step 142. If the connection
to server 14 has been terminated, the method proceeds from
step 150 to step 152, where scheduling routine 32 updates
schedule data 50 to reflect a future time for retrieval of the
partially transmitted update 76. The method then proceeds
from step 152 to step 100. If all data packets 92 correspond-
ing to a particular update 76 have been recerved at decisional
step 148, the method then proceeds to step 154, where
update manager 30 may load and 1nstall the particular update
76 on client 12. At decisional step 160, update manager 30
determines whether another update 76 resides on server 14
requiring download to client 12. If another update 76
requires downloading from server 14, the method returns to
step 140. If no additional updates 76 reside on server 14
requiring downloading to client 12, the method ends and the
connection to server 14 may be terminated.

What 1s claimed 1s:

1. A data management system, comprising:

a processor adapted to receive a transier of an update; and

an update manager accessible by the processor and

adapted to obtain a listing 1dentifying each of a plural-
ity of data packets corresponding to the update prior to
a transier of the update.

2. The system of claim 1, further comprising a scheduling
routine accessible by the processor and adapted to schedule
a time to transfer the update.

3. The system of claim 1, further comprising a scheduling
routine accessible by the processor and adapted to automati-
cally schedule a transfer of a data packet corresponding to a
corrupted data packet.

4. The system of claim 1, wherein the update manager 1s
adapted to 1dentily at least one of the plurality of packets of
the update remaining for transier in response to an inter-
rupted transier of the update.

5. The system of claim 1, further comprising a scheduling
routine accessible by the processor and adapted to automati-
cally schedule a transfer of at least one of the data packets
that are part of an interrupted transier of the update.

6. The system of claim 1, wherein the update manager 1s
adapted to obtain an i1dentifier associated with the update.

7. The system of claim 1, further comprising an integra-
tion application accessible by the processor and adapted to
assemble the data packets to form the update.

8. The system of claim 1, wherein the update manager 1s
adapted to retrieve from a server the listing of data packets
associated with the update.

9. The system of claim 1, further comprising a scheduling
routine accessible by the processor and adapted to automati-
cally schedule a reconnection to a server 1n response to a
partial transfer of the update.

10. The system of claim 1, wherein the update manager 1s
adapted to automatically poll a server to determine whether
the update requires retrieval.

11. The system of claim 1, wherein the update manager 1s
adapted to 1dentily receipt of at least one corrupted data
packet corresponding to the update.

12. A data management method, comprising:

identifying an update to be received; and

obtaining a listing identifying each of a plurality of data

packets corresponding to the update prior to a transier
of the update.

13. The method of claim 12, further comprising assem-
bling the data packets to form the update.

14. The method of claim 12, further comprising automati-
cally scheduling a transfer of at least one of the data packets
that are part of a partial transfer of the update.

US 7,296,084 B2

7

15. The method of claim 12, further comprising deter-
mimng whether at least one of the data packets comprises a
corrupted data packet.

16. The method of claim 12, further comprising polling a
server for the update.

17. The method of claim 12, further comprising automati-
cally scheduling a time to poll a server for the update.

18. The method of claim 12, further comprising automati-
cally detecting a disconnection to a server.

19. The method of claim 12, further comprising automati-
cally scheduling a time period for connecting to a the server
to receive the update 1n response to a disconnection from the
SErver.

20. The method of claim 12, further comprising automati-
cally determining a retrieval status of a prior update.

21. The method of claim 20, further comprising automati-
cally requesting from a server transier of data packets
corresponding to the prior update.

22. A data management system, comprising:

means for receiving an update; and

means for obtaining a listing identifying each of a plu-

rality of data packets forming the update prior to a
transier of the update.
23. The system of claim 22, further comprising means for
automatically scheduling transfer of the data packets.
24. The system of claim 22, further comprising means for
retrieving an identifier associated with the update.
25. The system of claim 22, further comprising means for
automatically scheduling a connection to a server 1in
response to a disconnection from the server.
26. The system of claim 22, further comprising means for
polling a server to determine whether an update requires
transfer.
27. The system of claim 22, further comprising means for
automatically scheduling transfer of at least one of the data
packets that are part of the partial transier.
28. The system of claim 22, further comprising means for
determining a transfer status of a prior update.
29. The system of claim 22, further comprising means for
assembling the data packets to form the update.
30. A data management system, comprising:
a Processor;
an update manager accessible by the processor and
adapted to periodically poll a server regarding an
update, the update comprising a plurality of data pack-
cts, the update manager adapted to obtain a listing of
the plurality of data packets forming the update prior to
a transier of the update; and

a scheduling routine accessible by the processor and
adapted to automatically schedule transier of at least
one of the data packets in response to a partial transfer
of the update.

10

15

20

25

30

35

40

45

50

8

31. The system of claim 30, further comprising an inte-
gration application accessible by the processor and adapted
to assemble the data packets to form the update.

32. The system of claim 30, wherein the update manager
1s Turther adapted to determine a status of a prior update.

33. The system of claim 30, wherein the update manager
1s Turther adapted to detect a disconnection from the server.

34. The system of claim 30, wherein the scheduling
routine 1s adapted to automatically schedule a reconnection
to the server 1n response to a disconnection from the server.

35. The system of claim 30, wherein the scheduling
routine 1s adapted to automatically schedule transier of at
least one of the data packets 1n response to receipt of a
corrupted data packet.

36. The system of claim 30, wherein the update manager
1s adapted to retrieve an identifier associated with the update.

377. The system of claim 30, further comprising an update
library accessible by the processor and having information
associated with received data packets corresponding to the
update.

38. The system of claim 30, wherein the update manager
1s adapted to request from the server at least one data packet
corresponding to the partially transferred update.

39. A data management system, comprising:

a processor adapted to receive a transier of an update, the
processor adapted to obtain a listing 1dentifying each of
a plurality of data packets forming the update prior to
a transier of the update.

40. The system of claim 39, wherein the processor 1s
adapted to schedule a time to transfer the update.

41. The system of claim 39, wherein the processor 1s
adapted to 1dentily at least one of the plurality of packets of
the update remaining for transier in response to an inter-
rupted transier of the update.

42. The system of claim 39, wherein the processor 1s
adapted to automatically schedule a transfer of at least one
of the data packets that are part of an interrupted transfer of
the update.

43. The system of claim 39, wherein the processor 1s
adapted to obtain an identifier associated with the update.

44. The system of claim 39, wherein the processor 1s
adapted to automatically poll a server to determine whether
the update requires retrieval.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,296,084 B2 Page 1 of 1
APPLICATION NO. :10/167359

DATED : November 13, 2007

INVENTORC(S) . Jennifer J. Thayer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

In column 7, line 11, in Claim 19, delete ““the” before “server”.

Signed and Sealed this

Seventeenth Day of June, 2008

W D)k

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

