12 United States Patent

US007293237B1

(10) Patent No.: US 7,293,237 B1

Knight et al. 45) Date of Patent: Nov. 6, 2007
(54) GRAPHICAL USER INTERFACE FOR 6,542,972 B2* 4/2003 Ignatius et al. 711/154
CREATING A CUSTOMIZED STORAGE 6,629.158 B1* 9/2003 Brant et al.coouvnnn.... 710/10
LAYOUT FOR AN APPLICATION
(75) Inventors: Margaret E. Knight, Seattle, WA (US);
Ko Wang, Cupertino, CA (US); (Continued)
Yateendra Kulkarni, Sunnyvale, CA
(US) OTHER PUBLICATIONS
(73) Assignee: Symantec Operating Corporation, U.S. Appl. No. 10/388,193, filed Mar. 2003, Knight
Cupertino, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this Primary Examiner—Tadesse Hailu
patent 1s extended or adjusted under 35 (74) Attorney, Agent, or Firm—Meyertons Hood Kivlin
U.S.C. 154(b) by 826 days. Kowert & Goetzel, P.C.; Jeffrey C. Hood
(21) Appl. No.: 10/641,128 (57) ABSTRACT
(22) Filed: Aug. 14, 2003
L A system and method for determining a storage configura-
Related U.5. Application Data tion for an application, where the storage configuration
(63) Continuation-in-part of application No. 10/327,561, specifles a storage layout for data objects associated with the
filed on Dec. 20, 2002, now Pat. No. 7,043,619. application. A Storage Configurator program may display a
- L graphical user interface (GUI) for guiding the user through
(60) E’zm;(s)gjznal application No. 60/343,870, filed on Jan. creation of the storage configuration. User 1mput to specily
’ ' properties of the storage configuration and/or properties of
the application may be recerved to the graphical user inter-
(51) Int. CL .
face. The Storage Configurator program may determine a
GO6E 3/00 (2006.01) storage configuration for the application, based on the user
(52) US.CL ..., 715/735; 715/771; °715/764; input received to the graphical user interface. In one embodi-
_ _ _ 7117170, 711171 ment, the Storage Configurator may provide an option
(58) Field of Classification Search 715/762-764, allowing the user to save the storage configuration, e.g., in
7157771, 7700, 735, 736, 853; 7117170, 171; a file or database. Saving the storage configuration may
o 71078, 15; 70?/ 223,224 allow the user to utilize the storage configuration at a later
See application file for complete search history. time. In one embodiment, the Storage Configurator may also
(56) References Cited provide an option allowing the user to implement the storage

U.S. PATENT DOCUMENTS

5,890,204 A * 3/1999 Oferetal 711/111
5,951,687 A * 9/1999 Chanetal.c.eevvenen..n. 713/2
6,347,366 Bl 2/2002 Cousins

6,377,939 B1* 4/2002 Youngcoovevinennnnn, 705/34
6,519,679 B2 2/2003 Devireddy et al.

6,538,669 Bl 3/2003 Lagueux, Ir. et al.

configuration. Implementing the storage configuration may
comprise storing the plurality of data objects associated with
the application on one or more storage devices according to
the storage layout specified by the storage configuration. For
example, the user may simply click a button to cause the data
objects to be stored according to the storage layout.

30 Claims, 29 Drawing Sheets

Displey & graphical user interface for guiding the user
thraugh craation of H11eﬂstuma configuration

T

Recaive user input to the graphical user interface to
spedily properties of the storage configuration and/for
properties nf;l? applicalion

14

[Determine the storage configuration based on the user
input received to the graphical user interfzce, where the
storage configuration speciiles a storage layout for a
plurality of data oblects assoclated with the application

'

Cisplay the sturfga conflguration

Liser wants to save
storage configuration?

No

~ Usar wanis
1o implement storage
configuration?

Yag

Yes

Save storage conflguration
i6

!

Re-opan stor% configuration

l

Modily ETDI‘HQZEI'! canfiguration

:

Implement sturgge configuration

US 7,293,237 Bl

Page 2
U.S. PATENT DOCUMENTS 2003/0074235 A1* 4/2003 GIegory ..eccceeeveeevenvennnnn. 705/4
2003/0076349 Al* 4/2003 Slabyccoviviiiininnn, 345/735
6,654,797 Bl 11/2003 Kamper 2006/0006905 Al* 1/2006 Chou et al.c..oconn..... 326/40
6,751,739 Bl 6/2004 Verdun 711/170
2002/0128815 Al 9/2002 Merchant et al. 704/2
2002/0129216 Al 9/2002 Collins OTHER PUBLICATIONS
2002/0133669 Al 9/2002 Devireddy et al. 711/114 “Performance and Capacity Plannlng S'OllltiOIlS”, © 1999 Compaq
2002/0198888 Al* 12/2002 Youngcovevevinennnns 707/100 Computer Cooperation.
2003/0033398 Al 2/2003 Carlson et al. 709/223
2003/0046270 Al 3/2003 Leung et al. * cited by examiner

U.S. Patent Nov. 6, 2007 Sheet 1 of 29 US 7,293,237 B1

122
Exchange
Server

124

NT 4.0 PDC

102

\

Access < \\
\\ ,

Firewall
104
Outlook Web

U.S. Patent Nov. 6, 2007 Sheet 2 of 29 US 7,293,237 B1

Display a graphical user interface for guiding the user
through creation of the storage configuration
10

Receive user input to the graphical user interface to
specify properties of the storage configuration and/or
properties of the application
12

Determine the storage configuration based on the user
input received to the graphical user interface, where the
storage configuration specifies a storage layout for a
plurality of data objects associated with the application

14

Display the storage configuration
15
Yes Save storage configuration
16

Re-open storage configuration
18

User wants to save
storage configuration?

No

Modify storage configuration
20

Yes Implement storage configuration
22

Fig. 2

User wants
to implement storage
configuration?

US 7,293,237 B1

Sheet 3 of 29

Nov. 6, 2007

U.S. Patent

"JXaN ¥ ‘anunuod o)

'sauN|on pue sysip Aydwa Jo s)sisuod abe.iols aald abeuo)s 234y

DuIIsixa noA Wo44 323]85 NDA JeL3 SAWNJ0A pue Ssip auy3 bussn
uoyednbijuod abeuo)s pajsabbns e i NoA sapiacdd piezim siyL

'saseqeep pue sdno.b abeiols aul
i04 abe.o)s paziuiydo ajeasd ued NoA ‘pieziv SILP buisn

pARZIM UGB NDYuo] 3be101S 3yl 0] WM

u._mmﬂ.._. :mm_m._-ﬂg-.m..u un_m._aum

US 7,293,237 B1

Sheet 4 of 29

Nov. 6, 2007

U.S. Patent

(45N peJueApy) wWoisnD))

(papuawwoday) (eJdAL)

—— — :suorjdo buimojjoj Y] wo4j 2saoL)y asea|d

- - e —— — - L _m_ am s mm o mas m L= L 5. & —_— - . - o - [RS — -— a . - - r [P —

‘abeiols abueydx3 ‘_z.m..m..mha_u_:mu Al|lenuew 0] Juew pue SdnoJs ysig pue sawnpa Jo buipuelsispun ybnoloy) e
S4B NCA J WOIsND asooy) “noAe; wnuijdo ue 3sabins o] pleziag woResndiguon) abelols ayl voje 03 jeadA] 9sooyD

ad4) uonjesnbijuod e 3so YY)

u..mu..... uoljeanbiyuo) Wmm.._.nm.w.

S b o= [

US 7,293,237 B1

&

-

T

-

\r

~

W

W

- ‘dnous)

99 abe403s |aea 10) pajeals aq | dnoub ysip suQ *pieaa uoieinbyuo) abeio)g ey Aq pesn aq 0] sysIp Aldwe papps @
'dno.s 204035 Yoea uiyiim saseqelp NoA jJnoge uonewdojut Adads B

-~

—

! |

e 'sdnoJgy abrJ03g INOA JNOQE uojjewloju) AJ19ds @

&

>

M 'UQIIRAID Iseqeiep 404 |gesn sdnots PDRI0 S DS Yy || AJJUSPT @

'SSRqRIep
pue sdno.o 2bel03c Jno4 U0 9belols 230940 0] sdags DU||0) 24T YENOIYT papInD 39 v NoA ‘Spojy [eadA Y Buisooyd Ag

apnl.) padi)

pdezigy uoneanbyuon abelols

U.S. Patent

US 7,293,237 B1

-
o
o
-
&
~
&
W
=
s 9,
*UnoJs 2D24035 Y223 Ulyim 535eqeiep MoA Jnoge uonewdo Aplds |
-
—
m 'sdn0Jn ebelols .noA INOGE UOQRWIOM AdedS ©
&
W. ‘uIyeasd aseqelep 0] ajqesn sdnoug sfe10)g bunSIxa syl IIB Ajyusp;
Z

'sdno.n abelo)s INoA 10J IN0AR| WOJSTI B 8@ 03 5J03s Buimojo) 843 ybnoayy pepinb aq im NoA ‘spoi wolsnd busooyd Ag
BP0 WOISN)

plezip, vonenbyuon) abelo]s

U.S. Patent

/ b

'sdnossy ebe.ois $ 0] dn Lejuod Led sealas sbueydxy ssudieu] eyl @

US 7,293,237 B1

(|yqeinbiyuoa s 1)

=)

Ml,. 1 sdnodn abeso]s jo jaquunu [eqo]
0 S —

T~

._H axciayuy ;9UA] JeAqgs aliupyaxy
W
m\nu (P3332]35 3q 0] 2AOK 23/0] (| 0 butaul)

\palesald aq 0] £dno.y abeio)s |euonIppy

~
W Q 13jgeindijuadun aiam Jey) sano.s abeinis Dunsixa
2.., 0 +50N04S5 ¥SIQ NWEUAQ UD PUnoj aam JeL) sONoJS abeimg Suns(xy
\O©

W 'sdN0JD) 3510 JWRUAQ 0] sdN0JY JSIQ J1sed U0 apIsaJ Jey] saseqeep pue sboj uoesuely Bugsixa aaopw A
z _

I ydn0JS) §SIQ J15ed U0 punoyj aiam 124} sdna.s) ale oS Bupsixa

sdno.q abeiog

'JO 3PISSJ [jim sdN0ID 35106 U] IR 48449S abueix3
JO adA] ayj uo paseq § pajeas2 aq ued Jey) sdnoss abelols Jo Bqunu ay) sdnos alesnls ayj 104 sajnguile 3y) AJindag
sdnoan) 2be103s s3e34)

piaezpg uenenbyjuo) abes

°%

U.S. Patent

US 7,293,237 B1

Sheet 8 of 29

Nov. 6, 2007

U.S. Patent

'dno.s) YSIJ JIUBUAQ © UD p23824d 3q || sa5seqeiep Jofpue sboj uoijpesueay 3Y)

_ 233]a(] 7

P4

— -
_ MaN 7 o/N[ao00T

v/N

2)1joud 1950

'S95E0RIep $ 0] an Uiejquod uel n_ﬁxuhmv .m.m.m..___uum 5i4] ‘'sseqelep B 31343 0] M8N JID

saseqe]e(]

ﬁ — Go_ raweu dnoug) ysIq gnoJon abetols Js414] :3wWeu dnole abeiolc

‘dnouny abelos ayy 10) sanqulie ayj Ajpads
Z]Jo T dnos) abedo]s

plezZim uojjesnbyjuol abesols

US 7,293,237 B1

Sheet 9 of 29

Nov. 6, 2007

U.S. Patent

6 ‘b1

]

:aweu gy buiwes.s

:3UIRU 1§ XOqIelA
sa|4 aseqejeq
7n o WOl :apjoud ussn
- Y emsems

S|4 ISEqPIe(1S

_ o Y apjoud sasn
(ESCT I v
Il Iseqejeq g3

aseqejeq mMan

0L Bl [[Team ||

US 7,293,237 B1

'dnoJD Y51 JIWeUAQ] e uo pajeaJdd aq (M saseqeiep iofpue sboj uoniesuesy ayj

&N
o
< [_ewea |
&
w “tP3
~
S
= [een |
' 39) 84015 XOq|lEly| ") 34035 XOq|Rl §
'*'J9) 84015 X0q|IEly| 1) 34015 X0q|e §
_ E ' 940aS J3pja4 JNand| **'S 43PI04 JIANd §
[~ "' 9404 43|04 Jgnd| **'S 43p|jod JgNd §
4 Salld QAN **D 90RJ01G 1511 #
& “eunpnes| [omown | owc | oumoapeubssy || swewsp | -ojboruomesuei
. ‘awn|oa e ufiisse 03, awnjog 395, *PIP pUe 3|1 Sseqeiep e 8jes
W '(s339lqo 3bueyx] g) saseqelep $ 0] dn ulejuod ued dnoso abeao)g sIY; 'asedeiep e a3ea4d 03 MaN YD

saseqe)e(

! 1awey dnoJs ysiq dnoJs abeso3s 1s414] :aweu dnoss) abeJols

'dnoJcy abeio3s 8u) J0J sa3NgI]Ie Y] AJidads
Z J0 1 dnourx) abesolg

- u . . B - = R [, - —_— a2 a = B a a - EEEE . L. — R — — ——

PIO21AA :o_“.u..__.._n_?wu quSm

U.S. Patent

LL b4 [I

US 7,293,237 B1

N
&

Coje

- I

- PR

o

!

s

=P

h E

7

e~

= I S i I

X *aUIN|0A B 81234 0] M3N 331D

S

7 SIUWIN[OA I|qeeAy

[sweu dno.) y5iq

IWN[OA 1225

U.S. Patent

2L b

US 7,293,237 B1

I £ S—
) §500'0 2DiSIpP/eH &

g4900'0 [1sippeH D
g900'C IDISIPR4eH @ |
g900'0 6fSIPP/eH 6
- go00°'C sIPpIeH B3)
[y 9a0%ou>> | | | dnosooseg gozp's isippieH 6
— | 190 89/$'8 SisppeH B3
AM | _ << 11V PPy | 190 g99L£'8 PASIPPieH B3
v— . dno.5iseg go/b'8 eysippieH B |
= _ <PpY | dnoinliseg g§9/b'9 2i5ippieH B
.m dnoisseg g900'Q TisippieH 221 ||
7 v 190 9900'C OisippseH 63
SA5IP paji=es | 'SP 3|qejieAy | i
[~ |
—
m lllll _—— - 3wumnjoa ioj s)}sip ubissy.
- e|qesn jou 10 ‘s|qespelbdn jou sty @
W SawnjoA Iep BuLieIUod YSP JWeUAD e S) 4 SALUNJOA J00] 10 WAJSAS SUIRJUDD] @ .
7 10J3U0D 435N J/apuUn 22N0s5alySIpe ST & €l 00’005 ueyy ssey siadeds aalj sy} 4

§1 2JgeIIT|DS 10U S1 HSIp Y-

N e e ey e e e S, i .

_ 9215
e m’ N_ siouu ey ||| 821]ieas yun edins padli}s)
- 18ge)
A_nlb paiodiy [] ml SUWN|OD PaJBUAIEINCD) o) .ouep |
Dnl.a — oo — Jnode) e —— gjujy jesauan)
[x] | SWIM|OA M3
. _
79
-

¢l b+

_ diaH __ j3oued _ MO

>

US 7,293,237 B1

9500°0 7T§5IppieH 6
99500'0 [T4SIPP4eH I
g900'0)TASIPPieH 3
495000 &lsPpieH R
& .
3 = 99000 osippieH 63
= _ Il sADSRY.»~ _ g9/ '8 25ppieH B
.t S AOUITT 99/5'+ osppleH B
= — 90 89LF'8 SHSIPPeH I
@ E [0 g9/E'9 PsIpp/eH IR
& sed 99/b'8 £sippieH B
seg @9/b'8 2sPpieH B | ||
523 g900'0 ISPpieH B
Sy v [5d g900'C sPpieH 3] |}
& ' SYSIp pajIajas SYSIP I|qejieny
>
-
z.

SLUN|OA .._E s}sip ubissy

2)qesn Jou 10 ‘g)qeapebdn Jou sy @
SaWN|0A 23ep buIPUOd YSIP JIWeUAp B ST)l 4 SAUN(0A 3004 A0 WBSAS SURIUOD |} 4
[0.qU0D J335N)D I3PUN S2IN0S3aIYSIPe SI) 4 gl 00°00S uey) 5s3| 5l aoeds a3l ay] 4

. N E— E—— T R ETEER TR B R
[_ 24eds JoH 132]35||

U.S. Patent

U.S. Patent Nov. 6, 2007 Sheet 14 of 29 US 7,293,237 B1

[Edit STM Database File

Mailbox database name: hewdb

STM file size: [opg

User profile: | ight | __g_

-Database Files-—-—--—--------~---—r-— s e e

Database file name:

| Mailbox file name: newdb.edb

------—--_--J

| Streaming file name: newdb.stm

Fig. 14

el P Al el ik i L T, APl il

Ftiit Transaction I.tTgs ___:_________[E_ll
| Transaction Logs: lStn_ra_g__eGrgE_p_D 1TransLogs l

e I
User profile: ILight | j

Fig. 15

9L b

US 7,293,237 B1

_ < XaN __ }oeg >

W ey A B e S S S S S S S S Y U Byl e S S —— R N B B B N B A B Bk e e T e e

- N - L. Y o e - -

QIYYON 89000 » [YSIPPeH 6
QIYYON $00'0 > DISIPPAeH 15
iAITYON 5000 21¥sIppaeH (R |
Ty UON &00'0 [TSIPPIRH 6D |
QIvON @00'C IDisIPPeH B
- v eAousY>> | {IVON 00'0 6ISIPPRH R
~ — {QIYYON E00'0 PisppeH QR |
> 3noway> OIVYON dnoioisen gD/b'S DISIPPIRH B |
P IAIvdON dnosodiseg gozg't PisIppieH 2 |
- E QIYUON 190 ©ib'S SisIppaeH R
,_w QIYHON 190 .88 pHSIPPAEH
= GIYYON dnouDliseg go/p'g ©isippeH B
& QITYON dnouodiseg @O/’ 2isppieH |
AIYd4ON dnoiDdised g900'0 DisIPPRH & |
1Y HON 190 9000 OisIPp-eH R |
S Lavy |[oo] [wefs e][suen]
S :SYSIp patdeles {SYSIP BiqRjleAYy
e
&
| 3/GBSN J0U 10 ‘ajqeapelbdn 0U S Y 4 |
7 SAWN|0A BIEP DUIUIRILOD %SP JWeUAP B 511 4 SaUIN|oA J00(4O WAJSAS SLIDIJUOD 3l ¢

|0JIU0D J935N|2 JOPUN 82.N0SAANSP B S| @ gl 00’ 00S UeYl 559] 51 Jeds aall aly &

~— JI 3|qR)II]3s JOU S1 YSIp ¥

- e il . -er— — i ——

L L g S

'sdno.sy abeiolg auy) Buieasd 10) SYsip S 199(95
sdnoJic) 3DRI0)S J0] SMHEIP 129135

PACZIA :n._“.m.._:mmcl.u Jbed ﬂ_

U.S. Patent

S e e

P o7 dmeyoey Py S

US 7,293,237 B1

N
&
S
&
&
v—
!
.
>
|
79
-
—
i~ |
|
=3 |
> |
&
rd |
0l e e XL (PovED| | A
_“ aaedg |pj0)] — adA| QIyY 9.e01J0C " SWINIOA P35 [Al

‘paAso.IISap
2q [IM SIWN[OA P2]J3]95 AL “JnoAR| paisabbns ay] Juaswigdw 03 apisp NOA JI '@sn 0] sawnjoa Aydwa Iy 3129)9s aseald

SIWwnjoa Ajdwig 323135

—— — — e — e E——— o e e e ——— —— e e e e —

pAe2iy uoneanbyue) sbed 35

U.S. Patent

US 7,293,237 B1

Sheet 17 of 29

Nov. 6, 2007

U.S. Patent

BZI5 SWN|OA

99ZE'0 QIYUON uns*)y &
g9z£'0 QLYdON gpe* i iE

1117 l_ﬁ._.
L]
= .

4 2 -E
saseqeieg b -
g9991°0 foiif s007sUR [HeguO (]
B0 uogoesuedl b -

Jiseguo B2

| | AEm_}.mE:_u...._ vMaiA dnolo sbeloxs

*saseqe)ep pue sdnoib abieiols inoA o) Jnole| paisabbins paziwijdo ue 51 mosg
uopenbjjuod abelols pa1sabibng

piezin uonednbijuo] abedols

US 7,293,237 B1

Sheet 18 of 29

Nov. 6, 2007

U.S. Patent

64 P | [= o= |

] QIYYON 19dAL QIYY 2RMYOS B
W00 ZEE (9215 @
Sl (9dA] WEISAS Bl @ -
313gPa " J4\eeeisiulodiunoyabueyaxd|id 1 J0d Junoy l-.-.m
133)4) 65-C

dnoJsy ebe103s ebuepxg Yosouy iodA| o -
“150guQ :0) sBuoiag HB-F)
sbo7sued L aseguol sbosue. Jseguoteeeisjuodiunopebueypxalid iyied -
60" uonIesue.y :a0A) -~
sBo75UR.I| JISEQUO ﬂm_
A b £
QITYON iecA| CIvYy o/empey & m
SisippeH @-H
QITHON :aCA) QIvY SeMpeH #mn]
2isppieH -0
gk, -E
IQIYY '9dA] QIvY 92MYOS @ ---
GWOb 931 :82IS @ -~
CAIN '9dAL WAEAS I @ -
sBosueldIsegud’ereisIuiodiunoalueydx3):D U0 JUnopy O .
s5075UR4) NSRgUO €D
aunyes b -6
ae &
- dno5 abeiols abueyix3 Yosooiw b -

[131 . 2t I AN RL JE _NTY 0] T3 RRE_JKE 3 |

i i i - -
(R Lt RR TT BRR_ IR NI T FTY 10 BOITR |

_ salA awnos | malA dnos abelols

‘s3seqelep pue sdnoib abeio)s .noA 0] JnoAe| pa3sabbns paziwido ue § mojag
uonesnbijuod 3beaDls poa)sobbng

X S o | pAezigy uoneanfiyuo) abesols

0¢ biH

ysiul4 _ yoeg > 4

US 7,293,237 B1

'uojyranbijuod sbelols [ea13uspl ue 83ea.d 0] uonesado suop e BulNp siandwoa
430 UO pash aq ued 8|l WX 3L "3 WX ue 0] JnoyAe) paisabbns ayy ases ued no,

a)lJ WK ue se JnoAe| paysabbns au) saes []

Sheet 19 of 29

N3] 6D
sBOsURISEQUO) EFD)-

SIWNJOA Mau m_“_mm_u...m_
PR mm

SAN0JD Y4SIQ maU §3e84)-F
b 7 ;

sawnjoA Aydwa mum_uo...m_
SEgUO @
sdnoJs 80eJ035 BUIAOW--E]

Nov. 6, 2007

'PawLiogiad 2q |IW $5e] DuIrMOofo] 8Y] ‘XoqI8Ya SIY3 Bundayd Ag

JnoAe| paysabbns ay) Juawajdw] [

'S]U3WOW M3] B =je] Arw $58104d SIYL *JN0AR| 8Y] Juawa|dw] 0] Ysiulg uo X1
pliezigy, uonyesnbyuo] afielols 243 bunadwo)

piezips uoijeanbyu J abed “_m._

U.S. Patent
|

US 7,293,237 B1

Sheet 20 of 29

Nov. 6, 2007

U.S. Patent

_—————————————————————————————mmm————————————————————————————— hmw.hwm*
abueyox3
181
WX30OdO .

Wy e o - W

._mw_mw_n_ 8.1 Vil

LRl L e e B

- e w W ol

L A Sy wr e ar ol ol SRR

291
(1dVYXA) @injonsselju| ualD

051 41

- - e e el el gy wr we we sl ol B G gy W W e W O

e0BHAIU| DS IND JOJBSIUILIPY

09l 8G1 oSt

ddy dmyoeg 33 19][ejsu| uonIp3

uoIsualx3y uonpy

(71}

19piroid INA

Sl

UOISUBIX] WA

2z b+

US 7,293,237 B1

9¢c
WX 3]l

91¢
Jojuswa|dw|

[OS-}I-9)EN

JnoAe] pajsabbng

N

2 _

= — INOAB

~ (133 pajieo ‘114 peC Pajsebbns

= ol1vadg abueyosx3) jwix'inoAe]abueyox3

2 JaAe abueyoxg _ {4

7 vLe .
auibug 01607 2109 mwwwm_w_m_w/_cw_w

— vie _

S (3sIp uo pauyap-aid) aoedg

& jLux:Aluoud 8814

&

>

&

z

[4Y4

[434

(IN Aq pajeald) [444 1818A028I(]

wx-ndupssn WX 90edgas.

Z0¢ 2107 Jojeinbiyuo)
_ 871 Japinoid 10jeinbiyuo) abeloys

U.S. Patent

U.S. Patent

Nov. 6, 2007 Sheet 22 of 29

Automatically detect
existing storage on the
system
302

Receive information
about the target
application
304

Determine optimal
storage layout
306

Display optimal storage
layout {0 user
308

User
accepts optimal
storage layout?
310

No

Fig. 23

Yes

Automatically implement
the layout; place targeted

application's data objects
322

US 7,293,237 B1

U.S. Patent Nov. 6, 2007 Sheet 23 of 29 US 7,293,237 B1

Automatically detect
existing storage on the
system
302

Receive constraints from
the user

303

Recelve information
about the target
application
304

Determine optimal
storage layout
306A

Display optimal storage
layout to user
308

User
accepts optimal
storage layout?
310

NO Yes

Automatically implement
the layout; place targeted
applicationés data objects
322

Fig. 24

U.S. Patent Nov. 6, 2007 Sheet 24 of 29 US 7,293,237 B1

Discoverer Flowchart

Query disk (or LUN)
objects registered by

volume manager
402

Is disk
object part of
hardware array?
(Correlator provider
from VAIL)
404

Yes

Get hardware array
properties
406

For each disk
object
408

Query disk object about
its properties
410

Addtitional
objects?
412

No

Convert all information

Into FreeSpace.xml

414 Fig. 25

U.S. Patent Nov. 6, 2007 Sheet 25 of 29 US 7,293,237 B1

Perform pattern matching
between the application
Information and the rule

information; create skeleton

(second) data structure
442

Determine how to group objects
(e.q. files) in the application
444

Examine available storage and

apply allocation algorithm
222

Produce storage configuration
448

Fig. 26

US 7,293,237 B1

Sheet 26 of 29

Nov. 6, 2007

U.S. Patent

/2 "bi

punoy sl 89eds ||

yee
uoneinbiyuon ye4

punoj
S| 99eds ||

punoy
s| aoeds j|

144

Uoueas pu3

punoj
Sl a0eds J|

punoj s 82eds ||

Heysmol4 auibug 21607 9109

puno} jON Si 8deds)|

4665
BuiydeipoRq UM 32eds ¥sIp pul

0} wyoble uoneoo|e sinasx3

4L
sJnoAe| | 4-Uou Mmo)y

— punoj ON Sl 9%eds jjf ————

019
(sawinjoA afieio)s Bunsixa ypm sysip uo

aoeds aaJ) buuapisuod) sadA) 1aaiqo uoneoidde e Joj jes s|pulds
a|buis e pue sbo| uonoesuel) 1o Jas a|buls pajeoipsp & puy o) Aij

74
buorspyoeq yim soeds ysip puy

0] wuiobe uoneso)e aynsoex3

punoj | ON SI 8%eds j| ——

805
sadA) 108lqo uonealdde |je 1o} }as a|pulds pajedipap

5|6uis e pue sboj uonoesuel; 10} 1as a|puids pajesipap e pul 0} Al |

AA
Bupjoeliyoeq yim aseds jsip puly

0] wyuobie uoneao|e andax3

puno} 10N St aoeds)| —

90%
sadA) J0alqo uoneandde Jo jas yoes 10j)as g|pulds pajedipap

a|buis e pue sboj uoijoesuel} Joj Jas ajpuids pajedipsp e pul o} Aij

SIAA°
BunjorIpjORG UM 3dedS ¥SIp pulj

0} wyiuobie uonesojje syndex3

puno} 10N S! 89eds Jji

705
adA) 108lqo

uoneslidde yoee 1o} jas ajpuids pajedipap e pulj o) A1

\[A4°
Bunyoeioeq Yyim aoeds ysip pui
0) wyiobie uoleao|le aynsex3

209
INOAE| 84} JO SIUIBLSUOI/UO}BIBYS BINJINI}S B)ep 8)Rald

pue Buyaew usped wiopad H33 pue |y (wx: Ajuoud suiwex3

US 7,293,237 B1

Sheet 27 of 29

Nov. 6, 2007

U.S. Patent

6¢ b4

0€9
sdnob ysip ut s109lqo jo uoyeziuebio

SIY} Jo8jal 0} 8211 Mau, 0) S108lqo ppy

8¢9
3)l} jwx AJuolg By} U paivads

se sdnoub ysip ojul aoeds %sip asnba;
ley} sjoalqo ayioads uoyeoydde eping

9¢9
S31NJoNJis elep jwix uonesiddy pue

juncAjioud ay) yloq woly Asy syl saudews
JEU} Singlpe ue yiim sjuawials |le puid

¥29
Jwx'noAejuonesyddy jo uawala Ay, puid

2¢9
jwxAjuou4

pue jwx'inoAequonesnddy

sindul Jo 1euno; Ajuan 1sii-

¢05

809
psx'nokepaejsabbng

Ul paiioads se uondwnsuo
10§)noAe| S1ewWLO)

(Jalyindinggejelauss

909
8911 MaU, Ul pajinads

$)08(qo 8y) 1oy Jnofe
[euIndo ue saujuwgleg
(inaheajealn

¢08
Ajuoud pue jnode;
ul suia)jed bBuiziubosal
Anuabyaul Aq 82 WOQ
TAX MaU e sajeas)
8 "B14 jo Zog days
(JoalmaNoxyeW

9z ‘b4

209
Jwx'InoAepalsabibng suiney

()spindin01g8leI8URY) S|jED
{)IinoAe81R81M S||BD

'(}oal MaNaYBR SifeD

'SNOQ 0} Indun JNX Speo’
()inoAeqisabbngoq

U.S. Patent

Nov. 6, 2007

Find disk group elements in
NewTree(). Disk space will be
allocated one disk group at
a time.

642

Find node types that can be

shared from Priority.xml
644

Get objects that need disk

space from NewTree
646

Create a file grouping
444

Execute AllocateSpace()

function
922

After a volume has been found
for all disk groups, perform an
improvement pass per

disk group
620

Fig. 30

Sheet 28 of 29

AllocateSpace()
(for each volume)

(522)

Examine type of objects In
file grouping
662

Determine the sum of the size
of the data objects that will be

placed on this volume
664

Mark all objects to be placed on
volume as "held" in NewTree

666

Find the name of the disk group
to which this volume will belong

668

Find the corresponding object
type value in the Priority.xm!
structure
670

Select disks for volume
672

Fig. 31

US 7,293,237 B1

U.S. Patent Nov. 6, 2007 Sheet 29 of 29 US 7,293,237 B1

Parse
Suggestedlayout.xml
and get list of disk

groups, volumes, and hot
spares to be created
702

Are required
disks still available?
704

No Error for report
706

Yes

Resolve duplicate name
of volumes

708

Create disk groups
710

Create v_olumes and
directories on each

volume
12

Return error report
716

Create hot spares
714

Fig. 32

US 7,293,237 Bl

1

GRAPHICAL USER INTERFACE FOR
CREATING A CUSTOMIZED STORAGE
LAYOUT FOR AN APPLICATION

PRIORITY CLAIM

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 10/327,561 titled “Storage Configurator
for Determiming an Optimal Storage Configuration for an
Application” filed on Dec. 20, 2002 now U.S. Pat. No.
7,043,619, which claims benefit of prionity of U.S. provi-
sional application Ser. No. 60/348,870 titled “Storage Con-
figurator” filed on Jan. 14, 2002.

BACKGROUND

1. Field of the Invention

This invention relates to a system and method for creating,
a customized storage configuration for an application, where
the storage configuration specifies a storage layout for a
plurality of data objects associated with the application.

2. Description of the Related Art

Network admimstrators are required to perform various
types of tasks 1n setting up and running a network. One
common task performed by a network administrator is
creating a storage configuration, €.g., setting up and config-
uring storage on a server. Network administrators are
required to create storage configurations for various appli-
cations, such as Microsoit Exchange, SQL databases, etc. An
application may have a plurality of associated data objects,
such as files or databases. Creating a storage configuration
for the application may involve specilying the storage
resources (e.g., disk groups, volumes, etc.) on which to store
the various data objects.

The creation of a storage configuration for an application
can be a diflicult task. It would be desirable to provide a
system operable to simplify this task by guiding the network
administrator (user) through creation of the storage configu-
ration. The system would preferably enable the user to
specily desired properties of the storage configuration via a
graphical user interface, validate the mput specified by the
user, and provide feedback regarding the specified storage
confliguration options.

SUMMARY OF THE INVENTION

Various embodiments of the mnvention relate to determin-
ing a storage configuration for an application, where the
storage configuration specifies a storage layout for data
objects associated with the application. A graphical user
interface (GUI) for guiding the user through creation of the
storage configuration may be displayed. The graphical user
interface may be associated with a Storage Configurator
software program. In one embodiment, the graphical user
interface may comprise a series of panels or windows that
guide the user through creation of the storage configuration
in a wizard-like manner.

User 1nput to specily properties of the storage configura-
tion and/or properties of the application may be received to
the graphical user interface. In various embodiments, any of
various kinds of storage configuration or application prop-
erties may be specified, e.g., depending on the particular
application for which the storage configuration is being
created. As one example, the user mput may include mput
specilying desired storage locations for one or more of the
data objects associated with the application. For example,
the user may specily a desired mapping of one or more data

10

15

20

25

30

35

40

45

50

55

60

65

2

objects to one or more storage resources (e.g., volumes or
disk groups) of one or more storage devices (e.g., disks).

The Storage Configurator program may validate the user
input and provide feedback to the user as appropriate. For
example, if the user specifies a desired mapping of data
objects to storage resources, the Storage Configurator pro-
gram may determine whether the specified mapping of data
objects to storage resources 1s valid. For example, determin-
ing whether the mapping 1s valid may comprise determining
whether the storage resources specified by the mapping have
sullicient storage capacity to hold the specified data objects.
Determining whether the mapping 1s valid may also com-
prise validating the mapping against best practices of the
application. If the Storage Configurator program determines
that the mapping specified by the user 1s not valid or 1s
inefhicient, then information indicating the problem may be
displayed on the graphical user interface.

The Storage Configurator program may determine a stor-
age configuration for the application, based on the user input
received to the graphical user interface. The storage con-
figuration may specily a storage layout for data objects
associated with the application. I the user specifies a desired
mapping for one or more data objects to particular storage
resources, then the specified mapping may be honored if
possible. In one embodiment, the user may specity a desired
storage layout for a subset of the application’s data objects,
and the Storage Configurator program may automatically
determine a storage layout for the rest of the application’s
data objects. In another embodiment, the user may specily a
desired storage layout for all of the application’s data
objects. In another embodiment, the Storage Configurator
program may automatically determine a storage layout for
all of the application’s data objects.

In one embodiment, the Storage Configurator may pro-
vide an option allowing the user to save the storage con-
figuration, e.g., 1 a file or database. Saving the storage
configuration may allow the user to utilize the storage
configuration at a later time. For example, the storage
configuration may later be re-opened and modified.

In one embodiment, the Storage Configurator may also
provide an option allowing the user to implement the storage
configuration. Implementing the storage configuration may
comprise storing the plurality of data objects associated with
the application on one or more storage devices according to
the storage layout specified by the storage configuration. For
example, the user may simply click a button to cause the data
objects to be stored according to the storage layout.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary network system according,
to one embodiment;

FIG. 2 1s a flowchart diagram 1llustrating one embodiment
of a method for determining and implementing a storage
configuration for an application;

FIGS. 3-20 illustrate an exemplary graphical user inter-
tace (GUI) for determining and implementing a storage
configuration for an application, according to one embodi-
ment,

FIG. 21 1s a block diagram illustrating a software archi-
tecture ol one embodiment of the invention;

FIG. 22 1s a block diagram 1llustrating the Storage Con-
figurator Provider of FIG. 2 and related files;

FIG. 23 1s a flowchart diagram 1llustrating one embodi-
ment ol a method of operation of a Storage Configurator
software program to automatically determine an optimal
storage configuration for an application;

US 7,293,237 Bl

3

FIG. 24 1s a tflowchart diagram illustrating an alternate
embodiment of the method described 1n the flowchart of
FIG. 4, where the user may provide constraints to the
system:

FIG. 25 1s a flowchart diagram illustrating automatic
detection of existing storage 1n the system according to one
embodiment;

FIG. 26 1s a flowchart diagram illustrating automatic
determination of a storage configuration according to one
embodiment;

FI1G. 27 1s a more detailed tlowchart diagram 1llustrating
automatic determination of a storage configuration accord-
ing to one embodiment;

FIGS. 28-31 are tlowchart diagrams illustrating automatic
determination of a storage configuration according to one
embodiment; and

FI1G. 32 1s a flowchart diagram 1llustrating implementing
a storage configuration on a storage system.

While the mvention 1s described herein by way of
example for several embodiments and illustrative drawings,
those skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood that the drawings and detailed description
thereto are not mtended to limit the mvention to the par-
ticular form disclosed, but on the contrary, the intention is to
cover all modifications, equivalents and alternatives falling
within the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION OF EMBODIMENTS

FIG. 1—Exemplary Network System

FIG. 1 illustrates an exemplary network system according,
to one embodiment. Embodiments of the invention may be
used 1n any of various types ol network or enterprise
systems, and FIG. 1 illustrates one example of a network
system. The network system may be a local area network
(LAN), two or more interconnected local area networks, or
a wide area network (WAN) comprising two or more dis-
tributed LANs coupled together, such as by the Internet,
among other possible configurations.

As shown, the network system may include one or more
client computer systems 102. The client computer systems
102 may store and/or execute various applications, one
example being an electronic mail (email) or electronic
contact/scheduling client program, such as Microsoft Out-
look. The client computer systems 102 may execute other
applications, such as programs for Internet access, database
programs, and others. The one or more client computer
systems 102 may be connected through a firewall 104 to a
network device 106, such as a router, hub, or bridge. The
client computer systems 102 may couple through the fire-
wall 104 and/or network device 106 to one or more Internet
servers 110. The Internet servers 110 may be connected to
various other computer systems and/or storage devices, such
as a WINS server 112, a backup server 114, and/or a storage
area network (SAN) 116. These servers may in turn be
connected to other servers which host other applications,
such as Microsoit Exchange server 122 or an NT 4.0 PDC
(Primary Domain Controller) 124, among others.

For many network systems, a network administrator or
other user may operate to configure storage of one or more
computer systems for various applications. For example, 1n
the network system embodiment illustrated in FIG. 1, the
user may configure storage of the server computer 122
which hosts the Microsoft Exchange application. In other

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiments, the user may be required to configure or
create a storage configuration for other applications, such as
SQL databases, etc. Creating a storage configuration for an
application may involve specilying the storage resources
(e.g., disk groups, volumes, etc.) on which to store various
data objects associated with the application, such as files or
databases. For example, the Microsoit Exchange application
utilizes various mailbox databases, among other data
objects.

As noted above, creation of a storage configuration 1n the
prior art can be a complicated and diflicult task and typically
requires significant expertise on the part of the network
administrator. One embodiment of the present invention
comprises a solftware program, referred to herein as the
Storage Configurator program, executable on a computer
system which operates to guide the network administrator or
other user through creation of a storage configuration for a
given application utilizing a storage system. As used herein,
the term “storage system” includes any of various types of
systems which provide storage capabilities, including, but
not limited to, a server computer (e.g., having one or more
RAID arrays), two or more coupled server computers, a
storage area network (SAN), and other types of storage or
memory systems. Such a software program may greatly
simplity the task of the user in determining and creating
storage configurations or storage layouts for a network
system.

In various embodiments, the Storage Configurator soft-
ware program may be stored in various locations, such as on
a memory medium of one of the client computer systems
102, or a memory medium of one of the server computers.
The Storage Configurator software program may also
execute on any of various of the computer systems. In one
embodiment, the Storage Configurator software program
may be stored 1n a client computer system 102 used by the
network admimstrator for system configuration and man-
agement.

The term “memory medium” 1s intended to include any of
various types of memory devices for storing programs
and/or data. For example, the term “memory medium™ 1is
intended to include an installation medium, e.g., a CD-
ROM, floppy disks 104, or tape device; a computer system
memory or random access memory such as DRAM, SRAM,
EDO RAM, Rambus RAM, etc.; or a non-volatile memory
such as a magnetic media, e.g., a hard drive, or optical
storage. The memory medium may comprise other types of
memory as well, or combinations thereof. In addition, the
memory medium may be located 1n a first computer in which
the programs are executed, or may be located in a second
different computer which connects to the first computer over
a network, such as the Internet. In the latter instance, the
second computer may provide program instructions to the
first computer for execution.

The software programs which implement embodiments of
the present invention may be stored in a memory medium of
one of the computers shown 1n FIG. 1, or in a memory
medium of another computer, and executed by one or more
CPUs. One or more CPUs executing code and data from a
memory medium thus may comprise a means for performing
the methods described herein. For example, a CPU execut-
ing code and data from a memory medium may comprise a
means for guiding the user through creation of a storage
configuration and/or implementing the storage configuration
according to the methods described herein.

In general, the term computer system as used herein 1s
defined to encompass any device having a processor which
executes instructions from a memory medium. In different

US 7,293,237 Bl

S

embodiments, a “computer system” may take various forms,
including a personal computer system, desktop computer,
mainframe computer system, server computer system,
another suitable device, or combinations thereof. A com-
puter system may be attached to a network as part of a
distributed computing environment.

FIG. 2—Method for Determinming and
Implementing a Storage Configuration

FI1G. 2 1s a flowchart diagram illustrating one embodiment
of a method for determining and implementing a storage
configuration for an application. It 1s noted that FIG. 2
illustrates a representative embodiment, and alternative
embodiments are contemplated. Also, various elements may
be combined, omitted, or performed 1n different orders.

In 10, a graphical user mntertace (GUI) for guiding the user
through creation of the storage configuration may be dis-
played. The GUI may be associated with a Storage Con-
figurator software program such as described above. For
example, the GUI may be displayed 1n response to the user
launching the Storage Configurator program. In various
embodiments, the GUI may have any kind of appearance
and may be presented 1n any of various ways. In one
embodiment, the GUI may comprise a series ol panels or
windows that guide the user through creation of the storage
configuration 1n a wizard-like manner.

In one embodiment, the GUI may present options allow-
ing the user to step through the storage configuration cre-
ation process 1n either a Custom mode or a Typical mode. In
the Typical mode, the user may be required to provide only
a minimal amount of user input, and the storage configura-
tion for the application may in large part be determined
automatically. A method for automatically determining at
least a portion of the storage configuration i1s described
below. On the other hand, if the user has a good understand-
ing of storage elements such as volumes and disk groups, the
user can select the Custom option to manually specily
various aspects of the storage configuration.

In 12, user mput to specily properties of the storage
configuration and/or properties of the application may be
received to the graphical user interface. In various embodi-
ments, any of various kinds of storage configuration or
application properties may be specified, e.g., depending on
the particular application for which the storage configuration
1s being created. The user mnput received 1n 12 may depend
on whether the user chose the Custom mode or the Typical
mode for the storage configuration creation process. In the
Custom mode, the user may provide more specific mput
regarding the desired storage configuration.

As one example, the user input received 1n 12 may include
input specilying names for one or more of the data objects
(e.g., files or databases) associated with the application. The
user may also specily desired storage locations for one or
more of the data objects associated with the application. For
example, the user may specily a desired mapping of one or
more data objects to one or more storage resources (€.g.,
volumes or disk groups) of one or more storage devices
(e.g., disks).

The Storage Configurator program may validate the user
iput received m 12 and provide feedback to the user as
appropriate. For example, if the user specifies a desired
mapping of data objects to storage resources, the Storage
Configurator program may determine whether the specified
mapping of data objects to storage resources 1s valid. For
example, determining whether the mapping 1s valid may
comprise determining whether the storage resources speci-

10

15

20

25

30

35

40

45

50

55

60

65

6

fied by the mapping have suflicient storage capacity to hold
the specified data objects. Determining whether the mapping
1s valid may also comprise validating the mapping against
best practices of the application. For example, the applica-
tion may have an associated set of rules specilying optimal
locations for particular data objects. If the Storage Configu-
rator program determines that the mapping specified by the
user 1s not valid or 1s ineflicient, then information indicating
the problem may be displayed on the graphical user inter-
face.

In 14, the Storage Configurator program may determine a
storage configuration for the application, based on the user
input received i 12. The storage configuration may specity
a storage layout for data objects associated with the appli-
cation. If the user specified a desired mapping for one or
more data objects to particular storage resources (e.g., in the
Custom mode), then the specified mapping may be honored
iI possible. In one embodiment, the user may specily a
desired storage layout for a subset of the application’s data
objects, and the Storage Configurator program may auto-
matically determine a storage layout for the rest of the
application’s data objects. In another embodiment, the user
may specily a desired storage layout for all of the applica-
tion’s data objects. In another embodiment, the Storage
Configurator program may automatically determine a stor-
age layout for all of the application’s data objects (e.g., in the
Typical mode).

In 15, the storage configuration may be displayed on the
GUI In various embodiments, the storage configuration may
be displayed in various ways. In one embodiment, the
Storage Configurator program may be operable to display
the storage configuration using diflerent views selectable by
the user. For example, the user may select a “Storage Group™
view to cause the Storage Configurator program to display
the storage configuration based on various storage groups.
As another example, the user may select a “Volume” view to
cause the Storage Configurator program to display the
storage configuration based on volumes utilized 1 the
storage configuration.

In one embodiment, the GUI may provide an option
allowing the user to save the storage configuration, e.g., 1n
a file or database. If the user wants to save the storage
configuration, then the storage configuration may be saved
or stored 1n 16. In one embodiment the storage configuration
may be saved as an XML file. Saving the storage configu-
ration may allow the user to utilize the storage configuration
at a later time. For example, the storage configuration may
later be re-opened, as indicated 1n 18. This may comprise
retrieving the stored storage configuration and re-displaying
the storage configuration in the GUI. As indicated 1n 20, the
user may optionally modily properties of the previously
saved storage configuration.

In one embodiment, the GUI may also provide an option
allowing the user to implement the storage configuration. If
the user wants to implement the storage configuration, then
the storage configuration may be implemented 1n 22. Imple-
menting the storage configuration may comprise storing the
plurality of data objects associated with the application on
one or more storage devices according to the storage layout
specified by the storage configuration. For example, the user
may simply click a button to cause the data objects to be
stored according to the storage layout.

FIGS. 3-20: Exemplary Graphical User Interface

FIGS. 3-20 illustrate an exemplary graphical user inter-
tace (GUI) for determining and implementing a storage

US 7,293,237 Bl

7

configuration for an application, according to one embodi-
ment. This exemplary GUI 1s useable to create a storage
configuration for the Microsoit Exchange Server application
in conjunction with Veritas Volume Manager. However,
alternative embodiments may comprise GUI’s for creating
storage configurations for any of various other applications
in conjunction with any of various other storage manage-
ment systems. The exemplary GUI of FIGS. 3-20 includes
a series of screens or panels that are displayed in sequence
to guide the user in a wizard-like manner through the process
of creating the storage configuration for Microsoit Exchange
Server.

The GUI may be launched 1n response to various condi-
tions or actions. For example, the user may select a menu
item, click a toolbar button, or perform other kinds of actions
to request the GUI to be launched. FIG. 3 illustrates a
welcome panel that the user sees when the GUI 1s launched.
The welcome panel provides a brief description of the goals
of the GUI.

After clicking Next, the panel shown in FIG. 4 appears.
This panel provides two options for the user based on the
user’s experience. The user can select the Typical option 1t
the user wants a storage configuration to automatically be
determined. However, 11 the user has a good understanding
of storage elements such as volumes and disk groups, the
user can select the Custom option to manually specity the
storage configuration.

FIG. § illustrates a panel that 1s displayed 1f the user
chooses the Typical option. This panel provides a descrip-
tion of the tasks the user will be guided through for creating
the storage configuration in the Typical mode. As shown,
these tasks include identifying all the useable storage groups
useable for database creation, specilying information about
the storage groups, specilying information about databases
within the storage groups, and selecting empty disks to be
used.

FIG. 6 illustrates a panel that 1s displayed if the user
chooses the Custom option. This panel provides a descrip-
tion of the tasks the user will be guided through for creating
the storage configuration in the Custom mode. As shown,
these tasks include 1dentifying all the useable storage groups
useable for database creation, specifying information about
the storage groups, and specilying information about data-
bases within the storage groups.

FIG. 7 illustrates a panel that 1s common to both the
Typical and Custom modes. This panel allows the user to
specily attributes of the storage groups that the user wants to
configure or create. The various components shown on the
panel are described as follows:

“Existing storage groups that were found on Basic Disk
Group”—Indicates the number of existing Storage Groups
that reside on Basic Disk Group.

“Move existing transactions logs and database that reside
on Basic Disk Groups to Dynamic Disk Groups”™—Allows
the user to specity whether or not to move the existing
Storage Groups that reside on Basic Disk Group to Dynamic
Disk Groups. By selecting the checkbox, the Storage Group
panel becomes editable, otherwise a read-only panel will be
displayed.

“Existing Storage Groups that were found on Dynamic
Disk Groups”—Indicates the number of existing Storage
Groups that reside on Dynamic Disk Groups.

“Existing Storage Groups that were unconfigurable”—
Indicates the number of existing Storage Groups that con-
tains Exchange objects residing across different disk groups
that the wizard cannot configure or that have already reached
the maximum number of Exchange objects.

10

15

20

25

30

35

40

45

50

55

60

65

8

“Additional Storage Groups to be created” —Indicates the
number of new Storage Groups that the user wants to create.

“Exchange Server type’—Indicates the type of the
Exchange Server that the user 1s configuring. The Enterprise
type can have a total of four Storage Groups, whereas the
Standard type can have only one Storage Group on the
Exchange server.

“Total number of Storage Groups”™—Indicates the number
of Storage Groups. For each Storage Group, a panel 1is
presented for the user to specily attributes of the Storage
Group.

“(# 1s configurable)”—Indicates the number of Storage
Groups that are configurable. Configurable means the Stor-
age Group 1s either new, or can still be added one or more
mailbox databases, or moved from Basic Disk Group to
Dynamic Disk Group.

FIG. 8 illustrates a panel for configuring storage groups
that 1s displayed 1 Typical mode. This panel may be
displayed N times, where N 1s the number of storage groups.
The panel allows the user to specily attributes of each
respective storage group. The various components shown on
the panel are described as follows:

“Storage Group X of N”—Indicates the index of the
Storage Group that the user 1s currently configuring (X) and
the total number of Storage Groups (N).

“Storage Group name”—The name of the Storage Group.
The field 1s grayed out 1f the Storage Group already exists or
1s unconfigurable. If the field 1s editable, a unique name 1is
generated and used to populate the field when the panel 1s
iitially displayed. The user may modily the name as
desired.

“Disk Group name”—The name of the Disk Group. This
field 1s grayed out 11 the Storage Group 1s unconfigurable, or
already exists and resides on a Dynamic Disk Group. For
new Storage Groups and existing Storage Groups that reside
on Basic Disk Group, a unique name 1s generated and used
to populate the field. The user may modily the name as
desired.

“Databases”™ table—A table view of all the mailbox data-
bases within the Storage Group. For mailbox databases that
already exist, the 1cons 1n the Name column are grayed out.
These rows are also read-only with User Profile column
filled 1n with “N/A”. The Size column indicates the com-
bined size of edb and stm database files. User Profile needs
to be selected by the user during mailbox database creation.
The table may be updated as the user utilizes the “New”,
“Edit”, and “Delete” buttons, as described below.

“New” button—This button 1s enabled if the Storage
Group 1s configurable and has not reached 1ts maximum
number of mailbox databases. In response to clicking this
button, a panel appears (see FIG. 9) to allow the user to
specily attributes of the mailbox database to be added. A
corresponding row then appears in the “Databases™ table.

“Edit” button—This button 1s enabled 11 one of the new
mailbox databases i1s selected. In response to clicking this
button, a panel appears (see FIG. 9) to allow the user to edit
attributes of the selected mailbox database. The correspond-
ing row 1n the “Databases™ table may then be updated.

“Delete” button—This button 1s enabled 1f one of the new
mailbox databases 1s selected. In response to clicking this
button, the selected mailbox database 1s removed from the
“Databases” table.

FIG. 9 illustrates a panel that 1s displayed to create a
mailbox database (in Typical or Custom Mode) or edit a
mailbox database (1n Typical Mode). As shown, the panel
allows the user to specily sizes of the EDB and STM
database files and select a user profile for each one. The user

b

US 7,293,237 Bl

9

can also specily a name for the mailbox database and
provide a name for the database file. The database file name
1s the file name for both mailbox and streaming files.

FIG. 10 illustrates a panel for configuring storage groups
that 1s displayed i Custom mode. This panel may be
displayed N times, where N 1s the number of storage groups.
The panel allows the user to specily attributes of each
respective storage group. The various components shown on
the panel are described as follows:

“Storage Group X of N”—Indicates the index of the
Storage Group that the user 1s currently configuring (X) and
the total number of Storage Groups (N).

“Storage Group name”—The name of the Storage Group.
The field 1s grayed out 1f the Storage Group already exists or
1s unconfigurable. If the field i1s editable, a unique name 1s
generated and used to populate the field when the panel 1s
mitially displayed. The user may modily the name as
desired.

“Disk Group name”—The name of the Disk Group. This
field 1s grayed out 11 the Storage Group 1s unconfigurable, or
already exists and resides on a Dynamic Disk Group. For
new Storage Groups and existing Storage Groups that reside
on Basic Disk Group, a unique name 1s generated and used
to populate the field. The user may modily the name as
desired.

“Databases” table—A table view of all the mailbox data-
bases within the Storage Group. Each mailbox database 1s
represented by two rows: edb and stm rows. A TransLog row
gets created by default for new Storage Groups. Two rows
get inserted with no volume assignment during new database
creation. “Assigned Volume™ indicates the volume that the
mailbox database file belongs.

“Set Volume” button—This button 1s enabled 11 the Stor-
age Group 1s configurable and a configurable row 1s cur-
rently selected. A configurable row 1s a row that contains a
mailbox database file that 1s either newly created or its
volume can be reassigned. In response to clicking this
button, a panel appears (see FIG. 11) to allow the user to
specily a volume.

“Hot Spare” button—This button 1s enabled if the Storage
Group 1s configurable. In response to clicking this button, a
panel appears (see FIG. 13) to allow the user to select one
or more disks to set aside as hot spare.

“New” button—This button 1s enabled if the Storage
Group 1s configurable and has not reached 1ts maximum
number of mailbox databases. In response to clicking this
button, a panel appears (see FIG. 9) to allow the user to
specily attributes of the mailbox database to be added. Two
corresponding rows (edb row and stm row) then appear 1n
the “Databases™ table.

“Edit” button—This button 1s enabled if one of the new
mailbox database files or TransLog object 1s selected. In
response to clicking this button, a panel appears (see FIG.
14) to allow the user to edit attributes of the selected mailbox
database file or TransLog object. The corresponding row 1n
the “Databases” table may then be updated.

“Delete” button—This button 1s enabled i1f one of the
newly created mailbox database files 1s selected. In response
to clicking this button, the selected row and the correspond-
ing edb or stm row 1s removed from the “Databases” table.

FIG. 11 1illustrates a panel that 1s displayed in Custom
mode to allow a user to select an existing volume or create
and select a new volume. The various components shown on
the panel are described as follows:

“Disk Group name”—Displays the disk group name.

“Available Volumes™ table—Displays volumes that
belong to the disk group, including their names, layouts, and

10

15

20

25

30

35

40

45

50

55

60

65

10

sizes. These may include volumes that already exist or
newly created volumes. Existing volumes are displayed with
a grayed out volume 1con in the Name column.

“New” button—This button allows the user to create new
volumes. In response to clicking this button, a panel appears
(see FIG. 12) to allow the user to specily attributes of the
volume to be added. A corresponding row then appears in
the “Available Volumes™ table. It 1s noted that the volumes
are not actually created until the storage configuration 1is
implemented.

“Edit” button—This button 1s enabled when a newly
created volume 1s selected. In response to clicking this
button, a panel appears (see FIG. 12) to allow the user to edit
attributes of the selected volume.

“Delete” button—This button 1s enabled when a newly
created volume 1s selected. In response to clicking this
button, the selected volume 1s removed from the “Available
Volumes” table.

“OK” button—This button becomes enabled when the
user selects a volume in the “Available Volumes™ table.
Before the volume gets assigned to the selected mailbox
database file, the volume size 1s validated to ensure that it
has enough space to hold the file the user specified. A
warning message 1s displayed 11 the volume size 1s not large
enough to hold the file. The volume will not be assigned to
the database file until a volume with the proper size i1s
selected.

FIG. 12 1illustrates a panel that 1s displayed in Custom
mode to allow a user to create or edit a volume. The various
components shown on the panel are described as follows:

“Name”™—Name of the volume.

“Label”—Label of the volume.

“S1ze”—Si1ze of the volume.

“Layout” fields—Used to set information regarding the
volume layout. (Refer to Veritas Volume Manager documen-
tation for information regarding volume layout.)

“Mirror” fields—Used to set information regarding mir-
roring for the volume. (Refer to Veritas Volume Manager
documentation for information regarding mirroring.)

“Assign disks for Volume”—The user can move disks
from the “Available disks™ list to the “Selected disks™ list by
doing one of the following: 1) Selecting one or more disks
and clicking the “Add” button; 2) Clicking the “Add All”
button; 3) Double-clicking on a disk 1n the “Available disks™
list; 4) Dragging-and-dropping one or more disks from the
“Available disks™ list to the “Selected disks™ list.

“OK” button—This button becomes enabled when the
user selects at least one disk from the “Available disks™ list.
Validations are performed when the button 1s clicked to
ensure that: the Name field 1s unique; the Label field is
unique; the volume size 1s less than the total free space for
all the selected disks; and the volume size 1s large enough to
hold all the mailbox database files assigned to the volume.

FIG. 13 1illustrates a panel that 1s displayed in Custom
mode to allow a user to select one or more disks to set aside
as hot spare. The components function similarly as described
above with reference to the “Assign disks for Volume”
components of FIG. 12. The disks shown i the “Available
disks” list that are selectable are empty. Once the selected
disks have been marked as hot spare, they cannot be
assigned to any volume.

FIG. 14 illustrates a panel that 1s displayed i Custom
Mode to allow a user to edit an EDB or S™ mailbox
database file. The various components shown on the panel

are described as follows:
“Mailbox database name”—Database name for both EDB
and STM.

US 7,293,237 Bl

11

“Size field™—Size of the EDB or S™ file.

“User profile”—The user profile type.

“Database file name”—Name of the mailbox database file
for both EDB and STM.

“OK” button—When the “OK” button 1s clicked, valida-
tions are performed to ensure that: the mailbox database
name 1s unique and non-empty; the database file name 1s
unique and non-empty; and the file size 1s not larger than the
volume capacity

FIG. 135 illustrates a panel that 1s displayed in Custom
Mode to allow a user to edit a Transaction Logs entry. The
various components shown on the panel are described as
follows:

“Iransaction Logs”—A read-only field that 1s automati-
cally generated by concatenating the name of the Storage
Group and “TransLogs” constant string which 1s defined 1n
a properties file.

“Iransaction Logs size”—Si1ze of transaction logs.

“User profile”—The user profile type.

“OK” button—When the “OK” button 1s clicked, a vali-
dation 1s performed to ensure that the transaction logs size
1s not larger than the volume capacity.

FIG. 16 illustrates a panel that 1s displayed in Typical
Mode after the user has completed configuration for each
Storage Group. The panel allows the user to select disks for
creating the Storage Groups. The user can select one or more
disks from the “Available disks” list to the “Selected disks™
list. The components function similarly as described above
with reference to the “Assign disks for Volume™ components
of FIG. 12.

FI1G. 17 1llustrates a panel that 1s displayed 1n both Typical
Mode and Custom Mode. The panel allows the user to select
empty volumes to use. In Typical Mode, the panel of FIG.
17 1s displayed after the panel of FIG. 16, if there 15 at least
one disk that contains empty volumes (not assigned to any
existing Storage Groups). In Custom Mode, the panel of
FIG. 17 1s displayed after the panel of FIG. 7, 11 at least one
empty volume 1s found.

FIGS. 18 and 19 illustrate panels that display diflerent
views of the storage configuration or layout that results after
stepping through the above-described panels in Typical
Mode or Custom Mode. FIG. 18 1llustrates a Storage Group
view of the layout. (As shown in FIG. 18, the “Storage
Group View” tab at the top of the panel 1s currently
selected.) The Storage Group view 1s based on existing and
new Storage Groups. The Storage Group view lists all
mailbox database files that will reside on new volumes.

FIG. 19 illustrates a Volume view of the layout. (As
shown 1n FIG. 19, the “Volume View” tab at the top of the
panel 1s currently selected.) The Volume View displays a tree
view starting from new disk groups that will be created
during implementation of the layout. In each disk group,
new volumes belonging to the disk group are displayed.
Information about disks and mailbox database files 1s also
displayed.

FIG. 20 1llustrates a panel that 1s displayed upon comple-
tion of the Storage Configuration wizard. The user can select
options to implement the suggested layout and/or save the
suggested layout as an XML file. In response to clicking the
“Finish” button, the selected options are performed, 1.e., the
layout 1s implemented and/or saved. If the user chooses to
save the suggested layout as an XML file but not implement
the layout, the user may be able to open the layout at a later
time and mmplement the layout at the click of a button
(possibly after modifying the layout as desired).

The panel indicates actions to be performed when the
layout 1s implemented. These actions include:

10

15

20

25

30

35

40

45

50

55

60

65

12

Moving Storage Groups—The panel provides a listing of
all the existing Storage Group that will be moved from Basic
Disk Group to Dynamic Disk Group.

Delete empty volumes—The panel provides a listing of
all empty volumes that will be deleted during implementa-
tion of the layout.

Create new Disk Groups—The panel provides a listing of
all Disk Groups that will be created during implementation
of the layout.

Create new volumes—The panel provides a listing of all
volumes that will be created during implementation of the
layout.

FIG. 21—Contfiguration Software Architecture

FIG. 21 1illustrates a software architecture of exemplary
network configuration software according to one embodi-
ment. The network configuration software may execute on a
client computer system 102 used by a network administrator.
The network configuration software may provide a manage-
ment console to the network administrator for performing
various network configuration and/or management func-
tions. In one embodiment, the network configuration soft-
ware shown in FIG. 21 includes one or more software
programs (referred to collectively as the “Storage Configu-
ration” program) for automatically determiming storage con-
figurations or storage layouts for computers in the system.
The network configuration software shown in FIG. 21 may
also 1nclude software for automatically applying a deter-
mined storage configuration to one or more computers in the
system. In the currently preferred embodiment, the network
configuration software of FIG. 21 1s offered by VERITAS
Software Corporation (VERITAS Software).

As shown, the software architecture in FIG. 21 may
include an Administrator GUI or console 152. The Admin-
istrator GUI 152 may support various extensions, such as a
VM (Volume Manager) Extension 154 and an Edition
Extension 156. The VM Extension 154 provides a console
for volume management for non-volatile storage, e.g., disk
drives. The Edition Extension 1356 provides the user inter-
face for various Edition functionality, such as the Storage
Configurator. An Edition Installer 158 may be provided for
installing the Edition Extension 156. An Edition Extension
(EE) Backup application 160 may also be provided for
backing up the application’s data. A SCP Interface 150 may
also be provided for providing external access to Storage
Configurator Provider 178.

The Administrator GUI 162 may interface to a Client
Infrastructure layer 172. The Client Infrastructure layer 172
may 1n turn interface to a Server (Bus) program layer 174.
The Server (Bus) program layer 164 may abstract various
communication functions among various distributed soft-
ware programs executing in the network system. As shown,
the Server (Bus) program layer 164 may interface to various
programs, such as VM (Volume Manager) Provider 172,
VAIL (Veritas Array Integration Layer) Providers 174, and
an Exchange Provider 176. The VM provider 172 provides
volume management for non-volatile storage, e.g., disk
drives. The VAIL Providers 174 provide management ser-
vices Tor RAID arrays. The Exchange Provider 176 provides
management services for Microsoit Exchange.

The Administrator GUI 162 may also interface to a SC
(Storage Configurator) Provider 178. The SC Provider 178
may include at least a portion of the Storage Configuration
solftware of one embodiment of the mnvention. The SC
Provider 178 may interface to an application specific layer
180 used in automatically determining a storage configura-

US 7,293,237 Bl

13

tion for a specific application 182. The application specific
layer 180 may 1n turn 1nterface to a specific application 182.
The application specific layer 180 preferably includes func-
tionality that 1s specific to the application 182 to which the
layer 180 corresponds.

In the embodiment shown, the application 182 1s
Microsoit Exchange, and the application specific layer 180
1s the Exchange Edition Layer (EEL). Due to COM 1nterface
requirements of Microsoft Exchange, the EEL 180 interfaces
to Microsolt Exchange through a COM object layer referred
to as CDOEXM (Collaborative Data Object Exchange Man-
agement Layer) 181. The CDO Exchange Management
Layer 181 1s an adminmistrative layer that uses the Collabo-
rative Data Object API from Microsofit to obtain information
and configure Microsoit Exchange.

In one embodiment, the SC Provider 178 includes core
functionality that 1s common or generic to any application,
and each application specific layer 180 includes apphcatlon
specific functionality for 1ts specific application. This archi-
tecture enables modular reuse of the SC Provider 178 i

for
different applications. This architecture obviates the need

for
a developer to write a new optimization engine for each
application in which a storage configurator 1s desired. Thus
the SC Provider 178 operates to abstract the general storage
layout optimization algorithms from the application specific
rules which are contained in the application specific layer

180.

FIG. 22—Storage Configurator Software
Architecture

FIG. 22 1llustrates a software architecture of the Storage
Configurator software according to one embodiment of the
invention. As shown, the Storage Configurator software
includes a Storage Configurator Provider 178 and various
other files. The Storage Configurator provider 178 includes
a Configurator Core 202 and an XML parser 204. The XML
parser 204 performs XML parsing functions. The Configu-
rator Core 202 may perform various operations to obtain
information used 1n determining an “optimal” storage layout
for the system.

The Storage Configurator software also includes a
FreeSpace.xml file 222, a Priority.xml file 224, and a Lay-
out.xml file 234.

The FreeSpace.xml file 222 contains information about
the available free space in the storage system (or network
system). In one embodiment, the FreeSpace.xml file 222
contains information about all of the free space in the
system. The FreeSpace.xml file 222 1s created by a Discov-
erer component 212, as discussed below.

The Priority.xml file 224 may also be referred to as a “rule
information” data structure or “rule data structure”. The
Priority.xml file 224 comprises rule information used 1n
determining the storage configuration. The rule information
may comprise rules about storage configuration principles of
the application. The rule information may also comprise
priority information, wherein the priority information speci-
fies a priority 1n application of rules in the rule information.
In one embodiment, the rule information comprises storage
types 1n order of priority for different application data types.
The Prionty.xml file 224 (or rule information data structure)
may specily relative preferences for each type of storage to
cach type of application data type or volume. The priori-
ty.xml document thus stores the priority or rule information
for the layout determination. In a Microsoft Exchange
example, the Priority.xml file 224 specifies relative prefer-
ences for each type of storage to each type of Exchange

10

15

20

25

30

35

40

45

50

55

60

65

14

volume. In one embodiment, the Priority.xml file 224 1s not
modifiable by the user. In another embodiment, the Priori-
ty.xml file 224 1s modifiable by the user. In another embodi-
ment, a plurality of Prionity.xml files 224 are maintained in
the system, and the user may select a preferred Priority.xml
file 224. Alternatively, the type of application for which
storage configuration 1s being determined may specily one

of (or a subset of) the plurality of Priority.xml files 224.
Exemplary rules are listed below:
Each Storage Group results 1 its own Disk Group
Each class of user results 1n 1ts own Database
Transaction Logs kept on separate set of spindles

All STM files within Storage Group can be grouped
together

All EDB files within Storage Group can be grouped
together

Last resort: Put STM and EDB f{iles from same Storage
Group together

Suggested STM file size=# users™mailbox size
Suggested EDB file size=# users*mailbox size

Additional rules about hot spares, RAID-5 logging, FMR
logs, eftc.

These rules may be used 1n automatic creation of a storage
configuration (e.g., Typical mode of the Storage Configura-
tor program). However, the user may also override these

rules 11 desired (e.g., Custom mode of the Storage Configu-
rator program).

As described above, the user of the storage configurator
provider 178 may provide mput to a GUI about the target
application, including various information regarding how
the application will be used. A Userlnput.xml file 232 may
be created 1n response to the user input supplied by the user.

The user input (Userlnput.xml file) 232 1s received by the
Application Specific Layer 180, in this example the
Exchange Layer or EEL. The Apphcatlon Specific Layer
180 contains knowledge about the specifics of 1ts respective
application. In a current example where the application is
Microsoit Exchange, the EEL 180 contains knowledge of
the specifics of Microsoit Exchange and operates to create a
logical exchange storage configuration based on 1nputs from
the user. The logical exchange storage configuration may
contain the name and size of each exchange object requiring
storage. The Application Specific Layer 180 generates the
Layout.xml document 234. In this example, where the
application 1s Microsoit Exchange, and the Layer 180 1s the

EEL, the document 1s referred to as Exchange Layout.xml
234.

In one embodiment, the EEL may automatically decide
how much space to allocate each file. In another embodi-
ment, the user may specily desired file sizes. The EEL may
receive a user iput data structure from the GUI and convert
this information into the application mformation. The EEL
includes various application specific rules.

As one example for Microsolt Exchange, the
comprise the following rules:

Possibly split databases 1t they are too big;

Number of parallel backups used as minimum for number
of Storage Groups

If content indexing turned on, add 20% to above numbers

EEL may

Transaction Log size=(Total size of all databases
within Storage Group™®0.20)+100 MB

Memory constraints:

RAM>=(130 MB*SGCount)+((D5Count-SGCount)
*25 MB)+126 MB

US 7,293,237 Bl

15
If total mailboxes <500, RAM >=256 MB
It 500<=total mailboxes <1000,RAM>=512 MB
If 1000<=total mailboxes <2500,RAM>=1 GB
If total mailboxes>=2500, RAM>=2 GB

The Configurator Core 202 1ncludes a Discoverer 212, a
Core Logic engine 214, and an Implementer 216.

The Discoverer 212 operates to automatically detect exist-
ing storage 1 the network system. The Discoverer 212
generates the FreeSpace.xml file 222, described above. The
FreeSpace.xml document 222 describes the free space or
available storage in the storage system.

The FreeSpace.xml document 222 is available to the Core
Logic engine 214. The Core Logic engine 214 recerves the
free space miformation from FreeSpace.xml 222. As noted
above, the Storage Configurator soiftware also includes a
priority document referred to as Priority.xml 224. The opti-
mization algorithm(s) 1n the Core Logic Engine 214 analyze
the priority or rule information in Priority.xml 224 1n deter-
miming how to optimize usage of the discovered free space
or available storage space 1n the system.

The Core Logic Engine 214 analyzes the available free
space 1n the FreeSpace.xml document 222, analyzes the user
input embodied 1n the Layout.xml document 234, and exam-
ines the priority or rules contained in the Priority.xml
document 224, and operates to generate a suggested layout
or suggested storage configuration for the existing storage.
The suggested layout 1s embodied 1n a document called
SuggestedLayoutFile.xml 226. The Core Logic Engine 214
preferably forms the core of the storage configurator. In one
embodiment, the Core Logic Engine 214 may utilize a
policy whereby the volume size 1s equal to the sum of the
sizes of all files to be placed on the volume.

The Implementer 216 receives the SuggestedLayout-
Filexml 226 and operates to implement the suggested
layout. In other words, the Implementer 216 analyzes the
information 1n SuggestedLayoutFile.xml 226 and configures
the wvarious network resources (including non-volatile
memory or disks) according to the layout information,
optionally 1n response to user mput or approval of the
suggested layout.

Therefore, 1n determining a (preferably optimal) storage
configuration according to one embodiment, the Core Logic
Engine 214 utilizes user input received from the user, such
as through a console wizard or GUI; the amount of available
storage or iree space (or memory, €.g., non-volatile memory
and/or RAM) present 1in the storage system (e.g., one or
more servers); and the Priority.xml file.

FIG. 23—Flowchart Diagram

FIG. 23 1s a flowchart diagram illustrating one embodi-
ment of a method of operation of the Storage Configurator
software to automatically determine an optimal storage
configuration for an application (e.g., the Typical mode of
the Storage Configurator).

In 302 the method may first recetve information on
existing storage capabilities 1n the storage system. For
example, the user may enter information in a graphical user
interface (GUI) regarding the existing storage capabilities 1n
the storage system. Alternatively, the method may automati-
cally (1.e., programmatically) determine or detect existing
storage capabilities 1n the storage system. Step 302 may be
performed by the Discoverer program 212 of FIG. 22. In an
alternate embodiment, the user may manually provide at
least a portion of the information regarding the available or

10

15

20

25

30

35

40

45

50

55

60

65

16

existing storage in the system. A flowchart diagram 1llus-
trating operation of the Discoverer 212 1s provided 1n FIG.

235.

In 304 the method may recerve information regarding the
target application. For example, the user may enter infor-
mation 1 a graphical user interface (GUI) regarding the
application. The application layer 180 of the storage con-
figurator may also, or instead, query the application to obtain
information regarding the application. The information
regarding the application may comprise information regard-
ing various application objects (e.g., files, databases, etc.)
present 1n the application. As noted above, the storage
confligurator software program may present a graphical user
interface, such as a GUI of a console wizard, to the user. The
user may then input values which will be used to aid n
determining the optimal storage layout. Table 1 below
describes exemplary questions that may be presented by the

GUI 1 304.

TABLE 1

Question Influences

Size of the volume increases
Total number of Mailbox Databases

Content Indexing

Number of groups of users
(classes of users)

Number of users 1n group *
size of each mailbox
Maximum size of Backup
Number of parallel Backups
Which LUNs to include

Size of each Database

Maximum size of Database

Minimum number of Storage Groups
Maximum number and size of Databases
we can configure (and where to put
databases and transaction logs). Also
influences which empty volumes can be
included.

Where we can configure databases and
transaction logs. Any included volumes
which are used will be deleted and their
space will be reallocated.

Which Volumes to include

Alternatively, information regarding the application may
be obtained from a previously created data structure. For
example, the user (or another user) may have previously
created an application data structure that contains the appli-
cation information. In another embodiment, application pro-
gram vendors may provide such an application data structure
with their applications.

In 306 the method may automatically determine a storage
configuration (or storage layout) for the storage system
based on the existing storage capabilities in the storage
system and the information regarding the application. In
automatically determining the storage configuration, the
method may examine a first data structure (called the “rule
data structure” or “priority.xml”) comprising rule informa-
tion. The rule information may comprise rules about storage
configuration principles of the application.

In one embodiment, the rule information comprises pri-
ority information that specifies a priority 1n application of
the rules. For example, the rule information may comprise a
structure or list of storage types in order of priority for
different application data types.

In one embodiment, the method automatically determines
the storage configuration by examining available storage in
the storage system, determining storage allocations based on
the available storage in the storage system and the rule
information, and generating the storage configuration based
on the storage allocations.

More specifically, one embodiment may operate as fol-
lows. The method may automatically determine the storage
configuration by first performing pattern matching between

US 7,293,237 Bl

17

the application information and the rule information. This
pattern matching may comprise matching the contents of the
rule mformation data structure with the contents of the
application information. The method may then create a
second data structure (“skeleton” data structure) comprising
storage orgamization imnformation of the storage configura-
tion based on the results of the pattern matching. The second
data structure may comprise information regarding which
application objects should be in which storage subsets (e.g.,
disk groups). The method may further determine groupings
of application objects. The method may then automatically
determine a storage configuration using two or more of the
first data structure, the second data structure, and the group-
ings ol application objects.

The method may operate to determine the optimal storage
configuration (or storage layout) based on the existing
storage 1n the system determined in 302, the immformation
received from the user 1n 304, and the priority.xml document
referred to above. In one embodiment, step 306 1s performed
by the core logic engine 214 described 1n FIG. 22.

In step 306 the operation of determining a storage layout
1s periformed automatically. In the present application the
term “automatically” refers to a function that 1s performed
programmatically, 1.e., the function 1s performed primarily
by software executing on a computer system. Thus, in one
embodiment the user 1s not manually required to specify the
storage layout. Rather, based on some simple user input and
other information, in step 306 the storage configurator
program applies an allocation algorithm (e.g., various opti-
mization rules) to automatically or programmatically deter-
mine the optimal storage layout based on this information.

In 308 the method may optionally operate to display the
determined storage configuration to the user. The display
may also iclude a graphical user interface element, such as
a dialog box or other element where the user may graphi-
cally chose to accept or decline the determined optimal
storage layout.

As shown 1n the flowchart of FIG. 23, 1 the user does not
accept the determined optimal storage layout, then operation
of the method completes. In this case, the user may then
repeat the method above or may chose to manually configure
a storage layout. If the user accepts the optimal storage
layout 1n step 310 then in step 312 the implementer software
216 may operate to automatically or programmatically
implement the layout. This may include placing the target
application’s data objects.

In one embodiment, the method may simply store the
determined storage configuration 1n memory, possibly with-
out displaying the determined storage configuration. In yet
another embodiment, the method may automatically apply
the determined storage configuration, again possibly without
displaying the determined storage configuration or receiving
any acceptance from the user.

FIG. 24—Alternate Embodiment

FI1G. 24 illustrates an alternate embodiment of the method
described 1n the flowchart of FIG. 23. In the tlowchart of
FIG. 24, 1n step 303 the user may also choose to specily one
or more constraints on the storage configuration or storage
layout prior to the optimal storage configuration being
determined 1n step 306. These constraints are recerved by the
core logic engine 214 and are used 1n step 306 A to determine
the (preferably optimal) storage layout. In other words, in
step 306 A, the optimal storage layout 1s determined based on
information described above (ncluding the available
amount of storage or free space, user mput regarding the

10

15

20

25

30

35

40

45

50

55

60

65

18

target application, and the priority.xml document) and 1s also
determined based on the constraints specified by the user.
Thus, the determined optimal storage layout produced 1n
step 306 will be determined based on an accounting for the
constraints 1dentified by the user. This provides a mechanism
for the user to specily constraints on priority and to have a
storage layout automatically determined taking these con-
straints 1nto account.

In each of the embodiments of FIGS. 23 and 24, the user
may choose to specily some of the mput provided to steps
306 and/or 306A and repeat the above process to generate
new optimal storage layouts based on this new information.
For example, the user may re-invoke the wizard GUI and
provide new information about the target application 1n step
304, and then rerun step 306 to determine a new optimal
storage layout based on the new information provided by the
user 1n step 304. As another example, 11 the user adds more
storage to the system, the user may repeat the above method,
whereby the optimal storage layout determined 1n step 306
may differ due to the fact that a greater or lesser amount of
storage was added to and/or removed from the system 1n
302. As yet another example, the user may select a new
priority.xml document, or modily an existing priority.xml
document, and rerun the method of FIG. 23 to determine a
new optimal storage layout based on this newer modified
priority.xml document. In some embodiments, the storage
configurator program may be automatically re-invoked 1n
response to certain events, such as the addition or removal
ol storage devices from the storage system.

Modification of Optimal Storage Layout

The optimal storage layout displayed 1n step 306 may be
displayed in any of various ways. In one embodiment, the
optimal storage layout 1s displayed as a tree structure. In
another embodiment, the optimal storage layout may be
shown iconically in a diagram. For example, a storage
configuration diagram may be displayed which includes
icons for each of the storage units, e.g., server units, SANSs
ctc. and the optimal storage layout may be graphically
and/or 1conically depicted 1n this storage configuration dia-
gram. Regardless of the manner 1n which the optimal storage
layout 1s displayed to the user, in one embodiment the user
may graphically manipulate the displayed storage layout to
make modifications to the storage layout. Thus, 1 the
optimal storage layout 1s displayed as a tree structure 1n step
306, the user may optionally provide the ability to manually
adjust different aspects of the tree structure or different
values associated with the tree structure to change the
storage layout. For example, the user may make changes and
then hit “apply” to apply these changes. If the optimal
storage layout 1s displayed graphically or iconically, the user
may use various drag and drop techniques or other graphical
editing techniques to change the optimal storage layout as
desired. In another embodiment, the optimal storage layout
determined by the storage configurator 178 1s not modifiable
by the user.

FIG. 25—Discoverer Operation

FIG. 25 1s a flowchart diagram 1llustrating operation of the
discoverer component 212 1n the storage configurator pro-
vider 178. The flowchart diagram of FIG. 25 also illustrates
operation of step 302 of FIGS. 23 and 24.

As shown, in 402 the method queries the disk objects
registered by the volume manager. This operates to deter-
mine what disk objects are present 1n the system.

In 404 the method determines 11 each disk object deter-
mined 1n 402 1s part of a hardware array. A portion of this

US 7,293,237 Bl

19

operation may be performed by VAIL Provider 174. If a disk
object 1s determined to be part of a hardware array, then 1n
406 the method obtains the disk object’s respective hard-
ware array properties. Operation then advances to step 408.
IT a respective disk object 1s determined to not be part of a
hardware array 1n step 404, then operation proceeds directly
to 408.

As shown, 1n 410 and 412 the method queries each of the
disk objects about its properties. The property information
tor the disk objects 1s then converted into a FreeSpace.xml
document in step 414. The FreeSpace.xml document con-
tains information about free space in the system, preferably
all free space available to the application within the system.

FIG. 26—Automatically Determining a Storage
Configuration

FIG. 26 1s a flowchart diagram illustrating automatically
determining a storage configuration according to one
embodiment. FIG. 26 provides more detail regarding steps
306 and 306A of FIGS. 23 and 24, respectively.

In 442 the method may first perform pattern matching,
between the application mformation and the rule informa-
tion. This pattern matching may comprise matching the
contents of the rule information data structure with the
contents of the application information. The method may
then create a second data structure (also called the “skel-
cton” data structure and the “NewTlree” data structure)
comprising storage organization information of the storage
configuration based on the results of the pattern matching.
The second data structure may comprise mnformation regard-
ing which application objects should be 1n which storage
subsets (e.g., disk groups). The second data structure may be
an intermediate form of the SuggestedlLayout data structure
comprising storage organization information. In one
embodiment, each of the rule information data structure
(priority.xml) 224 and the application information 234 may
comprise text files. The method may perform pattern match-
ing or textual analysis between these two text files to
determine a matching or correspondence between data 1n
cach of the two text files.

In 444 the method may further determine groupings of
application objects. This grouping information may aflect
volume sizes to be allocated. The method may determine
respective groupings ol application objects 1n 444, and then
in 522 the method may examine the available storage and
apply an allocation algorithm based on the grouping. Steps
444 and 522 may be performed two or more times 1n a
repetitive or iterative fashion, as shown. In other words, the
method may determine a first grouping of application
objects and apply the allocation algorithm to this first
grouping, and then determine a second grouping of appli-
cation objects and apply the allocation algorithm, and so on,
until the optimal (or an acceptable) storage configuration 1s
produced. Steps 444 and 522 are described further with
respect to steps 504-512 and 3522A-E of FIG. 27. The
allocation algorithm may be either a “top down” or “bottom
up” greedy (or pseudo-greedy) algorithm with backtracking.
The results of these steps may produce a storage configu-
ration. Thus, 1n one embodiment, the storage configuration
may be automatically determined using at least a subset of
the above information, e.g., two or more of the first data
structure (rule data structure), the second or skeleton data
structure, and the groupings of application objects.

After the storage configuration has been determined or
generated, 1n 448 the storage configuration may be stored 1n
memory. The storage configuration may be useable 1n con-

10

15

20

25

30

35

40

45

50

55

60

65

20

figuring the storage system. The method may then operate to
configure the storage system according to the storage con-

figuration.

FIG. 27—Core Logic Engine

FIG. 27 1s a flowchart diagram 1llustrating one embodi-

ment of operation of the core logic engine 214. In FIG. 27,
step 302 corresponds to step 442 of FIG. 26, steps 504-510
correspond to step 444 of FIG. 26, and steps 522A-E
correspond to step 522 of FIG. 26.

As used herein, the term application object type refers to
items 1n the application which require disk space. Examples
include transaction logs, EDBs and STMs. In an exemplary
embodiment where the application 1s Microsoit Exchange,
exemplary application object types, (1n this case referred to
as exchange object types) would include transaction logs,

Exchange DBs, and STMs.

As used herein, the term “dedicated spindle set” refers to
disks or non-volatile storage elements which contain data for
a given set of application object types and store no other
significant data.

In step 502 the method examines the priorty.xml docu-
ment and the application specific layer 180 (e.g., the
Exchange layer 180). In step 502 the method examines this
information and performs pattern matching or text string
matching 1n order to create a data structure or skeleton of the
constraints of the layout to be created (the second data
structure). In step 302 the method compares the text string
entries 1n the priority document with the text string values
created in the Exchange layout.xml file 234 to identily
matches between these two documents. In response to these
matches, the method then creates a second data structure,
also referred to as a skeleton data structure, with the begin-
ning organization of the storage configuration or layout. An
example of operation of step 502 1s discussed below.

In steps 504-510 and 522A-E the method determines
groupings of application objects and attempts to allocate
storage to these groupings to create the storage configura-
tion. The allocation algorithm performed 1n 522 (522A-E)
may be a “greedy” algorithm with back tracking, although
other types of allocation algorithms may be performed. The
allocation algorithm may be a top down algorithm or a
bottom up algorithm, or a combination thereof. Any of
various types of allocation algorithms may be used, as
desired.

As shown, 1n step 504 the method uses the freespace.xml
information to attempt to find a dedicated spindle set for
cach application object type. In performing step 504, the
method performs an allocation algorithm in step 522 (re-
ferred to here as 522A) to attempt to find disk space for the
layout. If the algorithm in step 522A locates disk space
suflicient for a dedicated spindle set for each application
object type, then the search completes in step 232.

I1 suflicient disk space 1s not found in 522A, then 1n step
506 the method attempts to find a dedicated spindle set for
transaction logs and a dedicated spindle set for each set of
application object types. Again, 1n performing step 506, the
method performs the allocation algorithm of 522 (referred to

here as 522B). It space 1s found, then the search completes
in 232.

I1 suflicient space 1s not found 1n step 522B, then opera-
tion advances to step 508. In step 508 the method attempts
to locate a dedicated spindle set for transaction logs, and a
single dedicated spindle set for all application object types.

US 7,293,237 Bl

21

Again, the algorithm of 522 (referred to here as 522C) 1s
performed. If space 1s found, then the search completes in
232.

If suflicient space 1s not found in step 522C, then opera-
tion advances to step 510. In step 510 the method attempts
to locate a dedicated spindle set for transaction logs, and a
single spindle set for all application object types. In step 510,
the method considers free space on disks with existing
storage volumes (as opposed to step 508, which only con-
siders disks without existing storage volumes). Again, the
algorithm of step 522 (referred to here as 522D) 1s used 1n
this process.

If suflicient space 1s not found in step 322D, then the
method proceeds to step 512 to attempt to locate non-fault
tolerant layouts. In step 512 the method attempts to deter-
mine any non-fault tolerant layouts using the algorithm of
step 522 (referred to here as 522E). If a fault tolerant layout
1s determined in step 512, then the search ends 1n 232. If no
non-fault tolerant layouts are able to be determined 1n step
512, then the configuration fails as illustrated in 234.

In an alternate embodiment, the methodology described in
FIG. 27 1s reversed, and a “bottom up” algorithm 1s used. In
other words, all non-fault tolerant layouts are first examined
to determine possible layouts, then operation proceeds to
progressively improve storage layouts through step 510,
then performs steps 508, 506 and 504. In this embodiment,
once one ol the operations fails to produce a valid result,
then further operations need not be performed. In other
words, 11 1t 1s not possible to find a dedicated spindle set for
transaction logs, i a single dedicated spindle set for all
application object types and STMs together 1n step 508, then
there 1s no point 1n performing either steps 306 or 504, since
these solutions require even greater available disk free space
than step 508.

In one embodiment, the allocation algorithm uses a com-
bination of bottom up and top down approaches. For
example, the method may begin the analysis from a most
expensive 1o least expensive file grouping (as shown 1n steps
504-510). For each determined file grouping (in one of steps
504-510), the method performs the allocation algorithm by
starting with the lowest priority and least expensive volume
option 1n priority.xml file and then working upward. As
noted above, the allocation algorithm 1s performed to actu-
ally allocate volumes based on the file grouping. Thus the
method may proceed through file groupings 1 a top down
manner, and the allocation algorithm may proceed in a
bottom up manner. After the method has found a volume for
the sum of all file groupings, then an improvement pass may
be performed, as described further below.

The following describes a currently preferred embodi-
ment of a portion of the storage configuration creation

process (1.e., steps 504-510 and 522A-E):

1. Obtain an 1nitial grouping of objects, e.g. how files can
be grouped on volumes. Specifically, the first pass
generally attempts to keep each file on 1ts own volume
(and, therefore, 1t’s own spindle set) to help optimize
performance.

2. The allocation algorithm attempts to “create” and then
map suggested volumes to the objects. “Create” 1n this
sense does not mean to actually create the physical
volume. Instead, the term ‘“create” in this context
means to reserve space from the “freeSpace.xml” data
structure for the chosen volume.

a. In the first pass, the storage configurator chooses the
least expensive (least resource intensive) volume
type available that 1s still fault tolerant—often a

5

10

15

20

25

30

35

40

45

50

55

60

65

22

simple concatenated volume over hardware RAID,

or a simple software mirror over a JBOD.

b. The allocation algorithm attempts to create and
assign a volume to each group of files:

1. IT the allocation algorithm runs out of space (e.g.,
all the available elements in freeSpace have been
marked as reserved and there are still files that
need volumes), the allocation algorithm returns to
step 1 and obtains a diflerent, less expensive, file
grouping. It 1s generally easier to create a few big
volumes rather than many smaller, specialized
volumes. The very last time, the allocation algo-
rithm will allow the creation of non-fault tolerant
volumes as well.

11. If the allocation algorithm succeeds in finding an
inexpensive volume for every file grouping, the
allocation algorithm performs an “improvement
pass”. This pass goes through one disk group at a
time, releases all the reserved objects for that disk
group from FreeSpace, and then 1t tries to create a
volume suggestion starting with the most expen-
sive volume types, and working 1ts way to the least
expensive. This way, the allocation algorithm will
produce at least as good of a layout as the starting
layout, but the layout has a good likelihood of
being improved.

FIGS. 28-31

FIG. 28 1s a tlowchart diagram 1llustrating more detailed
operation of the Core Logic Engine 214 as described 1n FIG.
27 above. As shown, 1n 602 the DoSuggestlLayout() func-
tion 1s called. The DoSuggestLayout() function i1s essen-
tially the “main() of the Core Logic Engine 214. The Core
Logic Engine 214 recerves the FreeSpace.xml file, 1.e., the
structure which contains all the information about the disks
that are available for use by the application’s storage needs,
and an application specific Layout.xml file that contains the
object hierarchy and space requirements for the application
objects that need storage. The third nput, the Priority.xml
file, contains template information about which volume
types are best for each application object type. The Priori-
ty.xml file 1s preferably a static file and 1s saved to disk at
install time. The Priority.xml file 1s read from disk on the tly
in MakeNewIree() so that the storage configurator can
“understand” the rules for allocating space for the applica-
tion’s needs.

As shown, the DoSuggestLayout() function calls the
MakeNewTree() step 502 (step 502 of FIG. 27). The
MakeNewTree() function creates a new XML DOM tree by
intelligently recognizing patterns 1n layout and priority. The
MakeNewTree() function 1s described further in FIG. 29.

The DoSuggestLayout() function also calls the Create-
Layout() function 606. The CreateLayout() function 606
determines an optimal layout for the objects specified 1n
“new’lree”. The CreateLayout() function 606 corresponds
to steps 504-512, and 522A-E of FIG. 27.

The DoSuggestLayout() function also calls the Gener-
ateSLOutputFile() function 608. This function formats the
layout for consumption as specified 1 SuggestedlLay-
out.xsd.

FIG. 29 15 a flowchart diagram illustrating more detailed
operation of step 502. The operation 1n 502 creates a new
XMLDOM tree by intelligently recognizing patterns in
layout and priority. As shown, i 622 the method first
verifies form of the mputs, ApplicationLayout.xml 234 and
Priority.xml 224. In 624 the method finds the “key” element

US 7,293,237 Bl

23

of ApplicationLayout.xml 234. In 626 the method finds all
clements with an attribute that matches this key from both
the Priornity.xml and Application.xml data structures 224 and
234. In 628 the application specific objects that require disk
space are first divided 1nto disk groups as specified 1n the
Priority.xml file 224. This 1s performed since the largest
division of storage 1s on the disk group level. In 630 the
method adds objects to the “new’lree” data structure (“sec-
ond data structure” or “skeleton data structure”).

It 1s noted that different priority and layout files will yield
different results. In the operation of this function, the “Key”
clements of the two files are preferably equal. Both files
should have elements with this “Key” attribute and these
clements should have the same names in each file. This 1s
how the storage configurator determines the structure for
which 1t will be creating volumes. The priority file prefer-
ably has a “DiskGroup” element as well. This 1s how the
storage configurator determines how to lay out Disk groups
and volumes within the disk group. The new’lree data
structure 1s something of a combination of layout and
priority that the storage configurator uses internally. The
Priority.xml file describes how Exchange volume types and
disk groups {it together. The Exchangel.ayout.xml file rep-
resents the requested configuration 1n terms of Exchange.
Since disk groups by definition need to have their own
spindle set, the storage configurator preferably understands
how disk groups fit into the Exchange configuration. The
MakeNew'Tree() function takes these two files and merges
their structures into new’Iree to reflect how disk groups fit
into the Exchange picture.

FI1G. 30 1s a flowchart diagram 1llustrating operation of the
CreatetLayout() function. The CreatetLayout() function
performs the actual generation of the layout of volumes to
disks and application files to volumes.

As shown, 1n 642 the method finds the disk group element
in the NewTree() data structure. It 1s noted that disk space
will be allocated one disk group at a time. Steps 644 onward
essentially perform steps 504, 506, 508 510, 512 and
522A-F of FIG. 27.

In 644 the method finds node types that can be shared
from Priority.xml. In 646 the method obtains objects that
need new space from the New'Iree data structure.

In 444 the method creates a file grouping, as discussed
above with respect to step 444 of FIG. 26.

In 522 the method executes the AllocateSpace() function
to implement the allocation algorithm.

In one embodiment of steps 444 and 3522, the method
attempts to find a dedicated spindle set for each application
object type (FIG. 27, 504). This 1s performed by getting lists
ol objects, where each list contains the set of objects that will
reside together on a volume. Each list 1s a subset of
“otNodes” (object type nodes). Then, the method calls
“AllocateSpace()” for each list of objects. The *“Allo-
cateSpace()” method 1s the allocation algorithm performed
in 522 (522A-522E) This process continues until either disk
space has been found for every object 1n the otNodes list, or
there 1s no more disk space available. Note that this algo-
rithm preferably never creates more than one volume on a
single set of disks.

After steps 444 and 3522, 1.¢., alter a volume has been
found for all disk groups, 1n 650 the method may perform
and “improvement pass” per disk group. As described
above, 1f the allocation algorithm succeeds in finding an
inexpensive volume for every file grouping, the allocation
algorithm preferably performs an “improvement pass”. This
pass examines one disk group at a time, releases all the
reserved objects for that disk group from FreeSpace, and

10

15

20

25

30

35

40

45

50

55

60

65

24

then attempts to create a volume suggestion starting with the
most expensive volume types, and working 1ts way to the
least expensive. This way, the allocation algorithm will
produce at least as good of a layout as the starting layout, but
the layout has a good likelihood of being improved.

The improvement pass performs operations similar to
those described 1n step 672 below, except the improvement
pass starts from top to bottom, instead of bottom to top.

FIG. 31 1s a flowchart diagram 1llustrating operation of the
AllocateSpace() method. This preferred embodiment of the
AllocateSpace() method performs a combination of a bot-

tom up and top down algorithm with a refinement layer to
find disk space. The method in FIG. 31 1s preferably
performed for each file group and/or volume.

As shown, 1n 662 the method examines the type of objects
in the list of files from the current file group. In 664 the
method gets the sum of the size of the data objects that wall
be placed on the volume. In 666 the method marks all
objects to be placed on volume as “held” in NewTree. In 668
the method finds the name of the disk group to which this
volume will belong. In 670 the method finds the correspond-
ing object type value 1n the Prionity.xml data structure.

In 672 the method selects disks for the volume as
described below. As described above with respect to FIG.
277, the allocation algornithm attempts to “‘create” and then
map suggested volumes to the objects. “Create” 1n this sense
does not mean to actually create the physical volume.
Instead, the term “create” in this context means to reserve
space from the “freeSpace.xml” data structure for the chosen
volume. In the first pass, the storage configurator chooses
the least expensive (least resource intensive) volume type
available that 1s still fault tolerant—often a simple concat-
enated volume over hardware RAID, or a simple software
mirror over a JBOD.” This 1s performed by traversing the
disk specifications for the given file type 1n the Priority.xml
file from the bottom up. Each volume type specified in the
Priority.xml file contains both a hardware RAID type and a
soltware RAID type specification. First, the algorithm finds
all of the available disk objects 1n FreeSpace.xml that are of
the given hardware RAID type.

If there are disks of the specified hardware RAID type, the
algorithm checks the following:

a) 1f there are enough spindles of that type available to
create the software RAID volume (1.e., at least 2 spindles are
required for soitware mirrored or striped volumes, and at
least 4 spindles are required for soitware striped mirrored
volumes).

b) 1f there are enough spindles available, the algorithm
proceeds to calculate the actual amount of disk space needed
given the requested volume size for the data, and the extra
requirements a given soltware RAID volume might need.
For example, 11 the specified software volume type 1s a
mirrored volume, by default the storage configurator will
enable dirty region logging for more optimal volume per-
formance. In this case, the algorithm will add the amount
needed for the log to the total volume size.

¢) then the algorithm passes the list of LUNs (a.k.a. disks
or spindles), the total amount of space needed, and the type
of software RAID specified to a PickL UNs() function. The

PickLUNs() function finds a subset of those LUNs that
tulfills the volume requirements, and then reserves those
L.UNs for the given volume. The PickLLUNs() function thus

finds a set of disks that waill fulfill the volume requirements.

US 7,293,237 Bl

25
FIG. 32—Implementor

FI1G. 32 1s a flowchart diagram 1llustrating operation of the
implementor 216. As shown, 1n step 702 the implementor
216 parses the suggested layout.xml file and obtains a list of
disk groups, volumes and hot spares to be created.

In step 704 the method determines 11 all required disks are
still available. If all required disks are determined to not be
still available in step 704, then in step 706 an error 1s
recorded for the report to be generated. Operation then
proceeds to step 716 where the error report 1s returned. In
this instance, the error report will indicate an error has
occurred, since all required disks are not available to imple-
ment the layout in the suggested layout.xml file.

If all required disks are determined to still be available in
step 704, then 1n step 708 the method resolves any duplicate
names of volumes. In step 710 the method creates disk
groups. In step 712 the method creates volumes and direc-
tories on each volume. In step 714 the method creates any
hot spares. In step 716 the method returns an error report. I
the 1implementor 216 successiully implemented the sug-
gested layout, then the error report will return indicating no
eITOr.

Example Data Structures

Exemplary FreeSpace.xml

Returned by the Discoverer component;
Contains all free space on the system.
<FreeSpaceDescFile>
<!--FreeSpaceDesc file generated by Discoverer-->
... HEADER . ..
<Storagel.ayout>
<LocallyAttachedStorage>
<LUN>
<ID>
<DisplayName>Harddisk’7 </DisplayName:>
<InternallD><![{CDATA[SCSI\DISK&VEN__
IBM&PROD_ DDRS-
34560D&REV__DCI1IBS
</ID>
<TotalSpace>4565030400</TotalSpace>
<FreeSpace>4565030400</FreeSpace>
<IsDynamic>false</IsDynamic>
<[sBCV>false</IsBCV>
<IsFaultTolerant>false</IsFaultTolerant>
<TypeOIRAID>NORAID</TypeOfRAID>
</LUN>

Exemplary Userlnput.xml

Output by a GUI;
Contains all values the user typed in
<?7xml version="1.0"7>
<Userlnputs xmlns:xsi=""http://www.w3.org/2000/10/XMLSchema-
instance” Xxsi:
... HEADER . ..
<SpecialFlags>
<GetExistingExchangelnfo>true</GetExistingExchangelnfo>
<Caller>RuntimeU]I</Caller>
<CreateStorageGroup>false</CreateStorageGroup>
<CreateDatabase>false</CreateDatabase>
<StorageGroupName/>
</SpecialFlags>
<UserPriority>MaxCapacity</UserPriority >
<ClusteringEnabled>false</ClusteringEnabled>
<UserGroup:

<Name>TechSupport</Name>
<NumberOQtUsers>30</NumberOfUsers>

5

10

15

20

25

30

35

40

45

50

55

60

65

26

-continued

Exemplary Userlnput.xml

<MaxMailBoxSize>100</MaxMailBoxSize>
</UserGroup>

<Backup>
<MaxParallelBackups>1</MaxParallelBackups>

<BackupCapacity>1222222</BackupCapacity >
</Backup>

</UserInputs>

Exemplary Exchangelayout.xml

<ExchangelLayout>
<!-- Exchange Layout file generated by EEL -->
... HEADER . ..
<UserPriority>MaxCapacity</UserPriority >
<OffHostBackup>true<OffHostBackup>
<ClusteringEnabled>false</ClusteringEnabled:>
<Key>EX</Key>
<RootMountPoint>ExchangeMountPoints</RootMountPoint>
<bBEXServer Key="EX">
<BEXStorageGroup Key="EX">
<Name>StorageGroupO1</name>
<BEX'TranslLogs Key="EX">
<Name>StorageGroupO1TransLogs</Name>
<S1Ze>1363148800</S1ze>
</EXTransLogs>
<EXDatabase Key="EX"’>
<Name>TechSupport</Name>
<EXEDB>
<Name>TechSupportEDB</Name>
<S1ze>3145728000</S1ze>
</EXEDB>
<BEXSTM:>
<Name>TechSupportSTM</Name:>
<S1Ze>3145728000</S1ze>

Exemplary Priority.xml

Installed by VERITAS Edition;
Gives relative preferences for each type of storage to each type of
Exchange volume.
<PriorityFile xmlns:xsi="http://www.w3.0rg/2000/10/XMLSchema-
instance”
xs1:noNamespaceSch
... HEADER . ..
<Key>EX</Key>
<PrioritySuggestions>
<EXServer Key="EX">
<BEXStorageGroup>
<DiskGroup>
<bBEX'TransLogs Key="EX">
<DedicatedSpindleSetRequired>
<MaxCapacity>true</MaxCapacity >
<Default>true</Default>
<HighPerfAvail>true</HighPerfAvail>
</DedicatedSpindleSetRequired>
<PriorityConfig>
<TypeOIRAID>
<SWType>NORAID</SWType>
<HWType>RAIDO+1</HW'lype
</ TypeOiRAID>
<Priority>
<Default>20</Default>
<NumDisks ActualNumberOfSpindles="4">1
</NumDisks>
<TypeOIFS>NTEFS </ TypeOIFS>
</PriorityConfig>

US 7,293,237 Bl

27

Exemplary SuggestedLayout.xml (storage configuration produced by the
method)

<SuggestedLayoutFile xmlns:xsi="http://www.w3.0rg/2000/10/
XMULSchema-instance”
xsi:noNamespaceSchemal.ocation=".\StoreConfig.xsd”>
<!--Suggested Layout.xml file generated by StorageConfigurator-->
... HEADER . ..
<RootMountPoint>ExchangeMountPoints</RootMountPoint>
<VolumeLayout>
<LocallyAttachedStorage>
<DiskGroup ClusterDiskGroup="{alse”>
<Name>StorageGroup01DiskGroup</Name>
<Volume:>
<Name>StorageGroupO1TransLogs</Name>
<MountPoint>F:\ExchangeMountPoints'StorageGroupO1TransLogs
</MountPoint>
<FSType>NTFS</FSType>
<51Ze>1363148800</S1ze>
<RAID Type>
<SWType>RAID1+0</SWType>
<HWType>NORAID</HW'lype>
</RAIDType>
<ConsistsOf>
<LUs>
<DisplayName>Harddisk’7 </DisplayName>
<InternallD><![CDATA[SCSI\DISK&VEN__
IBM&PROD__DDRS-
34560D&REV_
<L.U>
<DisplayName>Harddisk& </DisplayName>
<InternallD><![CDATA[SCSI\DISK&VEN__
IBM&PROD__DDRS-34560D&REV_
</LUx>
... TOTAL OF 4 OF THESE FOR RAID1+0 (Mirrored
Stripe)
</ConsistsOf>
<FilesOnVolume:>
<File>
<FileName>StorageGroup0O1 TransLogs</FileName>
<0ObjectType>EXTransLogs</ObjectType>
<ParentObject>
<Name>StorageGroup01 </Name>
<Type>EXStorageGroup</IType>
</ParentObject>
<PathName>F:\ExchangeMountPoints\StorageGroupO1TransLogs\

StorageGroup0O1
</Flle>

</FilesOnVolume:>
</Volume>

</LLU>

Clustering and Replication Embodiments

One embodiment of the invention provides configuration
support for clustering (e.g., like Microsoft Cluster Service
and VERITAS Cluster Service) and replication (VERITAS
Volume Replicator) as well. In this embodiment, the “stor-
age configurator” allows the user to select which servers on
the network the user desires to replicate. Then the “storage
configurator” gathers available disk information from all of
the servers. The following example assumes replication of
data from 3 sites (or 3 servers) around the world, these being
NY, Seattle, and Tokyo). The user may then select the
servers to configure for replication 1n one page of the wizard,
then select the desired storage to use for each server on the
next three pages, and then proceed through the rest of the
wizard. At the end of the wizard, the storage configurator
would produce three layouts, one for each server. The details
of the volume layouts on each server may be different on

cach machine—depending on the storage available, but the
volume names, sizes, disk group’s names, and application’s
data objects names and volumes will all be the same. The
user could then choose to implement the layouts on each

10

15

20

25

30

35

40

45

50

55

60

65

28

server. As a result, this embodiment operates to automati-
cally configure clustering and/or replication.

Various embodiments may further include receiving,
sending or storing instructions and/or data that implement a
storage configurator 1 accordance with the foregoing
description upon a carrier medium. Generally speaking, a
carrier medium may include a memory medium as defined
above, as well as transmission media or signals such as
clectrical, electromagnetic, or digital signals, conveyed via
a communication medium such as network and/or a wireless
link.

Various modifications and changes may be made to the
invention as would be obvious to a person skilled 1n the art
having the benefit of this disclosure. It 1s mtended that the
following claims be interpreted to embrace all such modi-
fications and changes and, accordingly, the specifications
and drawings are to be regarded 1n an 1llustrative rather than
a restrictive sense.

What 1s claimed 1s:

1. A system for determining a storage configuration for an
application, the system comprising:

a computer system including a processor and memory;

and

one or more storage devices;

wherein the processor 1s operable to execute program

instructions stored n the memory to:

display a graphical user interface for guiding a user

through creation of the storage configuration;
recerve user mput to the graphical user interface, wherein
the user input specifies one or more of: properties of the
storage configuration or properties of the application,
wherein the user input received to the graphical user
interface specifies a mapping of one or more data
objects associated with the application to one or more
storage resources of the one or more storage devices;

determine whether the specified mapping of data objects
to storage resources 1s valid;

determine the storage configuration based on the user

input recerved to the graphical user interface, wherein
the storage configuration 1s determined using the speci-
fied mapping of data objects to storage resources 1f the
mapping 1s determined to be valid;

wherein the storage configuration specifies a storage

layout on the one or more storage devices for a plurality
of data objects associated with the application.

2. The system of claim 1, wherein the processor 1s further
operable to execute program instructions stored in the
memory to:

implement the storage configuration, wherein said imple-

menting the storage configuration comprises storing the
plurality of data objects associated with the application
on the one or more storage devices according to the
storage layout specified by the storage configuration.

3. The system of claim 2, wherein the processor 1s further
operable to execute program instructions stored in the
memory to:

recerve user input to the graphical user interface request-

ing implementation of the storage configuration;
wherein said implementing the storage configuration 1s

performed in response to the user mput requesting

implementation of the storage configuration.

4. The system of claim 1, wherein the processor 1s further
operable to execute program instructions stored in the
memory 1o:

store the storage configuration 1 one of a file or a
database.

US 7,293,237 Bl

29

5. The system of claim 4;
wherein said storing the storage configuration 1s per-
formed at a first time;

wherein the processor 1s further operable to execute

30

13. The method of claim 12, further comprising:

automatically implementing the storage configuration,
wherein said implementing the storage configuration
comprises storing the plurality of data objects associ-

program instructions stored in the memory to: 5 ated with the application according to the storage
retrieve the storage configuration at a second time sub- layout specified by the storage configuration.
sequent to the first time; 14. The method of claim 13, further comprising;
re-display the graphical user interface; and recerving user iput to the graphical user interface
receive user input to the graphical user interface to modity reql}estll}g 1mplem§ntatlgn of the St‘?_’f age configuration;
properties of the storage configuration. 10 wherein said automatically implementing the storage con-
6. The system of claim 1 figuration 1s performed 1n response to the user input
wherein the processor is further operable to execute requesting implementation of the storage configuration.
program instructions stored in the memory to: 15. The Iﬁldh‘jd of Clamili 12, turther Comprlfsmgi:ﬂ
display information indicating that the specified mapping, Stoglangbt ¢ storage conliguration in one ol a file or a
ol data objects to storage resources 1s not valid it the 13 tabase. _
mapping is not valid 16. The method of claim 12,
7. The system of claim 1 wherein the method further comprises:
wherein said determining whether the specified mapping displaying information indicating that the speciiled map-
of data objects to storage resources is valid comprises ping of data objects to storage resources 1s not valid 1t
. : , 20 ' ' I
determining whether storage resources specified by the the mapping 1s not Tahd'
mapping have sufficient storage capacity to hold the 17. Th_e m?thOd of cila}m 12, | |
specified data objects. wherein said determining whether the specified mapping
8. The system of claim 1 of data objects to storage resources 1s valid comprises
wherein said determining whether the specified mapping determining whether storage resources specified by the
| . . . ”s ,
of data objects to storage resources 1s valid comprises mapPé“% illa:e S]’jqf'lilem storage capacity to hold the
validating the mapping against best practices of the SpELILICE ddld OBJELts.
application 18. The method of claim 12,
9. The system of claim 1 wherein said determining whether the specified mapping
wherein the one or more storage resources of the one or 4, of (ilata. objects to stoirage TESOUICES 15 Vahd_ COIPIISES
more storage devices comprise one or more volumes; Vall(:}atll}g the mapping against best practices of the
wherein the user input received to the graphical user 1 ga%pélcatliﬁ' 4 of claim 12
interface specifies a mapping ol one or more data h - nllle Oe O LAl 14, _
objects associated with the application to one or more wherein the one or more storage resources comprise one
volumes s or more volumes;
10. The system of claim 1 wherein the user mput received to the graphical user
O interface specifies a mapping of one or more data
wherein the graphical user interface comprises a series of . pe ePpllls b
. . objects associated with the application to one or more
panels to guide the user through creation of the storage volumes
configuration 1n a \Tzlzard-hke manner. 20. The method of claim 12,

11. The system of claim 1, 40 herein th hical e . e of
Horein the nluralite of data obiect . od with th wherein the graphical user interface comprises a series o
wherein the plurality ol data objects associated wi © panels to guide the user through creation of the storage

application include one or more of: conflguration 1n a wizard-like manner.
one or more files; and/or 21. The method of claim 12,
one or more databases. .5 wherein the plurality of data objects associated with the

12. A method for determining a storage configuration for

an application, the method comprising:

displaying a graphical user interface for guiding a user
through creation of the storage configuration;

application include one or more of:

one or more files; and/or
one or more databases.

22. A computer-accessible memory medium for determin-

receliving user input to the graphical user interface, s,
wherein the user input specifies one or more of: prop-
erties of the storage configuration or properties of the

ing a storage configuration for an application, wherein the
memory medium comprises program instructions executable
by a processor to:

application, wherein the user mput received to the
graphical user interface specifies a mapping of one or
more data objects associated with the application to one

display a graphical user interface for guiding a user
through creation of the storage configuration;

55 receive user mput to the graphical user interface, wherein
or more storage resources of the one or more storage the user input specifies one or more of: properties of the
devices: storage configuration or properties of the application,

determining whether the specified mapping of data wherein the user input received to the graphical user
objects to storage resources 1s valid; interface specifies a mapping of one or more data
automatically determining the storage configuration based go objects associated with the application to one or more
on the user iput received to the graphical user inter- storage resources of the one or more storage devices;
face, wherein said automatically determining the stor- determine whether the specified mapping of data objects
age configuration uses the specified mapping of data to storage resources 1s valid;
objects to storage resources if the mapping 1s valid; determine the storage configuration based on the user
wherein the storage configuration specifies a storage 65 input received to the graphical user interface using the

layout for a plurality of data objects associated with the
application.

specified mapping of data objects to storage resources
if the mapping 1s valid;

US 7,293,237 Bl

31

wherein the storage configuration specifies a storage
layout for a plurality of data objects associated with the
application.
23. The computer-accessible memory medium of claim
22, further comprising program instructions executable to:
implement the storage configuration, wherein said imple-
menting the storage configuration comprises storing the
plurality of data objects associated with the application
according to the storage layout specified by the storage
coniiguration.
24. The computer-accessible memory medium of claim
22, further comprising program instructions executable to:
store the storage configuration in one of a file or a
database.
25. The computer-accessible memory medium of claim
22,
wherein the computer-accessible memory medium further
comprises program instructions executable to:
display mnformation indicating that the specified mapping
of data objects to storage resources 1s not valid 11 the
mapping 1s not valid.
26. The computer-accessible memory medium of claim
22,
wherein the one or more storage resources comprise one
or more volumes;
wherein the user input received to the graphical user
interface specifies a mapping of one or more data
objects associated with the application to one or more
volumes.

10

15

20

25

32

27. The computer-accessible memory medium of claim
22,

wherein the graphical user interface comprises a series of
panels to guide the user through creation of the storage
confliguration 1n a wizard-like manner.

28. The computer-accessible memory medium of claim
22,

wherein the plurality of data objects associated with the
application include one or more of:

one or more files; and/or
one or more databases.

29. The computer-accessible memory medium of claim
22,

wherein said determining whether the specified mapping
of data objects to storage resources 1s valid comprises
determining whether storage resources specified by the
mapping have suflicient storage capacity to hold the
specified data objects.

30. The computer-accessible memory medium of claim
22,

wherein said determining whether the specified mapping
of data objects to storage resources 1s valid comprises
validating the mapping against best practices of the
application.

	Front Page
	Drawings
	Specification
	Claims

