12 United States Patent

US007293048B2

(10) Patent No.: US 7,293,048 B2

Cochran et al. 45) Date of Patent: Nov. 6, 2007
(54) SYSTEM FOR PRESERVING LOGICAL 6,735,636 B1* 5/2004 Mokryn et al.co........ 710/5
OBJECT INTEGRITY WITHIN A REMOTE 2004/0230859 Al* 11/2004 Cochran et al. 714/2

(75)

(73)

(%)

(21)
(22)

(65)

(1)

(52)
(58)

(56)

MIRROR CACHE

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

Robert Cochran, Roseville, CA (US);
David Robinson, Loomis, CA (US);
Joseph Algieri, Santa Clara, CA (US)

Hewlett-Packard Development
Company, L.P., Houston, TX (US)

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 497 days.

10/697,820
Oct. 29, 2003

Prior Publication Data

US 2005/0102553 Al May 12, 2005

Int. CIL.

GO6Ll 17/30 (2006.01)

GO6l 7/00 (2006.01)

US.CL ..., 707/204; 707/101; 707/10
Field of Classification Search 707/204,

707/10, 101

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

0,052,797 A

0,502,205 Bl
0,529,944 Bl

6,036,908 B]

208

4/2000 Ofek et al.
12/2002 Yanai et al.
3/2003 LeCrone
% 10/2003 Wmokur et al. 710/29
HOST APPLICATION 8S80KB WRITE

ONE 80KB WRITE

210 SK/1K FILE SYSTEM
| T

206

PRIMARY
STORAGE

Illll! B
‘ -

ey

212 202

OTHER PUBLICATTONS

Baird: Oracle 81 Data Guard Concepts, Administration, and Instal-
lation Guide, Release 3.0, Oct. 2001, Oracle® (previously pro-
vided).*

Bobrowski et al.: Oracle7™ Server Concepts, Release 7.3, Feb.
1996, Oracle® (previously provided).™

Baird: Oracle 81 Data Guard Concepts, Administration, and Instal-
lation Guide, Release 3.0, Oct. 2001, Oracle®.*

Bobrowski et al.: Oracle7™ Server Concepts, Release 7.3, Feb.
1996, Oracle® *

* cited by examiner

Primary Examiner—Kuen 5. Lu
(37) ABSTRACT

A database system 1s capable of executing a database
application that transfers a logical object 1n multiple frag-
ments. The database system comprises a main storage site,
a remote storage site, a main protocol executable on the
main storage site, and a remote protocol executable on the
remote storage site. The remote storage site 1s capable of
linking to the main storage site and mirroring information
stored 1n the main storage site. The remote storage site
includes a storage and a cache sidefile divided into a
plurality of array sidefile recordsets. The main protocol 1s
capable of including information indicative of logical object
fragment commencement and completion 1n the multiple
fragment database application transier. The remote protocol
1s capable of controlling the cache sidefile to cache the
multiple fragments as received and to enable destaging of
the logical object to the storage on receipt of all fragments.

30 Claims, 6 Drawing Sheets

L 200
214
MIRROR LINK
SEQUENTIAL
WRITE 214 CTRL 218
9,8,...,1
- e
I CACHE -
'l SIDEFILE
216
220 204

US 7,293,048 B2

Sheet 1 of 6

Nov. 6, 2007

U.S. Patent

011

[41114

001 901

JOVHO.LS
AdVWIHd

mn . £ m,_n . nNn ﬁ
dTIHIAIS
JHOVO

PR

v
— SALIMM
L 86 38 NL

JLI-M
TVLLNANOTS -----mj o)

NNIT HOYHIW WHLSAS HT1Id A1/
801 JLM 908 ANO

J.LIHM Y08 NOILVOT'lddV LSOH 0l

US 7,293,048 B2

= K | 95VYOIS
M_. o | | Rvng
- ROV .
7
i — A

oo ul o ITNN
s 81¢ R E_N m_.rwsz —— cec 907
< VLLNANOIS ------J- .
z NNIT HOMYIN WA.LSAS 37114 M1 /18

¥1¢ LM 908 ANO

80¢

007 A LIdM 408 NOILLYOI'lddVY 1SOH

U.S. Patent

¢ OId

It 1SOH
NV TVNYILNI

US 7,293,048 B2

1437

AONFLSISNOD
A

&
-~
&
o
g .'
7).
JWITTOA
= ITIDAVL | [gz¢
ﬁw LADYY L oY a4S
W -IIL
7 SNOILDANNQOD AdQOD

8(¢ 743
vle 20€ LLOWTY TUdL

Olt

LIS HLOWHY LV ddAYIS

ddAOTIVd LSOH

U.S. Patent

et J1SOH

1333 80¢ v0t

NVT TVNYT.LNI

r

LLINI
o N I\
z1¢ 8lt 0ct

ALIS AMVIWIAd LY YHAYHS /

00t

U.S. Patent

Nov. 6, 2007 Sheet 4 of 6

INITIATE
TRANSACTION
400

SEND MULTIPLE
PARAMETERS
40?2

CONVERT VIRTUAL
TO PHYSICAL
ADDRESSES

404

RESOLVE
ADDRESSES
TO MIRROR
406

SEND TPPP
CONTROL TO
DESTAGE
403

US 7,293,048 B2

d

+0S
[|Y
AJ|
> TS

Vv

US 7,293,048 B2

Sheet 5 of 6

P05

B bis
AI|\1I
> Zis

Nov. 6, 2007

U.S. Patent

§ OId

c0S

§ DI

¢09S

XA

/

005

91§

/

015

005

005

LSOH

LSOH

US 7,293,048 B2

Sheet 6 of 6

Nov. 6, 2007

U.S. Patent

809

VLVA JOVIL OIS

dTI44AIS "TOA-S

9 Old

909

odV

4
Vv
Z
A

X |
VLVA dOVUL OFS

A TI49dIS 'TOAd

US 7,293,048 B2

1

SYSTEM FOR PRESERVING LOGICAL
OBJECT INTEGRITY WITHIN A REMOTE
MIRROR CACHE

BACKGROUND OF THE INVENTION

An application database may use data in groups or
chunks, in some conventions called a page, 1n a particular
mimmum quantity that represents a viable logical object
within the database. Tasks of a database include manage-
ment and storage of large quantities of data, accessing and
writing of data in appropriately fast times, and maintaining,
data integrity. A database generally includes primary and
secondary storage sites for respectively storing main or
original data, and replicated data on a remote mirror site.
The replicated and stored mirror data can be accessed for
backup and disaster recovery to enable fast and accurate
system recovery. Once redundant operations are established
by way of block-level disk array replication, the database
has the benefit of duplicate data copies. During normal
operations, primary volumes remain online to all hosts and
process both read and write input/output (I/0) operations. In
the event of a disaster or system failure, a secondary data
copy can be quickly mvoked to enable recovery with high
data integrity.

When the system recovers data from the remote disk array
mirror site, data base integrity 1s only ensured when data
pages are lully present. Otherwise, the database cannot
successiully start. Generally, a database starts by generating
a call to open the database, scanning the storage media,
allocating physical memory and executable processes to
handle I/O operations, and opening control files that contain
information coordinating data and log files and indicating
file status. The startup process also includes opening the files
identified by the control files. If some {files are incomplete,
linkages between files are missing and the database 1s unable
to start. Incomplete transier of a replicated page to the mirror
site can result 1n a partial transfer of a page, termed a “torn
page.” Some databases may fail to handle the torn page
phenomenon and attempt to use the mmcomplete page at
startup, possibly resulting 1n an abortive startup or data
corruption.

Referring to FIG. 1, a schematic block diagram illustrates
a torn application page phenomenon and handling by a
server, such as Microsoft™ SQL Server, that may result 1n
taulty startup or data corruption. In an example of a common
transaction, a host application 102 executing 1n a primary
site 100 performs a large write operation, for example an 80
KByte write, using an 8 K/1 K file system 104. For a storage
that 1s used 1n a virtual mode, the 8 K/1 K file system 104
performs any write operation larger than 8 KBytes by
dividing the data into individual 8 KByte blocks, transparent
to the host application 102, and transierring the blocks
separately. If fewer than 8 Kbytes remain after the division,
the 8 K/1 K file system 104 sends the remaining data in 1
KByte blocks. Alternatively, the storage can be used 1n a
physical or raw mode. In virtual mode operations, the 8 K/1
K file system 104 handles a large application write which
represents a single application page by transparently break-
ing the page into multiple fragments. In a relatively unso-
phisticated server, the recerving storage array has no way to
determine or 1dentily whether all pages have been received
in a transier, making the system susceptible to the problem
of a torn page at a receiving array for any write that 1s larger
than the file system block size.

In the illustrative example, the 8 K/1 K file system 104
divides the 80 KByte write into ten individual 8 KByte write

10

15

20

25

30

35

40

45

50

55

60

65

2

operations and transfers the ten 8 KByte blocks into a
Primary Storage 106. A mirroring link 108 transfers the
individual blocks to a remote storage array or storage mirror
110 for replicated storage. A sophisticated application, for
example a Veritas™ file system or Oracle™ database can
use a combination of an intent log, the data write, and a
commit signal to resolve the torn page problem. For
example, a file system can use the intent log, a circular
activity log containing records of intention of the system to
update a structure, to ensure integrity. The 1ntent log records
pending changes to file system structure and ensures log
records are written 1n advance of changes to the system. In
the case of system failure, pending changes 1n the file system
are either nullified or completed. Normally, the intent file
records only changes to the file system structure and not file
data changes. A less sophisticated application such as the
Microsoit™ SQL Server simply sends the application data
page and assumes or hopes that the page 1s intact at the
remote array 110 at the time of a failover.

As shown 1 FIG. 1, an 80 KByte application page disk
write may be transparently divided into ten 8 KByte frag-
ments by the 8 K/1 K file system 104 written to the primary
storage 106 and mirrored to arrays in the remote storage 110.
If a disaster occurs at the primary site 100 before the remote
array 110 receives and destages to disk 112 all ten of the
fragments, then an error may result on application startup of
the remote array 110. For example, even i1f nine of the ten
fragment writes that make up the application page had been
correctly received and destaged to disk 112, the remote array
110 would contain an mcomplete or torn application page.
An unsophisticated application may designate the torn page
as a corrupted and unusable database and refuse startup,
possibly nullifying an implemented disaster recovery
response or plan.

In a particular example, a Microsoit SQL Server™ used
with various Windows™ operating systems use data pages
with 1nconsistent sizes. As a result, a corrupted database 1s
a possible consequence of a power failure, disk driver or
physical disk difficulties, or other disaster. Corruption can
occur because each time the operating system writes an 8
KByte SQL Server data page, the page 1s broken into 512
byte pages. After the first 512 bytes of data are written, SQL
Server assumes the entire 8 Kbytes have written to disk
successtully. If power or other failure occurs before all 512
byte pages are written to disk, the SQL Server cannot detect
the failure. The condition i1s the described “torn page.”
Corruption of a single data page, due to lack of information
narrowing the extent of corruption, renders the entire data-
base corrupt. SQL Server attempts to limit resulting damage
through usage of “torn page detection” that can be enabled
to 1dentily torn pages. Torn page detection does not prevent
corruption but only marks the database as corrupt, so that the
database can be restored with the latest backup, unfortu-
nately resulting in downtime and productivity loss for lost
data generated since the last backup.

SUMMARY

What 1s desired 1s a method for preserving logical object
integrity 1n a remote mirror cache.

According to some embodiments, a database system 1s
capable of executing a database application that transfers a
logical object in multiple fragments. The database system
comprises a main storage site, a remote storage site, a main
protocol executable on the main storage site, and a remote
protocol executable on the remote storage site. The remote
storage site 1s capable of linking to the main storage site and

US 7,293,048 B2

3

mirroring information stored in the main storage site. The
remote storage site includes a storage and a cache sidefile
divided into a plurality of array sidefile recordsets. The main
protocol 1s capable of including information indicative of
logical object fragment commencement and completion 1n
the multiple fragment database application transier. The
remote protocol 1s capable of controlling the cache sidefile
to cache the multiple fragments as received and to enable
destaging of the logical object to the storage only on receipt
of all fragments.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention relating to both structure
and method of operation, may best be understood by refer-
ring to the following description and accompanying draw-
ngs.

FIG. 1 1s a schematic block diagram that illustrates an
example of the torn application page phenomenon and
handling by a server, such as Microsoft™ SQL Server, that
may result 1n faulty startup or data corruption.

FIG. 2 1s a schematic pictorial diagram showing an
embodiment of a system and method for handling torn page
phenomena.

FIG. 3 1s a schematic block diagram depicting an example
ol a database system based on a Fibre Channel connection
that can be used to implement the illustrative remote mirror
torn-page de-commit technique.

FI1G. 4 1s a flow chart illustrating an example of a sample
dialog for communicating control signals in a manner that
avoids remote storage of a torn page.

FIGS. 5A and 5B are schematic block diagrams respec-
tively showing synchronous and asynchronous data replica-
tion techmiques that are compatible with the illustrative
method for preserving logical object mtegrity 1n a remote
mirror cache.

FIG. 6 1s a schematic block diagram that illustrates
sidefile usage 1n asynchronous data replication.

DETAILED DESCRIPTION

Referring to FIG. 2, a schematic pictorial diagram illus-
trates an embodiment of a system and method for handling
torn page phenomena. A database system 200 includes a
plurality of storage sites, shown in the example as a main
storage site 202 and a remote storage site 204. The main
storage site 202 includes a controller 206 that 1s capable of
executing programs, processes, methods, and other types of
executable systems, often as a computable readable program
code. The database system 200 can execute a host applica-
tion, such as a database application 208 that transfers a
logical object, for example a page, 1n multiple fragments. A
page can be any coherent piece of data, any type of logical
record or internal grouping of data. A page may be a
transitional entity such as any atomic grouping of data.

The database system 200 also includes a file system 210,
illustratively shown again as an 8 K/1 K file system that
receives an entire logical object from the database applica-
tion 208 and divides or breaks the logical object to multiple
fragments for transfer to a primary storage 212. The data-
base system 200 also includes a mirroring link 214 for
mirroring the individual fragments to the remote storage site
204 from the main storage site 202.

The remote storage site 204 generally also includes a
controller 218, a cache sidefile 218, and a secondary storage
220, such as a disk storage. The controller 218 manages

5

10

15

20

25

30

35

40

45

50

55

60

65

4

handling of the data fragments 1n the cache sidefile 216, and
writing or destaging of the data fragments to the secondary
or mirrored storage 220.

An 1llustrative system and method for preserving logical
object itegrity in a remote mirror cache can operate by
defining and 1mplementing an application page within the
mirrored array cache sidefile 218. The cache sidefile 216 has
a plurality of receiving array sidefile recordsets, a data
structure that recerves data from mirrored write input/output
operations. The database system 200 includes a main pro-
tocol, such as a host control protocol, generally executable
at the main storage site 202 that enables the host database
application 208 to alert the cache sidefile array to the
beginning and end of an application data page or other
logical object. The main protocol can include information
indicative of logical object fragment commencement and
completion 1n the multiple fragment database application
transier 1n various forms such as explicitly sending start and
end signals or by carrying information for implicitly deter-
mining the bounds. In one example, a “start-page” control
message 222 can be sent from the file system 210 to the
primary storage 212 to signal the beginning of a logical
object or page transmission. An “end-page” control message
224, for example in the manner of a database commit, can
delineate the end of transmission of the page or logical
object.

The database system 200 also includes a remote protocol
executable on the remote storage site 204 that uses the
logical object beginning and end information to control the
receiving mirrored array in the cache sidefile 216. The
remote protocol controls the cache sidefile 216 to cache the
multiple fragments when received and to destage or write
the fragments to mirror storage 220 when the entire page has
been received and 1s available 1n the cache sidefile 216. The
remote protocol prevents destaging until all fragments are
ready and contained within the cache sidefile 216 so that a
storage does not contain mcomplete or torn pages.

In various embodiments, the database system 200 can
write the fragments to storage including the primary storage
212 and secondary or mirror storage 220 1n any appropriate
manner such as in-band or out-of-band, and using any
standard, for example Small Computer Systems Interface
(SCSI) writes appended with control instructions, or other
techniques. In various embodiments, the communications
can be custom or vendor unique.

Referring to FIG. 3, a schematic block diagram shows an
example of a database system 300 based on a Fibre Channel
connection 302. Database system operations have a continu-
ous access capability to store information 1n disk arrays 304
and 306 at respective primary 308 and secondary 310 sites
via physical communication paths 302. A server 312 at the
primary or main site 308 includes functional operating
program code that controls access and transier in the data-
base system 300. A server 314 at the secondary, remote, or
mirror site 310 also executes database control operations. In
an 1illustrative example, continuous access program code
copies original online data at the primary site 308 to offside
volumes 306 at the secondary or remote site 310 via dedi-
cated Fibre Channel connections 302. The system 300
includes a host faillover communication link 316 to perform
disaster recover operations.

In addition to the disk arrays 304, the primary site 308
includes a main control unit 318, and one or more target
ports 320 and mmitiator ports 322. Similarly, the secondary
site 310 has a remote control unit 324, and one or more
target ports 326 and target ports 328. The disk arrays 304 and
306 are arranged in volume pairs with primary volumes

US 7,293,048 B2

S

(P-VOLs) 330 and secondary volumes (S-VOLs) 332 that
can be arranged 1n asynchronous consistency groups 334.

Continuous access operations are executed in the main
control umt 318 and remote control unit 324 and involve
primary or main disk arrays 304 and secondary or remote
disk arrays 306. The main control unit 318 contains primary
volumes 330 that hold original data and are under pair
management control by operation of host systems 312. The
remote control unit 324 contains secondary volumes 332
that are synchronous or asynchronous copies of the primary
volumes 330. A database control system supports control
unit images and logical volumes of the disk arrays 304 and
306, as well as various physical drive options and various

storage configurations, for example redundant arrays of
individual disk (RAID1 and RAIDS) configurations.

In an 1illustrative embodiment, the main control unit 318
1s a controller, processor, central processing unit (CPU), or
other control unit, in the primary disk array 304 which
controls primary volumes 330 of continuous access volume
pairs. Typically, a host control program that performs con-
tinuous access functionality 1s attached to the main control
unit 318 of a primary-secondary storage pair. The main
control unit 318 communicates with the remote control unit
324 via dedicated Fibre Channel 302 remote copy connec-
tions. The main control unit 318 generally controls host
input/output operations to the primary volumes 330 as well
as mitial copy and remote copy operations between the
secondary volumes 332. The main control unit 318 can also
manage pair status and configuration information. The main
control unit 318 can be attached via local area network to a
computer or workstation 336 to assist 1n local and remote
volume pair management control operations.

The remote control unit 324 1s a control unit 1n the remote
disk array 306 that controls secondary volumes 332 of the
volume pairs. The remote control unit 324 assists the main
control unit 318 1n managing volume pair status and con-
figuration. The remote control unit 324 can execute remote
copy operations 1ssued by the main control unit 318. In the
illustrative method for preserving logical object integrity 1n
a remote mirror cache, the remote control unit 324 can write
control mformation to a sidefile and cache fragments of a
logical object prior to receipt of all fragments of the page.
Upon receipt of the entire page, the main control unit 318
can destage the entire logical object or page to the remote
disk arrays 306. The remote control unit 324 can be attached
via local area network to a computer or workstation to
tacilitate local and remote volume pair management control.
The remote control unit 324 can also be attached to a host
system 314 to enable sense information to be reported in the
event ol a problem or disaster condition relating to a
secondary volume or remote disk array and to assist disaster
recovery.

The main control unit 318 and remote control unit 324 can
be defined individually and separately for different volume
pairs. For example, a particular control unit can function
simultaneously as an main control umt for one or more
primary volumes and as a remote control unit for one or
more secondary volumes, so long as remote copy connec-
tions and Fibre Channel ports are appropriately configured.

The database system 300 can perform remote copy opera-
tions for logical volume pairs created by a user. A volume
pair includes one primary volume 330 and one secondary
volume 332, which can be located 1n the same disk array for
a synchronous data replication system or in different disk
arrays for either synchronous or asynchronous systems. The

10

15

20

25

30

35

40

45

50

55

60

65

6

primary volumes 330 contain original data. The secondary
volumes 332 are mirrored volumes containing replicated or
duplicated data.

The database system 300 can download a computable
readable program code from an article of manufacture such
as a controller usable medium 1ncluding magnetic media,
signals received over a communication link, and others that
perform control operations. The computable readable pro-
gram code can implement functionality such as a database
application for mirroring a logical object in multiple frag-
ments from a main storage site to a remote storage site. In
a particular embodiment, the code includes a process
capable of causing a controller to interface with a database
application that links and mirrors data between the primary
304 and secondary 306 disk arrays. The code can also
include a process that creates and deploys control informa-
tion 1ndicative of the beginning and end of a logical object
to cache multiple fragments of the logical object as recerved
and enable destaging of the fragments when all are received,
otherwise destaging none of the fragments.

In another embodiment, the code can include a process for
receiving the logical object 1n multiple fragment transfers in
combination with control information indicative of the
beginning and end of the enftire logical object. The code
further can include a process for controlling storage of the
multiple fragments in a cache sidefile divided into a plurality
of array sidefile recordsets, and a process that caches the
multiple fragments, as received, and destages the logical
object when all fragments are cached.

Executable functions such as the main protocol and the
remote protocol can have various implementations. In some
embodiments, the functions can be implemented as an
Application Programming Interface (API) as defined
according to Microsoft Windows™ standards. In a speciiic
embodiment, the functions may include a Host API, for
example a program separate from the operating system at the
disk driver level that sends special write or control com-
mands. Typically, the application calls an intermediate
address translation program to translate virtual addressing to
physical logical unit (LUN) addressing. In alternative
embodiments, an application can use the storage or disk 1n
raw or physical mode in a system that does not include
Logical Volume Manager and File System (LVM/FS) virtual
to physical address translation. A host application, for
example Microsolt SQL Server™, generally calls a host
resident address translation and torn page protection pro-
gram (TPPP) and relays control information.

In one embodiment, the host application sends informa-
tion that i1dentifies a target storage device, and the starting
address and length of an application page that 1s to be
written. The host application requests translation of the
logical address to a constituent list of physical addresses, for
example 1n a disk array LUN. The host application also can
instruct the mdividual physical devices, such as physical
disks or disk array LUNs) to operate on the multiple
associated physical writes as a single page entity such that
cither all of the entity 1s destaged to the disk at a remote site,
or none of the page 1s destaged.

The torn page protection program resolves the applica-
tion’s virtual address, 1 some examples obscured by
abstractions of the Logical Volume Manager and File Sys-
tem (LVM/FS), into a pick list of actual physical disk writes
associated with the page. The information resolved by the
torn page protection program 1s sent to the sending array
LUN 1n a control message. The LVM physical volume to

US 7,293,048 B2

7

logical volume mapping 1s configured so that the complete
content of the application database page does reside within
a single remote disk volume.

In the illustrative example, beginning and ending brack-
cting control messages are used to identily start and end
fragments. Other embodiments may designate the bounds 1n
other manners. In one example, the start fragment 1s implied
by sending the first fragment and the first fragment has an
embedded code indicative of the total number of units, such
as the total number of bytes or fragments. The embedded
code also includes the target LUN device to receive the
logical object within a specified address range. Implicit 1n
the code 1s a command to automatically destage the entire
logical object or page once the total number of units 1s
received. In this manner, the code does not require an
explicit end-page message or command.

Referring to FIG. 4 in combination with FIG. 3, a flow
chart 1llustrates an example of a sample dialog for commu-
nicating control signals 1n a manner that avoids remote
storage ol a torn page. A host imtiates a transaction 400 by
sending multiple parameters 402 to a torn page protection
program. In a specific example, the host sends a message
indicating intent to start a 32 KByte write to a virtualized
storage address X. The message commands that the torn
page protection program signals appropriate physical LUNs
with a begin-page message. The torn page protection pro-
gram uses available addressing resolution technology to
convert the virtualized write address to physical addresses
404. The torn page protection program accordingly can
receive an application request to write the logical object of
a specified length to a specified virtualized storage address.
In an example, the resolution program determines that the
logical address resolves 406 to specific addresses storing 32
KBytes to each of a physical disk array LUN Y on a main
storage site and a mirrored physical disk array LUN Z on a
mirrored or remote storage site. The address resolution
process 406 can convert the virtualized write address and
resolve the transfer length to designate at least one physical
address 1n at least one physical storage device for transier-
ring the logical object 1n multiple fragments.

The torn page protection program sends a control message
to all individual arrays containing disk array LUN Y and
disk array LUN Z 408. Control messages from server 312 to
LUN Y may be via direct connection to main control unit
318 and control messages to LUN Z may pass to remote
control unit 324 by way of main control unit 318 and
communication path 302. The control message expresses
that the command 1s the start of a logical object page that 1s
to be held at a remote mirror cache and either destaged all
at once or not at all. The control message further indicates
that a subsequent end-page control message 1s to be sent to
delineate the end of the logical object to active destaging of
the logical object. In this manner, the mirror cache 1s
destaged to physical storage entirely, or alternatively, no
portion of the logical object fragments 1s destaged.

The 1illustrative method for preserving logical object
integrity 1n a remote mirror cache can be used 1n a system
that replicates data 1n any appropriate manner. For example,
the method can be used 1n a system using synchronous or
asynchronous data replication between disk arrays. Simi-
larly, the method can be used for a system with any type of
linkage between arrays, for example Fibre Channel (FC),
Small Computer Systems Interface (SCSI), Internet SCSI
(1SCSI), Enterprise System Connection Architecture (ES-
CON), and other linkage standards.

Referring to FIG. 5A, a schematic block diagram illus-
trates a synchronous data replication method. Any mnput/

10

15

20

25

30

35

40

45

50

55

60

65

8

output commands 510 1ssued to a primary storage array 502
from a host 500 are copied 512 to a secondary storage array
504. Once data 1s written 1n memory on the secondary array
504, the mput/output 1s acknowledged 514 to the primary
array 502 and then acknowledged 516 to the host 500. In a
particular embodiment, a main control unit performs a write
operation on a primary volume, starts the update copy
operation on the secondary volume, and reports final ending
status to a host only after results of the update copy
operation are known. If either the primary volume write or
the secondary volume update copy operation fails, the main
control unit reports a unit check, and the host system and
application program regard the write operation to the pri-
mary volume as failed. The method for preserving logical
object integrity in a remote mirror cache prevents the
secondary volume from containing inconsistent or incorrect
data.

The illustrative example depicts a two-site data replica-
tion and 1s similarly extended to additional replication sites.
In a two-site data replication method, the host application 1s
responsible for data mtegrity. Because an mput/output com-
mand 1s only acknowledged to the application 516 when
written to both arrays 502 and 504, the application only
issues the next input/output command once the first com-
mand 1s complete so that data 1s written to the secondary
array 504 in order and with consistency. Synchronous rep-
lication 1s relatively unsuited to multiple site mirroring since
cach additional new site adds to the response time of the
application.

Referring to FIG. 5B, a schematic block diagram depicts
an asynchronous data replication method with record order-
ing. An mput/output command 1ssued 520 by the host 500 to
the primary storage array 502 1s immediately acknowledged
522 to the host 500 as soon as the command reaches the
primary storage array 502 cache. A sequence number 1s
added to the mput/output command and sent 524 to the
secondary array 504. Since the path to the secondary array
504 can traverse any of multiple paths or routes, a possibility
exists that the mput/output commands can arrive out of
order. The secondary array 504 1s responsible for reordering
the incoming commands according to sequence number and
applying data records 1n the correct sequence. Management
by the secondary array 504 ensures an in-order, consistent
database, although the most current transactions can be lost
in the event of a failure. Asynchronous data replication 1s
better suited for long-distance replication since latency
impact on the application host 1s reduced or eliminated.

In a particular example, the main control unit completes
primary volume operations independently of the associated
update copy operations at the secondary volume. The remote
control unit manages the secondary volume updates accord-
ing to the recordset information and maintains sequence
ordered data consistency for the secondary volumes. If the
primary volume write operation fails, the main control unit
reports a unit check and does not create an asynchronous
recordset for the operation. If the update copy operation
fails, the remote control unit can optionally suspend either
the affected pair or all pairs in a consistency group, depend-
ing on the type of failure. At resumption of the suspended
pair, the main control unit and remote control unit can
negotiate resynchronization of the pairs. The method for
preserving logical object integrity in a remote mirror cache
prevents an operation from leaving incorrect information on
a secondary volume.

Referring to FIG. 6, a schematic block diagram 1llustrates
sidefile usage in asynchronous data replication. Asynchro-
nous replication uses sequence order tracking of update

US 7,293,048 B2

9

occurrence to ensure consistency. Tracking takes place 1n a
primary volume sidefile 606 and a secondary volume sidefile
608. The individual updates are ordered with a sequence
number and transmitted to the remote array 604. When the
remote array 604 has received the next sequence number in
the set, the remote array 604 acknowledges receipt of the
data according to sequence number to the primary array 602
and the aflected sequence number 1s removed from the
primary volume sidefile list 606. If a transaction 1s lost
between the primary array 602 and the secondary array 604,
a specilic sequence number’s data can be requested to be
retransmitted.

The sequence of numbers 1s managed 1n memory of the
primary array 602 and the remote array 604 and utilizes
additional resources, the sidefiles 606 and 608. For an
input/output operation performed to the primary array 602,
an entry 1s added to the sidefile 606 containing the sequence
number and a pointer to the blocks aflected by the update.
If the same block 1s updated on a subsequent 1nput/output
operation, contents of the block are also recorded in the
sidefile 606. The sidefile size 1s dependent on performance
of the links to the remote array 604 against the number of
input/output operations performed by the primary array 602.
If the sidefile 606 reaches a predetermined percentage of the
total cache memory in the array 602, for example 11 the
input/output operations are backing up in the cache due to a
slow link, the input/output rate from the host 600 1s
restricted 1n an attempt to give higher priority to the sidefile
606.

A sidefile 1s typically only used as long as a communi-
cation exists between the primary site 602 and the secondary
site 604. If communication 1s disrupted, or pairs are sus-
pended, overhead of a sidefile 1s considered to be too high
so a bitmap 1s 1nstead used to track changes, typically on a
per track or per cylinder basis.

In various embodiments, the asynchronous recordsets can
contain primary volume updates and associated control
information, for example sequence number of the primary
volume update to enable the remote control unit to maintain
update consistency of the secondary volumes. Recordset
operations can include creating and storing recordsets at the
main control unit, sending recordsets to the remote control
unit, storing recordsets in the remote control unit, and
selecting and settling recordsets at the remote control unit.
Other operations include controlling inflow for sidefiles.

In one example, upon a host-requested write input/output
operation the main control umt performs an update and
creates a recordset. The recordset can include the updated
record, sequence number, record location such as device,
cylinder, track, and record number, and record length. The
recordsets can be queued in cache storage of the main
control unit and sent to the remote control unit independent
ol host input/output processes. The remote control unit uses
the sequence number 1n the recordsets to update the sec-
ondary volumes 1n the order of the primary volumes. The
sequence number indicates the number of recordsets that the
main control unit has created for each consistency group.
Recordset information, other than updated records, 1s stored
and queued 1n an area of cache known as sidefile cache.

In the example, the main control unit can send recordsets
to the remote control unit by using main control unit initiator
ports for 1ssuing special mput/output operations, called
remote [/Os, to the remote control unit. The remote I/Os
transiers recordsets efliciently using a single channel com-
mand so that the main control unit can send multiple
recordsets 1 a single remote I/O call, even with noncon-
tiguous sequence numbers. The remote control unit can store

10

15

20

25

30

35

40

45

50

55

60

65

10

recordsets by maintaining queues to control storing of
recordsets 1n the sidefile and committing update of records
in the secondary volumes. Remote control unit queuing can
use the sequence numbers to check for missing updates.

A bitmap table 1s an eflicient technique to track changed
records on a device from a particular point in time. Bit map
tables record the changed track or cylinder number and
typically do not maintain information concerning sequence
or details of changes. If the pairs are suspended, a delta bat
map table 1s maintained on both the primary 602 and
secondary 604 arrays. Upon resynchromization of the pairs,
only the changed cylinders are copied to the remote array
604, bringing the data mirror up to date. Thereatter, a sidefile
1s again used to continue updates. During resynchronization,
data on the remote array 604 1s inconsistent and unrehable.

Tracking of consistency groups 1s used to assure correct
operation. An asynchronous consistency group 1S a user-
defined set of volume pairs across which update sequence
consistency 1s maintained and ensured at the remote site.
Each asynchronous volume pair 1s assigned to a consistency
group. In an illustrative system, the database system allows
configuration of a predetermined number of consistency
groups for each main control unit and supports group-based
operations for the consistency groups. Consistency groups
enable maintenance of update sequence consistency for
databases that span multiple volumes, facilitating immediate
database recovery at the remote site in the event of a failure
or disaster.

An application commonly includes an aggregation of
more than one physical device. Accordingly, correct opera-
tion can depend on assurance that all input/output activities
are consistently applied to remote devices. During asynchro-
nous operations, all devices 1n a device group form the same
consistency group. Sequence numbers 1n a sidefile are 1ssued
at the consistency group granularity level so that mput/
output operations applied to the primary devices of that
consistency group are applied to the secondary devices 1n
the same sequence. If a device in the consistency group 1s
not available to be updated, the entire consistency group 1s
placed into an error state. Consistency groups are defined
and controlled so that writes to all devices in the consistency
group are not destaged unless all previous writes are ready.
Consistency 1s applied to all devices in the consistency
group, not simply a single LUN.

The method for preserving logical object mtegrity n a
remote mirror cache can be used 1n the various remote copy
operations of the database system, such as initial copy and
update copy operations. An 1nitial copy operation synchro-
nizes the primary volumes and secondary volumes, gener-
ally independently of host processes. The nitial copy typi-
cally takes place when a user adds a volume pair. When a
new pair 1s created, the entire contents of the primary
volume are copied to the secondary volume cylinder by
cylinder, except for diagnostic and unassigned alternate
tracks. Various database system embodiments may imple-
ment or omit usage of the method for preserving logical
object mtegrity 1n a remote mirror cache for initial copy.
Because initial copy generally occurs for more controlled
conditions of database usage, some database system
embodiments may omit the overhead associated with the
method for preserving logical object mtegrity 1 a remote
mirror cache for mnitial copy.

An update copy operation occurs when a host issues a
write input/output operation to a primary volume of an
established volume pair. The update copy operation dupli-
cates the primary volume write input/output operation at the
secondary volume to maintain volume pair synchrony.

US 7,293,048 B2

11

Usage of the method for preserving logical object integrity
in a remote mirror cache 1s useful 1n update copying to
assure correct database operations.

While the present disclosure describes various embodi-
ments, these embodiments are to be understood as 1llustra-
tive and do not limit the claim scope. Many vanations,
modifications, additions and improvements of the described
embodiments are possible. For example, those having ordi-
nary skill in the art will readily implement the steps neces-
sary to provide the structures and methods disclosed herein,
and will understand that the process parameters, materials,
and dimensions are given by way of example only. The
parameters, materials, and dimensions can be varied to
achieve the desired structure as well as modifications, which
are within the scope of the claims. Variations and modifi-
cations ol the embodiments disclosed herein may also be
made while remaining within the scope of the following
claims. For example, the disclosed apparatus and technique
can be used 1n any database configuration with any appro-
priate number of storage elements. Although, the database
system discloses magnetic disk storage elements, any appro-
priate type of storage technology may be implemented. The
system can be implemented with various operating systems
and database systems. The control elements may be 1mple-
mented as software or firmware on general purpose com-
puter systems, workstations, servers, and the like, but may
be otherwise implemented on special-purpose devices and
embedded systems.

What 1s claimed 1s:

1. A database system for executing a database application
that transfers a logical object 1n multiple fragments com-
prising:

a main storage site;

a remote storage site that links to the main storage site,
receives and stores mirror information from the main
storage site, and comprises a storage and a cache
sidefile divided into a plurality of array sidefile record-
sets;

a main protocol executing on the main storage site that
transiers the logical object 1n multiple fragments 1n
combination with information indicative of the logical
object multiple fragments commencement and comple-
tion 1n a multiple fragment database application trans-
fer comprising;

receiving an application request to write the logical object
of a specified length to a specified virtualized storage
address:

converting a virtualized write address and resolving the
transfer length to designate at least one physical
address 1n at least one physical storage device for
transierring the logical object 1n fragments;

sending a first control message to the at least one physical
storage device 1dentitying the start of the logical object
to be held 1n a remote minor cache for destaging; and

sending a second control message 1dentifying the end of
the logical object so that the mirror cache 1s destaged to
the at least one physical storage device, no portion of
the logical object multiple fragments being otherwise
destaged; and

a remote protocol executing on the remote storage site
that controls the cache sidefile to cache the multiple
fragments as received and to destage the logical object
to the storage on receipt of all fragments.

2. The database system according to claim 1 wherein:

the main protocol includes the information indicative of
the logical object multiple fragments commencement
and completion using a technique selected from among
a group consisting of:

10

15

20

25

30

35

40

45

50

55

60

65

12

(1) explicitly sending a start control message preceding
the multiple fragments and an end control message
concluding the multiple fragments, and

(2) implicitly determining either the start control message
or the the end control message.

3. The database system according to claim 1 wherein the
main protocol further comprises:

an address translation process that translates a logical
address to a list of physical addresses.

4. The database system according to claim 1 wherein the
main protocol further comprises: an address translation
process that resolves the virtual write address of the database
application 1nto a pick list of actual physical media writes
associated with the logical object.

5. The database system according to claim 1 wherein the
main protocol further comprises:

a process creating a control message for communication
to the remote protocol that instructs individual physical
storage elements to operate on the multiple physical
writes as a single object entity so that all or none 1is
destaged to the storage.

6. The database system according to claim 1 wherein:

information 1s replicated from the main storage site to the
remote storage site using a technmique selected from
among a group including: (1) synchronous data repli-
cation and (2) asynchronous data replication.

7. The database system according to claim 1 wherein:

the logical object multiple fragments are destaged 1n all or
none fashion to all devices 1n a consistency group.

8. An article of manufacture comprising:

a controller readable storage medium having a comput-
able readable program code embodied therein for
executing 1n a database system that runs a database
application for mirroring a logical object 1n multiple
fragments from a main storage site to a remote storage
site, the computable readable program code further
comprising:

a code causing the controller to interface with the data-
base application that links and mirrors data between the
main storage site and the remote storage site, the
remote storage site including a storage and a cache
sidefile divided into a plurality of array sidefile record-
sets;

a code causing the controller to create and deploy the
logical object 1n multiple fragments 1n combination
with control information indicative of the logical object
multiple fragments commencement and completion 1n
a multiple fragment database application transfer,

wherein the control information controlling the cache
sidefile to cache the multiple fragments as received and
to destage the logical object to the storage on receipt of
all fragments;

a code receiving application request to write the logical
object of a specified length to a specified virtualized
storage address;

a code converting a virtualized write address and resolv-
ing the transier length to designate at least one physical
address 1n at least one physical storage device for
transierring the logical object 1n fragments;

a code sending a first control message to the at least one
physical storage device that delineates the start of the
logical object that 1s to be held 1n a remote mirror cache
for destaging; and

a code sending a second control message that delineates
the end of the logical object so that the mirror cache 1s

US 7,293,048 B2

13

destaged to the at least one physical storage device, no
portion of the logical object multiple fragments being
otherwise destaged.

9. The article of manufacture according to claim 8
wherein the computer readable program code further com-
Prises:

a code creating control information indicative of the
logical object multiple fragments commencement and
completion using a technique selected from among a
group consisting of:

(1) explicitly sending a start control message preceding
the multiple fragments and an end control message
concluding the multiple fragments, and

(2) implicitly determining either the start control message
or the end control message.

10. The article of manufacture according to claim 8
wherein the computer readable program code further com-
Prises:

a code translating a logical address to a list of physical

addresses.

11. The article of manufacture according to claim 8
wherein the computer readable program code further com-
Prises:

a code resolving the virtualized write address of the
database application into a pick list of actual physical
media writes associated with the logical object.

12. The article of manufacture according to claim 8
wherein the computer readable program code further com-
Prises:

a code creating a control message for communication to
the remote protocol that instructs individual physical
storage clements to operate on the multiple physical
writes as a single object entity so that all or none 1s
destaged to the storage.

13. The article of manufacture according to claim 8
wherein the computer readable program code further com-
Prises:

a code replicating information from the main storage site
to the remote storage site using a technique selected
from among a group including:

(1) synchronous data replication and

(2) asynchronous data replication.

14. The article of manufacture according to claim 8
wherein the computer readable program code further com-
Prises:

a code destaging the logical object multiple fragments in

all or none fashion to all devices in a consistency group.

15. An article of manufacture comprising a controller
readable storage medium having a computer readable pro-
gram code embodied therein for executing in a database
system that runs a database application for mirroring a
logical object 1n multiple fragments from a train storage site
to a remote storage site, the computable readable program
code further comprising:

a code that executes at the remote storage site causing the
controller to receive the logical object 1n multiple
fragment transfers in combination with control infor-
mation indicative of the logical object multiple frag-
ment commencement and completion;

a code that executes at the remote storage site causing the
controller to control storage of the logical object mul-
tiple fragments 1n a cache sidefile divided 1nto a plu-
rality of array sidefile recordsets;

a code that executes at the remote storage site causing the
controller to recerve first and second control messages
from a main storage site identifying respective start and
end of the logical object; and

5

10

15

20

25

30

35

40

45

50

55

60

65

14

a code that executes at the remote storage site causing the
controller to cache the multiple fragments as received
and to destage the logical object to the storage on
receipt of all fragments according to the first and
second control messages.

16. The article of manufacture according to claim 135
wherein the computer readable program code further com-
Prises:

a code determining the logical object multiple fragments
commencement and completion using a technique
selected from among a group consisting of:

(1) recerving explicitly identified staring and ending frag-
ments, and

(2) deriving either of the starting fragment and the ending
fragment 1mplicitly from received control information.

17. The article of manufacture according to claim 135
wherein the computer readable program code further com-
Prises:

a code causing the controller to track order of fragment

updating between the main storage site and the remote

storage site including updating of the sidefile record-
sets.

18. The article of manufacture according to claim 135
wherein the computer readable program code further com-
Prises:

a code replicating information from the main storage site

to the remote storage site using a technique selected
from among a group including:

(1) synchronous data replication and
(2) asynchronous data replication.

19. The article of manufacture according to claim 135
wherein the computer readable program code further com-
Prises:

a code destaging the logical object multiple fragments 1n

all or none fashion to all devices 1n a consistency group.

20. A controller readable storage element tangibly
embodying a program of instructions therein that the con-
troller executes to perform method acts for executing in a
database system that runs a database application for mirror-
ing a logical object 1n multiple fragments from a main
storage site to a remote storage site, the method acts com-
prising: recerving the logical object at the remote storage site
in multiple fragment transiers in combination with control
information indicative of the logical object multiple frag-
ments commencement and completion;

controlling storage of the logical object multiple frag-
ments at the remote storage site 1n a cache sidefile
divided 1nto a plurality of array sidefile recordsets;

recetving at the remote storage site first and second
control messages from a main storage site identifying,
respective start and end of the logical object;

caching the multiple fragments at the remote storage site
as recerved; and

destaging the logical object at the remote storage site to
the storage on receipt of all fragments according to the
first and second control messages.

21. The storage element according to claim 20 wherein
the method acts further comprise:

creating control information indicative of logical object
fragment commencement and completion using a tech-
nique selected from among a group consisting of: (1)
explicitly identifying starting and ending fragments,
and (2) mmplicitly indicating either of the starting
fragment and the ending fragment.

US 7,293,048 B2

15

22. The storage element according to claim 20 wherein
the method acts further comprise:

resolving a virtual write address of the database applica-

tion 1nto a pick list of actual physical media writes
associated with the logical object.

23. The storage element according to claim 20 wherein
the method acts further comprise:

creating a control message for communication to the

remote protocol that instructs individual physical stor-
age elements to operate on the multiple physical writes
as a single object entity so that all or none 1s destaged
to the storage.

24. The storage element according to claim 20 wherein
the method acts further comprise:

receiving at the main storage site an application request to

write the logical object of a specified length to a
specified virtualized storage address;

converting at the main storage site the virtualized write

address and resolving the transfer length to designate at
least one physical address 1n at least one physical
storage device for transierring the logical object 1n
fragments;

sending a first control message from the main storage site

to the at least one physical storage device that delin-
cates the start of a logical object that 1s to be held 1n a
remote mirror cache for destaging; and

sending a second control message that delineates the end

of the logical object so that the mirror cache 1s destaged
to the at least one physical storage device, no portion of
the logical object fragments being otherwise destaged.

25. The storage element according to claim 20 wherein
the method acts further comprise:

replicating information from the main storage site to the

remote storage site using a technique selected from
among a group including: (1) synchronous data repli-
cation and (2) asynchronous data replication.

26. A controller readable storage eclement tangibly
embodying a program of instructions therein that the con-
troller executes to perform method acts for executing in a
database system that runs a database application for mirror-
ing a logical object 1n multiple fragments from a main
storage site to a remote storage site, the method acts com-
prising;:

interfacing with the database application that links and

mirrors data between the main storage site and the
remote storage site, the remote storage site including a
storage and a cache sidefile divided into a plurality of
array sidefile recordsets;

deploying from the main storage site the logical object in

multiple fragments 1n combination with control infor-

10

15

20

25

30

35

40

45

16

mation indicative of the logical object multiple frag-
ments commencement and completion 1 a multiple
fragment database application transfer,

wherein the control information controlling the cache
sidefile to cache the multiple fragments as received;

recerving an application request to write he logical object
of a specified length to a specified virtualized storage
address:

converting a virtualized write address and resolving the
transfer length to designate, at least one physical
address 1n at least one physical storage device for
transferring the logical object 1n fragments;

sending a first control message to the at least one physical
storage device 1dentifying the start of a logical object
To be held 1n a remote mirror cache for destaging;

sending a second control message 1dentiiying the end of
the logical object so that the mirror cache 1s destaged to
the at least one physical storage device, no portion of
the logical object multiple fragments being otherwise
destaged; and

destaging at the remote storage site the logical object to
the storage on receipt of all fragments according to the
first and second control messages.

277. The storage element according to claim 26 wherein

the method acts further comprise:

determiming logical object fragment commencement and
completion using a technique selected from among a
group 1ncluding: (1) receiving explicitly i1dentified
starting and ending fragments, and (2) derniving either
of the starting fragment and the ending fragment
implicitly from received control information.

28. The storage element according to claim 26 wherein

the method acts further comprise:

tracking order of fragment updating between the main
storage site and the remote storage site including updat-
ing of the sidefile recordsets.

29. The storage element according to claim 26 wherein
the method acts further comprise:

replicating information from the main storage site to the
remote storage site using a technique selected from
among a group ncluding: (1) synchronous data repli-
cation and (2) asynchronous data replication.
30. The storage element according to claim 26 wherein
the method acts further comprise:

controllably destaging the logical object multiple frag-
ments 1in all-or-none fashion to all devices, 1n a con-

sistency group.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,293,048 B2 Page 1 of 1
APPLICATION NO. : 10/697820

DATED : November 6, 2007

INVENTORC(S) . Robert Cochran et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

On the title page, 1n field (56) under “Other Publications™, i column 2, lines
1-3, delete “Baird: Oracle 81 Data Guard Concepts, Administration, and
Installation Guide, Release 3.0, Oct. 2001, Oracle® (previously provided).™”
On the title page, 1n field (56) under “Other Publications™, i column 2, lines
4-5, delete “Bobrowski et al.: Oracle7T™ Server Concepts, Release 7.3, Feb.
1996, Oracle ®. (previously provided).*”

In column 4, line 57, delete “offside™ and insert -- offline --, therefor.

In column 12, line 5, Claim 2, after “or the” delete “the”.

In column 14, line 13, Claim 16, delete “starmng’ and insert -- starting --,
therefor.

In column 16, line 6, Claim 26, delete “he™ and insert -- the --, therefor.

In column 16, line 15, Claim 26, delete “To” and 1nsert -- to --, therefor.

Signed and Sealed this

Fifteenth Day of July, 2008

hguo-

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

