12 United States Patent
Schell

US007292957B1

(10) Patent No.: US 7,292,957 B1
45) Date of Patent: Nov. 6, 2007

(54) COST EFFICIENT PERFORMANCE
STATISTICS GATHERING USING
LOGARITHMIC INDEXING

(75) Inventor: John C. Schell, Westminster, CO (US)

(73) Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 1534(b) by 355 days.

(21) Appl. No.: 11/043,764
(22) Filed: Jan. 26, 2005

(51) Int. CL

GO6F 11/30 (2006.01)
(52) US.CL ... 702/182; 7077/200; 709/220;
709/223; 709/230
(58) Field of Classification Search 702/182;

707/8, 10, 201, 200, 709/203, 219, 223,

709/220, 230; 714/235, 56
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,432,057 A * 2/1984 Daniell et al. 707/8
4,897,782 A * 1/1990 Bennett et al. 707/10
5,204,955 A * 4/1993 Kagei et al. 714/55
5,367,698 A * 11/1994 Webber et al. 709/203

0,175,848 Bl 1/2001 Seaman et al.

OTHER PUBLICATIONS

Mohamed Dekhil, et al., “Remote Management Services Over the
Web”, Hewlett Packard, Software Technology Laboratory, May
2000, pp. 1-15.

Andrea Westerinen, “CIM Schemas The Core and Common Infor-
mation Models”, Distributed Management Task Force, Inc., DMTF
2002 Developers’ Conference, Jun. 10-13, 2002, pp. 1-53.

Andrea Westerinen and Jim Davis, “WBEM Standards”, Distributed
Management Task Force, Inc., DMTF 2002 Developers’ Confer-
ence, Jun. 10-13, 2002, pp. 1-20.

MANAGED
COMPONENT

101~

/J\f"/\\ MANAGEMENT
INSTRUMENTATION 103 SERVICE

“CIM FAQs”, About the DMTF, Distributed Management Task
Force, Inc., http://www.dmtf.org/about/fag/cim.php, retrieved from
the Internet URL on Jun. 5, 2003, pp. 1-4.

“Common Information Model (CIM) Core Model”, Version 2.4,
DMTF White Paper, Distributed Management Task Force, Inc.,
Aug. 30, 2000, pp. 1-54.

“Understanding the Application Management Model”, CIM Version
2.6, Document Version 1.1, CIM Application White Paper, Prelimi-
nary, Distributed Management Task Force, Inc., May 25, 2002, pp.
1-58.

Andrea Westerinen, “What Is Policy and What Can It Be?”, CISCO
Systems, IEEE Policy 2003 Conference, pp. 1-35.

Wally Mead, “What 1s WMI and How Does SMS 2.0 Use It?”,
Microsofit Support Services, Oct. 11, 1999, pp. 1-35.

* cited by examiner

Primary Examiner—Michael P. Nghiem
Assistant Examiner—Hien Vo

(74) Attorney, Agent, or Firm—Willaim J. Kubida; Michael
C. Martensen; Hogan & Hartson LLP

(57) ABSTRACT

A system for a distributed computing network for managing
instrumentation information from a plurality of network-
connected managed entities. One or more instrumentation
processes are coupled to each of the network-connected
managed entitiecs and configured to gather performance
metric values. A first classification process 1s responsive 1o
information describing a type of input/output operation
being performed and i1s configured to select one or more
counters based upon the type of input/output operation being
performed. A second classification process 1s coupled to
receive a performance metric value from the one or more
instrumentation processes. The second classification process
1s responsive to a computed logarithm of a measured value
of at least one metric to select and increment a particular
counter of the one or more counters selected by the first
classification process.

19 Claims, 4 Drawing Sheets

104

.

105~ T

MANAGEMENT

CONSOLE

// \\

REPORTS MONITORING

MANAGEMENT | [MANAGEMENT j | MANAGEMENT

NETWORK SYSTEM APPLICATION

US 7,292,957 B1

INJIWJOVNVIA

NOILLVOl1ddV

INJWIOVNVYIN | | LINJWIOVNVIA
INT LS AS WHOMLIN ONIHOLINOW S1¥0d3y

-
= JI0SNOD GOl

H INISNIDVYNYIN

5

=

7

-

—

—

g

= C01L
-

M I9IAY3S NOILYLNINNHLSNI

INJWIOVNVIN

101

vt LININOdNOD

dOVNVIN

U.S. Patent

LOC

—
an
‘"
3 A ¢ Ol4
A it AVHYY 502 N
> JOVHOLS - -
Z 1
€02
<> e -
102 HOLIMS
B B []
B B |]
- ~ ~ N
-~
S < —
< .
2 C# AVHYY 507 —
7 I9VHOLS e »
o
vdH ‘I’
I~
m 102 60¢ e
S
,w vaH
74 602 vaH
NOILV1SHHOM
o VEH
/ VEH
Z# AVHYY E

JOVHOLS
L0C

L# AVHAY
JOV301S

LOC

U.S. Patent

U.S. Patent Nov. 6, 2007 Sheet 3 of 4 US 7,292,957 B1

32 64 128 256 912 1s 2s
ms ms ms ms ms

16
ms

RESPONSE TIME

I | | I B
128 256 912
S 1S S

64
s
FIG. 3

20C
17
15C
12
10C
75
50
25
0

US 7,292,957 B1

Sheet 4 of 4

Nov. 6, 2007

U.S. Patent

60v

SO ZS XV

GOb

GOPb

GOV

GOV

[ZS XV

[ZS XVII

(ZS XVIN]

[ZS XV

L0V L0V L0V

L0V

GOv

| J1I14M coOv

J114M O3S

aAv3ay aNvy

a0V

— 10

(S)a131d 318VIHVA VA0 19

q0)7

Us 7,292,957 Bl

1

COST EFFICIENT PERFORMANCE
STATISTICS GATHERING USING
LOGARITHMIC INDEXING

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates, 1n general, to performance
monitoring, and, more particularly, to software, systems and
methods for managing performance statistics using logarith-
mic indexing.

2. Relevant Background

With the dramatic increase 1n the use of computing
devices to perform tasks i business, the computer networks
that connect these devices have become continually more
complex. The growing use of computer networks 1s making
the management of computer networks more critical to day
to day business operations. Further, the increased reliance on
complex networks makes 1t increasingly important to ensure
that system components are configured to operate at or near
peak performance and that components of the distributed
computer system continue to operate efliciently as varying
demands are placed on the system. Administrative and
service personnel use performance statistics to tune system
parameters, tune component configuration, and continually
analyze the system and its components so as to identily
bottlenecks and improve performance.

Although complex, distributed computer systems are
made up of a number of component subsystems that work
cooperatively. The subsystems contribute to the overall
system performance. With the complexities of systems and
subsystems, the degrees of freedom enabled by storage
virtualization, mulitpathing, fabric interconnections and the
like, 1t 1s difhicult to obtain a suitable analysis without
suilicient knowledge of the system at a fine level of granu-
larity. The tasks of measuring, monitoring and managing
overall system performance are impacted by performance
statistics related to component subsystems. However, con-
ventional performance monitoring systems are better at
monitoring overall system performance and have less than
desirable ability to monitor performance statistics at a sub-
system level.

In a distributed computing system performance 1s atlected
by the particular manner in which resources are allocated,
the physical and logical paths that are defined between those
resources, and the services and software implemented by the
computing system, as well as a variety of other factors.
Understanding the eflects of each of these factors, as well as
the iteraction between these factors, 1s necessary when a
system 1s being designed, when a system design i1s being
validated, and when the test equipment requirements for
validating a system are being determined. The ability to
measure performance at a low level of granularity (e.g., at a
subsystem or lower level) 1s desirable because 1t simplifies
the design, validation, and test requirements.

In complex systems there 1s a continuing need to provide
granular performance data to assist in the analysis, manage-
ment and improvement of performance behavior. Examples
of the use of performance data include fault analysis, con-
figuration, accounting, performance and security manage-
ment 1 distributed computing networks. In many cases
computer systems are sold i conjunction with service level
agreements (SLAs) that provide for specified performance
levels. SLLAs specily measurable criteria against which the
performance of a resource can be compared. A resource may
be any component 1n a distributed computing system such as
computers, storage devices, switches, routers and the like. A

10

15

20

25

30

35

40

45

50

55

60

65

2

resource may also refer to software or services implemented
in the distributed system such as a web server, database
server, or application server. In other words, a workstation,
a server, a router, an application on a server, a network
connection and the like all may be resources. To operate
under an SLA, service providers attempt to allocate
resources, design physical and logical connections between
devices, and implement various services and applications 1n
a manner that satisfies the criteria set out in the SLA.
Accordingly, eflicient collection of performance statistics 1s
increasingly important.

In order to perform distributed system management 1t 1s
necessary to have accurate and complete information about
the system components such as networking and computing
equipment, and services provided by those devices. How-
ever, the costs associated with gathering and managing
performance data (e.g., terms of system resources) make the
implementation of performance mstrumentation prohibitive.
Increased granularity means that the quantity of perfor-
mance data that 1s collected and must be managed becomes
quite large. The quantity of data escalates even further when
the variety of types of data that are collected 1s increased.
Accordingly, a need exists for systems, methods and soft-
ware that enable collecting performance statistics in a cost-
ellicient manner.

SUMMARY OF THE INVENTION

Briefly stated, the present invention involves using loga-
rithmic indexing for collecting, storing and managing per-
formance data for input/output subsystems of a network
such as a data communication network, local area network,
wide area network, and the like. A management system for
a distributed computing network having a management
console with interfaces for accessing imstrumentation infor-
mation from a plurality of network-connected managed
entities. One or more strumentation processes are coupled
to each of the network-connected managed entities and
configured to gather performance metric values. A {irst
classification process 1s responsive to information describ-
ing a type ol iput/output operation being performed and 1s
configured to select one or more counters based upon the
type of mput/output operation being performed. A second
classification process 1s coupled to receive a performance
metric value from the one or more instrumentation pro-
cesses. The second classification process 1s responsive to a
computed logarithm of a measured value of at least one
metric to select and increment a particular counter of the one
or more counters selected by the first classification process.

In another aspect, the present invention involves a method
tfor collecting performance statistics by accessing instrumen-
tation information from a plurality of network-connected
managed entities. In response to completing a particular
input/output operation, a set ol counters comprising one or
more counters 1s 1dentified based upon the type of operation
that was completed. In response to completing the particular
input/output operation, a particular counter 1s selected from
the 1dentified set of counters based upon a computed loga-
rithm of a measured value of at least one metric. The
selected counter 1s incremented.

BRIEF DESCRIPTION OF TH.

(L]

DRAWINGS

FIG. 1 shows a networked computer environment in
which the present mvention 1s implemented;

FIG. 2 shows a more specific environment in which the
present invention 1s implemented;

Us 7,292,957 Bl

3

FIG. 3 illustrates an application of a data gathering
method 1n accordance with the present invention; and

FIG. 4 shows an exemplary data structure in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION OF TH.
PREFERRED EMBODIMENTS

L1l

The present invention 1s illustrated and described 1n terms
of a performance monitoring and reporting application for
use 1n complex commumication networks. However, perfor-
mance monitoring 1s used 1n a variety of applications
including reporting system performance, implementing ser-
vice level agreements (SLLAs), system configuration tuning,
system design verification, troubleshooting, benchmarking
and configuration of applications that are implemented by
the system. Accordingly, the present invention 1s readily
adapted to implement these and other applications.

Systems and mechanisms in accordance with the present
invention are useful for monitoring and managing pertor-
mance of a computer system or networks of communication
systems, be 1t a local computer or a number of computers 1n
an enterprise. In 1ts simplest terms, distributed system man-
agement 1s little more than the collecting data about the state
of a managed object on the computer system and altering the
state of the managed object by changing the data stored
about the object. A managed object can be a hardware entity,
such as a memory array, port, or disk drive. A managed
entity can also be a software entity, such as a service, user
account, or page file. In particular embodiments of the
present mvention performance statistics can be gathered at
almost any node and nexus within a system as well as any
points 1n the software stack that lie beneath the application.
This includes file systems, host-based volume managers,
device drivers, host bus adapters (HBA’s, by HBA and by
individual ports of an HBA) switches (by switch and by
individual ports within a switch), virtualization engines (by

virtual logical unit number or “LUN”), array controllers
(e.g., RAID controllers by controller ID and by LUN), disk

drives, and the like.

FIG. 1 shows an exemplary computing environment 100
in which the present imnvention may be implemented. A
typical system would comprise a plurality of managed
components 101 including hardware devices, application
soltware, operating system software, register values, and the
like. Managed components 101 are associated with some
form of instrumentation 102. Instrumentation comprises
refers to the set of hardware, software, and communication
services that produce, collect, and transport information
about the managed component to a management system.
Instrumentation takes a great variety of forms. A desktop
computer or workstation might use an operating system
service as mnstrumentation, for example. In computer sys-
tems and hardware devices instrumentation may include
basic mput output system (BIOS) or interface logic that
provides information about the monitored system.

In FIG. 1, the instrumentation information 1s communi-
cated to a management service 104. In the example of FIG.
1, management service 104 1s a remote management service
communicating over network 103. However, more generally
the management service can be implemented in any com-
puter including the same machine that implements the
managed component. Also shown in FIG. 1 1s management
console 105 that implements a user interface for accessing
and using the management services. Again, although man-
agement console 105 1s 1llustrated as remote from manage-
ment services 104, 1t 1s contemplated that the management

10

15

20

25

30

35

40

45

50

55

60

65

4

console would be implemented on the same computer sys-
tem as services 104. Management console 105 supports any
number of applications for mampulating, presenting, and
analyzing the instrumentation information. Further, manage-
ment console 105 may provide services such as monitoring,
network management, system management, application
management, and the like using the mstrumentation infor-
mation.

FIG. 2 illustrates a more specific implementation in which
a distributed computing system comprises a plurality of
storage arrays 207 Coupled by switches 201 and 203. Storage
arrays 207 comprise any of a variety of available storage
products such as a Sun Stor_Jdge products from Sun Micro-
systems, Inc. Storage arrays 207 implement a pool of up to
terabytes of physical storage that may be configured into any
number logical units (LUNSs) of storage. Host bus adapters
209 provide an I/0O interface between storage arrays 207 and
I/O ports of switches 201/203, or to other host bus adapters
209. Host bus adapters 209 comprise one or two physical 1/0
channels that implement a compatible protocol with other
devices such as a Fibre Channel (FC_PH) protocol.

Any number of workstations, server computers and the
like, such as workstation 205, may be coupled to the
distributed computmg system using HBAs 209. Multiple
HBAs may be used in to provide redundant connections.
Multiple HBAs may also be used to provide connections to
alternate devices or alternative switches. Hence, there may
be several paths between any two devices where each of the
paths will ofl

er different performance depending on the

devices that implement the path, current activity on the path,
and other factors.

Examples of metrics that can be collected include:

TABLE 1
Metric Description
IOPs A value indicating mput/output operations per second.
Throughput A value indicating the rate at which data 1s moving in

megabytes per second.

A value indicating the time required to receive a
response to a request.

A number of transactions that are waiting to be pro-
cessed at a port or subsystem behind other
transactions.

Indicates how long a command sits 1dle in a queue.
This may be an average number summarizing packets
received over a period of time.

Response time

Average queue
depth

Command receive
to command
1ssue time

In addition to the metrics shown 1n Table 1, it 1s useful to
categorize performance based upon various features that
describe a type of the input/output operations being per-
formed. A particular configuration may perform well 1n
some load conditions while having a very different perfor-
mance under other load conditions. Table 2 gives some
examples of operation type information that 1s used 1n some
embodiments to further classily the performance informa-
tion.

TABLE 2
10 size Indicates size of transaction packets being handled (e.g.,
512, 1 K, 2 K, 4 k,...1024 k) bytes per packet.
Random/ Indicates whether the I/O transactions are related to

Sequential random access transactions or sequential data transactions.
Read/ Indicates whether the I/O transactions are related to read
Write access transactions or write access transactions.

As indicated 1n FIG. 2, various devices and paths between
devices will exhibit varying throughput values, indicated by

Us 7,292,957 Bl

S

encircled values between connected devices, by design
and/or as a result of device malfunction or current load
conditions. Similarly, each other measured metric reveals
the operating condition of a particular device, port or con-
nection that may vary by design or as a result of current load
conditions. Measuring, gathering, and managing these met-
rics are necessary in order to perform meaningful analysis
on the system.

Granularity of the information 1s particularly important to
enable certain types of analysis. However, increased granu-
larity means that the quantity of performance data that is
collected and must be managed becomes quite large. The
quantity of data escalates even further when the vanety of
types of data that are collected 1s increased. Although the
large quantities of data can be distilled or summarized,
which 1s sometimes called “rolling up” the data, these
processes of summarizing typically sacrifice the 1dentity of
the finer granularity data. For example, a set of 10P values
for a plurality of ports 1n a network can be summarized as
a single average 10P value, however, 1t 1s not possible to
extract the IOP value for any particular port once the average
1s computed.

The present invention recognizes that an eflicient way to
capture data 1s to create a plurality of categories, counters,
or “buckets” where each bucket represents a range of values
based on the log of the value that 1s being collected. Each
time a metric 1s measured a counter associated with a
particular bucket 1s incremented. By way of the specific
example of FIG. 3, response time for approximately two
thousand 1nput/output operations (e.g., random read opera-
tions) 1s measured and each measurement 1s sorted into one
of the logarithmically defined categories shown. In FIG. 3,
approximately 200 measured commands had a response time
of between 8 ms and 16 ms whereas some 89 commands
exhibited a response time between 32 ms and 64 ms. This
form of data collection captures extremes as well as distri-
bution information, however, the quantity of data that 1s
required to represent a large number of measurements 1s
relatively small.

In a particular implementation instrumentation data 1s
collected 1n a data structure, such as the example data
structure shown 1n FIG. 4. The data structure can be imple-
mented within memory of the device or ports being mea-
sured 1n which case the performance data 1s transmitted
periodically or on demand to other devices that wish to know
the performance data. Alternatively, a device can monitor
the performance metrics of neighboring devices to which it
1s connected by implementing a data structure within 1ts
memory for all other devices to which 1t 1s connected. A data
structure may be implemented as a unified data structure or
in a distributed fashion by linked and related data structures.
As another alternative, the data structures may be 1mple-
mented 1n a centralized memory such as within management
console 105/205.

An exemplary data structure shown in FIG. 4 includes
various fields indicated 1n Table 3, Table 4 and Table 5. Table
3 mndicates an exemplary set of “global” variables that may
be collected at a device such as a port of a HBA, network,
interface, switch, and the like. The global variables hold
values i1ndicating a cumulative amount of activity over a
period of time spanmng from the “time_last_cleared” to the
“time_last_updated”. The set of vaniables shown 1n Table 3
1s exemplary only as other variables may be of interest 1n a
particular application. The global varniables maintained in
Table 3 can be maintained irrespective of the type of 10
operation. In other words, although the particular example 1s
generally concerned with distinguishing sequential/random

10

15

20

25

30

35

40

45

50

55

60

65

6

and read/write operations from each other, the global vari-
ables shown in Table 3 accumulate across all of these types.
In addition to accumulating variables, the global variables 1n
Table 3 might include mimnimum and peak values for mea-
sured properties of interest. Also, 1f desired, the information
maintained in the global variables of Table 3 may be
classified in a manner similar to the variables described 1n
reference to Table 4.

TABLE 3

Field Description

Datetime variable indicated a time at
which the data structure was last cleared.
Datetime variable indicated a time at
which the data structure was last updated.
64-byte integer value indicating total
commands received.

64-byte integer value indicating total
commands completed.

64-byte integer value indicating total bytes
recerved.

64-byte integer value indicating total bytes
sent.

time__last_ cleared.
time__last_ updated

total _commands_ rcvd

total commands_ completed
total _bytes received

total _bytes_ sent

In the exemplary data structure shown in FIG. 4, fields
holding the variables shown in Table 3 are maintained 1n the
portion labeled “GLOBAL VARIABLES FIELD(s)”, which
may be of any size necessary to hold the information desired
for a particular application. The remaining portion of the
data structure i FIG. 4 1s organized as a plurality of arrays
403 where each array 403 corresponds to a particular “type”
classification. In the example, 10 operations are classified
into one of four types, sequential read, random read, sequen-
tial write, and random write. Each of these four classification
corresponds to one of the arrays 403. Any number of arrays
403 may be used to meet the needs of a particular applica-
tion. Moreover, it 1s contemplated that the arrays 403 may
overlap 1n the sense that a particular 10 operation may fall
into multiple types and therefore trigger statistic gathering in
more than one array 403.

Each array 403 comprises a number of elements 405
where each element 405 corresponds to a logarithmically
indexed category. In the specific example, 10 operations for
cach type are logarithmically classified based upon the size
of the 10 operation. Essentially, elements 405 represent
“buckets” where each “bucket” holds information related to
IO operations of a particular type (e.g., sequential read) and
a particular range of sizes (e.g., less than 512 byte, 512-1024
byte, 1025-2048 byte, etc.) where each range 1s logarithmi-
cally defined. The granularity with which the ranges for each
clement 405 are defined can be selected to meet the needs of
a particular implementation, as can the extent as indicated by
the [MAX_SZ] variable 1n FIG. 4, and Table 6. In the case
of 10 operations, an exemplary MAX_S7 may be 1024
kilobyte 1n a Fibre Channel fabric implementation, although
larger and smaller extents are contemplated. Each type array
403 may have its own MAX_SZ7 and granularity configu-
ration, and so the number of elements 405 may vary from
one array 403 to another array 403. The maximum size may
be estimated, approximated, determined by historical
records, or otherwise determined to meet the needs of a
particular application.

Each element 405 comprises one or more fields, such as
fields 407 1n FIG. 4, that hold vanables that indicate either
instantaneous values, accumulated values, minimum/maxi-
mum values, and the like, such as the variables described 1n
Table 5. Further, each element 405 may also hold one or

Us 7,292,957 Bl

7

more sub-arrays 409 that contain multiple values for statis-
tics that represent a range. In the specific examples sub-
arrays 409 are also logarithmically indexed such that each
clement (out of “n” total elements) of a sub-array 409
represents a range of values for the particular statistic where
the range 1s logarithmically defined. By way of a specific
example, the sub-array 409 in FIG. 4 can be configured to
implement a set of 19 counters where each counter repre-

sents a particular range of response times corresponding to
the example of FIG. 3.

TABLE 5
Field Description
Count 32-byte imteger variable indicating a counter

value indicating a number of occurrences of a
particular event.

32-byte integer variable indicating a minimum
response time in microseconds.

32-byte integer variable indicating a maximum
number of IOPs in IOs per second.

32-byte integer variable indicating a maximum
throughput value in kb/s.

A set of counters, twenty in this case, each of
which comprises a 32-byte integer variable.

min__response_ time
max__ IOPs

max__throughput

response__time_ cnt[20]

TABLE 6

Variable Description

seq_ read [MAX SZ] A vanable indicating a maximum size for the
sequential read operations for which data is
being collected.

A variable indicating a maximum size for the
random read operations for which data is being
collected.

A vanable indicating a maximum size for the
sequential write operations for which data is
being collected.

A vanable indicating a maximum size for the
random write operations for which data is

being collected.

rand_ read [MAX__SZ]
seq_ write [MAX_ SZ]

rand_ write [MAX_ SZ7]

As a particular example, a plurality of logarithmically-
indexed performance data structures are implemented where
cach data structure corresponds to a range of I/O operation
sizes. After an I/O operation 1s completed, the following
accounting procedure 1s performed:

sz_ 1x=MIN
(LOG(10->s1ze), MAX__SZ);

//the variable sz_ 1xX 1s assigned
a value which 1s either the
LOG of the I/O operation size,
or the maximum allowed size,
whichever i1s smallest.

//the variable “t” holds the
measured response time.
//select the case depending on
the type of I/O operation per-
formed.

t=current_ time-i10—>receive_ time:

switch (io—>type) {

case RANDOM__READ;

//increment a counter that
counts the number of times that
a random read operation of a
particular size range has
occurred.

//increment a logarithmically
indexed counter that counts the
number of times that a random
read operation has had a
measured response time in the

rand__read[sz__1x].count++;

rand_read[sz_ 1x].response_ time_ cnt
[MIN(LOG(1),
LOG(MAX__TIME)]++;

10

15

20

25

30

35

40

45

50

55

60

65

8

-continued

logarithmically indexed range
represented by that particular
counter.

case RANDOM__ WRITE;

//increment a counter that
counts the number of times
that a random write oper-
ation of a particular size

range has occurred.
//increment a logarithmically
indexed counter that counts the
number of times that a random
write operation of a particular
size range has had a measured
response time in the
logarithmically indexed range
represented by that part-

icular counter.

rand__ write[sz__i1x].count++;

rand__ write[sz_ 1X].response_ time_ cnt
[MIN(LOG(t),
LOGMAX__TIME)|++;

case SEQUENTIAL__READ;

//increment counter that

counts the number of times that
a sequential read operation of a
particular size range

has occurred.

//increment a logarithmically
indexed counter that counts

the number of times that a se-
quential read operation of

a particular size range has

had a measured response time
in the logarithmically 1n-

dexed range represented by
that particular counter.

sec_ read[sz_ ix].count++;

seq_ read[sz_ 1x].response__time_ cnt
[MIN(LOG(t),
LOGMAX__TIME)]|++;

case SEQUENTIAL__ WRITE;

//increment a counter that
counts the number of times that
a sequential write operation

of a particular size range

has occurred.

//increment a logarithmically
indexed counter that counts

the number of times that a
sequential write operation of

a particular size range has

had a measured response time
in the logarithmically in-

dexed range represented by
that particular counter.

//sets the variable indicating the
last update time to the current
time.

seq_ write[sz_ ix].count++;

seq_ write[sz__ix].response_ time_ cnt
[MIN(LOG(t),
LOG(MAX_ TIME)]++;

time__last_ updated=current__time;

The method of the present invention 1s eflicient because
the log of response time and the 1/0O sizes can be used as
indices for the response time buckets or categories. Using
base-2 logarithms to create indices 1s highly cost eflicient
from a computational standpoint as shift operations are
ciiciently performed by digital logic used 1n microcontrol-
lers and microprocessors. Also most popular programming
languages included operations for performing base-2 loga-
rithms so that high level programming of the above process
1s readily performed. The specific implementation given

above 1s readily adapted to other programming languages
and computing environments.

Although the invention has been described and 1llustrated
with a certain degree of particularity, 1t 1s understood that the
present disclosure has been made only by way of example,
and that numerous changes 1n the combination and arrange-
ment of parts can be resorted to by those skilled 1n the art
without departing from the spirit and scope of the invention,
as hereinafter claimed.

Us 7,292,957 Bl

9

I claim:

1. A computer-readable storage medium tangibly
embodying a program of instructions executable by a
machine wherein said program of instruction comprises a
plurality of program codes for management of a distributed
computing network, said program of instruction comprising:

program code for one or more mstrumentation processes
having interfaces for generating performance metric
values;

program code for a data structure having a plurality of
logarithmically indexed counters; and

program code for processes that are responsive to the
completion of an mput/output operation and coupled to
the mnstrumentation processes to receive the value of
one of the performance metrics and increment a
selected one of the indexed counters based upon the
logarithm of the received value.

2. The program of instruction of claam 1 wherein the
counters represent a plurality of categories wherein each
category 1s associated with a range spanning from a starting
point to an ending point and wherein the starting point and
ending point define a logarithmic range.

3. The program of instruction of claam 1 wherein the
counter 1s selected based upon a base-2 logarithm of the
value of the performance metric.

4. The program of instruction of claim 1 wherein the
program code for data structure comprises:

a first field holding a value indicating the maximum
measured value for a particular performance metric that
has occurred over a measurement period.

5. The program of instruction of claim 4 wherein the
particular performance parameter 1s selected from the group
consisting of: mput/output operations per second (IOPs),
throughput, and response time.

6. The program of instruction of claim 1 wherein the
program code for the data structure implements a plurality of
sets of logarithmically indexed counters where each set 1s
associated with a particular type of loading and wherein the
program code for the processes that select one of the indexed
counters also select a particular one of the set of counters
based upon the type of loading presented by the completed
input/output operation.

7. The program of mstruction software product of claim 6
wherein the type of loading information used to select a
particular one of the sets of counters comprises information
selected from the group consisting of: input/output operation
s1ze, whether the completed 1mput output operation 1s ran-
dom or sequential, and whether the completed 1nput/output
operation 1s a read or a write operation.

8. A management system for a distributed computing
network comprising:

a management console having interfaces for accessing

instrumentation information from a plurality of net-
work-connected managed entities;

one or more instrumentation processes coupled to each of
the network-connected managed entities and config-
ured to gather performance metric values;

a lirst classification process responsive to a information
describing a type of 1mput/output operation being per-
formed and configured to select one or more counters
based upon the type of input/output operation being
performed; and

a second classification process coupled to receive a per-
formance metric value from the one or more instru-
mentation processes, wherein the second classification
process 1s responsive to a computed logarithm of a
measured value of at least one metric to select and
increment a particular counter of the one or more
counters selected by the first classification process.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

9. The management system of claim 8 further comprising
a data structure implementing the plurality of counters.

10. The management system of claim 9 wherein the
counters represent a plurality of categories wherein each
category 1s associated with a range spanning from a starting
point to an ending point and wherein the starting point and
ending point define a logarithmic range.

11. The management system of claim 8 wherein the first
classification process 1s responsive to information selected
from the group consisting of:

input/output operation size, whether the completed 1nput
output operation 1s random or sequential, and whether
the completed input/output operation 1s a read or a
write operation.

12. The management system of claim 8 wherein the
second classification process performs a base-2 logarithm of
the measured value of the at least one metric.

13. The management system of claim 8 wherein the at
least one measured value used by the second classification
process comprises response time of the mput/output opera-
tion being performed.

14. The management system of claim 8 wherein the at
least one measured value used by the second classification
process comprises average queue depth of the mput/output
operation being performed.

15. The management system of claim 8 wherein the at
least one measured value used by the second classification
process comprises command receive to command 1ssue time
of the mput/output operation being performed.

16. A computer implemented method for collecting per-
formance statistics comprising:

Accessing, by said computer, instrumentation information
from a plurality of network-connected managed enti-
ties:

in response to completing a particular input/output opera-
tion, 1identifying a set of counters comprising one or
more counters based upon the type of operation that
was completed; and

in response to completing the particular 1nput/output
operation, selecting a particular counter from the 1den-
tified set of counters based upon a computed logarithm
of a measured value of at least one metric; and

incrementing the selected counter.

17. The method of claim 16 wherein the act of selecting

a particular counter from the 1dentified set of counters based
upon a computed logarithm uses a base-2 logarithmic com-
putation.

18. A data structure implemented n a memory of a
computing device, the data structure being configured for
collecting performance statistics related to activity per-
formed by the computing device, wherein the data structure
COmprises:

one or more arrays where each array corresponds to a
particular type of activity of the computing device;

a plurality of elements within each array, wherein each
clement of the array corresponds to a logarithmically
defined range for a selected characteristic of the activity
being performed by the computing device;

a plurality of fields within each element of the array,
wherein each field holds one or more values of a
particular one of the performance statistics being gath-
ered.

19. The data structure of claim 18 wherein at least one
field within an element comprises a sub-array, wherein the
sub-array has a plurality of elements and each of the
plurality of elements in the sub-array corresponds to a
logarithmically defined range for a selected characteristic of
a performance statistic being gathered.

G ex x = e

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,292,957 Bl Page 1 of 1
APPLICATION NO. :11/043764

DATED : November 6, 2007

INVENTORC(S) : John C. Schell

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 9, line 43, delete “software product™

Signed and Sealed this

Twenty Second Day of April, 2008

W D)k

JON W. DUDAS
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

