US007281116B2
12 United States Patent (10) Patent No.: US 7,281,116 B2
Ross et al. 45) Date of Patent: Oct. 9, 2007
(54) MULTIPROCESSOR SYSTEM HAVING 5428.757 A * 6/1995 Suttonceeeeeeeueuenen... 718/107
PLURAL MEMORY LOCATIONS FOR 5437,017 A * 7/1995 Moore et al. 709/213
RESPECTIVELY STORING 5,574,878 A * 11/1996 Onodera et al. 711/207
TLB-SHOOTDOWN DATA FOR PLURAL 5,906,001 A 5/1999 Wu
PROCESSOR NODES 5,928,353 A * 7/1999 Yamada 712/200
6,119,204 A * 9/2000 Chang et al. 711/141
(75) Inventors: Jonathan K. Ross, Woodlinville, WA 6,345,352 B: 2/2002 James et al. 71}/210
(US), Dale MOI‘I’iS,, Steamboat SpI'iIlgS,, 6,604,185 Bih 82003 Frommccovvevvinnnennn. 7lih/207
CO (US) 6,633,967 B1* 10/2003 DUNCAN ceeevvreeeerneenn, 711/207
6,684315 B2* 1/2004 James et al. vveveen..... 711/210
(73) Assignee: Hewlett-Packard Development 2002%712782’?82 i i lﬁll//“ ;88’; é’ee o 270/380
1 COLL CL dAl. .evvvrrnrrnrnnnes

Company, L.P., Houston, 1X (US) 2004/0044872 Al 3/2004 Scott
N - - L . 2004/0215897 Al* 10/2004 Arimilli et al. 711/144
(") Notice: Subject to any disclaimer, the term of this 2004/0215898 Al* 10/2004 Arimilli et al. 711/144

patent 1s extended or adjusted under 35

U.S.C. 154(b) by 167 days.
* cited by examiner

21) Appl. No.: 10/903,200 _
(21) Appl. No Primary Examiner—Matthew Kim

(22) Filed: Jul. 30, 2004 Assistant Examiner—Ryan Dare

(65) Prior Publication Data (57) ABSTRACT

US 2006/0026359 Al Feb. 2, 2006 The present invention provides a multiprocessor system and

(51) Int. CI method 1n which plural memory locations are used for
(;0;517 1 200 (2006.01) storing TLB-shootdown data respectively for plural proces-
(52) U.S. Cl | 711/207 sors. In contrast to systems in which a single area of memory

serves for all processors’ TLB-shootdown data, different
processors can describe the memory they want to free
concurrently. Thus, concurrent TLB-shootdown request are
less likely to result in performance-limiting TLB-shootdown
(56) References Cited contentions that have previously constrained the scaleability
of multiprocessor systems.

(58) Field of Classification Search 711/207,
711/206, 203
See application file for complete search history.

U.S. PATENT DOCUMENTS
4,733,348 A * 3/1988 Hiraoka et al. 711/207 11 Claims, 4 Drawing Sheets

AP

PROCESSOR PROCESSOR PROCESSOR
= | B2 B3

DATA ROUTER 15

MEMORY 11

TLB-SHOOTDOWN TLB-SHOOTDOWN
ADDRESSES ADDRESSES

TLB-SHOOTDOWN
ADDRESSES
183
F12 | F13 E21 | E23
PROGRAM SPACE | PROGRAM SPACE | PROGRAM SPACE
PS1 PS2 pPS3
ASSIGNABLE PHYSICAL MEMORY 25

PROCESS-

MEMORY OPERATING SYSTEM SPACE

PROGRAM PR], ! Fomesescccccamcacw y

| PROGRAM PR2 | | OPERATING SYSTEM OS |
PROGRAAMERST "ARPOISKLL INGN.OLATILE DATADN
S RGGRAM BRA 1 | Vi OVERFLOW VMG)

U.S. Patent Oct. 9, 2007 Sheet 1 of 4 US 7.281,116 B2

AP1

PROCESSOR
Pi

PROCESSOR PROCESSOR
P2

DATA ROUTER 15

TLB-SHOOTDOWN
ADDRESSES
1S2

MEMORY 11

TLB-SHOOTDOWN
ADDRESSES
151

TLB-SHOOTDOWN
ADDRESSES

Is1 1S2 1S3

PROGRAM SPACE | PROGRAM SPACE | PROGRAM SPACE
PS1 PS2 PS3

ASSIGNABLE PHYSICAL MEMORY 25

PROCESS-
MEMORY
TABLE 21

OPERATING SYSTEM SPACE

PAGE TABLE 23 0SS

| PROGRAM P 1 i L omeemeememmmommee -
(BROGRAM PR% | 1 OPERATING SYSTEM OS !
I PROGRAMBRE} Dot 12 I'NON-VOLATILE DATADN
{ PROGRAW PR4 | L VM OVERFLOW VMO "

U.S. Patent Oct. 9, 2007

TERMINATE PROGRAM
ON NODE N1

S1

NODE N1
DEASSIGNS PAGE

TABLE ENTRIES
S2

NODE N1
PURGES LOCAL TLB
S3

NODE N1 WRITES
PURGE ADDRESSES
TO ASSIGNED
SHOOTDOWN
MEMORY SECTION
S4

M1

FIG. 2

Sheet 2 of 4 US 7.281.116 B2

NODE N1 REQUESTS SHOOTDOWN
WITH MEMORY VECTOR V1
(NODE N2 REQUESTS
SHOOTDOWN WITH MEMORY
VECTOR V2)

S5

NODES N2-NN PURGE TLBs PER
NODE N1 REQUEST
(NODE N1 PURGE TLB PER
NODE N2 REQUEST)

S6

NODES N2-NN REPORT

COMPLETION OF N1 REQUEST
(NODE N1 REPORTS COMPLETION

OF N2 REQUEST)
s7

NODE N1
DETECTS COMPLETION
S8

NODE N1 RELEASES
VIRTUAL MEMORY ADDRESSES
S9

U.S. Patent Oct. 9, 2007 Sheet 3 of 4 US 7.281,116 B2

M2

NODE N1 WRITES PURGE
ADDRESSES TO FIRST

NODE N1 WRITES PURGE
ADDRESSES TO SECOND
SHOOTDOWN MEMORY
AREA 542

SHOOTDOWN MEMORY
AREA S$S41

NODE N1 REQUESTS NODE N2 REQUESTS
TLB SHOOTDOWN TLB SHOOTDOWN
WITH VECTOR V1 WITH VECTOR V2

S91 S92

NODE N1 RECEIVES NODE N2 RECEIVES
TLB SHOOTDOWN REQUEST TLB SHOOTDOWN REQUEST
FROM NODE N2 FROM NODE N1

S61 S62

NODE N1 REPORTS
COMPLETION OF
NODE N2's REQUEST
S71

NODE N2 REPORTS
COMPLETION OF NODE N1's
REQUEST
S/2

NODE N2 DETECTS
COMPLETION OF
NODE N2 REQUEST
S81

NODE N1 DETECTS
COMPLETION OF
NODE N1 REQUEST
S81

NODE N1 RELEASES NODE N2 RELEASES

VIRTUAL MEMORY VIRTUAL MEMORY
S91 $92

FIG. 3

U.S. Patent Oct. 9, 2007 Sheet 4 of 4 US 7.281,116 B2

PROCESSOR PROCESSOR PROCESSOR
P1 P2 P3

-| SIGNAL ROUTER 15

MEMORY 11

TLB-SHOOTDOWN
ADDRESSES
151

TLB-SHOOTDOWN
ADDRESSES
1S2

TLB-SHOOTDOWN
ADDRESSES
1S3

PROGRAM SPACE | PROGRAM SPACE] PROGRAM SPACE
PS1 PS2 PS3

ASSIGNABLE PHYSICAL MEMORY 25

PROCESS-
MEMORY OPERATING SYSTEM SPACE
TABLE 21 QOSS

PAGE TABLE 23

! PROGRAM PR2 HARD DISK 13 . OPERATING SYSTEM OS :

Uus 7,281,116 B2

1

MULTIPROCESSOR SYSTEM HAVING
PLURAL MEMORY LOCATIONS FOR
RESPECTIVELY STORING
TLB-SHOOTDOWN DATA FOR PLURAL
PROCESSOR NODES

BACKGROUND OF THE INVENTION

The present mmvention relates to computers and, more
particularly, to multiprocessor systems employing TLB
shootdown as part of a memory-management scheme. A
major objective of the mvention 1s to provide an approach to
TLB shootdown that scales well with large numbers of
processors 1n a multi-processor system.

Many modern computer systems use virtual-memory
schemes to match the memory requirements of the computer
programs run on these systems to available memory
resources. An operating system typically assigns virtual
memory address “pages” to each program, and assigns these
virtual-memory pages to physical memory pages, preferably
in solid-state random access memory (RAM), with excess
virtual memory pages being assigned to hard-disk locations
on some priority basis when RAM capacity 1s exceeded. The
virtual-memory assignments are stored in a page table,
typically in RAM. So that a processor does not have to
perform a time-consuming access of main memory every
time a virtual memory assignment needs to be read, copies
of recently used page-table assignments can be cached 1n a
translation look-aside bufler (TLB).

Typically, when a program terminates, some of the virtual
memory assigned to 1t can be made available to other
programs. The operating system can 1nstruct the processor
running the program to de-assign the no-longer-needed
virtual memory pages in the page table. Then any corre-
sponding TLB entries for that processor and for any other
processor 1n a multiprocessor system must be purged so that
all TLBs are coherent with the page table. To this end, a
processor can write its TLB shootdown to a dedicated
location 1n main memory and send an interrupt to the other
processors, which then read the TLB-shootdown data, purge
theirr TLBs accordingly, and report when their purges are
complete. The de-assigned virtual memory can then be
released for reassignment.

Various lockout mechanisms can be employed to prevent
a processor from writing TLB-shootdown data to the TLB-
shootdown memory location when it 1s 1n use by another
processor. The processor that 1s locked out waits until the
first TLB purge 1s complete before 1t can begin 1ts own TLB
purge. The “waiting” actually can involve a lot of recheck-
ing, which can consume system bandwidth. As the number
ol processors increases, the frequency of contentions, the
waiting periods, and the bandwidth consumption all
increase, limiting scalability. What 1s needed 1s an approach
to TLB-shootdown that scales better with the number of
processors 1n a multiprocessor system.

SUMMARY OF THE INVENTION

The present mvention provides a multiprocessor system
and method 1n which plural memory locations are used for
storing TLB-shootdown data respectively for plural proces-
sors. A major advantage of the invention 1s that processors
do not have to “take turns” writing their TLB-shootdown
list. In contrast to systems 1n which a single area ol memory
serves for all processors’ TLB-shootdown data, different
processors can describe the memory they want to free
concurrently. This becomes important 1n multiprocessor

10

15

20

25

30

35

40

45

50

55

60

65

2

systems with large numbers of processors, since the likeli-
hood of concurrent TLB shootdowns increases rapidly with
the number of processors. These and other features and
advantages of the mvention are apparent from the descrip-
tion below with reference to the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Specific embodiments of the invention are 1illustrated in
the following figures, which are not depictions of the inven-
tion 1itself.

FIG. 1 depicts a multiprocessor computer system in
accordance with the present invention.

FIG. 2 1s a flow chart of a method of the invention
practiced 1n the context of the system of FIG. 1.

FIG. 3 1s a flow chart of a portion of the method of FIG.
2 showing explicit parallelism.

FIG. 4 depicts another multiprocessor computer system 1n
accordance with the present invention.

DETAILED DESCRIPTION

A multiprocessor computer system AP1 comprises three
processor nodes N1, N2, and N3, volatile physical memory
11, a hard disk 13, and a signal router 15. System AP1
includes three nodes, which suflices to explain the invention.
However, the marginal advantage of the invention i1s greater
for embodiments with more nodes, e.g., 48 or more. Node
N1 1includes a processor P1, a TLB 11, and a cache C1.
Likewise, node N2 includes a processor P2, a TLB T2, and
a cache C2. Also, node N3 includes a processor P3, a TLB
T3, and a cache C3. Data communication among processors
P1-P3 and between the processors and memory 11 1s via
signal router 135; 1n addition, mterrupts are transmitted via
signal router 15.

Hard disk 13 provides non-volatile long-term storage for
system AP1. It can store an operating system OS, programs
including programs PR1-PR4, non-volatile data DN, and
overflow virtual-memory pages VMO (when physical
memory 1s too small to fit all requested virtual memory).
Upon boot-up of system AP1, part of operating system OS
becomes resident 1n operating system space OSS of physical
memory 11. Operating system OS also reserves memory
space for a process-memory table 21, a page table 23, and
TLB-shootdown lists TS1, TS2, and TS3. Lists TS1, TS2,
and TS3 provide for storing shootdown data for a respective
node N1, N2, and N3; these lists provide flags F12, F13,
F21, F23, F31, and F32 that indicate whether a requested
shootdown has been completed for each combination of
requesting node and responding node. The bulk of memory

11 1s assignable physical memory 25 for use by programs
PR1-PR4.

In this example, program PR1 1s launched on node NI1.
Operating system OS requests a virtual memory block to be
reserved for program PR1, storing this virtual-memory-to-
program assignment in process-memory table 21. Operating
system OS 1nspects physical page table 23 to find a free
region ol assignable physical memory space 25 and, accord-
ingly, assigns the requested virtual memory pages to a free
physical memory space PS1; processor P1 then marks space
PS1 unavailable and owned by processor P1.

Then program PR2 1s launched on node N2. Operating
system OS checks virtual page table 21 for free virtual
memory pages and assigns some to program PR2. An
instance of operating system OS running on processor P2
ispects physical page table 23 for free physical memory
pages; since space PS1 1s marked unavailable, processor P2

Uus 7,281,116 B2

3

selects free space PS2, which i1s then marked owned by
processor P2. Program PR3 1s launched on node N3; the
virtual memory space it requires cannot be assigned to
spaces PS1 or PS2, and so 1t 15 assigned to space PS3, which
1s then marked unavailable and owned by processor P3. The
remainder of assignable memory space 23 remains available
for future assignment. The assigned spaces can be used for
memory-resident program code and temporary data.

At this point, a method M1 1n accordance with the
invention applies to the example; method M1 1s tflow-charted
in FIG. 2. At step S1, program PR1 terminates. Operating
system OS determines from process-memory table 21 that
some virtual memory pages can be made available now that
program PR1 no longer requires them. (There may be some
virtual-memory pages used by program PR1 that cannot be
freed because they are shared with another program.) Oper-
ating system OS 1nstructs node N1 to free virtual memory
for reassignment. Accordingly, node N1 de-assigns that
virtual memory space 1n physical page table 23, but retains
ownership over the corresponding entries. Then operating
system OS 1structs node N1 to purge TLB 11 of any entries
relating to the de-assigned virtual memory space at step S3.
Then node N1 writes addresses to be purged to shootdown
memory space 151 at step S4.

At step S5, node N1 broadcasts a request for a TLB
shootdown by activating an interrupt and asserting a vector
corresponding to memory space TS1. Nodes N2 and N3
respond to the request by reading the shootdown specifica-
tion from space TS1 and implementing the indicated purge
at step S6. Fach receiving processor N2, N3 reports suc-
cessiul completion of the purge by setting dedicated flags
F12 and F13 (shown 1n FIG. 1) at step S7. Node N1 can
repeatedly examine flags F12 and F13. Once all flags are set,
node N1 can detect by reading flags F12 and F13 that the
shootdown request has been met at step S8. In response,
node N1 releases ownership of the specified wvirtual
addresses so that they are available for reassignment at step
S9.

In FIG. 2, steps S5, 56, and S7 have supplementary
actions described in parentheses. These are intended to show
how the 1illustrated embodiment handles concurrent TLB-
shootdown request. For example, node N2 can request a
TLB shootdown concurrent with step S3. This request can
be recetved by node N1 while node N1 1s awaiting a
response to its TLB-shootdown request. In the absence of
the request from node N2, node N1 would check the flag
status for memory space TS1 periodically to determine when
the other nodes have completed their purges in response to
the request by node N1. However, the request by node N2
interrupts this checking; rather than continue checking
memory, node N1 responds to the request by node N2 by
reading space TS2 and purging the addresses indicating
therein at step S6. Then node N1 reports completion of the
purge by setting a flag at memory space TS2. When this
reporting 1s complete, node N1 returns to checking the
completion status of space TS1. Completion of the node N1
request 1s 1ndicated at step S9 when all flags of space TS1
are set. Then node N1 releases virtual memory by writing to
physical page table 23.

The parallelism provided by system AP1 1s perhaps more
apparent in FIG. 3, which 1s a flow chart of a method M2,
which 1s a reconceptualization of steps S4-59 of method M1.
Method M2 begins with steps S41 and S42 with nodes N1
and N2 writing shootdown data into first and second shoot-
down memory areas. Then, at steps, S31 and S32, nodes N1
and N2 respectively request TLB shootdowns. Each node
receives the other’s shootdown request at respective steps

10

15

20

25

30

35

40

45

50

55

60

65

4

S61 and S62. Each node reports completion of the other
nodes request respectively at steps S71 and S72. Each node
detects that 1ts request has been met respectively at step S81
and S82. Each node releases the virtual memory associated
with 1ts purge request at respective steps S91 and S92. As 1s
apparent from FIG. 3, the present invention allows a TLB
request can be performed concurrently.

In some cases, shootdown requests are 1ssued a page at a
time. However, the invention also provides for embodiments
that list a large set of pages 1n the TLB-shootdown space so
that fewer requests are required. Even where a series of
request are required for freeing virtual memory for reassign-
ment, the mvention provides for performance savings over
the prior art. In some embodiments, even though requests
are performed serially, some pipelining 1s possible. For
example, a node can begin writing a second page 1n the page
table while 1ssuing a TLB-shootdown request for a first
page.

The assignment of processors and associated components
1s not fixed, but can be configured by a system administrator
for system AP1. For example, system AP1 can be configured
with two processors P1 and P2 assigned to a node N11, as
shown 1 FIG. 4. Processor P3 is assigned to node N22.
Processors P1 and P2 are associated with the same TLB-
shootdown memory TS1. If processor P1 and P2 attempt
concurrent TLB-shootdown requests, there will be a race
condition. One processor will have its request processed and
the other will have to wait, as 1n some conventional systems
employing TLB shootdown. However, as long as the number
of processors per node 1s small, the infrequency of such
conilicts renders them manageable. An advantage of com-
bining processors within a node 1s that fewer vectors and
memory spaces are required for the multiprocessor system.
For example, assigning two processors per node halves the
number of distinct vectors required—which may be helptul
in a system with a limited number of vectors (e.g., 256) and
with lots of devices to assign to the available vectors.

In the embodiment of FIG. 3, 1f processor P1 1s requesting,
a TLB-shootdown, processor P2 must wait until that shoot-
down 1s completed belfore asserting its own. In alternative
embodiments, processors are dynamically reassigned to
nodes to minimize such contentions. For example, 1f pro-
cessor P1 1s managing a TLB shootdown, processor P2 can
be dynamically reassigned to node N22 either immediately
or 1n case processor P2 needs to imitiate 1ts own TLB
shootdown.

In the illustrated embodiments, there 1s a fixed assignment
of TLB lists to nodes. In some alternative embodiments,
TLB-lists are assigned to nodes upon request, €.g., 1n a
round-robin fashion. This can reduce the number of vectors
required as there can be fewer lists than nodes. If more nodes
request TLB shootdowns than there are lists available,
conventional lockout, e.g., semaphore-based, techniques can
be applied. As an alternative to indicating which nodes have
completed the purge, 1t 1s possible to simply count the
number of completions; this allows the use of more eflicient
hardware atomic increment operations to determine when a
TLB-shootdown request has been satisfied. These and other
variations upon and modification to the illustrated embodi-
ments are provided for by the present inventions, the scope
of which 1s defined by the following claims.

What 1s claimed 1s:

1. A multiprocessor computer system comprising:

n processor including first and second processors, n being

a counting number greater than 2;

n TLB’s associated with respective ones of said proces-

sors; and

Uus 7,281,116 B2

S

m<n memory locations for storing TLB-shootdown data,
where m 1s counting number greater than or equal to
two, each of said locations being addressable by at least
one of said processors, at least one of said locations
being addressable by at least two of said processors,
said locations including first and second locations so
that, 1n the event said second processor 1ssues a second
TLB-shootdown request for at least one TLB shoot-
down at the same time or after said first processor
issues a first TLB-shootdown request for at least one
TLB shootdown but before said first request 1s fulfilled,
said first location stores TLB-shootdown data specified
by said first processor while said second location stores
TLB-shootdown data specified by said second proces-
SOT.

2. A system as recited i claim 1 wherein said first and
second processors 1ssue TLB-shootdown requests in the
form of respective first and second interrupts accompanied
by respective first and second vectors corresponds to said
first and second memory locations respectively, said first and
second memory locations being in main memory.

3. A system as recited 1 claim 1 wherein said first n
processor further include a third processors, said first loca-
tion storing all TLB-shootdown data specified by said third
Processor.

4. A system as recited in claim 1 wherein said memory
locations are dynamically assigned to said processor as they
make TLB-shootdown requests.

5. A system as recited 1n claim 4 wherein said memory
locations are assigned to said processor on a round-robin
basis.

6. A system as recited 1n claim 1 wherein said each of said
memory locations stores indications of which of said pro-
cessors have completed a respective TLB-shootdown
request.

10

15

20

25

30

6

7. A system as recited i claim 1 wherein said first
memory location stores indications of how many of said
processors have completed said a respective TLB-shoot-
down request.

8. A method comprising;

a first ol n processors 1n a multiprocessor system 1ssuing,
a first TLB-shootdown request;

storing data for said TLB-shootdown request 1n a first of
m memory locations, where 2=m<n;

a second of said processors 1ssuing a second TLB-shoot-
down request while said first TLB-shootdown request
1s being executed;

determining whether or not at least one of said m memory
locations 1s available for storing data associated with
said second TLB-shootdown request;

i a memory location 1s available, executing said sec-
ond TLB shootdown request concurrently with the
execution of said first TLB shootdown request; and

i a memory location 1s not available, deferring said
second TLB-shootdown request until at least one
other TLB-request has completed execution.

9. A method as recited in claim 8 wherein said all
TLB-shootdown requests 1ssued by said first and second
processors and then executed have their respective data
stored 1n said first memory location.

10. A method as recited in claim 8 wherein said memory
locations are assigned to said processors dynamically as
TLB-shootdown requests are made.

11. A method as recited 1n claim 8 wherein said memory
locations are assigned to said processors on a round-robin
basis.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. . 7,281,116 B2 Page 1 of 1
APPLICATION NO. : 10/903200

DATED . October 9, 2007

INVENTOR(S) . Jonathan K. Ross ¢t al.

It Is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 4, line 64, in Claim 1, delete ““processor™ and insert -- processors --, therefor.

In column 35, line 2, in Claim 1, after “1s™ insert -- a --.

In column 3, line 19, in Claim 2, delete “corresponds™ and 1nsert -- correspond --, therefor.
In column 5, line 22_ 1n Claim 3, after “said” delete ““first™.

In column 5, line 23, in Claim 3, delete ““processor” and insert -- processors --, therefor.

In column 3, line 23, in Claim 3, delete “processors™ and insert -- processor --, therefor.

In column 3, line 27, in Claim 4, delete ““processor” and insert -- processors --, therefor.

In column 3, line 30, in Claim 3, delete “processor” and insert -- processors --, therefor.

In column 6, line 3, in Claim 7, after “completed™ delete “said”™.

Signed and Sealed this

Ninth Day of March, 2010

Lo ST s

David J. Kappos
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

