United States Patent

US007278142B2

(12) (10) Patent No.: US 7,278,142 B2
Bandhole et al. 45) Date of Patent: Oct. 2, 2007
(54) DYNAMIC COMPUTING ENVIRONMENT 6,493,679 Bl 12/2002 Rappaport et al. 705/29
USING REMOTELY ALLOCABLE 6,543,047 B1 4/2003 Vrhel, Jr. et al. 717/121
RESOURCES 6,560,606 Bl 5/2003 Youngcoeevvvvninennnnn. 707/100
6,564,112 Bl 5/2003 FACLOT vvvveveerrrrrerrro.n. 700/97

75 _ . 6,578,141 B2 6/2003 Kelley et al. 713/1
(75) Inventors: g?,g‘;flg’;‘kf:;nd;(:ﬁi:agaf;z;f‘é A 6,633.916 B2 10/2003 Kauffman 709/229
I); Ja. = 6,802,062 B1* 10/2004 Oyamada et al. 718/1

(73)

(%)

(21)

(22)

(65)

(60)

(1)
(52)

(58)

(56)

(US); William Blume, Santa Clara, CA
(US); Carleton Miyamoto, Santa Clara,
CA (US)

Assignee: Veritas Operating Corporation,
Mountain View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 661 days.

Appl. No.: 09/861,483

Filed: May 17, 2001

Prior Publication Data

US 2002/0049803 Al Apr. 25, 2002

Related U.S. Application Data

Provisional application No. 60/228,103, filed on Aug.

24, 2000.

Int. CI.

Gool’ 9/16 (2006.01)

US.CL ... 718/104; °709/217, 709/226;
709/229

Field of Classification Search 709/229,

709/217, 218, 220, 223, 226; 718/104; 719/310
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4925311 A 5/1990 Neches et al. 364/200
5,394,522 A 2/1995 Sanchez-Frank et al. ... 395/159
5,479,599 A 12/1995 Rockwell et al. 715/837
5,515,524 A 5/1996 Lynch et al. 395/500
5,555,370 A 0/1996 Tietal. ..ooovvvvvvnnnnnnnnn. 395/161
5,668,995 A 9/1997 Bhat ..ooovvvvviiiiinnnnnnns. 395/674
5,771,354 A * 6/1998 Crawfordo........ 709/229
5,894,571 A 4/1999 O CONNOT .evvvvvvrreennnennn 395/652
5,961,582 A * 10/1999 Galnes ...covvvivviiniinninnns 718/1
5,966,130 A * 10/1999 Benman, Jr. 345/418
6,000,507 A 12/1999 Brooks et al. 712/28
6,081,846 A 6/2000 Hyder et al. 709/250
6,081,864 A 6/2000 Loweetal.o.c......... 710/129
6,182,123 Bl 1/2001 Filepp et al. 709/217
6,182,275 Bl 1/2001 Beelitz et al. 717/175
6,230,200 Bl 5/2001 Forecastetal. 709/226
6,259,448 Bl 7/2001 McNally et al. 345/348
6,370,560 Bl 4/2002 Robertazzi et al. 718/105
6,374,336 B1* 4/2002 Peters et al. 711/167
6,393,557 Bl 5/2002 Guthnidge et al. 713/1
6,466,978 B1* 10/2002 Mukherjee et al. 709/225

FOREIGN PATENT DOCUMENTS

EP 745929 Al 12/1996
EP 841616 A2 5/1998

OTHER PUBLICATTONS

Sekaran Nanja, “User Interface for Dynamic Computing Environ-
ment Using Allocatable Resources,” Filed Sep. 15, 2000, U.S. Appl.
No. 09/663,252, 27 pages of specification (including claims and
abstract), and 5 sheets of drawings.

Sekaran Nanja, “System for Configuration of Dynamic Computing
Environments Using a Visual Interface,” Filed Sep. 15, 2000, U.S.
Appl. No. 09/662,990, 23 pages of specification (including claims
and abstract), and 2 sheets of drawings.

Simon—“Computer System Buwlt to Order”—Nov. 25,
1996—Newsgroups: demon.adverts, midlands.adverts, sanet.ad-
verts, solent.forsale, uk.adverts.computer, unet.adverts, uk.adverts.
other, dungeon.forsale.

Debenham, Clive, “Taos: The Operating System,” May 29, 1995,
Tantric Technologies, Newsgroups: comp.parallel.

Application Developer’s Training Course, SNAP 8.0 Training Par-
ticipant Guide, Module 7, Copyright © 1997, Template Software,
Inc., pp. 7-1 through 7-34.

Workflow Template, Developing A WEFT Workflow System, Copy-
right © 1998, Template Software, Inc.

Workflow Template, Using the WEFT Development Environment,
Copyright © 1998, Template Software, Inc.

Web Component, Using the Web Component, Copyright © 1997,
Template Software, Inc.

* cited by examiner

Primary Examiner—Meng-Al T. An

Assistant Examiner—Andy Ho

(74) Attorney, Agent, or Firm—Campbell Stephenson
Ascolese LLP

(57) ABSTRACT

A system and a method of providing a dynamic computing
environment to a user, i which the dynamic computing
environment 1s configured to communicate and to operate
under the control of the user. The dynamic computing
environment has one or more virtual resources including at
least one virtual computing device and one or more com-
puter programs associated with the at least one wvirtual
computing device. According to the present invention, the
user has access, for example, to interact with, to modity, and
to use the dynamic computing environment including the at
least one virtual resource and the at least one physical
resource.

33 Claims, 5 Drawing Sheets

U.S. Patent Oct. 2, 2007 Sheet 1 of 5 US 7,278,142 B2

FlG. 14

gl 9]A 0§ 8y 97

J4vOaA I (d3 JOLINOA
MJOMLIN Ol

US 7,278,142 B2

_ VAN 140d

- m MIOMLIN LES

~ m

| T o 0}

7 m " v
m AY1dSIQ

:

3 m

w ;

S m
m 40SS3004d AYONIN Y3 TIOYLNOD
m Jléza | HALSAS _q 0/

ON\ B7 9 x

U.S. Patent

L_‘---_--_-'_—_‘----‘-‘_“------__*“----------“ﬂ_----------"“--ﬂ-n——J

US 7,278,142 B2

Sheet 3 of 5

Oct. 2, 2007

U.S. Patent

N/l

-543LN0Y LINYAINI

RAR:EILEN
]

—

JINGS

(8

08

RRTENES

TR

US 7,278,142 B2

Sheet 4 of 5

Oct. 2, 2007

U.S. Patent

abp.0)S
323G

i ¢ Ild

Gi¢

B0IAIBG S30IAI9G JUoA]
b dnyoo | N Johiag Qap
138) " o y
32UDJJ0J 1JND4
1Y |
DI JOAJSS |
S9N] ddy 155 . __umm%_%
XIN) .
7 7L SUOISSAS "
100 ’
| . 31¢
_
, | 13)no
9JlAJa§ JETVE]S 9__ __._m DNI_HW_]! 10¢
www__m_,ﬂ.,_._o ddy | 7 JanaS gl Jol] xﬁzgm
. 1ol J39UD|Dg POOT o7
BCC IDMIPPIN SRONIAC _
90IAJ3S mom | JOAJSS Qo

S0IAA(] .|_
SHOpUIY 1) Ayigosy B GO

(x
ggH SHOpuj) T e ot //oa

ot} 01007 ddy~— |7
YR) D0~_

US 7,278,142 B2

Sheet 5 of 5

Oct. 2, 2007

U.S. Patent

ﬂl'l-.-lllllll.ll'l'lll.lrlll — e el - ol s e ol e wil s sl g BNy SN N e s PSS N P Skl N SN W SN DI BN BN U B TR B W S S T - SEE BN e g e S i e mlip. s e e e e e -

r-““-' 2, 8 B B ¥ N B _ N I 1 I B L N _§ B W & __§ gty) B W R B CEEUURT Y QPSSR —m g - -l hggs menl sl d i s e mEk b Sy gulk R N . . A e v e s e gl TEE RS W

34
Gbe

428
ol .
M 99¢ 19§
o sing | /Suowang
m j00g A\ 1008
w LTEN
i | Kyoodoy
m SARG |y SUowa(
m 60101 mmes.m ¢
m —— SUOLWAD]
| pom)

09¢

S1OUqNS /SIOMIBN ~ |

BIRO e

L 1 J B 7 N J A L Y L. BN s T T L a2 §F 1 §p I & B F ' _§F *T N 1 "F° B F_ 5 _§F N F T3 5 9 | ol S —_—_-..._-—-J

Bet 9%¢ wSh C8F (SE
oiog) {2106) {030 | (010q) (2i0q
sjouqns | |ssuaar | | Byuoy | | s1assy | junoady
<> - Sl - Sl
]
oLe
4
| saBouny cy wm@_ﬁuﬂ_,_
sboupy
82IA9(]
|
;aboupyy
L&t ppe SA0IBS 90MA(] W%_W%%
159
300Dy
5}958Y
GEY
3bDuD) 176 |
EITS g7e sRbouop |
CIe SJUNCRY L
ne—J
T
[
A

L_ e . e — - T T g S e e g -t el e s g e e =l Sk B s el S L U T UL e D) e BN SR ———— e e e e e TR e St T e, R '--_ﬂ——h—-l

60¢

JBAJOS
HoM

& Il

/
508

___u_,_..r ol |

(0%

|
Diy o)
PLRE
c0¢

%IOMON

US 7,278,142 B2

1

DYNAMIC COMPUTING ENVIRONMENT
USING REMOTELY ALLOCABLE
RESOURCES

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application claims priority from U.S. Provisional
Application, entitled “Dynamic Computing Environment
Using Allocateable Resources” Ser. No. 60/228,105 and
filed on Aug. 24, 2000. This application 1s also related to
U.S. patent application Ser. Nos. 09/663,252 and 09/662,
990, respectively entitled “User Interface for Dynamic Com-
puting Environment Using a Allocateable Resources™ and
“System for Configuration of Dynamic Computing Envi-
ronment Using a Visual Interface,” filed Sep. 15, 2000. Both
applications and their disclosures are incorporated herein by
reference for all purposes.

BACKGROUND OF THE INVENTION

The present invention relates in general to mformation
processing, and more specifically to a system which facili-
tates dynamic allocation and de-allocation of computing
resources such as digital processors, networks, storage
devices and soltware to create a virtual computing environ-
ment using an arrangement of networked processors and
Processes.

Today, computers are increasingly being used in almost
every area ol commerce, education, entertainment and pro-
ductivity. With the growing popularity of the Internet, cor-
porate and campus intranets, home networking and other
networks, the trend 1s to use multiple computers, or pro-
cessing platforms, to perform tasks and provide services.
The networked processors approach 1s 1n contrast to tradi-
tional approaches of running a single application as a
stand-alone application on a single computer.

One approach to networked processing 1s a “client-server”
model whereby a server computer on the Internet 1s used to
transfer information to a client computer. Typically, the
client computer is located at an end user’s location, such as
a personal computer 1n a user’s home. This allows large
amounts of information to be stored in, and accessed from,
the server computer by many client computers. The client
computers can access the server computer simultaneously.
Another approach allows a user to obtain portions of execut-
able programs from the server to operate an application
program 1n functional “pieces” or components, on the client
computer. For example, a user can run a word-processing
program 1n a client-server mode where the server provides
portions of the word-processing software to the user’s
computer on an as-needed basis.

Yet another model 1s the Application Service Provider
(ASP) model. This removes the application still further from
the end-user and can 1volve more processors, such as
servers. The ASP model allows a primary server to host a
client-server application, or to host any type of data-pro-
cessing resource such as a database, user interface, program
component, data object, etc. The application can appear to
the client as being hosted by the primary server when 1t 1s
actually being provided by one or more other servers. The
other servers can provide the application, or components, by
having the client directly access the other server, or having
the client access the other server through the primary server.

Still other models are possible. Any arbitrary arrangement
of processors can be used to provide a service or function to
an end user, or to another device such as another processor,

10

15

20

25

30

35

40

45

50

55

60

65

2

consumer electronic device, etc. Examples of such systems
are groups of computers used to perform a large mathemati-
cal task, such as rendering frames of a video sequence or
performing a simulation. Systems that use many processors
to exchange information, such as email systems, multicast-
ing programs, voice-over-IP communications, etc., can
potentially require hundreds, or even thousands or more,
networked processors.

Software 1s necessary to operate each of these models.
Each of the systems described above will likely use multiple
soltware processes on each processing platform. Most likely,
the different software processes are designed by different
soltware manufacturers. Although there are standard speci-
fications to design compatible software, such software 1s still
designed largely independently of other manufacturers’ soft-
ware. For example, a user may be running an operating
system and web browser designed by different companies.
Additional processes may be concurrently executing on the
user’s computer.

Thus, many independently-designed hardware devices
and software processes must be coordinated 1n order for the
overall networked system to operate correctly and eflec-
tively. This complexity 1s multiplied by the number of users
that the system 1s designed to support. For example, where
the system 1s an Internet system it 1s common for the user
base to be 1n the hundreds of thousands, or millions. There
may be hundreds or thousands (or more) simultaneous users
operating client processing systems that require tens, or even
hundreds, of servers for adequate bandwidth. Diflferent serv-
ers 1n the networked system may perform different functions
such as web page serving, database maintenance, caching,
etc.

This complexity further manifests itself 1n another aspect.
In the past, soltware applications used to be monolithic. That
1s, the application was self-contained within a box with no
interaction with other applications, where a box 1s a com-
puting device or computing machine. However, this para-
digm 1s no longer true. With Internet and e-commerce
applications, for example, a client application 1s configured
to communicate with a remotely located server application,
such as eBay.com®, or Amazon.com®, or the like. Typi-
cally, e-commerce applications define a three-tier architec-
ture that includes: (1) client; (2) server; and (3) database.
Within this architecture, the client may be running an Intel®
box with a Microsoft Windows X86® environment, the
server may be running a Sun Microsystems® box running an
1Planet™ application, the database may be Sun Microsys-
tems® box running Oracle®, for example. Therefore, this
three-tiered architecture increases the complexity and cost of
many soltware applications. In one aspect, the complexity of
today’s computing environments increases computing costs,
and extends the time for a new product to reach the market.

Major problems arise where companies need to design,
develop, and test software and hardware for use 1n such large
and complex systems. Because today’s applications are
multi-tiered, it 1s no longer possible to develop or to test an
application within a box. Not only must compatible hard-
ware be selected, obtained, connected and tested; but each
piece ol software must be selected in accordance with
hardware requirements, obtained (usually by complex multi-
licensing arrangements), installed, configured and tested.
Finally, in order to test the system at anywhere near oper-
ating capacity, many human testers may need to be analyze
and exercise the system during alpha and beta testing.

Often, the task of adequately testing such systems 1s the
single largest expense 1n designing and developing software,
especially 1 a computing system developer acquires more

US 7,278,142 B2

3

computing resources than 1s necessary. For example, a
software developer might commait a substantial investment
of funds capital computing equipment only to find later the
hardware either does not meet its requirements or the
quantity of hardware 1s underutilized 1n 1ts design of sofit-
ware-based computing products or resources.

Reliability and compatibility also are important aspects
that software developers and users rely upon when selecting,
new software and hardware. As the numbers of computing,
devices of today’s computing environments 1crease, com-
puting development and operation costs increase as well.
Complexity of such environments also extends the time for
a new computing product to reach the market. Today’s
computing environments are burdened by the conventional
infrastructure underlying the computing environments. For
example, the conventional infrastructure 1s associated with
undue costs and eflorts necessary to procure, install, provi-
sion and maintain the infrastructure. The burden associated
with the infrastructure of today increases non-linearly with
the complexity of the computing devices and interconnec-
tivity of such devices that comprise the mirastructure. Fur-
thermore, the complexity also increases the need for unnec-
essary evaluation and re-evaluation of new technologies
from different vendors that are added to the conventional
infrastructure.

Thus, there 1s a need for a computing environment system
that provides users and developers an appropriate amount of
reliable computing resources which can be dynamically
allocated or de-allocated. A dynamic computing environ-
ment according to the present mmvention overcomes the
alforementioned problems and provides advantages over the
prior art.

SUMMARY OF THE

INVENTION

The present invention allows fast, eflicient selection and
configuration of processing networks and associated com-
puters or computing devices, which can then be accessed
and managed remotely. According to the present invention,
the physical resources for implementing such a processing,
network are fully selectable and allocable by a system
architect as a corresponding virtual resource. A system
architect designs a system by allocating resources and
specilying how the resources are to be used. The present
invention allows {fast allocation and configuration of
resources such that different environments can be created
from the same resources within minutes, or even seconds.
This allows “time sharing” of overall resources so that a first
environment can be “alive” or operative for a time period
defined by the system architect, followed by second, third
and fourth environments being instantly created for the next
four hours for three different customers, and so on. After a
time period expires, such environments might either manu-
ally or automatically de-allocate such resources. Since these
“computing environments” can be dynamically configured
and re-configured out of the same set of resources, these will
also be referred to as “Dynamic Computing Environments”.

A specific embodiment allows system architects to create
a computing environment from a remotely-accessible user
interface such as a web page on the Internet. Thus, the
customer can create, modily and operate the environment
from anywhere 1n the world. Since the resources, 1n turn, can
communicate over networks, including the Internet, this
approach eliminates the cost of shipping hardware and
software. Hardware and software designers, programmers,
testers or other personnel using an environment according to

10

15

20

25

30

35

40

45

50

55

60

65

4

the present invention can, similarly, be located anywhere in
the world such that labor costs are optimized.

The creation of dynamic computing environments
(“DCE”) 1s automatic. Unlike the conventional computing
infrastructure, according to an embodiment of the present
invention there 1s no need to physically couple or de-couple
cach physical machine or resource to each other upon adding
or removing such resources. There 1s no need to set-up
Internet Protocol (IP) addresses or other network settings, or
install operating systems and associated application pro-
grams on one or more physical machines, which must be
under the control of the system architect. All such activities
on a DCE can be performed automatically without user
intervention.

In one embodiment of the present invention, a system
using a computer system to provide a dynamic computing
environment to a user, i which the dynamic computing
environment 1s configured to communicate with and to
operate under the control of the user. The dynamic comput-
ing environment has at least one virtual resource including
one or more computer programs associated with the virtual
resource. The system comprises a session manager config-
ured to accept user inputs, an assets manager electrically
coupled to the session manager, where the assets manager
generates an association relating the virtual resource to at
least one physical resource, a configuration manager elec-
trically coupled to the session manager, where the configu-
ration manager maintains an association of at least one
virtual network with the wvirtual resource; and a device
manager electrically coupled to the device services manager,
where the device manager manages the association between
the virtual resource and the physical resource.

In a specific embodiment of the present invention, the
system 1ncludes a dynamic computing environment com-
prising a {irst virtual resource configured as a client, where
the first virtual resource 1s a first virtual computing device,
and a second virtual resource configured as a server, where
the second virtual resource 1s a second virtual computing
device. In this embodiment, the second virtual computing
device 1s coupled to exchange information with the first
virtual computing device. Additionally, a virtual sub-net-
work includes the first and the second virtual computing
device where the user has access to the client, the server, and
the information exchanged.

BRIEF DESCRIPTION OF TH.

L1l

DRAWINGS

FIG. 1A illustrates a computer system suitable for use
with the present mvention;

FIG. 1B shows basic subsystems 1n the computer system
of FIG. 1A;

FIG. 1C 1s a generalized diagram of a typical computer
network suitable for use with the present invention;

FIG. 2 illustrates a layered architecture for providing a
Dynamic Computing Environment according to an embodi-
ment of the present invention; and

FIG. 3 1s a block diagram of an apparatus for providing a
Dynamic Computing Environment according to an embodi-
ment of the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

Detailed descriptions of the embodiments are provided
heremn. It 1s to be understood, however, that the present
invention may be embodied in various forms. Therefore,
specific details disclosed herein are not to be interpreted as
limiting, but rather as a basis for the claims and as a

US 7,278,142 B2

S

representative basis for teaching one skilled in the art to
employ the present mvention in virtually any appropnately
detailed system, structure or manner.

The present invention allows fast, etlicient selection and
configuration of processing networks, which can then be
accessed and managed remotely. The processing network 1s
referred to as a system including “resources.” A system
resource 1s any hardware, software or communication com-
ponent in the system. For example, discrete hardware
devices include processing platforms such as computers or
processors, mobile/laptop computers, embedded computing
devices, hand-held computers, personal digital assistants,
point-of-sale terminals, smart-card devices, storage devices,
data transmission and routing hardware etc., without limi-
tation. Additionally, computer peripherals such as monitors,
input/output devices, disk drives, manufacturing devices, or
any device capable of responding to, handling, transferring
or interacting with digital data are also resources. Software,
or any other form of instruction, 1s executed by processors
in the system and 1s also a type of resource. Finally,
communication resources are also part of the system such as
a digital network’s hardware including the network’s con-
figuration and topology, where control of the network 1is
provided by software and/or hardware. Additionally, the
network may be based on wired connections or wireless
connections. For instance, the network hardware and soft-
ware may be based on Bluetooth wireless standards.

For example, a processing network of a general consumer
might include a PDA and a cell phone, each connected by
wireless channels to a single personal computer, which in
turn 1s connected to an email server at a remote location
through the Internet. As another example, a processing
network might include a personal computer runmng
Microsoit Windows 98 operating system, a lap-top computer
running Linux operating system, and another personal com-
puter running Windows NT operating system along with
router and firewall software, wherein all three computers are
connected using a local Ethernet hub, and the router sofit-
ware routes connections to the Internet.

According to the present invention, the resources for such
a processing network are fully selectable and allocable by a
system architect. In a specific embodiment, a primary com-
pany, Jareva Technologies, Inc.® provides proprietary tech-
nology to a system architect for designing a system by
allocating resources and specitying how the resources are to
be used. The system architect can be an individual, corporate
entity, etc. The system 1s referred to as an “environment”™—
or more specifically as a “computing environment™ and the
primary provider of such an environment 1s referred to as an
Environment Service Provider (ESP). A typical system
architect 1s referred to as the “‘customer.” The primary
provider obtains revenue for providing the resources and the
tools to easily select, allocate, configure and run the envi-
ronment.

The specific embodiment of the present invention allows
fast allocation and configuration of resources such that
different environments can be created from the same
resources within minutes, or even seconds. This allows
“time sharing™ of overall resources so that a first environ-
ment can be “alive” or operative for a time period defined by
the system architect (e.g., daily two-hour slot), followed by
second, third and fourth environments being instantly cre-
ated for the next four hours for three different customers, and
so on. After a time period expires, such environments might
either manually or automatically de-allocate such resources.
Since these “computing environments™ can be dynamically

10

15

20

25

30

35

40

45

50

55

60

65

6

configured and re-configured out ol the same set of
resources, these will also be referred to as “Dynamic Com-
puting Environments™.

A specific embodiment allows customers to create a
computing environment from a remotely-accessible user
interface such as a web page on the Internet. Thus, the
customer can create, modily and operate the environment
from anywhere 1n the world. Since the resources, 1n turn, can
communicate over networks, including the Internet, this
approach eliminates the cost of shipping hardware and
soltware. Hardware and software designers, programmers,
testers or other personnel using an environment according to
the present invention can, similarly, be located anywhere in
the world such that labor costs are optimized.

The creation of dynamic computing environments
(“DCE”) 1s automatic. For example, a customer can request
a web-site simulator using twelve web-page servers on a
Microsolt® NT platform, two disk arrays at a specific
bandwidth and storage capacity, two caching servers and
200 clients running Netscape Navigator™ under Microsoit
Windows® 2000 using Pentium III™ processors at under
800 MHz. Such an environment 1s created and destroyed,
and even re-created automatically, without human interven-
tion each time. Unlike the conventional computing inira-
structure, according to an embodiment of the present mnven-
tion there 1s no need to physically couple or de-couple each
physical machine or resource to each other upon adding or
removing such resources. There 1s no need to set-up Internet
Protocol (IP) addresses or other network settings, or install
operating systems and associated application programs on
one or more physical machines. All such activities on a DCE
can be performed automatically without user intervention.

According to the present invention, the DCE 1s a virtual
computing system including a network comprising a number
of distinct types of machines and a network connecting
them. For example, a system architect might require a DCE
to mclude a Sun Sparc running a certain version of Solaris
O/S coupled to a Linux machine. The present invention
enables the separation of the activity of designing a DCE
from the activity of actually creating the DCE. Designing a
DCE 1includes choosing the specific hardware, choosing the
operating systems or other software, and choosing the spe-
cific interconnections, etc. Creating a DCE 1includes allocat-
ing the resources, 1nstalling the operating systems and other
soltware, etc. Furthermore, the present invention automates
the process of creating the DCE. A DCE for which resources
have not been allocated yet will also be referred to as a
virtual computing environment. Similarly, a computing
device (or a subnet) that 1s part of a DCE can also be referred
to as a virtual computing device (or a virtual subnet).

The present invention provides a framework that enables
configuring, provisioning, accessing and managing DCEs
remotely. Configuring a DCE 1volves choosing the
resources and their interconnections. The present invention
supports operations for making such design choices through
appropriate programmable 1nterfaces. The iterfaces can be
used interactively through a graphical user interface such as
a web page or non-interactively through a program script.
Provisioming a DCE involves allocation of physical
resources required for a DCE to function. The present
invention manages the physical resources needed for provi-
sioning DCEs and supports operations for allocating/de-
allocating these resources. Accessing a DCE involves
accessing one or more devices and/or sub-networks within
the DCE. The present mmvention supports operations for
accessing the components of a DCE. For instance, when a
user needs to copy data from a specific computer to a backup

US 7,278,142 B2

7

storage device, operations mvolving “read” access to the
computer and its local storage, “write” access to the storage
device, and access to the network for transmitting the data
will be used by the present invention to meet the user’s
needs. Managing a DCE mvolves managing the components
of a DCE, such as a personal computer, a network router, etc.

In one embodiment of the present invention, a system that
provides a framework for administering DCEs 1s 1mple-
mented as a distributed system consisting of diflerent soft-
ware programs running on different computers and network-
ing hardware. Administering DCEs, as described herein,
refers to the configuring, provisioning, accessing, and man-
aging ol dynamic computing environments. In a further
embodiment, the present invention permits “virtual” hosting
of dynamic computing environments. As used herein, the
term ““virtual” specifies that neither the requisite devices nor
the network need to be physically accessible to users.
Further, 1n accordance with this embodiment, the hosting
process may be imtiated or terminated by users at will, from
any geographic location. Thus the admimstrative framework
allows users to remotely configure, provision, access, and
manage DCEs.

A further understanding of embodiments of the present
invention will be gained with reference to the diagrams and
the descriptions that follow.

FIGS. 1A, 1B, and 1C 1illustrate basic hardware compo-
nents suitable for practicing the present invention. FIG. 1A
1s an 1llustration of computer system 1 including display 3
having display screen 5. Cabinet 7 houses standard com-
puter components (not shown) such as a disk drive, CDROM
drive, display adapter, network card, random access memory
(RAM), central processing unit (CPU), and other compo-
nents, subsystems and devices. User input devices such as
mouse 11 having buttons 13, and keyboard 9 are shown.
Other user mput devices such as a trackball, touch-screen,
digitizing tablet, etc. can be used. In general, the computer
system 1s 1llustrative of but one type of computer system,
such as a desktop computer, suitable for use with the present
invention. Computers can be configured with many different
hardware components and can be made 1n many dimensions
and styles (e.g., laptop, palmtop, server, workstation, main-
frame). Any hardware platform suitable for performing the
processing described herein 1s suitable for use with the
present invention.

FIG. 1B illustrates subsystems that might typically be
found 1 a computer such as computer 1. In FIG. 1B,
subsystems within box 20 are directly interfaced to internal
bus 22. Such subsystems typically are contained within the
computer system such as within cabinet 7 of FIG. 1A.
Subsystems include mput/output (I/O) controller 24, System
Memory (or random access memory “RAM”) 26, central
processing unit CPU 28, Display Adapter 30, Serial Port 40,
Fixed Disk 42, Network Interface Adapter 44, which 1n turn
1s coupled electrically to a network. The use of bus 22 allows
cach of the subsystems to transier data among subsystems
and, most importantly, with the CPU, where the CPU might
be a Sparc, an Intel CPU, a PowerPC, or the like. External
devices can communicate with the CPU or other subsystems
via bus 22 by interfacing with a subsystem on the bus. Thus,
Monitor 46 connects with Display Adapter 30, a relative
pointing device (e.g. a mouse) connects through Serial Port
40. Some devices such as Keyboard 50 can communicate
with the CPU by direct means without using the main data
bus as, for example, via an iterrupt controller and associ-
ated registers.

As with the external physical configuration shown 1n FIG.
1A, many subsystem configurations are possible. FIG. 1B 1s

10

15

20

25

30

35

40

45

50

55

60

65

8

illustrative of but one suitable configuration. Subsystems,
components or devices other than those shown in FIG. 1B
can be added. A suitable computer system can be achieved
without using all of the subsystems shown 1n FIG. 1B. For
example, a standalone computer need not be coupled to a
network so Network Interface 44 would not be required.
Other subsystems such as a CDROM drnive, graphics accel-
erator, etc. can be included 1n the configuration without
aflecting the nature or functionality of the system of the
present 1nvention.

FIG. 1C 1s a generalized diagram of a typical network that
might be used to practice an embodiment of the present
invention. In FIG. 1C, network system 80 includes several
local networks coupled to the Internet. Although specific
network protocols, physical layers, topologies, and other
network properties are presented herein, the present inven-
tion 1s suitable for use with any network.

In FIG. 1C, computer USER1 1s connected to Serverl,
wherein the connection can be by a network, such as
Ethernet, or Asynchronous Transier Mode, or by a modem,
or by other means. The network provides the communication
means, such as physical inter-connective links comprising
copper wire, fiber optic cable, or the like, for transmitting
and receiving signals. Wireless communication means, such
as radio waves or the like, are also understood to provide
means to transier information from a source to a destination.
Hence, the communication link need not be a wire but can
be infrared, radio wave transmission, etc. Serverl 1s coupled
to the Internet. The Internet 1s shown symbolically as a
collection of server routers 82. Note that the use of the
Internet for distribution or communication of information 1s
not strictly necessary to practice the present invention but 1s
merely used to illustrate a specific embodiment, below.

Further, the use of server computers and the designation
of server and client machines 1s not crucial to an implemen-
tation of the present invention. USER1 Computer can be
connected directly to the Internet. Serverl’s connection to
the Internet 1s typically by a relatively high bandwidth
transmission medium such as a T1 line or T3 line. Similarly,
other computers 84 are shown utilizing a local network at a
different location from USER1 Computer. The computers at
84 are coupled to the Internet via Server2. USER3 and
Server3 represent yet a third installation. In a specific
embodiment, a user of the present invention operates a user
interface associated with computers 84 to at least virtually
configure one or more computing devices as a subnet. Note
that the use of the term “computing device” includes any
processing device or platform such as a web television
device, personal digital assistant (e.g., a Palm Pilot manu-
factured by Palm, Inc.), cellular telephone, eftc.

As 1s well known 1n the art of network communications,
a network 1s configured to communicate electrical informa-
tion, such as a computer data signal comprising data (e.g.,
binary data bits) superimposed upon a radio or any other
carrier wave. A person having ordinary skill 1n the art would
appreciate that a carrier wave 1s electromagnetic energy
propagated from a source by radiation, optical or conduction
waves and 1s suitable for embodying an information-bearing
signal, such as a computer data signal. In one embodiment,
a carrier wave behaves, or 1s modulated, according to a
network protocol, such as or Ethernet, IEEE 1394, TCP/IP,
or any other communication protocol, so as to include
computer data information. The carrier wave can be, for
example, a direct current, an alternating current, or a pulse
chain. In modulation of the carrier wave, 1t may be processed
in such a way that 1ts amplitude, frequency, or some other
property varies so as to embody data for transfer.

US 7,278,142 B2

9

FIG. 2 1s a block diagram 1llustrating the N-Tier archi-
tectural structure of system 200 for hosting one or more
DCEs according to the present invention. In FIG. 2, system
200 comprises a number of tiers, namely a switch tier 203,
a web tier 205 usability tier 207, middleware tier 209,
application logic tier 211 and data center tier 213. One or
more of the tiers are implemented using software (propri-
ctary or third-party), or hardware or a combination thereof.
Switch tier 203 includes a router 217 for routing data packets
through the network, a firewall 218 and a load balancer 219
for balancing the load on web tier 205. The load balancer
219 ensures that each of the web servers 1n the web tier 205
receives roughly equal amounts of load and 1f one of the web
servers goes down (1.e., becomes moperable) the trailic 1s
routed to other web servers 1n the web tier 205.

Exemplary load balancer 219 uses IP packets based
load-balancing. Of course, one having ordinary skill 1n the
art would appreciate that any other load balancing scheme
may be used without aflecting the nature of the switch tier
203 or any other tier. Router 217 may be a Cisco 7200
Series™ router available from Cisco, Inc.®, or alternatively,
router 217 may be any other suitable type of router, or an
equivalent device that provides substantially the same func-
tionality. Web tier 205 comprises one or more web servers
such as a Linux box running an Apache web server, for
example, or other comparable type web servers. Usability
tier 207 provides various services mcluding load balancing
(for the app-servers), billing, session management, security
(SSL), and fault tolerance. SSL refers to Secure Socket
Layer, which 1s a protocol developed by Netscape for
transmitting private documents via the Internet.

Middleware tier 209 contains one or more application
servers 221, 223 and a module 2235 for implementing look up
event and services. The primary function of the middleware
tier 1s to delegate requests to specific services that are
responsible for specific actions. For instance, these actions
may involve accessing the database, accessing the storage,
or accessing a computing device. The processes running on
the application servers 221 and 223 make such delegation
decisions and are further illustrated in FIG. 3. BEA
WebLogic™ servers running on a Solaris® platform, for
example, or the like are suitable to implement application
servers 221 and 223.

Since one or more of the services in the Application logic
tier 211 may be replicated and be running on independent
physical machines, they need to be “looked-up™ for avail-
ability. Using such a lookup service will allow the services
in the Application logic tier 211 to be started or shut down
asynchronously. That 1s, the starting or shutting down of the
services related to logic tier 211 need not be synchronized
with the processes on the application servers 221 and 223.
For instance, increasing the number of Linux boxes—as
capacity devices in Data Center tier 213—may require
increasing the number of Linux device services, and this can
be done without the knowledge of the application server(s)
by automatically replicating the Linux device services and
notifying the lookup service. In addition, the services in the
Application logic tier 211 may have to provide notice of
events (such as a storage unit 1s full, or there are no more
Linux boxes available) to the application servers 221 and
223. Such notification can be done through Lookup/Event
services. Lookup/Event services can be provided through
Sun Microsystems” Jim1 software layer, for example. Of
course, other implementations of the lookup/event services
using proprietary or third party software are possible.

Application logic tier 211 provides a variety of operating
systems device services such as Windows 227, Linux 229,

10

15

20

25

30

35

40

45

50

55

60

65

10

Unix 231 device services. These device services are respon-
sible for managing physical devices available 1n the data
center tier 213. User management service 233 1s 1mple-
mented within application logic tier 211 and establishes and
maintains each user’s configured virtual machines within a
DCE. Such information is stored in the database associated
with the application logic tier 211. Data center tier 213
includes various operating system platforms and processors,
also selectable by the user. Data center tier 213 also includes
networking and storage resources as well. Although not
shown, one of ordinary skill in the art will realize that one
or more of the aforementioned tiers and components therein
can be implemented using third party providers, dedicated
custom modules or software and hardware or a combination
thereof.

FIG. 3 1s a block diagram illustrating an embodiment of
the present invention. Exemplary system 342 1s configured
to host and administer a DCE and FIG. 3 shows the
component architecture of the system 342 rather than the
layering architecture shown in FIG. 2. As shown, exemplary
system 342 1s communicatively coupled through both an
Internet 307 and a client network 302 to a client 301. Web
server 309, although optional, 1s depicted mn FIG. 3 to
provide a web-based interface for realizing this communi-
cative coupling. Although only one client 301 1s shown, 1t
should be understood that the system 300 could include
many clients 301.

Firewalls 303 and 305 maintain security within the client
network 302 and the system 342, respectively. In the exem-
plary configuration shown in FIG. 3, a web server 309 1s
coupled between the Internet 307 and the system 342.
Exemplary web server 309 could be any commercially
available web server machine and/or software that supports
Java Servlets and JSP (Java server pages). Web server 309
uses the servlets and the JSP pages to receive requests from
any web client, such as a browser, and forward such requests
to the application server 311, and return the results from the
application server 311 to the client 301. The web server 309
communicates with the application server 311, for example,
using an XML-based interface programming language. This
language provides complete separation of the functionality
of the system from the presentation aspects of the system as
viewed by a user at the user interface of the client 301. A
person having ordinary skill in the art of data processing
would appreciate the use of XML, or other suitable lan-
guages, to practice the present invention.

The connection between client 301 and web server 309
may either be, for example, a secure or an msecure connec-
tion. For instance, the connection may use the Secure Socket
Layer (SSL) protocol to ensure security of the data trans-
mission between client 301 and web server 309. If an
embodiment of the invention were to be used inside the
secure boundaries of an organization, then a secure connec-
tion would be redundant. Secure boundaries include closed
networks, such as internal L ANs, that are not accessible to
public networks.

Exemplary web server 309 could include two or more
web servers 309 for providing a proportionate number of
clients 301 with user access to each of their DCEs. In
another embodiment, the web server 309 can be removed
from the system 300 and 1f necessary, replaced with a
proprietary user interface. For example, a third-party pro-
vider, such as a data center, need not require a web server
309 to access or use the administrative framework. An
example of such a proprietary user interface is a native
application on the client computer 301, which {facilitates
user 1nteraction with the system 342 using program scripts.

US 7,278,142 B2

11

According to a specific embodiment of the present inven-
tion, the system 342 includes application server 311, a data
repository 345, and resource infrastructure clements 344.
Application server 311 operates to present to a user at a
client 301 methods to create a DCE, methods to allocate
physical resources required for a DCE, and methods to
manage and to interact with a DCE as well as 1ts compo-
nents. Resource infrastructure elements 344 provide the
physical resources, such as computing devices, storage
devices, etc., and their control processes, which include
operating systems, storage management soltware, etc. In one
embodiment of system 342, application server 311, data
repository 345, and the resource infrastructure elements 344
might reside 1n a single network, or might reside 1n separate
networks. In a specific embodiment of the present invention,
application server 311 includes at least a session manager
331 and a device service manager 333.

In another embodiment, application server 311 also
includes accounts manager 329, subnet manager 323, stor-
age service manager 335, asset manager 327, license man-
ager 341, device manager 337, configuration manager 343
and boot manager 339. Although not shown, one having
ordinary skill 1in the art would understand that each of the
alorementioned features are operably disposed 1in one or
more servers within a distributed environment. That 1s, each
of the managers need not reside 1n a single application server
311, but rather might be operably disposed over two or more
machines. Also, more than one application server 311 might
be used as part of a system 342.

Application server 311, for example, 1s any commercially
available machine and application server software that sup-
ports Enterprise Java Beans (EJB) and Java Data Base
Connectivity (JDBC). One such application server might be
a BEA Weblogic server (1.e., software) running on a Solaris
Sparc server (1.., computing device). As a further example,
the managers of the application server 311 are configured to
operate as EJB components for handling specific aspects of
the functionality of system 342. It should be understood that
any other suitable software, whether commercially available
or proprietary, also might be used 1n place or in conjunction
with EJB server software.

Session manager 331 1s configured to operate as an
intermediary between client 301 and the components of the
application server 311. Exemplary session manager 331 1is
configured to communicate with each of the other managers
and components within the application server 311 and
operates to manage each session for each of the clients 301.
A session 1s the period of time from the user logging 1n to
the user logging out, for a given user under a given account.
In one embodiment, session manager 331 functions to route
requests from the client 301 to the appropriate manager to
perform the requested task. Session manager 331 uses, for
example, a Java session bean to handle client requests. A
“bean’ as described herein refers to a component, which 1s
a reusable program building block that can be combined
with other components 1n the same or other computers 1n a
distributed network to form an application.

Not only does session manager 311 coordinate the flow of
information communicated between web server 309 and the
application server 311, the session manager 311 monitors
and archives the activities of each of the users at client 301
for any given session. The session manager also handles
verification of the user’s capabilities to perform any given
action. For example, a session manager 331 coordinates
information related to the user, the capabilities of the user,
machine configurations associated with the user’s account,
as well as commands to open windows on machines or to

10

15

20

25

30

35

40

45

50

55

60

65

12

shut down machines. Although information flowing from the
session manager 311 includes configuration state informa-
tion, acknowledgments, errors, etc., a typical session man-
ager 331 performs little or no computations and has no state.

Accounts manager 329, which 1s sometimes referred to as
a user manager, 1s configured to communicate with the
session manager 331 and operates to create, maintain and
remove all user account information specific to each user at
one or more clients 301. Such information includes the login
name, password, user name, email address and the autho-
rized activities for each of the users. It will be apparent to
one of ordinary skill in the art that such information may be
stored 1n any type of data structure known in the art, and
turthermore, any additional information fields may be added
to a user account as proves necessary.

License manager 341 1s configured to communicate with
the session manager 331 and operates to create, maintain and
remove the licenses associated with each of the activated
operating systems and applications used by the system 342.
For example, each operating system has a maximum number
of licensed uses associated with it and the license manager
341 prevents the system and 1ts admimstrative framework
from allocating licenses exceeding this maximum number.
Each license as managed by license manager 341 1s repre-
sented by data implemented as an entity bean, for example.

Asset manager 327 1s configured to communicate with the
session manager 331 and operates to create, maintain and
remove a data structure including data representing the
information regarding the physical resources that are part of
the resource infrastructure elements 344. Asset manager 327
monitors the use and assignment of soft assets, such as IP
addresses, operating systems (by license) and application
soltware (by license), to hard assets, such as computers and
network/sub-network switches, without handling or assign-
ing assets directly.

In one embodiment, the asset manager 327 receives
information from the session manager 331 based on actions
performed by a user at client 301, or by events which were
triggered by such actions. An example of such an event 1s
when a user 1s assigned a computer (1.e., computer 1D
number) from the pool of resource infrastructure elements
344. The session manager 331 conveys such information to
the assets manager 327, and the asset manager responds by
reserving such a computer and removing 1ts ID from the pool
of available computing resources. Another example of an
event 1s when a user account associated with a client 301 1s
closed, all the computer IDs associated with such an account
are released so that the computers are added to the pool of
available assets. Session manager 331 therealter requests
that the account manager 329 remove the corresponding
account information.

Configuration manager 343 1s configured to communicate
with the session manager 331 and operates to create, main-
tain and remove a data structure of data representing the
information regarding all the DCEs currently administered
by system 342. Some of the DCEs may be wvirtual 1.e.,
physical resources required for a DCE may not have been
allocated yet. For each DCE, configuration manager 343
also maintains 1ts network configuration and the configura-
tion of each virtual machine 1n the DCE with respect to its
operating system and application soltware associated with
the virtual machine. Configuration manager 343 also creates
or removes the configuration information when a DCE 1s
created or removed by the user.

For example, 1f a user at client 301 creates a DCE
including two Sun Sparc-based machines coupled to several
high capacity storage devices, the configuration manager

US 7,278,142 B2

13

will create a database entry to store the physical computer
IDs associated with the virtual Sun machines and the storage
device IDs associated with the virtual storage device or
devices. The DCE, for example, 1s represented as a virtual
sub-network, or subnet, and 1s associated with a collection of
disjoint root subnets and nested subnets, which include the
virtual machines and storage devices. Although the virtual
subnet presented to the user at client 301 1s a collection of
virtual computing devices (e.g., virtual machines, computer
devices, storage devices or any other allocable device or
resource 1n the DCE) under a single virtual subnet, each of
the physical machines and storage devices need not be
associated with a physical switch, as 1s the case in typical
subnets used 1n conventional computing environments.

Device services manager 333 functions as an intermedi-
ary, between the session manager 331 and the resource
inirastructure elements 344. Device services manager 333 1s
configured to communicate with various managers, such as
subnet manager 325, storage manager 335, device manager
337, and boot manger 339. Such managers are used to
communicate with the resource infrastructure elements 344
to control the physical resources associated with the virtual
computing devices. Device services manager 333 1s electri-
cally coupled to the session manager 331 and each of the
various managers to recerve control signals from the session
manager 331 for activation to control the various managers.

Thus, the device services manager 333 coordinates all
requests for the physical devices within the resource infra-
structure elements 344, such as computing devices, network
devices or storage devices. Device services manager 333 i1s
responsible for setting up, shutting down and accessing
physical devices. Session manager 331 redirects all permis-
sible requests that involve access to one or more physical
devices to the device services manager 333 so 1t can delegate
one or more actions, depending on the request, to one of the
following: the subnet manager 325, the storage manager
335, the device manager 337, or the boot manager 339. Also,
similar to the session manager 331, device services manager
333 has no state, and its primary purpose 1s to coordinate
operations between other managers, such as the subnet
manager 325, the storage manager 335, the device manager
337, and the boot manger 339.

Device services manager 333 further operates to commu-
nicate with boot manager 339 to both allocate and de-
allocate, or free, IP addresses for the physical machines.
Device services manager 333 also imitiates and controls
mounting and unmounting the shared persistent storage on
the physical devices and machines by communicating and
coordinating such actions with storage manager 335.

Device service manager 333 further serves as itermedi-
ary when a user tries to access the console of a specific
computing device. Access to a computing device can be
enabled by using a VINC viewer, for example, a viewer using
the Remote Frame Bufler (RFB) protocol. Virtual Network
Computing (VNC) viewer 1s third party software which can
be used, 1n one embodiment, for providing console terminal
access to a computing device which 1s part of the DCE. Such
a viewer 1s used to display the screen of a computing device
when the user chooses to “open a terminal” for a device in
the DCE. VNC viewer 1s but one way of providing such
access and other software, whether proprietary or from a
third-party vendor, can be used for this purpose. Such
soltware may use the RFB protocol or another appropriate
protocol depending on the device being accessed and the
device used for accessing it.

Also, device services manager 333 imitiates and coordi-
nates installing and uninstalling applications and operating,

5

10

15

20

25

30

35

40

45

50

55

60

65

14

systems on select physical machines and devices allocated
for a DCE. In the case where device service manager 333
performs the installs and uninstalls of software, the device
service manager 333 sends such information to the license
manager to update the number of licenses 1n use. Addition-
ally, although not shown, one of ordinary skill 1n the art will
realize that one or more functions performed by the device
service manager 333 may be separated mnto either sub-
managers, or as other service layers consistent with the spirit
and scope of the present invention.

Storage manager 335 operates to keep create, maintain
and remove shared storage in each user’s session, as mnitiated
by session manager 331 and controlled by device service
manager 333. Storage manager 335 allocates storage for a
virtual subnet and mounts, or unmounts, this storage on all
ol the physical machines associated with the subnet. Storage
manager 335 1s configured to communicate between device
service manager 333 and respective physical devices and
machines of the resource infrastructure elements 344. In one
embodiment, the interfaces between storage manager 335
and the device service manager 333 are each implemented as
a session bean.

Device Manager 337 1s configured to recerve instructions
from device services manager 333 and is further configured
first to allocate or to de-allocate one or more physical
machines or devices within resource infrastructure elements
344, and then second, to assign one or more of these
machines as virtual machines selected and managed by
configuration manager 343. For instance, when a user
requests ten Windows NT computers, the device manager
337 first verifies whether ten physical Windows NT com-
puter devices within the physical infrastructure elements 343
are available, and then second allocates such machines to a
particular DCE.

Device manager 337 also operates to install the proper
operating system on one or more physical machines when
the device service manager 333 requests the particular
physical machine with a particular operating system (1.e.,
includes one of many versions of soitware). Device manager
337 further functions to return a machine into a free pool
when released by the device service manager 333. In addi-
tion, 1f an actively assigned physical machine crashes,
device manager 337 informs the device services manager
that such a crash occurred. It should be noted that the
interface between the device manager 337 and the rest of the
other managers or the physical infrastructure elements 343
of the DCE system 342 1s implemented as a session bean.

Boot manager 339 1s configured to receive instructions
from device service manager 333 and 1s further configured
to provide instructions to one or more boot servers within the
physical inirastructure elements 343. Boot manager 339
functions to retrieve and assign, or to iree, IP addresses
associated with physical machines. For example, the boot
manager 339 allocates an IP address for a physical machine
before 1t 1s started up (1.e., booted up) and frees the address
alter the machine shuts down.

Subnet manager 325 1s configured to receive delegated
instructions from the device service manager 333 and oper-
ates to allocate or de-allocate a subnet. A subnet 1s a portion
ol a network that shares a common address component, but
need not share common physical network devices, such as
switches. On TCP/IP networks, subnets are defined as all
physical devices and machines whose IP addresses have the
same prefix. For example, all physical devices with an IP
address starting with 100.100.100 would be part of a single
subnet. The present mvention may use other networks
instead of TCP/IP networks and hence other means of

US 7,278,142 B2

15

defining a subnet. Dividing a network 1nto subnets 1s useful
for both securnity and performance reasons, as 1s the case
with the present mnvention.

Each of the managers included in application server 311
are configured to communicate data and mstructions for
tetching, storing and updating information stored in reposi-
tory 345. For example, account manager 329 1s coupled to
exchange information with the accounts database 350 and
stores user mformation for account manager 329. Assets
manager 327 1s coupled to exchange information with the
assets data base 352 for storing, updating and fetching data
representing the status of physical assets, as determined by
assets manager 327. Configuration manager 343 1s coupled
to device configuration database 354 for storing, updating,
and fetching data representing the status of configuration
information associated with the DCEs supported by the
system 342.

License manager 341 1s coupled to license database 356
for storing, updating and fetching data representing the
status of licenses associated with operating systems and
application software related to the configured wvirtual
machines. Subnet manager 325 1s coupled to subnet data-
base 358 for storing, updating and fetching data representing,
the physical machines and network devices associated with
cach virtual subnet. Each database and 1ts constituent data
structures and data within repository 345 might be separated
and configured as mdependent databases.

The databases described above might be a single Oracle
database or might comprise several Oracle databases. In
another example, these databases use a database server
running SQL 7.0 database server software by Microsoit and
hosts additional databases each serving specific functions.
Each of the managers of application server 311 are config-
ured to use Java beans to encapsulate database tables, so that
the components can access and update the data structures
(1.e., tables) of data repository 343 through these beans. The
beans used by the managers included 1n application server
311 connect to these databases through the Java Data Base
Connectivity (JDBC) protocol. Of course, as one skilled 1n
the art would appreciate, these managers can use other
means of connectivity and/or encapsulation to communicate
with the databases. Furthermore, the data structures of each
of the databases are those most suitable for practicing the
present invention, as one skilled 1n the art would appreciate.

Resource infrastructure elements 344 include physical
resources as well as resource handlers (i.e., physical
resource managers). Physical resources include one or more
network switches 360, one or more storage devices/storage
servers 362, and one or more capacity devices 364 (1.e., PCs,
PDAs, etc.). Resource handlers include specific daemons to
control the physical resources: boot daemons 367, device
daemons 365, storage daemons 363, and subnet dacmons
361. For example, a Jin1 interface 1s used to discover and
lookup these specific daemons, which handle associated
physical devices. Each of the daemons and their respective
processes register themselves with a Jini registry so that the
daemons and their respective processes can be discovered/
looked-up remotely on demand. For instance, when the boot
manager 339 tries to boot a computer of capacity device 364,
it needs to locate a boot daemon 365, which maintains
information regulating the state of the computer to boot the
specific computer.

One or more boot daemons 367 are daecmon process
running on a boot server 366, which typically 1s a Linux
machine. When a boot manager 339 receives a boot request
it locates the boot daemon 367 corresponding to the machine

5

10

15

20

25

30

35

40

45

50

55

60

65

16

of capacity device 364 to be booted and then the boot
daemon 367 reboots the specific machine of capacity device
364.

Storage daemon(s) 363 are daemon processes running on
one or more storage servers 362, which are typically Sun
Sparc servers controlling a RAID storage unit. A RAID—
Redundant Array of Inexpensive Disks—storage unit 1s a
reliable storage medium consisting of an array of disks such
that every bit of data 1s stored redundantly as multiple copies
within the array. The storage 1s used for storing all software
and data required to support the computing devices 1n all the
DCEs hosted by the system 342.

Subnet daemon(s) 361 are daemon process running on a
Linux machine and are responsible for communicating to
one or more network switches 360. When a request for
subnet allocation 1s received by the subnet manager 325, it
delegates the request to one of the subnet daemons 361
depending on availability. The switches control the physical
subnet connections allocated for each subnet in each DCE.

Although the present mnvention has been discussed with
respect to specific embodiments, one of ordinary skill 1in the
art will realize that these embodiments are merely 1llustra-
tive, and not restrictive, of the invention. The scope of the
invention 1s to be determined solely by the appended claims.

What 1s claimed 1s:

1. A system to provide a dynamic computing environment
to a user, the system comprising:

a session manager configured to accept user mputs;

a configuration manager coupled to the session manager,

wherein

the configuration manager generates an association
relating at least one virtual resource to at least one
physical resource, the configuration manager main-
tains information identifying a configuration of the at
least one virtual resource included in the dynamic
computing environment, and

the information identifying the configuration of the at
least one virtual resource comprises information
identifying one or more computer programs associ-
ated with the at least one virtual resource; and

a device manager, wherein the device manager allocates

the at least one physical resource as the at least one

virtual resource within the dynamic computing envi-

ronment, wherein the device manager also installs the

one or more computer programs on the at least one

physical resource;

wherein the user has access to interact with the
dynamic computing environment including the at
least one virtual resource and the at least one physi-
cal resource.

2. The system of claim 1, further comprising a device
services manager coupled to the session manager, wherein
the device services manager i1s configured to provide an
interface between the session manager and the at least one
physical resource.

3. The system of claim 2, wherein the interface 1s coupled
to a manager of the at least one physical resource to
coordinate a function to be performed by the at least one
virtual resource, wherein the interface 1s under control of an
interface computer program.

4. The system of claim 3, wherein the manager of the at
least one physical resource 1s a sub-net manager.

5. The system of claim 3, wherein the manager of the at
least one physical resource 1s the device manager.

6. The system of claim 3, wherein the manager of the at
least one physical resource 1s a storage manager.

US 7,278,142 B2

17

7. The system of claim 1, wherein the at least one physical
resource 1s a physical computing device.

8. The system of claim 7, further comprising a boot
manager coupled to the device services manager, the boot
manager configured to initialize the physical computing
device.

9. The system of claim 1, wherein the association relating
the at least one virtual resource with at least one physical
resource remains for a period of time.

10. The system of claim 9, wherein the user determines
the period of time.

11. The system of claim 1, further comprising a sub-net
manager coupled to the device services manager, the sub-net
manager configured to manage a virtual sub-network asso-
ciated with a wvirtual network, wherein the wvirtual sub-
network includes a virtual resource associated with a physi-
cal resource.

12. The system of claim 11, wherein the sub-net manager
1s configured to manage two or more virtual sub-networks.

13. The system of claim 1, further comprising a storage
manager coupled to the device services manager, where the
storage manager 1s configured to manage one or more
physical storage devices, wherein the storage manager pro-
vides a virtual storage to store data from the at least one
virtual resource.

14. The system of claim 1, wherein the dynamic comput-
Ing environment comprises:

a first virtual resource configured as a client, wherein the

first virtual resource 1s a first virtual computing device;

a second virtual resource configured as a server, wherein
the second virtual resource 1s a second virtual comput-
ing device, the second virtual computing device
coupled to exchange information with the first virtual
computing device; and

a virtual sub-network including the first and the second
virtual computing device;

wherein the user has access to the client, the server, and
the information exchanged.

15. The system of claim 14, wherein the user has access
to both the client and the server to verily proper execution
of a computer program.

16. The system of claim 1, wherein the dynamic comput-
Ing environment comprises:

a first virtual resource configured as a first virtual com-
puting device, where the first virtual computing device
1s associated with at least one physical computing
device;

a first virtual sub-network including the first virtual com-
puting device;

a second virtual resource configured as a second virtual
computing device, where the second virtual computing
device 1s associated with at least one physical comput-
ing device; and

a second virtual sub-network including the second virtual
computing device, where the first virtual sub-network
and the second virtual sub-network are configured to
exchange information between the first virtual comput-
ing device and the second virtual computing device,

wherein the user has access to both the first and second
virtual computing devices within the first and second
sub-network, respectively.

17. The system of claim 1, further comprising an account
manager coupled to the session manager, where the account
manager 1s configured to manage data representing a user
account, where the user account 1s associated with the user.

18. The system of claim 1, further comprising a license
manager coupled to the session manager, where the license

10

15

20

25

30

35

40

45

50

55

60

65

18

manager 1s configured to manage data representing the use
of at least one license associated with the one or more

computer programs.

19. The system of claim 1, further comprising an admin-
istrative database configured to exchange information with
cach of the managers, where the administrative database 1s
configured to store information exchanged with at least one
of the managers.

20. The system of claim 1, wherein the configuration
manager maintains a description of one or more virtual
resources.

21. The system of claim 1, wherein the at least one virtual
resource 1s a virtual computing device.

22. The system of claim 1, wherein the at least one virtual
resource 1s a virtual computing peripheral.

23. The system of claim 1, wherein the at least one
physical resource 1s a physical computing peripheral.

24. The system of claim 1, wherein the at least one virtual
resource 1s associated with two or more physical resources.

25. The system of claim 1, wherein two or more virtual
resources are associated with the at least one physical
resource.

26. The system of claim 1, further comprising a web
server coupled to the session manager, wherein the web
server accepts user requests and forwards the requests to the
SE€SS101 manager.

27. The system of claim 1, wherein at least one of the
computer programs associated with wvirtual computing
devices 1n the dynamic computing environment includes an
operating system computer program.

28. The system of claim 1, wherein at least one of the
computer programs associated with wvirtual computing
devices 1n the dynamic computing environment includes an
application computer program.

29. The system of claim 1, further comprising a network
coupled between the user and the system.

30. The system of claim 29, wherein the network 1s the
Internet.

31. A method for providing a dynamic computing envi-
ronment to a user, where the dynamic computing environ-
ment 1s responsive to an mput from the user, the dynamic
computing environment having one or more virtual com-
puting devices and one or more computer programs associ-
ated with each of the one or more virtual computing devices,
the method performing on a user computer system ncluding
a processor coupled to a memory, a user iput device and a
display, wherein the user computer system 1s configured to
communicate with the dynamic computing environment, the
method comprising:

accepting one or more user inputs;

creating a first virtual computing device based upon a first
subset of the accepted user inputs;

configuring at least one of a plurality of physical com-
puting devices to operate as the first virtual computing
device;

associating the one or more computer programs with the
first virtual computing device based upon a second
subset of the accepted user inputs, wherein the com-

puter programs are operably disposed within at least
one of the configured physical computing devices;

generating a virtual network based upon a third set of user
inputs; and
configuring the first virtual computing device to reside 1n

the virtual network based upon a fourth set of user
inputs;

US 7,278,142 B2

19

wherein the virtual network provides the user with access
to at least one of the one or more computer programs
executed and to the first virtual computing device.

32. The method of claim 31, further comprising:

creating a second virtual computing device based upon a
fifth subset of the accepted user inputs;

coniiguring another physical computing device to operate
as the second virtual computing devices; and

associating another one or more computer programs with
the second virtual computing device based upon a sixth
subset of the accepted user inputs, wherein the another
computer programs are operably disposed within at

least one of the another configured physical computing
devices:

10

20

generating a second virtual network based upon a seventh
set of user inputs; and

configuring the second virtual computing device to reside
in the virtual network based upon a eighth set of user
inputs;

wherein the second virtual network provides the user with

access to each of the another computer programs
executed and the second virtual computing device.

33. The method of claim 31, wherein the first and the
second virtual network are the same virtual network.

	Front Page
	Drawings
	Specification
	Claims

