12 United States Patent

US007275249B1

(10) Patent No.: US 7,275,249 B1

Miller et al. 45) Date of Patent: Sep. 25, 2007
(54) DYNAMICALLY GENERATING MASKS FOR 5,301,324 A * 4/1994 Dewey et al. 718/105
THREAD SCHEDULING IN A 6,658,448 Bl * 12/2003 Stefaniak et al. 718/104
MULTIPROCESSOR SYSTEM 6,721,874 B1* 4/2004 Leetalc............ 712/218
6,724,410 B2 4/2004 A1al coovririiiiiiiiinenne, 347/115
75 : : 2002/0103847 Al* 8/2002 Potashoovvvenvennnnnn... 709/107
(75) " Inventors: i/[/[atth‘f Bg‘};e;[};?nﬁhﬁ S‘ftmia 2003/0088608 Al* 5/2003 McDonaldoo.......... 709/106
B, A L), OB Lol 2004/0019891 Al* 1/2004 Koenen 718/102
Walker, Mission Viejo, CA (US) 2004/0054999 AL* 3/2004 Willen et al. 718/103
(73) Assignee: R}lsiiys Corporation, Blue Bell, PA OTHER PURI ICATIONS
IBM Technical Disclosure Bulletin. “Task/CPU Affinity Design.”
(*) Notice: Subject to any disclaimer, the term of this Jul. 19737
patent is extended or adjusted under 35 Lee, Shu-Ling et al. “A Cost-Effective Scheduling with Toad
U.S.C. 154(b) by 954 days Balancing for Multiprocessor Systems.” IEEE. 2000.*
S ' Zhou, Songnian et al. “Processor Pool-Based Scheduling for Large-
(21) Appl. No.: 10/334,341 Scale NUMA Multiprocessors.” ACM. 1991.%
_ * cited by examiner
(22) Filed: Dec. 30, 2002
Primary Examiner—Lewis A. Bullock, Jr.
Related U.S. Application Data (74) Attorney, Agent, or Firm—Phuong-Quan Hoang;
(63) Continuation-in-part of application No. 10/209,454, Charles A. Johnson; Richard J. Gregson
filed on Jul. 30,J 2002,J now Pat. No. 730933258 (57) ABSTRACT
(51) Int. CL. , ‘ o _
GO6F 9/46 (2006.01) An embodiment of the invention 1s a technique to generate
(52) U.S. Cl 718/105: 718/107 a mask schedule for thread scheduling 1n a multiprocessor
(58) Field of Classification Search 718/100-108 Sftem éla}”i“g N clusters ot RPN ffpﬂmary lflaSkhiS
. . obtained from a primary set ol granularity masks. The
See application file for complete search hustory. granularity masks are created according to a thread granu-
(56) References Cited larity. The prima{'y mask 1s filtered using a filter mask to

generate a first athnity mask.

U.S. PATENT DOCUMENTS

4,809,157 A * 2/1989 Elilert et al. 718/104 60 Claims, 9 Drawing Sheets
o 440
PRIMARY FILTER SECONDARY
SET SET SET
410 430 420
l 710 l 715 720
PRIMARY FILTER SECONDARY
e | [
725 735

PRIMARY MASK FUNCTION
(e.g., AND, OR)

730

PRIMARY
AFFINITY MASK

SECONDARY MASK FUNCTION
(e.g., AND, OR)

740

SECONDARY
AFFINITY MASK

745

MASK
CONSTANT

SCHEDULE
STORE
! ! !
ot !
V

MASK SCHEDULE ARRAY
450

US 7,275,249 B1

Sheet 1 of 9

Sep. 25, 2007

o

U.S. Patent

Fos 1D3NNODHILNI

MOSSIOUS VT ‘O a
'S gl qu) N mm.m.m:._u
N Z Y3L1sN
dnows | B3NP . _

¢
.

ot

I L P N N

| _ or |

T0S 1D3NNODYILINI
HYESSOUD

Mos 1DINNODYILNI
HVESSOYD

dvgaSS0dO

F09 AUOWANW L E L Y09 AYOWINW

g1 DI R

_ 03 |
o/T HSV1d

JATdQa ddVH
941

US 7,275,249 B1

301734 | ,, | 301A3C
O/1 O/1

b | I
~ 37IA3C (HOI) o8l 081
AddO14 JOVIOLS (— gnHyIToWNOD K ————)
744 SSYW 1NdLNO/LNdNI
_ anag
N £ZT _
-~
' Ll
m 0LT e ﬁ
rd
/T YOLVYIANIO l
ITNAIHIS ASYI
% I
S 0€ D11 1 €¢F (How) anH
~ YIDVNVIW ALINIS4Y QYIAHL mm_._._om_kzou |
3 AYOWIW
~& AHOWIW W3LSASANS
s |
A ObT OE1

SNG 4055300dd

ocl

J0SS300™d

CIT
001 \\ |

U.S. Patent

¢ DI

JHVMAaVH

W31SAS

052

US 7,275,249 B1

(IvD01 ANV 1vE019) AYOW3INW

WIL1SAS ONILVY3dO

L4

)
-~
S JOLYYINIO ITINAIHIS NSV
ok Y# AYIYHL 1# QVIYHL
P
P
- UIOVNVIW ALINIJAV QVIUHL
1092z _
St
Sy JAILND3AX3
m INIHOVIW TVYNLYIA WILSAS ONILYHIO
Tel
“ 0EZ 022
-
P
7 P,
NOILVOIlddV mzhﬁm.q_,_wmﬂou

PIC cIc

NOLLYDI1ddV ¥3SN
A 0TZ
002

U.S. Patent

US 7,275,249 B1

Sheet 4 of 9

Sep. 25, 2007

U.S. Patent

SHASYIA

ALTAVINNVYEOD

SNd

Y0SS3ID0Ud

¢ DI

11]oJoJoJoJoJeJo]ofofofofofofo[ofofo[o[o]o]o]oojofofo]o]o]ofo
HEEEEEEEEEEEEENEEEEEEEEEEEENEEEEE
oJoJo[s[r]o]ofofofo]o]ofofo]ojojofo]o]o]ofo]o]ofofo]ojo]oofo]o
oJo]ofofo[]t[ofofofofo]oJofo[ofo]o]o]o]ofo]oJofofo]o]ofo]oofo
oJoofofofo]ofofofofoJofofo]o]ofs[x[oo]ojo]oojofo]ojojo]ofo]o,

ooofofofofo]ofofofofofo]oofofofo[t[r]ofofo]o]ojofofa]ofofo]o,
oJofo]ofofofofofofs[r]ofo]o[o]afo]ofo]ofo]ofojojojojofo]o]ofo]o
rrrrrrrrrrrrrrrreerr ettt

T _ t 1

T[z[e]v]s]o]]s]6]or]irfer]e]vr]st]ot]c1]sr|61]0|refez]c 2| e[S 2|07] L 2]82]62|0E 1€ 2E
41) _ _ t +

§0¢ Q1314 119 ASVIN 00€ ASVIW ALTAVINNVYED

US 7,275,249 B1

Sheet 5 of 9

Sep. 25, 2007

U.S. Patent

441 .\\

AVHIY
37TNA3HIS
ASVIN

0s#b

y OI4

135S
l-ERNE

0L P

l-EIRIE

Orr

a4
=

S
AdVINIUd

Oir

13S
AJVANOOIS

U.S. Patent Sep. 25, 2007 Sheet 6 of 9 US 7,275,249 B1

/- 410

0000Joooo[e« Toooo0Jooo1} >
0000{0000] ee= J0O0OO[0010] '
' PRIMARY
I PROCESSOR
GRANULARITY
0100f[0000f e« f0000[0000] °*3 510
1000)0000} e« [0000f0000} 515
0000fJoooo] e« JooooJoo11} "%
. PRIMARY BUS
. GRANULARITY
' 520

0000} 2431

00001 2316

0000|0000

0000

0000|0000

1111

11111 >>°¢
0000t >3-z
PRIMARY
SUBPOD
GRANULARITY
0000|0000t 23> 530

000011111

1111}0000 0000|0000} 333

0000|0000

PRIMARY POD
GRANULARITY

540

111111111

1111111171 %
0000

0000{0000 545,
FIG. 5

U.S. Patent Sep. 25, 2007 Sheet 7 of 9 US 7,275,249 B1

/—' 420

T1111111111111111111111100001111} %%
]

111111111111111111110000000011111 %2°8 | ceconpary

PROCESSOR
615, GRANULARITY

00000000000000000000000000001111 610

11111111111111111111111111111111 61532

11111111111111111111111100001111%F 623; '
625
11111111111111111111000000001111 3 SECONDARY

~ BUS
GRANULARITY

00000000000000000000000000001111Y 6413 620

11111111111111111111111111111111} 9431

11111111111111111111111100001111} 635;
111111111111111111110000000011211% %3°2 | <ECONDARY
GRANULARITY

00000000000000000000000000001111%1 637 630

SUBPOD
11111111111111111111111111111111} 635

635
11111111111111110000000011111111 1 SECONDARY

POD
GRANULARITY
640

11111111111111111111111111111111

FIG. 6

U.S. Patent Sep. 25, 2007 Sheet 8 of 9 US 7,275,249 B1

440
e

PRIMARY FILTER SECONDARY
SET SET SET
410 430 420

710 /15 720
PRIMARY FILTER SECONDARY
MASK MASK MASK

. 725 735
PRIMARY MASK FUNCTION SECONDARY MASK FUNCTION

(e.g., AND, OR) (e.g., AND, OR)

730 ' 740
PRIMARY SECONDARY
AFFINITY MASK AFFINITY MASK
745
MASK
CONSTANT

/70

COMPARATOR

SCHEDULE
STORE

MASK SCHEDULE ARRAY
450

FIG. /

U.S. Patent Sep. 25, 2007 Sheet 9 of 9 US 7,275,249 B1

800
/"

810
RETRIEVE AFFINITY MASK
FROM MASK SCHEDULE

_ 820

AFFINITIZE ACTIVE THREAD TO FIRST CLUSTER

IN N CLUSTERS USING AFFINITY MASK

. 830

EXECUTE ACTIVE THREAD USING FIRST CLUSTER

&«
FIG. 8

US 7,275,249 Bl

1

DYNAMICALLY GENERATING MASKS FOR
THREAD SCHEDULING IN A
MULTIPROCESSOR SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of the applica-
tion Ser. No. 10/209,454 entitled “Method And System For
Managing Distribution Of Computer-Executable Program
Threads Between Central Processing Units In A Multi-
Central Processing Unit Computer System”, filed on Jul. 30,
2002, and assigned to the same assignee, 1ssued as U.S. Pat.
No. 7,093,258 on Aug. 15, 2006. This application 1s related
to the following patent applications: Ser. No. 10/334,368
entitled “AFFINITIZING THREADS IN A MULTIPRO-
CESSOR SYSTEM™; Ser. No. 10/334,369 entitled
“SELECTING PROCESSOR CONFIGURATION BASED
ON THREAD USAGE N A MULTIPROCESSOR SYS-
TEM?”, all filed on the same date and assigned to the same
assignee as the present application, the contents of each of
which are herein incorporated by reference.

BACKGROUND

1. Field of the Invention

Embodiments of the invention relates to the field of
operating systems, and more specifically, to thread manage-
ment.

2. Description of Related Art

Multithreading technologies have become popular 1n mul-
tiprocessor systems to support various levels of parallelism,
to enable dynamic load balancing, to support virtual pro-
cessors, and to enhance system performance. One of the
challenges in designing an eflicient multithreaded multipro-
cessor system 1s thread scheduling.

The performance of a multithreaded multiprocessor sys-
tem depends on a number of factors such as local memory
utilization, thread communication, and load balancing. To
achieve high performance, a scheduling policy should select
processors for thread assignment such that the overall pro-
cessor utilization 1s optimized for a particular application.
This problem 1s diflicult because as the number of resources
increases, the total number of possible configurations of
combinations ol processors also increases. The exact num-
ber of processors available at run time may not be known 1n
advance. Therelore, the pre-determination of possible pro-
cessor configurations for a particular application under some
specific system-level constraints 1s almost impossible. An
exhaustive search of all possible processor configurations 1s
computationally expensive and the resulting exhaustive list
occuplies wasted memory storage. In addition, since thread
scheduling 1s performed at run time, a search for a suitable
processor configuration from this exhaustive list takes up a
lot of system resources.

SUMMARY OF INVENTION

An embodiment of the invention 1s a technique to gener-
ate a mask schedule for thread scheduling 1n a multiproces-
sor system having N clusters of processors. A primary mask
1s obtained from a primary set ol granularity masks. The
granularity masks are created according to a thread granu-
larity. The primary mask 1s filtered using a filter mask to
generate a first athinity mask.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by referring to the
tollowing description and accompanying drawings that are

10

15

20

25

30

35

40

45

50

55

60

65

2

used to 1illustrate embodiments of the invention. In the
drawings:

FIG. 1A 1s a diagram 1llustrating a system in which one
embodiment of the invention can be practiced.

FIG. 1B 1s a diagram 1llustrating a processor subsystem
according to one embodiment of the invention.

FIG. 2 1s a diagram illustrating a software architecture
according to one embodiment of the invention.

FIG. 3 1s a diagram illustrating granularity masks accord-
ing to one embodiment of the invention.

FIG. 4 1s a diagram 1llustrating a mask schedule generator
according to one embodiment of the invention.

FIG. § 1s a diagram 1llustrating a primary set of granu-
larity masks according to one embodiment of the invention.

FIG. 6 1s a diagram 1illustrating a secondary set of granu-
larity masks according to one embodiment of the invention.

FIG. 7 1s a diagram illustrating a filter according to
another embodiment of the invention.

FIG. 8 1s a flowchart illustrating a process to use a mask
schedule according to one embodiment of the imvention.

DESCRIPTION

An embodiment of the mvention 1s a technique to gener-
ate a mask schedule for thread scheduling in a multiproces-
sor system having N clusters of processors. A primary mask
1s obtained from a primary set ol granularity masks. The
granularity masks are created according to a thread granu-
larity. The primary mask 1s filtered using a filter mask to
generate a first athnity mask.

In the following description, numerous specific details are
set forth. However, 1t 1s understood that embodiments of the
invention may be practiced without these specific details. In
other 1nstances, well-known circuits, structures, and tech-
niques have not been shown in order not to obscure the
understanding of this description.

FIG. 1A 1s a diagram illustrating a system 10 1n which one
embodiment of the mvention can be practiced. The system
10 includes N clusters of processors 20, to 20,, L crossbar
interconnects 30, to 50, and M memories 60, to 60,, The
system 10 1s referred to as a cellular multiprocessor (CMP)
system.

Each of the clusters of processors 20, to 20, forms a
subpod and includes a number of processor subsystems 40.’s
and a third level cache (TLC) 30,’s. The processor sub-
systems 40.°s within each cluster 20, turther form into
groups connected together via a bus structure. Each group 1s
connected to a TLC 30,. For example, processor subsystems
40, and 40, form a group 235,. It 1s contemplated that the
number of processor subsystems 40.°s i a group and the
number of groups 1n a cluster may be any suitable number
according to the configuration. As illustrated in FIG. 1A, the
processor subsystems 40.°s form into two groups and each
group consists of two processor subsystems. Fach of the
TLC 30,’s provides another level of cache memory in
addition to the second level (L.2) and first level (LL1) caches
in each of the processor subsystems 40,’s. Each of the TLC
30,’s provides a larger cache memory than the L2 and L1
caches of the corresponding processor subsystems to
improve performance by allowing the processors within a
subpod or group to share cached information. The TLC 30, s
may be implemented by any suitable memory technologies,
including static random access memory (SRAM) and
dynamic random access memory (DRAM). It 1s contem-
plated that a cache coherence protocol 1s maintained
throughout the system 10.

Each of the crossbar interconnects 50, to 30, 1s a crossbar
switch connected to the memories 60, to 60,, and a number

US 7,275,249 Bl

3

of clusters of processors. The clusters of processors that are
connected to each crossbar interconnect form a pod. For
example, the subpods or clusters 20, and 20, form a pod 35, .
The crossbar mterconnect 50_’s fully connects any one of
memories 60, to 60, to any one of the clusters of processors
in the pod that it 1s connected to. Each of the memories 60,
to 60,,1s accessible to any of the processor subsystems 40,’s
via the crossbar interconnects 50_°s. The memories may be
implemented by any suitable memory technologies includ-
ing SRAM and DRAM.

The configuration of the CMP system 10 provides a
flexible mechanism for thread scheduling and thread aflinity
management. A thread 1s a unit of program or code. A thread
may be created by an application, a virtual machine, or the
operating system. Thread aflinitization 1s a process to assign
a thread to a processor or a cluster of processors. When a
thread 1s athnitized to a cluster of processors, it 1s executed
within the processors in that cluster. Thread aflinitization 1s
a main task in thread scheduling. The thread afhnity granu-
larity refers to the degree of clustering of the processor
subsystems 40 s 1n thread athnity management. The granu-
larity may be at the processor level, at the bus level (e.g., two
processors connected to the TLC via a bus), at the subpod
level (e.g., four processors connected to the TLC), at the pod
level (e.g., eight processors connected to a common crossbar
switch), or at any number of processors. The thread granu-
larity may be statically provided via user’s mput or dynami-
cally changed according to the system behavior.

FIG. 1B 1s a diagram 1llustrating a processor subsystem 40
in which one embodiment of the invention can be practiced.
The processor subsystem 40 includes a processor 110, a
processor bus 120, a memory control hub (MCH) 130, a
subsystem memory 140, an input/output control hub (ICH)
150, a peripheral bus 160, a mass storage device 170, and
input/output devices 180, to 180,.. Note that the processor
subsystem 40 may include more or less elements than these
clements. The processor subsystem 40 may also be used to
emulate or simulate the CMP using the thread aflinity
management technique described in the following.

The processor 110 represents a central processing unit of
any type ol architecture, such as embedded processors,
mobile processors, micro-controllers, digital signal proces-
sors, superscalar computers, vector processors, single
instruction multiple data (SIMD) computers, complex
istruction set computers (CISC), reduced instruction set
computers (RISC), very long instruction word (VLIW), or
hybrid architecture. The processor 110 typically includes a
first level (LL1) cache 112.

The processor bus 120 provides interface signals to allow
the processor 110 to communicate with other processors or
devices, e.g., the MCH 130. The processor bus 120 may
support a uni-processor or multiprocessor configuration. The
processor bus 120 may be parallel, sequential, pipelined,
asynchronous, synchronous, or any combination thereof.

The MCH 130 provides control and configuration of
memory and input/output devices such as a second level
cache (L2) 132, the system memory 140, the ICH 150, and
the TLC 30,. The MCH 130 may be integrated into a chipset
that integrates multiple functionalities such as the isolated
execution mode, host-to-peripheral bus interface, memory
control. The MCH 130 interfaces to the peripheral bus 160.
For clarity, not all the peripheral buses are shown. It is
contemplated that the subsystem 40 may also include
peripheral buses such as Peripheral Component Interconnect
(PCI), accelerated graphics port (AGP), Industry Standard
Architecture (ISA) bus, and Universal Serial Bus (USB),

elc.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The subsystem memory 140 stores system code and data.
The subsystem memory 140 1s typically implemented with
dynamic random access memory (DRAM) or static random
access memory (SRAM). The subsystem memory may
include program code or code segments implementing one
embodiment of the invention. The subsystem memory
includes a thread afhinity manager 145. Any one of the
clements of the thread afhnity manager 145 may be 1mple-
mented by hardware, software, firmware, microcode, or any
combination thereof. The thread aflimity manager 145
includes a mask schedule generator 147 to generates aflinity
masks to be used in thread scheduling. The subsystem
memory 140 may also include other programs or data which
are not shown, such as an operating system. The thread
allinity manager 145 contains program code that, when
executed by the processor 110, causes the processor 110 to
perform operations as described below.

The ICH 150 has a number of functionalities that are
designed to support I/O functions. The ICH 150 may also be
integrated into a chipset together or separate from the MCH
130 to perform I/O functions. The ICH 150 may include a
number of interface and I/O functions such as PCI bus
interface to interface to the peripheral bus 160, processor
interface, mterrupt controller, direct memory access (DMA)
controller, power management logic, timer, system manage-
ment bus (SMBus), universal serial bus (USB) interface,
mass storage intertace, low pin count (LPC) mterface, etc.

The mass storage device 170 stores archive information
such as code, programs, files, data, applications, and oper-
ating systems. The mass storage device 170 may include

compact disk (CD) ROM 172, a digital video/versatile disc
(DVD) 173, floppy drive 174, hard drive 176, flash memory
178, and any other magnetic or optic storage devices. The
mass storage device 170 provides a mechanism to read
machine-accessible media. The machine-accessible media
may contain computer readable program code to perform
tasks as described in the following.

The I/O devices 180, to 180, may include any I/O devices
to perform I/O functions. Examples of I/O devices 180, to
180 1include controller for input devices (e.g., keyboard,
mouse, trackball, pointing device), media card (e.g., audio,
video, graphics), network card, and any other peripheral
controllers.

Elements of one embodiment of the invention may be
implemented by hardware, firmware, software or any com-
bination thereof. The term hardware generally refers to an
clement having a physical structure such as electronic,
clectromagnetic, optical, electro-optical, mechanical, elec-
tromechanical parts, etc. The term software generally refers
to a logical structure, a method, a procedure, a program, a
routine, a process, an algorithm, a formula, a function, an
expression, etc. The term firmware generally refers to a
logical structure, a method, a procedure, a program, a
routine, a process, an algorithm, a formula, a function, an
expression, etc that 1s implemented or embodied 1n a hard-
ware structure (e.g., flash memory, ROM, EROM).
Examples of firmware may include microcode, writable
control store, micro-programmed structure. When imple-
mented 1n software or firmware, the elements of an embodi-
ment of the present invention are essentially the code
segments to perform the necessary tasks. The software/
firmware may include the actual code to carry out the
operations described 1n one embodiment of the invention, or
code that emulates or simulates the operations. The program
or code segments can be stored 1n a processor or machine
accessible medium or transmitted by a computer data signal
embodied 1 a carrier wave, or a signal modulated by a

US 7,275,249 Bl

S

carrier, over a transmission medium. The “processor read-
able or accessible medium” or “machine readable or acces-
sible medium” may include any medium that can store,
transmit, or transier information. Examples of the processor
readable or machine accessible medium include an elec-
tronic circuit, a semiconductor memory device, a read only
memory (ROM), a flash memory, an erasable ROM
(EROM), a tloppy diskette, a compact disk (CD) ROM, an
optical disk, a hard disk, a fiber optic medium, a radio
frequency (RF) link, etc. The computer data signal may
include any signal that can propagate over a transmission
medium such as electronic network channels, optical fibers,
atr, electromagnetic, RF links, etc. The code segments may
be downloaded via computer networks such as the Internet,
Intranet, etc. The machine accessible medium may be
embodied 1n an article of manufacture. The machine acces-
sible medium may include data that, when accessed by a
machine, cause the machine to perform the operations
described in the following. The machine accessible medium
may also include program code embedded therein. The
program code may 1nclude machine readable code to per-
form the operations described in the following. The term
“data” here refers to any type of information that 1s encoded
for machine-readable purposes. Therefore, 1t may include
program, code, data, file, etc.

All or part of an embodiment of the invention may be
implemented by hardware, software, or firmware, or any
combination thereof. The hardware, software, or firmware
clement may have several modules coupled to one another.
A hardware module i1s coupled to another module by
mechanical, electrical, optical, electromagnetic or any
physical connections. A solftware module 1s coupled to
another module by a function, procedure, method, subpro-
gram, or subroutine call, a jump, a link, a parameter,
variable, and argument passing, a function return, etc. A
software module 1s coupled to another module to receive
variables, parameters, arguments, pointers, etc. and/or to
generate or pass results, updated variables, pointers, etc. A
firmware module 1s coupled to another module by any
combination of hardware and software coupling methods
above. A hardware, software, or firmware module may be
coupled to any one of another hardware, software, or firm-
ware module. A module may also be a software driver or
interface to interact with the operating system running on the
plattorm. A module may also be a hardware driver to
configure, set up, mitialize, send and receive data to and
from a hardware device. An apparatus may include any
combination of hardware, software, and firmware modules.

One embodiment of the invention may be described as a
process which 1s usually depicted as a flowchart, a flow
diagram, a structure diagram, or a block diagram. Although
a flowchart may describe the operations as a sequential
process, many of the operations can be performed in parallel
or concurrently. In addition, the order of the operations may
be re-arranged. A process 1s terminated when its operations
are completed. A process may correspond to a method, a
program, a procedure, a method of manufacturing or fabri-
cation, efc.

FI1G. 2 1s a diagram 1llustrating a software architecture 200
according to one embodiment of the invention. The software
architecture 200 includes a user application 210, an operat-
ng system (OS) executive 220, a virtual machme 230, the
thread afhinity manager 145, an operating system 240, sys-
tem hardware 250, K threads 260, to 260,, and thread
memory 270.

The user application 210 1s a software layer that 1s
interfaced to the user to allow the user to run, launch, and

10

15

20

25

30

35

40

45

50

55

60

65

6

invoke applications. The user application 210 includes a
command line facility 212 and an application 214. The
command line facility 212 provides a mechanism to allow
the user to control, manage, and configure a particular
application program. The command line facility 212 may
allow the user to request to launch, execute, or invoke the
application 214 by 1ssuing a command line. The command
line facility 212 may include functional modules to facilitate
command line editing, buffering, or manipulating. The com-
mand line may also include application parameters such as
thread aflinity management, count threshold, thread aflinity
granularity, argument list, etc. By using the command line
facility 212, the user can have control over the thread aflinity
management such as setting thread athinity flag, selecting
afhinity granularity, and selecting the thread count threshold.
The application 214 1s a user program to perform particular
tasks within the system 10. Examples of the application 214
may include a graphics program, a server interface program,
a database program, or any program that may utilize the
multiprocessor architecture provided by the system 10.

The OS executive 220 1s a soltware component that
interfaces to the command line facility 220 and the OS 240.
The OS executive 220 may be a shell or a command
interpreter that interprets the command line as generated by
the command line facility 212 and passes the interpreted
command line to the OS 240.

The virtual machine 230 provides an environment for
executing the application 214. The virtual machine 230
simulates the hardware platform on which the application 1s
run. The virtual machine may include an interpreter, system
calls, a library of functions, thread management functions, a
garbage collector, and other interfaces. Examples of the
virtual machine 230 include a parallel virtual machine
(PVM), a Microsof™ virtual machine, and a Java™ virtual
machine (JVM).

The thread aflinity manager 145 manages thread aflinity
via interfaces to the virtual machine 230 and the OS 240.
The thread aflinity manager 145 may perform the following
tasks: creating an aflinity mask, updating the atlinity mask,
selecting afhinity granularity, directing thread scheduling,
assigning threads to clusters of processors. One of the main
functions of the thread aflinity manager 145 1s to select a
cluster of processors to assign a thread to. The mask
schedule generator 147 generates athinity masks to be used
in the selection of appropriate cluster of processors.

The OS 240 performs typical OS functions including
process management, protection, scheduling, hardware
interfacing, memory management, input/output manage-
ment, etc. The OS 240 interacts with the system hardware
250 and the memory 270. The system hardware 250 may
includes 1/0 devices, peripheral devices, peripheral control-
lers, network devices, memory elements, etc. In one embodi-
ment, the OS 240 1s one of a Windows™ OS, a Windows
DataCenter™, a UNIX OS, a Linux OS, and any other
suitable OS for multiprocessor systems.

The threads 260, to 260, are program threads created 1n
user applications such as the application 214. The threads
210, to 260, may also include system threads or kernel
t_lreads that are created and run on behalf of the OS 240 or
the virtual machine 230. Each of the threads 210, to 260,
maintains 1ts own local vaniables and local resources such as
program counter and stack. They also share common global
variables and memory. The threads interface to the thread
memory 270 for accessing the local and global variables.
The thread memory 270 may be any combination of the local
caches, local memories, the associated TLC, and the global
memories 60, to 60,, shown in FIG. 1A.

US 7,275,249 Bl

7

An active thread 1s a thread that has been created to run
in the application or 1n the virtual machine. For performance
and efliciency, thread 1s aflinitized or assigned to a cluster of
processors according to the thread granularity. When a
thread 1s aflinitized to a cluster of processors, 1t shares with
other threads most of the resources provided by that cluster
of processors, including local memories such as third level
cache (TLC). Such sharing within the same granularity level
provides high performance because overhead 1n thread com-
munication can be reduced significantly. In addition, thread
migration 1s minimized, resulting in ethcient load balancing,
and memory usage. It 1s, therefore, usetul to discriminating
clusters of processors on the basis of their mutual proximity,
memory usage, interconnection structure, and other factors.
This can be efliciently done by maintaining a set of granu-
larity masks that reflect the processor configuration.

FIG. 3 1s a diagram illustrating a granularity mask 300
according to one embodiment of the mvention. The granu-
larity mask 300 1s a bit pattern that has been selected to
correspond to processors selected for athinitization accord-
ing to the thread granularity. As discussed above, the thread
granularity 1s configurable to be one of a processor granu-
larity, a bus granularity, a subpod granularity, and a pod
granularity. Configurable thread granularity allows the local-
ity of memory accesses to be utilized for maximum system
performance. In general, 1n a system of N processors having,
a granularity of M processors, there are N/M diflerent
granularity masks. The granularity may be selected by the
user via the command line facility 212, or 1f 1t 1s not
provided, a default value may be selected. Alternatively, the
granularity may be obtained dynamically according to the
system behavior, processor usage, overall work load distri-
bution, or any other dynamical parameters.

The granularity mask 300 includes N granularity bit fields
305, where N 1s the number of processors 1n the system.
Each bit field 305 has one bit to correspond to a processor.
The bit positions are arranged according to the processor
arrangement. As an example, in FIG. 3, there are 32 pro-
cessors numbered 1 through 32. The state of each bit may be
defined to indicate the availability of the corresponding
processor. For example, 1t may indicate whether the corre-
sponding processor 1s selected for afhnitization. Alterna-
tively, 1t may indicate whether the corresponding processor
has been scheduled or afhinitized to execute one or more
threads. A bit 1s set to a logical ONE state 11 the correspond-
ing processor 1s selected for athnitization and to a logical
ZERO otherwise. As 1s known by one skilled in the art, the
bit logical state may be the reverse, 1.e., a logical ZERO
indicates the corresponding processor 1s selected for afliniti-
zation, and logical ONE otherwise. The definition of the
active level of the mask bit (e.g., logical ONE or ZERO)
depends on the combining operator to merge the granularity
mask with the current athnity mask in producing the new
ailinity mask. This combining operator may be any suitable
logic function such as bitwise OR or AND operation. It 1s
also contemplated that the granularity mask may have any
other form or representation. For example, the granularity
bit field 305 may have several bits to indicate several
processor attributes such as aflinitization selection, memory
locality characteristics, preference usage (e.g., system tasks,
application tasks), etc. Another representation may be a data
structure with pointers to point to processor attribute blocks.
As 1s know by one skilled 1n the art, appropriate application
interfaces, drivers, or procedure calls to allow access to the
granularity bit field 305 may be required for OS terfacing.

In the example shown 1n FIG. 3, the thread granularity 1s
a bus granularity, 1.e., a thread can be assigned to any one of

5

10

15

20

25

30

35

40

45

50

55

60

65

8

two processors connected to the same bus. The granularity
mask 300, therefore, consists of adjacent bits appearing in
pairs to correspond to a pair of processors i each bus. For
a processor granularity, the granularity mask 300 consists of
a single bit at the active level at a particular processor
position. Similarly, for a sub pod and pod granularities, the
granularity mask 300 consists of four and eight adjacent bits
at the active level. The adjacency here 1s to refer to the
manner 1n which the numbering of the bit position indicates
the physical position of a processor with respect to another.
The essential concept 1s that the granularity mask bits are at
the active level when the corresponding processors share the
same common resources or physical connections such as a
processor, a bus, a TLC, or a crossbar interconnect switch,
or any other suitable common resources.

FIG. 4 1s a diagram 1llustrating a mask schedule generator
147 according to one embodiment of the invention. The
mask schedule generator 147 includes a primary set 410, a
secondary set 420, a filter set 430, a filter 440, and mask
schedule array 450.

The primary set 410 1s a set of granularity masks created
according to the thread granularity as selected by the system
or by the user. Typically, the granularity masks in this set are
typically those of the form shown 1n FIG. 3. The primary set
410 1s pre-determined and represents the processor configu-
ration at all the available granularities. For example, in a
system of N=32 processors having processor, bus, subpod,
and pod granularities with sizes of one, two, four, and eight
processors, the primary set 410 includes 32 processor granu-
larity masks, 16 bus granularity masks, 8 subpod granularity
masks, and 4 pod granularity masks. The primary set 410 1s
typically determined 1n advance and stored 1n memory or a
table for later retrieval.

The secondary set 420 1s a set of granularity masks also
created according to the thread granularity. The granularity
masks 1n this set, however, may be of diflerent form than that
of the primary set 410. Typically, these masks represent
special circumstances or are created to satisly some require-
ments or criteria where availability of certain processor or
processors are known. To facilitate retrieval and indexing,
the secondary granularity masks may be arranged to corre-
spond to the primary granularity masks. Furthermore, the
active level of the secondary granularity mask bits may be
the same or complementary to that of the primary granular-
ity mask bits. The secondary set 410 1s typically determined
in advance and stored in memory or a table for later retrieval.

The filter set 430 contains a set of filter masks. Each filter
mask 1s a bit pattern representing availability of processors
in the system for a particular system configuration or ses-
s1on. I1 this bit pattern 1s fixed and constant, the filter set 430
may contain only one filter mask. The filter set 430 may be
provided by the user via the command line facility 212 (FIG.
2) or dynamically based on some system behavior or criteria.
For example, suppose 1t 1s known that a cluster of processors
have been scheduled to execute a number of high priority
threads, 1t may be desirable to mark these processors
unavailable. The active level of the filter mask bits 1s
selected to be consistent with that of the primary and
secondary granularity mask bits and to facilitate the opera-
tions 1n the filter 440.

The filter 440 filters or transforms the primary and/or
secondary granularity masks in the primary and/or second-
ary sets 410 and 420 using a filter mask selected from the
filter set 430. The filter 440 may eliminate any primary
and/or secondary granularity masks that are invalid or
correspond to unavailable processor(s). In general, the filter
440 collapses the size of the primary/secondary granularity

US 7,275,249 Bl

9

masks 1nto a reduced set of athnity masks that can be used
tor thread athnitization during run-time. Gaps in the primary
or secondary sets representing mnvalid masks are removed.
The resulting aflinity masks may contain bit patterns that
represent any combination of processors that 1s suitable for
thread afhinitization. The bits 1n the aflinity masks may be
contiguous or non-contiguous.

The mask schedule array 450 stores athinity masks pro-
vided by the filter 440. In general, 1t 1s more compact than
the primary and/or secondary sets 410 and 420. The mask
schedule array 450 may be a composite set of mask sched-
ules or may be divided into two groups: one for the primary
set 410 and one for the secondary set 420. Once generated
for an application thread, the mask schedule array 450 may
be repeatedly applied during the course of execution of the
application 214 hosted by the VM 230 as shown 1n FIG. 2.
If the state of the system 1s maintained and the same
application 214 1s re-executed under identical or similar
conditions, then the process 1s capable of repeatedly recre-

ating settings to produce optimal performance as configured
during imitialization. Even if the same application 214 1is
re-executed under non-identical conditions and as a result, a
different set of aflinity masks may be used, the process 1s still
capable of providing optimal performance because these
aflinity masks have been selected and configured taking into
account overall system configuration and requirements dur-
ing the mitialization phase of the VM 230.

FIG. § 1s a diagram illustrating the primary set 410 of
granularity masks according to one embodiment of the
invention. The primary set 410 1s created for the processor,
bus, subpod, and pod granularities 1n a system having N=32
processors. The primary set 410 includes four groups: a
primary processor granularity group 510, a primary bus
granularity group 520, a primary subpod granularity group
530, and a primary pod granularity group 3540.

The primary processor granularity group 310 includes
N=32 granularity masks 515, to 515,,. Each of the granu-
larity masks 515, to 515, contains a single bit at the active
level indicating that the corresponding processor 1s available
for thread aflinitization under processor granularity. Simi-
larly, the primary bus granularity group 520 includes
N/2=16 granularity masks 5235, to 525, .; the primary subpod
granularity group 530 includes N/4=8 granularity masks
535, to 535,; and the primary pod granulanty group 540
includes N/8=4 granularity masks 545, to 545,. Note that
although these masks are preferred, any bit patterns may be
used as primary masks. As shown, these granularity masks
are shown below where 0x 1ndicates hexadecimal notation.

Processor Bus Subpod Pod
0x00000001 0x00000003 0x0000000F O0x000000FF
0x00000002 0x0000000C 0x000000F0 Ox0000FF00
0x00000004 0x00000030 0x00000F00 OxOOFF0000
0x00000008 0x000000C0 0x0000F000 OxEFFO00000
0x00000010 0x00000300 0x000F0000
0x00000020 0x00000CO00 0x00F00000
0x00000040 0x00003000 Ox0F000000
0x00000080 0x0000C000 OxFO000000
0x00000100 0x00030000
0x00000200 0x000C0000
0x00000400 0x00300000
0x00000800 0x00C00000
0x00001000 0x03000000
0x00002000 0x0C000000
0x00004000 0x30000000
0x00008000 0xC0000000
0x00010000

5

10

15

20

25

30

35

40

45

50

55

60

65

10

-continued

Bus Pod

Processor Subpod

0Ox00020000
0Ux00040000
0Ox00080000
0Ux00100000
0x00200000
0x00400000
0Ox00800000
0x01000000
0x02000000
0x04000000
0Ox08000000
0Ux 10000000
0x20000000
0Ux40000000
0Ox 80000000

FIG. 6 1s a diagram 1illustrating the secondary set 420 of
granularity masks according to one embodiment of the
invention. The second set 420 1s created for the processor,
bus, subpod, and pod granularities 1n a system having N=32
processors. The secondary set 420 includes four groups: a
secondary processor granularity group 610, a secondary bus
granularity group 620, a secondary subpod granularity group
630, and a secondary pod granularity group 640.

The secondary processor granularity group 610 includes
N=32 granularity masks 615, to 615,,. Similarly, the sec-
ondary bus granularity group 620 includes N/2=16 granu-
larity masks 625, to 623, .; the secondary subpod granularity
group 630 includes N/4=8 granularity masks 635, to 635;
and the secondary pod granularity group 640 includes N/8=4
granularity masks 6435, to 645,. The secondary granularity
masks do not have any regular patterns. They are mainly
created based on knowledge or a priori information on a
particular type of thread. For example, a system thread to
perform a major garbage collection may be assigned to
processors that are reserved for VM threads. The patterns
shown in FIG. 6 are mainly for illustrative purposes. The
objective 1s to show that the secondary granularity masks
may have any form and may contain non-adjacent groups of
active level bits. For example, the mask 615, shows that the
group of processors from P, to P, are not available while the
rest can be used.

Once the primary set 410 and the secondary set 420 are
created, the VM 230 then generates the mask schedule for
use for an active thread. The active thread may be an
application thread or a VM thread. The generation of the
mask schedule 1s performed by a filtering process using the
filter 440. The filter 440 1n essence extracts a granularity
mask from the primary set 410 and/or the secondary set 420,
applies a filtering function to the mask using the filter mask
430, then determines 11 the resulting aflinity mask 1s usable.
A usable athinity mask 1s one 1n which there 1s at least an
active bit, indicating that at least one processor 1s available
for athnitization. If the resulting aflinity mask 1s not usable
aiter the filtering or transformation, 1t 1s discarded. Note that
the use of the secondary set 420 1s optional and may not be
needed. In the following discussion, it 1s assumed that the
secondary set 420 1s used 1n the filtering process.

Let pmask]1], smask][1], pathinity[k] and saflinity[k] be the
primary granularity mask, the secondary granularity mask,
the primary aflinity mask and the secondary aflimity mask,
respectively, where j and k are the indices to the tables or
arrays. Let np and nschedule be the total numbers of the
primary granularity masks in the primary set 410 and the
allinity masks in the mask schedule array 450, respectively.

US 7,275,249 Bl

11

Let filtermask be a filter mask obtained from the filter set
430. Let && denote the bitwise AND operation. In one
embodiment, the filtering process may be described in the
following pseudo code.

k=0;

for (1=0; 1<np; 1++)

1

ptest=pmask][1] &&filtermask;

if’ (ptest 1=0x0)

1
pathnity|k]=ptest;
sathnity[k]=smask][1] &&filtermask
k+=1;

]

}
nschedule—k

FI1G. 7 1s a diagram 1llustrating the filter 440 according to
another embodiment of the mnvention. The filter 440 receives
inputs from the primary set 410, secondary set 410 and filter
set 430. In this embodiment, the primary set 410 and the
secondary set 420 are of the same size and contain the same
number of granularity masks at each granularity. The filter
440 1ncludes a primary mask function 725, a secondary
mask function 735 and a comparator 770.

The primary mask function 725 performs an operation on
a primary mask 710 and a filter mask 715 to generate a
primary athinity mask 730. The secondary mask function 735
performs another operation on a secondary mask 720 and the
filter mask 7135 to generate a secondary athnity mask 740.
The primary mask 710, the secondary mask 720, and the
filter mask 715 are obtained from the primary set 410, the
secondary set 420, and the filter set 430, respectively. The
operations performed by the primary and secondary mask
tfunctions 7235 and 7335 depends of on the active level of the
mask bits. When the active level 1s logical TRUE, the
primary and secondary mask functions may perform an
AND operation. As before, the filter mask 715 masks out the
bits that correspond to unavailable processors.

The comparator 770 compares the primary athnity mask
730 with a mask constant 745 to determine 1if the primary
afhinity mask 730 1s saved or discarded. If the primary
athinity mask 730 shows that there 1s no available processor,
1.e., when 1t contains all zero’s, 1t 1s discarded. The mask
constant 745 1s 0x0. The comparator 770 generates a sched-
ule store signal or flag to store the resulting primary and
secondary athmity masks 730 and 740 1n the mask schedule
450 15 the primary athnity mask 730 1s not equal to the mask
constant 743.

FIG. 8 1s a flowchart 1llustrating a process 800 to use a
mask schedule according to one embodiment of the inven-
tion.

Upon START, the process 800 retrieves an aflinity mask
from a mask schedule array (Block 810). The aflinity mask
may be generated by filtering the primary mask using the
filter mask.

Then, the process 800 atlinitizes an active thread to a first
cluster of processors 1n the N clusters of processors using the
retrieved athnity mask (Block 820). Next, the process 800
executes the active thread using the first cluster of proces-
sors (Block 830) and 1s then terminated.

While the mnvention has been described 1n terms of several
embodiments, those of ordinary skill 1n the art will recognize
that the invention 1s not limited to the embodiments
described, but can be practiced with modification and alter-
ation within the spirit and scope of the appended claims. The
description 1s thus to be regarded as illustrative instead of
limiting.

il

10

15

20

25

30

35

40

45

50

55

60

65

12

What 1s claimed 1s:

1. A method comprising:

obtaining a primary mask from a primary set ol granu-
larity masks, the granularity masks being created
according to a thread granularity in a multiprocessor
system having N clusters of processors; and

filtering the primary mask using a filter mask to generate
a first athnity mask.

2. The method of claim 1 further comprising:

storing the first athnity mask 1mn a mask schedule.

3. The method of claim 1 further comprising:
afhnmtizing an active thread to a first cluster 1n the N
clusters of processors using the first aflinity mask.

4. The method of claim 3 further comprising:
executing the active thread using the first cluster.
5. The method of claim 1 further comprising;:
obtaining a secondary mask from a secondary set of the
granularity masks; and
filtering the secondary mask using the filter mask to
generate a second aflimity mask.
6. The method of claim 5 further comprising;:
storing the second aflimity mask 1n a mask schedule.
7. The method of claim 5 further comprising:
alhimitizing an active thread to a first cluster 1n the N
clusters of processors using the second aflinity mask.
8. The method of claim 7 further comprising:
executing the active thread using the first cluster.
9. The method of claim 1 wherein obtaining comprises:
obtaining the primary granularity mask from the primary
set of default granularity masks, the default granularity
masks being created according to the thread granularity
in the multiprocessor system having N clusters of
processors, the multiprocessor system being a cellular
multiprocessor system.
10. The method of claim 1 wherein obtaining comprises:
obtaining the primary granularity mask from the primary
set of default granularity masks, the default granularity
masks being created according to the thread granularity
in the multiprocessor system having N clusters of
processors, the thread granularity being one of a pro-
cessor granularity, a bus granularity, a subpod granu-
larity, and a pod granularity.
11. The method of claim 1 wherein filtering the primary
mask comprises:
performing an operation on the primary mask using the
filter mask to generate a result; and
saving the result as the first athnity mask if the result 1s not
equal to a mask constant.
12. The method of claim 11 wherein performing an
operation comprises:
performing one of an OR operation and an AND operation
on the primary mask using the filter mask to generate
the result.
13. The method of claim 12 wherein saving the result
COmMprises:
saving the result as the first athnity mask 11 the result 1s not
equal to one of an OR constant and an AND constant.
14. The method of claim 13 further comprising:
executing the active thread using the first cluster.
15. The method of claim 1 further comprising:
obtaining a secondary mask from a secondary set of the
granularity masks; and
filtering the secondary mask using the filter mask to
generate a second aflimity mask.
16. The method of claim 15 further comprising:
storing at least one of the first and second athinity masks
in a mask schedule.

US 7,275,249 Bl

13

17. The method of claim 15 farther comprising;:
afhmtizing an active thread to a first cluster in the N
clusters of processors using the second aflinity mask.
18. A method comprising;:
retrieving an aflinity mask from a mask schedule, the
allinity mask being generated by filtering a primary
mask using a filter mask, the primary mask being
selected from a primary set of granularity masks, the
granularity masks being created according to a thread
granularity 1 a multiprocessor system having N clus-
ters ol processors; and

athmtizing an active thread to a first cluster in the N
clusters of processors using the athnity mask.

19. The method of claim 18 wherein retrieving the affinity

mask comprises:

retrieving the athnity mask from the mask schedule, the
ailinity mask being generated by filtering a secondary

mask using the filter mask, the secondary mask being
selected from a secondary set of granularity masks.

20. The method of claim 18 further comprising:

executing the active thread using the first cluster.

21. An article of manufacture comprising:

a machine-accessible medium including data that, when
accessed by a machine, causes the machine to perform
operations comprising:

obtaining a primary mask from a primary set of granu-
larity masks, the granularity masks being created
according to a thread granularity 1in a multiprocessor
system having N clusters of processors; and

filtering the primary mask using a filter mask to generate
a first athinity mask.

22. The article of manufacture of claim 21 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising:

storing the first atlinity mask in a mask schedule.

23. The article of manufacture of claim 21 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising:

afhmtizing an active thread to a first cluster in the N
clusters of processors using the first atlinity mask.

24. The article of manufacture of claim 23 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising;:

executing the active thread using the first cluster.

25. The article of manufacture of claim 21 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising:

obtaining a secondary mask from a secondary set of the
granularity masks; and

filtering the secondary mask using the filter mask to
generate a second aflinity mask.

26. The article of manufacture of claim 25 wherein the
data further comprising data that when accessed by the
machine, causes the machine to perform operations com-
prising:

storing the second athnity mask 1n a mask schedule.

27. The article of manufacture of claim 25 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising;:

afhmtizing an active thread to a first cluster in the N
clusters of processors using the second aflinity mask.

10

15

20

25

30

35

40

45

50

55

60

65

14

28. The article of manufacture of claim 27 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising;:

executing the active thread using the first cluster.

29. The article of manufacture of claim 21 wherein the
data causing the machine to perform obtaining comprises
data that, when accessed by the machine, causes the machine
to perform operations comprising:

obtaining the primary granularity mask, from the primary

set of default granularity masks, the default granularity
masks being created according to the thread granularity
in the multiprocessor system having N clusters of
processors, the multiprocessor system being a cellular
multiprocessor system.

30. The article of manufacture of claim 21 wherein the
data causing the machine to perform obtaining comprises
data that, when accessed by the machine, causes the machine
to perform operations comprising:

obtaining the primary granularity mask from the primary

set of default granularity masks, the default granularity
masks being created according to the thread granularity
in the multiprocessor system having N clusters of
processors, the thread granularity being one of a pro-
cessor granularity, a bus granularity, a subpod granu-
larity, and a pod granularity.

31. The article of manufacture of claim 21 wherein the
data causing the machine to perform filtering the primary
mask comprises data that, when accessed by the machine,
causes the machine to perform operations comprising:

performing an operation on the primary mask using the

filter mask to generate a result; and

saving the result as the first athnity mask if the result 1s not

equal to a mask constant.

32. The article of manufacture of claim 31 wherein the
data causing the machine to perform an operation comprises
data that, when accessed by the machine, causes the machine
to perform operations comprising:

performing one of an OR operation and an AND operation

on the primary mask using the filter mask to generate
the result.

33. The article of manufacture of claim 32 wherein the
data causing the machine to perform saving the result
comprises data that, when accessed by the machine, causes
the machine to perform operations comprising:

saving the result as the first athnity mask 11 the result 1s not

equal to one of an OR constant and an AND constant.

34. The article of manufacture of claim 33 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising;:

executing the active thread using the first cluster.

35. The article of manufacture of claim 21 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising:

obtaining a secondary mask from a secondary set of the

granularity masks; and

filtering the secondary mask using the filter mask to

generate a second aflimity mask.

36. The article of manufacture of claim 35 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising:

storing at least one of the first and second athinity masks

in a mask schedule.

US 7,275,249 Bl

15

37. The article of manufacture of claim 35 wherein the
data further comprising data that, when accessed by the
machine, causes the machine to perform operations com-
prising;:

afhmtizing an active thread to a first cluster in the N
clusters of processors using the second aflinity mask.

38. An article of manufacture comprising:

a machine-accessible medium including data that, when
accessed by a machine, causes the machine to perform
operations comprising;:

retrieving an aflinity mask from a mask schedule, the
aflinity mask being generated by filtering a primary

mask using a filter mask, the primary mask being
selected from a primary set of granularity masks, the
granularity masks being created according to a thread
granularity 1n a multiprocessor system having N clus-
ters ol processors; and

afhmtizing an active thread to a first cluster in the N
clusters of processors using the afhnity mask.

39. The article of manufacture of claim 38 wherein the
data causing the machine to perform retrieving the athnity
mask comprises data that, when accessed by the machine,
causes the machine to perform operations comprising:

retrieving the athnity mask from the mask schedule, the
aflinity mask being generated by filtering a secondary

mask using the filter mask, the secondary mask being
selected from a secondary set of granularity masks.
40. The article of manufacture of claim 38 wherein the
data further comprises data that, when accessed by the
machine, causes the machine to perform operations com-
prising:
executing the active thread using the first cluster.
41. A system comprising;:
N clusters of processors; and
a memory coupled to a processor 1n the N clusters of
processors, the memory containing program code that,
when executed by the processor, causes the processor
to:
obtain a primary mask from a primary set of granularity
masks, the granularity masks being created accord-
ing to a thread granularity, and

filter the primary mask using a filter mask to generate
a first athinity mask.

42. The system of claam 41 wherein the program code,
when executed by the processor, further causes the processor
to:

store the firs-t athinity mask 1n a mask schedule.

43. The system of claim 41 wherein the program code,
when executed by the processor, further causes the processor
to:

aflinitize an active thread to a first cluster in the N clusters
of processors using the first athnity mask.

44. The system of claim 43 wherein the program code,
when executed by the processor, further causes the processor
{o;

execute the active thread using the first cluster.

45. The system of claim 41 wherein the program code,
when executed by the processor, further causes the processor
to:

obtain a secondary mask from a secondary set of the
granularity masks; and

filter the secondary mask using the filter mask to generate
a second aflinity mask.

46. The system of claim 45 wherein the program code,
when executed by the processor, further causes the processor
to:

store the second aflinity mask in a mask schedule.

10

15

20

25

30

35

40

45

50

55

60

65

16

47. The system of claim 45 wherein the program code,
when executed by the processor, further causes the processor
{o;

afhinitize an active thread to a first cluster 1n the N clusters

ol processors using the second aflinity mask.

48. The system of claim 47 wherein the program code,
when executed by the processor, further causes the processor
to:

execute the active thread using the first cluster.

49. The system of claim 41 wherein the program code
causing the processor to obtain causes the processor to:

obtain the primary granularity mask from the primary set

of default granularity masks, the default granularity
masks being created according to the thread granularity
in the multiprocessor system having N clusters of
processors, the multiprocessor system being a cellular
multiprocessor system.

50. The system of claim 41 wherein the program code
causing the processor to obtain causes the processor to:

obtain the primary granularity mask from the primary set
of default granularity masks, the default granularity
masks being created according to the thread granularity
in the multiprocessor system having N clusters of
processors, the thread granularity being one of a pro-
cessor granularity, a bus granularity, a subpod granu-
larity, and a pod granularity.

51. The system of claim 41 wherein the program code
causing the processor to filter the primary mask causes the

processor to:

perform an operation on the primary mask using the filter
mask to generate a result; and

save the result as the first athnity mask 11 the result 1s not
equal to a mask constant.

52. The system of claim 51 wherein the program code
causing the processor to perform an operation causes the
processor to:

perform one of an OR operation and an AND operation on
the primary mask using the filter mask to generate the
result.

53. The system of claim 52 wherein the program code
causing the processor to save the result causes the processor
to:

save the result as the first athnity mask 11 the result 1s not
equal to one of an OR constant and an AND constant.

54. The system of claim 53 wherein the program code,
when executed by the processor, further causes the processor
to:

execute the active thread using the first cluster.

55. The system of claim 41 wherein the program code,
when executed by the processor, further causes the processor
to:

obtain a secondary mask from a secondary set of the
granularity masks; and

filter the secondary mask using the filter mask to generate
a second aflinity mask.

56. The system of claim 55 wherein the program code,
when executed by the processor, further causes the processor
to:

store at least one of the first and second aflinity masks in

a mask schedule.

57. The system of claim 55 wherein the program code,
when executed by the processor, further causes the processor
to:

athinitize an active thread to a first cluster in the N clusters
of processors using the secondary athnity mask.

US 7,275,249 Bl

17 18
58. A system comprising: 59. The system of claim 58 wherein the program code
N clusters ot processors; and causing the processor to retrieve the athnity mask causes the
a memory coupled to a processor in the N clusters of yrocessor to:

processors, the memory containing program code that,
when executed by the processor, causes the processor 5
to:

retrieve the aflinity mask from the mask schedule, the
aflinity mask being generated by filtering a secondary

retrieve an afhnmity mask from a mask schedule, the mask using the filter mask, the SeCOﬂdﬂfY. mask being
affinity mask being generated by filtering a primary selected from a secondary set of granularity masks.
mask using a filter mask, the primary mask being 60. The system of claim 58 wherein the program code

selected from a primary set of granularity masks, the
granularity masks being created according to a
thread granularty; and

allinitize an active thread to a first cluster 1n the N
clusters of processors using the aflinity mask. S B T

10 lurther causes the processor to:

execute the active thread using the first cluster.

	Front Page
	Drawings
	Specification
	Claims

